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1 Introduction

This document contains a set of questions/problems on the topics treated in
sf2935 Modern Methods of Statistical Learning during the period 2 of 2017.
Five of these will be selected to constitute the written exam on Thursday the
11th of January, 2018, 08.00 - 13.00.

The answers/solutions can be produced by a study of the relevant chap-
ters in the course textbook An introduction to Statistical Learning, by G.
James, D. Witten, T. Hastie, R. Tibshirani. Springer Verlag, 2013, and by a
similar study of the lecture slides of lecturers and guests on the webpage
https://www.math.kth.se/matstat/gru/sf2935/statlearnmaterial2017

or on canvas.
In addition, some proficiency in manipulating basic calculus, probability,

linear algebra and matrix calculus is required.
This same set of questions (maybe some will be revised/removed and

new added) will be valid in the re-exam. There will be a seminar (TBA)
after each exam for presentation by the lecturers of an outline for a
good answer/proof/solution for each of the questions in the exam.

2 The Assignments

1. Suppose that we have a training set consisting of a set of data points
D = {(x1, y1), . . . , (xN , yN)} and

yi = f(xi) + ε,

where the noise, ε, has zero mean and variance σ2. Hnece yis are
independent outcomes of Y in

Y = f(x) + ε.

By means of some learning algorithm, the raining set D and a model
class we have found a function f̂(x) to model the true, but unknown,
function y = f(x) .

We decompose the expected prediction error EPE(x) of f̂ on another
point x as follows:

EPE(x) = E
[(
Y − f̂(x)

)2
]

= Bias
[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2. (2.1)
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Here:

Bias
[
f̂(x)

]
= E

[
f̂(x)

]
− f(x) (2.2)

and

Var
[
f̂(x)

]
= E

[(
f̂(x)− E[f̂(x)]

)2
]

(2.3)

a) Deduce these equations from E
[(
Y − f̂(x)

)2
]
.

b) Explain the Bias -Variance Trade-Off with aid of this decomposi-
tion.

2. The noise, ε, has zero mean and variance σ2, f is an unknown function,
and

Y = f(x) + ε.

Suppose that we have a training set consisting of a set of N indepen-
dent data points D = {(x1, y1) . . . , (xN , yN)}, or, the real values yi
associated with each point xi in Rd. We have thus that

yi = f(xi) + εi,

where the noise, εi, has zero mean and variance σ2. We choose our
learning machine f̂ as

f̂(x) = f̂k(x),

where for 1 ≤ k < N

f̂k(x) =
1

k

∑
nnk(x)

yi

i.e., we are averaging the outputs yi in D over the set nnk(x) consisting
of the k nearest neighbors of x in D. This is called k-nearest neighbor
regression.

Let 1 ≤ k < N and x(1) ≤ x(2) ≤ . . . ≤ x(k) be an ordering of x1, . . . ,xN
so that

||x(1) − x||2 ≤ ||x(2) − x||2 ≤ . . . ≤ ||x(k) − x||2 ≤ . . . ≤ ||x(N) − x||2

Here ||x(1) − x||2 is the L2 -distance on Rd.
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a) Show by means of (2.1) - (2.3) that

EPE(x) = E
[(
Y −f̂k(x)

)2
]

= σ2+

(
f(x)− 1

k

k∑
l=1

f(x(l))

)2

+
σ2

k
.

b) How does the choice of k influence the Bias -Variance Trade-Off of
k-nearest neighbor regression in view of this decomposition. How
is high dimension d influencing ?

3. Rosenblatt’s perceptron algorithm for training of perceptrons is written
in a pseudocode as

1: w0 ← 0, b0 ← 0, k ← 0 R ← max1≤i≤l ‖xi‖
2: repeat
3: for i = 1 to l do
4: if yi (� w,xi � +bk) ≤ 0 then
5: wk+1 ← wk + yixi,

bk+1 ← bk + yiR2,
k ← k + 1

6: end if
7: end for
8: until no mistakes made in the loop
9: return wk, bk, where k is the number of mistakes.

a) Explain in plain words what the algorithm does.

b) Formulate the Perceptron Convergence Theorem (Novikoff 1962)
and interpret it in terms of the perceptron algorithm and its ge-
ometry.

4. Consider the output layer of an artificial neural network.

yj = σ

(
m∑
i=1

wjioi + bj

)
.

We have

netj
def
=

m∑
i=1

wjioi + bj,

so that
yj = σ(netj).
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The input netj to the activator σ(u) = 1/(1+e−u), the sigmoid function,
is the weighted sum of outputs ok of neurons in the previous layer.

