
Learning and Evaluating Classifiers under Sample Selection Bias

Bianca Zadrozny zadrozny@us.ibm.com

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract

Classifier learning methods commonly as-
sume that the training data consist of ran-
domly drawn examples from the same dis-
tribution as the test examples about which
the learned model is expected to make predic-
tions. In many practical situations, however,
this assumption is violated, in a problem
known in econometrics as sample selection
bias. In this paper, we formalize the sam-
ple selection bias problem in machine learn-
ing terms and study analytically and experi-
mentally how a number of well-known classi-
fier learning methods are affected by it. We
also present a bias correction method that
is particularly useful for classifier evaluation
under sample selection bias.

1. Introduction

One of the most common assumptions in the design
of learning algorithms is that the training data con-
sist of examples drawn independently from the same
underlying distribution as the examples about which
the model is expected to make predictions. In many
real-world applications, however, this assumption is vi-
olated because we do not have complete control over
the data gathering process.

For example, suppose we are using a learning method
to induce a model that predicts the side-effects of a
treatment for a given patient. Because the treatment
is not given randomly to individuals in the general
population, the available examples are not a random
sample from the population. Similarly, suppose we are
learning a model to predict the presence/absence of an
animal species given the characteristics of a geograph-
ical location. Since data gathering is easier in certain
regions than others, we would expect to have more
data about certain regions than others.
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In both cases, even though the available examples are
not a random sample from the true underlying distri-
bution of examples, we would like to learn a predictor
from the examples that is as accurate as possible for
this distribution. Furthermore, we would like to be
able to estimate its accuracy for the whole population
using the available data.

This problem has received a great deal of attention in
econometrics, where it is called sample selection bias.
There it appears mostly because data are collected
through surveys. Very often people that respond to
a survey are self-selected, so they do not constitute a
random sample of the general population. In Nobel-
prize winning work, Heckman (1979) has developed a
procedure for correcting sample selection bias. The
key insight in Heckman’s work is that if we can es-
timate the probability that an observation is selected
into the sample, we can use this probability estimate
to correct the model. The drawback of his procedure
is that it is only applicable to linear regression models,
commonly used in econometrics.

Also, in statistics, the related problem of missing data
has been considered (Little & Rubin, 2002). However,
they are generally concerned with cases in which some
of the features of an example are missing, and not with
cases in which whole examples are missing.

In this paper, we address the sample selection bias
problem in the context of learning and evaluating clas-
sifiers. In Section 2 we formally define the sample se-
lection bias problem in machine learning terms. In
Section 3 we present a new categorization of learning
methods that is useful for characterizing their behavior
under sample selection bias and study how a number
of well-known classifier learning methods are affected
by sample selection bias. In Section 4, we present a
bias correction method based on estimating the prob-
ability that an example is selected into the sample and
using rejection sampling to obtain unbiased samples of
the correct distribution. It can be used both for learn-
ing classifiers and, more importantly, for evaluating a
classifier using a biased sample.



2. Definition

Standard classifier learning algorithms (implicitly or
explicitly) assume that we have examples (x, y), each
drawn independently from a distribution D with do-
main X × Y where X is the feature space and Y is a
(discrete) label space.

Here, we assume that examples (x, y, s) are drawn
independently from a distribution D with domain
X × Y × S where X is the feature space, Y is the
label space and S is a binary space. The variable s
controls the selection of examples (1 means the exam-
ple is selected, 0 means the example is not selected).
We only have access to the examples that have s = 1,
which we call the selected sample. If the selected sam-
ple (ignoring s) is not a random sample of D we say
that the selected sample is biased.

There are four cases worth considering regarding the
dependence of s on the example (x, y) 1:

1. If s is independent of x and independent of y, the
selected sample is not biased, that is, the exam-
ples (x, y, s) which have s = 1 constitute a random
sample from D (ignoring s).

2. If s is independent of y given x (that is P (s|x, y) =
P (s|x)), the selected sample is biased but the bi-
asedness only depends on the feature vector x.

3. If s is independent of x given y (that is P (s|x, y) =
P (s|y)), the selected sample is biased but the bi-
asedness depends only on the label y. This cor-
responds to a change in the prior probabilities of
the labels. This type of bias has been studied in
machine learning literature and there are methods
for correcting it (Elkan, 2001; Bishop, 1995).

4. If no independence assumption holds between x, y
and s, the selected sample is biased and we cannot
hope to learn a mapping from features to labels
using the selected sample, unless we have access to
an additional feature vector xs that controls the
selection (that is, P (s|xs, x, y) = P (s|xs)) for all
the examples (even for the ones that have s = 0).

In econometrics, the usual assumption is (4) because
the goal is to estimate the parameters of a model for
y that reflects the true dependence of y on x. Any
feature variable that only affects the selection should
not be included in x (and it is included in xs, instead).