We have a set of training data consisting of K inputs and targets ti.
The goal is to tune all the weights and biases to minimize the cost or
training function

C =
1

2

K∑
i=1

(yi − ti)2,

where yis are the network outputs corresponding to the inputs. We
consider here only the output layer and use a gradient descent algo-
rithm. Calculation of the partial derivative of the error C with respect
to a weight wji is done using the chain rule of calculus twice:

∂C

∂wji
=
∂C

∂yj

∂yj
∂wji

=
∂C

∂yj

∂yj
∂netj

∂netj
∂wji

(2.4)

a) Find
∂C

∂yj
.

b) Find
∂netj
∂wji

.

Here you need to pay attention to the expression for the derivative
of the sigmoid function σ(u).

c) Show finally that

∂C

∂wji
= (oj − tj) · oj(1− oj) · oi·

5. Explain the concept of separating hyperplane classification. Specifi-
cally, consider the case where the feature space X is p-dimensional and
the output space is Y = {−1, 1}. Describe how a separating hyperplane
is defined and how such a (generic) hyperplane can be used for classifi-
cation. Define the maximal margin hyperplane and describe in some de-
tail how it can be found for a given training set {(x1, y1), . . . , (xn, yn)}.
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6. Consider a p-dimensional feature space X , output space Y = {−1, 1}
and a training set {(x1, y1), . . . , (xn, yn)}. Define the support vector
classifier; you must explain all the quantities involved. What is the
difference between the support vector classifier, i.e. the associated hy-
perplane, and the maximal margin classifier? What does the term
“support vector” refer to and why is this an important concept for
this particular classifier? Lastly, describe how you could achieve a
non-linear decision boundary using a support vector classifier; give an
example. What are potential drawbacks of this approach?

7. Consider a p-dimensional feature space X , output space Y = {−1, 1}
and a training set {(x1, y1), . . . , (xn, yn)}. Define the concept of a sup-
port vector machine and explain all quantities involved. Give at least
two non-trivial examples of various instances of this classifier. De-
scribe the difference between a support vector machine and achieving
non-linear decision boundaries using a support vector classifier. Lastly,
describe one way a support vector machine can be used in the setting
of K > 2 classes.

8. Suppose x comes from one of two populations, Π1 with Np(µ1,Σ1) and
Π2 with Np(µ2,Σ2). If the respective density functions are denoted by
f1(x) and f2(x). Find the expression for the quadratic discriminator
Q, where

Q = ln

[
f1(x)

f2(x)

]
.

If Σ1 = Σ2, verify that Q becomes

(µ1 − µ2)′Σ−1x− 1

2
(µ1 − µ2)′Σ−1(µ1 + µ2). (2.5)

9. Assume that Πi is Np(µi,Σ), i = 1, 2 and for the class prior probabili-
ties πi it hold that π1 = π2 = 1

2
. Specify the optimal misclassification

rate (OMR) for the linear discriminant function. Explain further the
relationship between the OMR and the Mahalanobis distance between
two populations.

10. Relationship between LDA and QDA: Suppose that observations within
each class are drawn from Np(µi,Σi), i = 1, . . . , C, i.e from C classes
with a class specific mean vector and a class specific covariance matrix.
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In general, as the sample size n increases, does one expect the test
classification accuracy of QDA relative to LDA to improve, decline or
be unchanged. Motivate your answer.

11. Suppose x0 comes from one of two populations, Π1 with Np(µ1,Σ) and
Π2 with Np(µ2,Σ). Suppose also that you have a training data from
both populations. Form the sample based linear discriminant function
and specify the classification procedure for assigning x0 to one of two
populations.

What happens to Fisher’s linear discriminant if the sample size n is
smaller than the dimensionality p?

12. Explain the idea of k nearest neighbors, kNN, classifier. Derive the
classification rule and explain the effect of k choice on the classification
accuracy using both test and training errors.

13. The bootstrap approach provides an all-purpose method for computing
standard errors. For any estimator θ̂ = θ̂(x) we can write

Var∗(θ̂) =
1

nn − 1

nn∑
i=1

(
θ̂∗i −

¯̂
θ∗
)2

,

where ∗ denotes a bootstrapped or re-sampled value, θ̂∗i is the estimator
calculated from the i re-sample and

∑nn

i=1 θ̂
∗
i is the mean of the re-

sampled values. The variance formula above is applicable to virtually
any estimator. But how do we know that it is a good method for
evaluation the performance of estimators? Explain why the method is
good using the following steps: for a sample x = (x1, . . . , xn) and an
estimate θ̂ = θ̂(x1, . . . , xn) select b bootstrap samples and calculate

Var∗b(θ̂) =
1

b− 1

b∑
i=1

(
θ̂∗i −

¯̂
θ∗
)2

.

Explain why we have the convergence result

Var∗b(θ̂)→ Var∗(θ̂) as b→∞.

14. X = (X1, . . . Xd) is a discrete d-dimensional random variable with the
probability mass function

pX(x) =
1

Z
e
∑d

i=1 hixi+
∑d

i=1

∑d
j=1 Jijxixj
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Here x = (x1, . . . , xd) and Z is the normalization constant i.e.,

Z =
∑
x

e
∑d

i=1 hixi+
∑d

i=1

∑d
j=1 Jijxixj

also known as the partition function and assumed to be finite.

It is valid by assumption that

Jii = 0 for all i, Jij = Jji, for all i, j. (2.6)

Let X\r denote the variable X with the rth component removed, i.e.

X\r = (X1, . . . , Xr−1, Xr+1, . . . Xd)

In the same way

x\r = (x1, . . . , xr−1, xr+1, . . . xd).

a) Check that the conditional probability pXr|X\r(xr | x\r) is given by

pXr|X\r(xr | x\r) =
1

C
ehrxr+

∑d
j=1 Jrjxrxj ,

where
C =

∑
xr

ehrxr+
∑d

j=1 Jrjxrxj

Hint: It may useful at some stage to note the identity

d∑
i=1

d∑
j=1

Jijxixj = A+B,

where

A =
d∑

i=1,i 6=r

xi

[
d∑

j=1;j 6=r

Jijxj + Jirxr

]
,

and

B = xr

d∑
j=1

Jrjxj.

Here (2.6) can be used effectively.
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b) Describe the statistical learning technique connected to pXr|X\r(xr |
x\r) and its rationale. You can answer this question even if you
have not solved part a) of this assignment.

15. Let p(x) and q(x) be two probability mass functions on the same dis-
crete data space X . Then the Kullback or Kullback - Leibler divergence
or distance between p(x) and q(x) is denoted by D(p ‖ q) and is defined
as

D(p ‖ q) def
=
∑
x∈X

p(x) ln
p(x)

q(x)
. (2.7)

Here 0/0 = 0, where we take by continuity 0 ln 0 = 0, and p(x)/0 =
+∞.

If p(x) and q(x) are two probability density functions on the real line
we have

D(p ‖ q) def
=

∫ +∞

−∞
p(x) ln

p(x)

q(x)
dx. (2.8)

a) It holds in (2.7) and (2.8) that

D(p ‖ q) ≥ 0.

Prove this for either (2.7) or (2.8). Aid: Prove −D(p ‖ q) ≤ 0 by
evoking the inequality lnx ≤ x − 1 valid for all x > 0 (you need
not prove this inequality).

b) D(p ‖ q) is a distance only by name, it does not fulfill the axioms
of a metric. To consider this, let X = {0, 1} and 0 ≤ p ≤ 1 and
0 ≤ g ≤ 1, p 6= q. Let p(x) = px·(1−p)1−x and q(x) = qx·(1−q)1−x.
These are, of course, the two Bernoulli distributions Be(p) and
Be(g), respectively.

Then verify that

D(p ‖ q) = −(1− p) · log(1− g)− p · log g − h(p), (2.9)

where h(p) is the binary entropy function (2.10) with the natural
logarithm

h(p) := −p ln(p)− (1− p) ln(1− p). (2.10)

Note that h(p) ≥ 0, as is obvious.

Compute D(q ‖ p) and compare to (2.9). Draw a conclusion.
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16. We have n independent and identically distributed observations xi, for
simplicity of writing collected in x = (x1, . . . , xn), of a random variable
X ∼ Be(q), where q is unknown.

We have q(x) = P (X = x) = qx · (1− q)1−x for x = 0, 1, as above.

Next, the empirical distribution p̂(x) corresponding to x = (x1, . . . , xn),
with the relative frequencies p̂ = k

n
and 1− p̂ = n−k

n
is

p̂(x) = p̂x · (1− p̂)1−x,

where k is the number of ones in x = (x1, . . . , xn) and n− k is the the
number of zeros in x = (x1, . . . , xn).

a) Show that the likelihood function for q is

Lx(q) = qk(1− q)n−k.

b) Show that

D(p̂ ‖ q) = − 1

n
lnLx(q)− h(p̂).

Aid: Recall (2.9).

c) Find q∗ such that D(p̂ ‖ q) is minimized as function of q. Aid: You
can find q∗ without an operation like differentiation by exploiting
the fact that every Kullback distance is non-negative.

d) Which well-known statistical estimator of q is re-discovered as q∗ in
c)?

17. The output layer of a single layer artificial neural network with the
input x = (x1, . . . , xm) and single output is

y = σ

(
m∑
i

wixi + b

)
.

where the activator is σ(u) = 1/(1 + e−u). We set

net(x)
def
=

m∑
i=1

wixi + b,

and
y = σ(net(x)).
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We have a set of training data D = {(x1, t1), . . . ,xK , tK)} consisting
of K inputs xi and corresponding targets ti. Any target ti satisfies
0 < ti < 1.

The goal is to set the weights and the bias to minimize the cost function

KL =
K∑
l=1

D(tl ‖ yl).

where yl = σ(netl)(= σ(net(xl))), is the network output corresponding
to the input xl and D(tl ‖ yl) is the Kullback divergence between the
Bernoulli distribution Be(tl) and the Bernoulli distribution Be(yl)), c.f.,
in the preceding.

a) Check that the minimization of KL is equivalent to the minimiza-
tion of the cross entropy (Ce)

Ce = −
K∑
l=1

[tl ln yl + (1− tl) ln(1− yl)]

b) Check that
∂Ce
∂yl

=
yl − tl

yl(1− yl)
.

c) Set yl = σ(netl)(= σ(net(xl))). Check that

∂Ce
∂netl

= yl − tl.

Calculation of the partial derivative of the error Ce with respect
to netl is done using the chain rule:

∂Ce
∂netl

=
∂Ce
∂yl

∂yl
∂netl

. (2.11)

Here you need to pay attention to the expression for the derivative
of the sigmoid function σ(u).

d) Find by the appropriate chain rules and other auxiliaries

∂Ce
∂wi

.
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e) What is the minimum value of Ce?

18. Consider the natural exponential family

f (x | θ) = h(x)eθ·x−ψ(θ).

Here θ · x is inner product on Rk.

a) Consider the prior densities given by

π (θ) = ψ (θ|µ, λ) = K (µ, λ) eθ·µ−λψ(θ).

Find the the posterior as

ψ (θ|µ+ x, λ+ 1) .

Hence the given family of priors is a conjugate family for f (x | θ).
You are permitted to work formally, i.e., not checking the condi-
tions for validity.

b) Let

f(x | θ) =
d∏
i=1

θxii (1− θi)1−xi ;xj ∈ {0, 1}; 0 ≤ θi ≤ 1.

θ = (θ1, θ2, . . . θd). Write this in a natural form and find the
conjugate family of priors.

19. We have a training set of l pairs Y ∈ {−1, 1} and the corresponding
values of labels,

S = {(X1, y1) , . . . , (Xn, yn)}

and have used an approriate learning algorithm on S to find a rule
(ANN, SVM, e.t.c) designated by f̂ = f̂(S).

We must have another set of data, testing set, of holdout samples,
which were not used for training,

T =
{(

Xt
1, y

t
1

)
, . . . ,

(
Xt
m, y

t
m

)}
Having established f̂ we should apply it on T , and compare the pre-
diction ŷtj = f̂(Xt

j) for all j to ytj. We have the following errors
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• prediction of -1 when the holdout sample has a -1 (True Negatives,
the number of which is TN)

• prediction of -1 when the holdout sample has a 1 (False Negatives,
the number of which is FN)

• prediction of 1 when the holdout sample has a -1 (False Positives,
the number of which is FP)

• prediction of 1 when the holdout sample has a 1 (True Positives,
the number of which is TP)

False Positives = FP , True Positives = TP
False Negatives = FN , True Negatives= TN

Y = +1 Y = −1

Ŷ = +1 TP FP

Ŷ = −1 FN TN

One often encounters one or several of the following performance mea-
sures:

• Accuracy = TP+TN
TP+FP+FN+TN

=fraction of observations with correct
predicted classification

• Precision = PositivePredictiveValue (PPV) = TP
TP+FP

=Fraction
of predicted positives that are correct

• Recall = Sensitivity = TP
TP+FN

=fraction of observations that are
actually 1 with a correct predicted classification

• Specificity = TN
TN+FP

=fraction of observations that are actually
-1 with a correct predicted classification

In addition we need the following:

• Prevalence= TP+FN
TP+FP+FN+TN

= fraction of positives, Y = +1, in
T .

a) Express PPV in terms of Specificity, Sensitivity and Prevalence.
(Hint: Google) How is this related to Bayes

′
formula? Aid: Think

of the above in terms of conditional probabilities.
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b) How would you relate the type I error and type II error of statistical
hypothesis testing to the performance measures above? What is
the power of a statistical test in this terminology?

20. Suppose
P (B|A) > P (B).

We interpret this as the statement that if A is true then B becomes
more likely. Formulate and prove the statements

a) If not-B is true, then A becomes less likely.

b) If B is true, A becomes more likely.

c) If not-A is true, then B becomes less likely.

21. We say that the discrete r.v.s X and Y are conditionally independent
given Z if and only if for all x,y, z

P (X = x, Y = y | Z = z) = P (X = x | Z = z)P (Y = y | Z = z). (2.12)

a) Show that it follows from this definition that if X and Y are con-
ditionally independent given Z, then

P (Y = y | X = x, Z = z) = P (Y = y | Z = z) for all x,y,z. (2.13)

b) Show that (2.13) implies (2.12).

22. In the text D. Poole & A. Mackworth: Artificial Intelligence: Founda-
tions of Computational Agents, Cambridge University Press, 2010, we
quote the following:

The idea of Bayesian learning is to compute the posterior
probability distribution of the target features of a new exam-
ple conditioned on its input features and all of the training
examples.

Suppose a new case has inputs X = x and has target features,
Y ; the aim is to compute P (Y |X = x∧ e), where e is the set
of training examples. This is the probability distribution of
the target variables given the particular inputs and the exam-
ples. The role of a model is to be the assumed generator of
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the examples. If we let M be a set of disjoint and covering
models, then reasoning by cases and the chain rule give

P (Y |x ∧ e) =
∑
m∈M

P (Y ∧m|x ∧ e)

=
∑
m∈M

P (Y |m ∧ x ∧ e)× P (m|x ∧ e)

=
∑
m∈M

P (Y |m ∧ x)× P (m|e).

The first two equalities are theorems from the definition of
probability. The last equality makes two assumptions: the
model includes all of the information about the examples that
is necessary for a particular prediction (i.e., P (Y |m∧x∧e) =
P (Y |m ∧ x), and the model does not change depending on
the inputs of the new example (i.e., P (m|x ∧ e) = P (m|e).
This formula says that we average over the prediction of all
of the models, where each model is weighted by its posterior
probability given the examples.

Obviously, the terminology above does not fully conform to the termi-
nology made familiar in any standard probability and statistics courses
(abridged as sanstat below).

a) What does ∧ represent in sanstat?

b) Verify the first two equalities by the rules of sanstat.

c) What is ”reasoning by cases” in sanstat?

d) How would you interpret in sanstat ”the model includes all of the
information about the examples that is necessary for a particular
prediction” ?

e) How would you interpret in sannstat ”the model does not change
depending on the inputs of the new example”?

d) What is the meaning of ”the posterior probability distribution of the
target features of a new example conditioned on its input features
and all of the training examples”?
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23. Let

f(x|θ) =

{
1
θ

0 ≤ x ≤ θ
0 elsewhere,

where we know that 0 ≤ θ ≤ 10. We take for θ the prior density

π(θ) =

{
1
10

0 ≤ θ ≤ 10
0 elsewhere.

Asssume now that you have a data set D with four observations of x,
and that 8 = maxD, i.e., 8 is largest value you have observed.

a) Show that the posterior distribution π(θ|D) is

π(θ|D) =

{
c · 1

θ4
8 ≤ θ < 10

0 elsewhere,

where you need not find the value of c.

b) Show that the predictive distribution

f(x | D) =

∫ 10

0

f(x|θ)π(θ|D)dθ

is given by (c as in a))

f(x | D) =


c
4
·
(

1
x4
− 1

104

)
8 ≤ x < 10

c
4
·
(

1
84
− 1

104

)
0 ≤ x ≤ 8

0 elsewhere.

c) How would you comment the result in b)? Recall from first courses
that the maximum liklelihood estimate of θ based on D is

θ̂MLE = 8,

so the maximum likelihood method yields the probability density
for future data

f(x | θ̂MLE) =

{
1
8

0 ≤ x ≤ 8
0 elsewhere.
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24. We let P be a random variable with values denoted by p, 0 ≤ p ≤ 1.
Conditionally on P = p, the Uis are independent random variables
Ui ∼ Be(p) i = 1, 2, . . . ,, i.e.,

f(u|p) = P (U = u|P = p) = pu · (1− p)1−u, u = 0, 1. (2.14)

We fix n in advance and take

X = U1 + . . .+ Un.

Hence for x = 0, 1, 2, . . . , n,

f(x|p) = P (X = x | P = p)

=

(
n
x

)
px · (1− p)n−x ,

(the Binomial distribution) (you need not prove this). Bayes’ rule tells
that the posterior π (p | x) = density of P = p given X = x is generi-
cally given by

π (p | x) =
f (x | p) · π (p)

m(x)
, 0 ≤ p ≤ 1

and zero elsewhere. Here π(p) is the prior density. The marginal dis-
tribution of X in the denominator is

m(x) =

∫ 1

0

f (x | p) · π (p) dp.

a) Choose the prior

π(p) =

{
Γ(α+β)

Γ(α)Γ(β)
pα−1(1− p)β−1 0 < p < 1

0 elsewhere.

Here α > 0 and β > 0 are hyperparameters. In the above Γ(x) is
the Euler Gamma function. Show that

π (p | x) =

{
1

B(x+α,n−x+β)
· px+α−1 (1− p)β+n−x−1 0 ≤ p ≤ 1

0 elsewhere.

(2.15)
The constant B(x+ α, n− x+ β) is defined in (2.20) below.
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b) Let next Un+1 ∼ Be(p) and independent of Ui ∼ Be(p) i = 1, 2, . . . , n
given that P = p. Check that the conditional distribution φ(u, p|x) =
P (Un+1 = u,P = p | X = x) can be written as

φ(u, p|x) = f(u|p)π(p|x), (2.16)

where f(u|p) is given in (2.14) and π(p|x) in (2.15) (We make no
technical fuss about the curious mix of discrete and continuous
r.v.s in the left hand side of (2.16).) Aid: Recall (2.12).

c) Let α = β = 1 in (2.15). Then check that

P (Un+1 = 1 | X = x) =
x+ 1

n+ 2
. (2.17)

Aid: Let us set

φ(1|x) = P (Un+1 = 1 | X = x).

Then we have by marginalization in (2.16)

φ(1|x) =

∫ 1

0

φ(1, p|x)dp

You can now continue by (2.16) even if you have not solved the
task in b).

This is an example of a predictive probability distribution. D. Poole
& A. Mackworth: Artificial Intelligence: Foundations of Compu-
tational Agents, Cambridge University Press, 2010, state the fol-
lowing:

The idea of Bayesian learning is to compute the poste-
rior probability distribution of the target features of a new
example conditioned on its input features and all of the
training examples.
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USEFUL FORMULAS FOR THIS EXAM QUESTION:

• the Beta integral:∫ 1

0

pα−1(1− p)β−1dp =
Γ(α)Γ(β)

Γ(α + β)
. (2.18)

• Recursion property of the Euler Gamma function: for x a
positive integer,

Γ(x+ 1) = x!. (2.19)

• We set

B (α, β)
def
=

Γ(α)Γ(β)

Γ(α + β)
. (2.20)

25. Bayes Factor & Bayesian Model Comparison & Occam’s Razor

Let
Mi = {pi (x|θi) , πi(θi), θ0 ∈ Θi}

be two Bayesian model families.

a) What is the marginal likelihood pi (x|Mi) (of data) ?

b) How is the Bayes factor defined? Show that it can be written as

B01 =
p0 (x|M0)

p1 (x|M1)
.

c) What is Occam’s Razor?

d) SupposeM0 is a more complex model family thanM1, in the sense
thatM0 has more parameters. How does Bayes factor implement
Occam’s Razor?

26. Let x = (x1, x2, . . . , xd) be a binary vector, i.e., xi ∈ [0, 1], i ∈ {1, . . . , d}.
There are two classes c0 and c1 and corresponding probability mass
functions

p(x|θj, cj) =
d∏
i=1

θxiij (1− θij)1−xi ;xi ∈ {0, 1}; 0 ≤ θij ≤ 1,
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where θij = P (Xi = 1|cj) and

θj = (θ1j, . . . , θdj).

Then

p(cj | x) =
p(x|cj)πj

C
,

where π1(= 1 − π0) is the prior probability of c1, and π0 is the prior
probability of c0. C is the normalization constant that does not depend
on c1 and c0.

Let Y be a r.v. such that

Y =

{
c1 with probability p(c1 | x)
c0 with probability p(c0 | x).

Express P (Y = c1) in terms of the sigmoid function σ(x) = 1
1+e−x .

27. Let
Y ∗ = βTx + ε

where βTx = β0 + β1x1 + β2x2 + . . . + βpxp and ε is a r.v. with the
cumulative distribution function, the sigmoid function,

P (ε ≤ z) = σ(z) =
1

1 + e−z
.

a) Check first that
P (−ε ≤ z) = P (ε < z) .

b) Define Y as

Y
def
=

{
1 if Y ∗ > 0 i.e. − ε < βTx,

−1 otherwise.

c) Write P (Y = 1) in terms of the sigmoid function of βTx.

28. Let X t =
{
x(l)
}t
l=1

, where x(l) ∈ Rd, be a training set. Let D(x,y) be

a metric on Rd × Rd.

a) Give in detail the steps of the k-means algorithm. What is the
indata to the algorithm?
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b) What is the definition of a Voronoi region, and how are Voronoi
regions related to k-means clustering?

29. We have a statistical model that generates a set X = x of observed
data, a set of unobserved latent data values Z, and a vector of unknown
parameters θ, along with a likelihood function

L(θ; X = x,Z = i) = P (Z = i)pX(x|θi,Z = i).

Hence θi indicates the group of parameters in the conditional distribu-
tion of X, when conditioning on Z = i, and

θ = (θ1,θ2, . . .θk).

Let L(θ;x) be the likelihood function when Z has been marginalized
out.

L(θ; X = x) = pX(x|θ) =
k∑
i=1

P (Z = i)pX(x|θi)

The EM- algorithm (Expectation-Maximization -algorithm) seeks to
find the MLE of the marginal likelihood L(θ;x) by iteratively applying
the following two steps:

Expectation step (E step): Calculate the expected value of the log
likelihood function, with respect to the conditional distribution of Z
given X under the current estimate of the parameters θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ; X,Z)]

Maximization step (M step): Find the parameter that maximizes this
quantity:

θ(t+1) = arg max
θ

Q(θ|θ(t)) .

Set θ(t) ← θ(t+1), go to E step and continue until convergence.

This was the generic description. Consider now the situation where
k = 2, −∞ < θi <∞ for i = 1, 2, and

pX(x|θi,Z = i) =
1√
2π
e−

1
2

(x−θi)
2

, i = 1, 2,−∞ < x <∞,

P (Z = 1) = λ1 and P (Z = 2) = λ2 = 1− λ1.
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a) Assume that you have a training set of X t = {x(i)}ti=1 regarded as
t i.i.d. samples drawn from fX(x|θ). The corresponding values
Z(i) have not been observed. Find the Sundberg equations of the
EM-algorithm for θ = (θ1,θ2).

b) Explain how this can be extended to a method of classification or
unsupervised clustering and relate the method to k-means clus-
tering. Why should this be called ’soft’ k-means clustering?

30. The LDA is often taken as being synonymous with the term Fisher’s
linear discriminant. But Fisher’s original study 1 of statistical discrim-
ination actually establishes a different discriminant, which does not
make some of the assumptions of LDA such as normally distributed
classes or equal class covariances. We shall now take a look at the
original concept. First some background.

Edgar Anderson collected the data to quantify the morphologic vari-
ation of Iris flowers of three related species. Two of the three species
were collected in ” all from the same pasture, and picked on the same
day and measured at the same time by the same person with the same
apparatus”.

The data set consists of 150 samples from each of three species of Iris
(Iris setosa, Iris virginica and Iris versicolor). Four features were mea-
sured from each sample: the length and the width of the sepals and

1Fisher, R. A. (1936): The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics 7 (2): 179−188.
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petals, in centimetres. The data set can be downloaded at

https://archive.ics.uci.edu/ml/datasets/Iris

The Fisher discriminant invented for clustering/dealing with this data
set is based on projection of d-dimensional data onto a line. The hope
is that these projections are separated by class. Thus the line is to
be oriented to maximize this class separation. This line is taken to go
through origin in Rd.

The wTx(=
∑d

i=1wixi) is the component of x in the direction of w.

We try to find w so that the separation criterion (two classes)

J (w) =
(µ1 − µ2)2

σ2
1 + σ2

2

is maximized, where µ
i
,i = 1, 2 are two class centers in Rd, and

µi = wTµ
i
, σ2

i = wTΣiw,

and Σi is the covariance matrix of class i.

Here the notation covers the cases, where µ
i

is known or is a
class-wise sample mean

µ
i

=

 x̄1i
...
x̄di

 =
1

n

n∑
j=1

xji
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and Σi is known or is a class-wise sample covariance matrix

Σi =
1

n− 1

n∑
j=1

(xji − µi)(xji − µi)
T.

The criterion J (w) can be maximized by standard methods and these
give

w∗ = (Σ1 + Σ2)−1
(
µ

1
− µ

2

)
, (2.21)

and the optimal projection PF (x) is

PF (x) =
(
w∗

T

x
) w∗

‖w∗‖2
(2.22)

A set of simulated two dimensional Gaussian data and their projections
onto a line (oriented in Northwest-southeast direction, only segmentally
depicted) are given in the figure below:
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Fisher’s linear discriminant can actually be arbitrarily bad ! However,
it has far-reaching (kernelized) generalizations as support vector ma-
chines.

a) Is this an early (1936) example of a method of statistical learning?
If it is, what sort of learning is being done? If it is not, where does
the difference lie?
Hint: Be careful, the illustration of hierarchic clustering by Iris
data in the lecture notes (slides) need not lead here to the appro-
priate thinking.
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b) Derive (2.21) and (2.22).
Aid: It is useful to try to do this by oneself, of course. If, however,
external assistance is to be summoned up, a Google search with a
phrase like tutorial data reduction linear discriminant analysis will
very likely produce helpful documents. We have here a generalized
eigenvalue problem of linear algebra.

c) Interpret the nature of the optimized J (w∗). Compare with (2.5)
above.

31. We have four OTU’s x, y, z, w in this order. We have computed the
dissimilarity matrix 

0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45


This means that, e.g., the dissimilarity between x and y is 0.3 and
the dissimilarity between y and w is 0.8. Let di,j denote an array in
this matrix. The hierarchical clustering method called single linkage
(SLINK) works as follows:

i Find
(i∗, j∗) = arg min

i,j
di,j

ii Join i∗, j∗

iii di,i∗∪j∗ = min (di,i∗ , di,j∗).

a) Use SLINK to cluster hierarchically the four OTU’s and sketch the
resulting dendrogram. Indicate on the plot the order in which the
fusion occurs.

b) If we cut the dendrogram so that two clusters results, which OTU’s
are in each cluster ?

c) Check the ultrametric property on this dendrogram.

32. Describe the idea of CLINK in hierarchical clustering.
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33. Let us consider the data space U = {0, 1}d, i.e. the binary hypercube
consisting of binary d-tuples x, y, x = (x1, . . . , xd), xi ∈ {0, 1}. The
cardinality of U is = 2d.

The metric on U is the Hamming metric, denoted by dH (x,y). The
Hamming metric is defined as the number of positions i, where x and
y are differing, or

dH (x,y) =
d∑
i=1

(xi +2 yi) ,

where 1 +2 1 = 0, 0 +2 0 = 0, 1 +2 0 = 1, 0 +2 1 = 1. You are not
expected to prove that dH is in fact a metric.

Any metric has the property that if dH (x,y) = 0, then x = y. Second,
the maximum value of dH (x,y) is equal to d. In fact

dH (x, x̄) = d,

where x̄ has the bits in x negated, i.e., x̄ = (x̄1, . . . , x̄d), where for every
i, x̄i = 0, if xi = 1 and x̄i = 1, if xi = 0.

Now we make a study of queries and their nearest neighbors in very
large spaces in the spirit of Sergey Brin and others. A query is for our
purposes simply a preassigned q ∈ U .

Then we draw N independent samples D = {x1, . . . ,xN} from the
uniform distribution P (x), or for each l

P (xl) =
1

2d
.

This is equivalent to that the components xi are independent Bernoulli
variables ∼ Be(1/2).

Let us define for l = 1, . . . , N the independent random variables

Dl
def
= dH (xl,q) . (2.23)

In addition, we define the nearest neighbor nn(q) to q in D by

nn(q)
def
=
{
x(1) ∈ D | dH

(
x(1),q

)
≤ dH (x,q) for all x ∈ D

}
. (2.24)
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a) Explain briefly why every Dl ∼ Bin(d, 1
2
).

b) Show that for any R > 0

P (dH (nn(q),q) ≤ R) = 1− (1− P (D ≤ R))N , (2.25)

where D ∼ Bin(d, 1
2
), i.e., D

d
= Dl (D has the same distribution

as Dl) for each l.

c) It is known that if d is large, then D ∼ Bin(d, 1
2
) is approximately

distributed like D ∼ N(d
2
, d

4
), where d

2
is the mean and d

4
is the

variance of this approximating normal distribution. Compute next
with a given number 0 < θ < 1 the probability

P (D ≤ θ
d

2
). (2.26)

using the normal approximation. Aid: It may be helpful to keep
in mind that θ − 1 < 0.

d) Find now, using (2.26)

lim
d→+∞

P (dH (nn(q),q) ≤ θ
d

2
).

and comment your result, e.g., by thinking of U = {0, 1}d as a
sphere with q and q̄ as opposite poles.

34. Describe how to build a regression or decision tree using cost complexity
pruning. When building a classification tree using a cost function based
on, e.g., the Gini index or the cross-entropy, it may happen that a split
leaves two terminal nodes with the same predicted class. How is this
possible?

35. In the random forest approach, every node split considers cost function
minimization with respect to only a subset of m ≤ p randomly chosen
predictors (where p denotes the total number of predictors). Show that
the probability that a given predictor is not considered at a given split
is (p−m)/p. What is the rationale behind considering only a randomly
chosen subset of the predictors?
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