1In the statistics literature on missing data (Little &
Rubin, 2002), cases (1), (2) and (4) are known as missing
completely at random (MCAR), missing at random (MAR)
and not missing at random (NMAR), respectively.

In classifier learning, this is not a concern, because we
are mostly interested in the predictive performance of
the model and not in making conclusions about the
underlying mechanisms that generate the data.

For this reason, we argue that the most important
sample selection bias case in the practice of classi-
fier learning is case (2). In order to make the con-
dition P (s|x, y) = P (s|x) true in practice, the input
to the classifier x has to include all the variables that
affect the sample selection. For example, in the med-
ical treatment case, we need to include in x the vari-
ables about the patients that the doctors use to decide
who gets the treatment (even if they do not affect the
side-effects of the treatment directly).

Even if this assumption is not true in practice (either
because we do not have access to all the variables that
control the selection or because it truly depends di-
rectly on y), assuming case (2) is more realistic than
the usual assumption of case (1). In the rest of this
paper, sample selection bias will refer to case (2).

3. Learning under sample selection bias

We can separate classifier learners into two categories:

• local: the output of the learner depends asymp-
totically only on P (y|x)

• global: the output of the learner depends asymp-
totically both on P (x) and on P (y|x).

The term “asymptotically” refers to the behavior of
the learner as the number of training examples grows.
The names “local” and “global” were chosen because
P (x) is a global distribution over the entire input
space, while P (y|x) refers to many local distributions,
one for each value of x. Local learners are not af-
fected by sample selection bias because, by definition
P (y|x, s = 1) = P (y|x) while global learners are af-
fected because the bias changes P (x).

Although this categorization is very simple, it is not
straightforward to classify existing learners into it. Be-
low, we study analytically and experimentally how
sample selection bias affects different types of classi-
fiers learning methods, including Bayesian classifiers,
logistic regression, SVM and decision trees.

3.1. Bayesian classifiers

Bayesian classifiers compute posterior probabilities
P (y|x) using Bayes’ rule:

P (y|x) = P (x|y)P (y)
P (x)



where P (x|y), P (y) and P (x) are estimated from the
training data. An example x is classified by choosing
the label y with the highest posterior P (y|x).

We can easily show that bayesian classifiers are not
affected by sample selection bias. By using the biased
sample as training data, we are effectively estimating
P (x|y, s = 1), P (x|s = 1) and P (y|s = 1) instead of
estimating P (x|y), P (y) and P (x). However, when we
substitute these estimates into the equation above and
apply Bayes’ rule again, we see that we still obtain the
desired posterior probability P (y|x):

P (x|y, s = 1)P (y|s = 1)
P (x|s = 1)

= P (y|x, s = 1) = P (y|x)

since we are assuming that y and s are independent
given x. Note that even though the estimates of
P (x|y, s = 1), P (x|s = 1) and P (y|s = 1) are different
from the estimates of P (x|y), P (x) and P (y), the dif-
ferences cancel out. Therefore, bayesian learners are
local learners.

In practice, we have a limited amount of examples to
estimate P (y|x). Compared to a random sample of the
same size, the biased sample contains more examples
in parts of the feature space where P (s = 1|x) is high
and less examples where P (s = 1|x) is low. This will
lead to estimates of P (y|x) with lower variance where
P (s = 1|x) is high and with higher variance where
P (s = 1|x) is low. However, as long as P (s = 1|x) is
greater than zero for all x, as we increase the sample
size, the results on a selected sample will asymptoti-
cally approach the results on a random sample.

3.1.1. Naive Bayes

In practical Bayesian learning, we often make the as-
sumption that the features are independent given the
label y, that is, we assume that

P (x1, x2, . . . , xn|y) = P (x1|y)P (x2|y) . . . P (xn|y).

This is the so-called naive Bayes assumption.

With naive Bayes, unfortunately, the estimates of
P (y|x) obtained from the biased sample are incorrect.
The posterior probability P (y|x) is estimated as

P (x1|y, s = 1) . . . P (xn|y, s = 1)P (y|s = 1)
P (x|s = 1)

,

which is different (even asymptotically) from the es-
timate of P (y|x) obtained with naive Bayes without
sample selection bias. We cannot simplify this further
because there are no independence relationships be-
tween each xi, y and s. Therefore, naive Bayes learners
are global learners.

3.2. Logistic regression

In logistic regression, we use maximum likelihood to
find the parameter vector β of the following model:

P (y = 1|x) = 1

1 + exp(β0 + β1x1 + . . .+ βnxn)

With sample selection bias we will instead fit:

P (y = 1|x, s = 1) =
1

1 + exp(β0 + β1x1 + . . .+ βnxn)

However, because we are assuming that y is indepen-
dent of s given x we have that P (y = 1|x, s = 1) =
P (y = 1|x). Thus, logistic regression is not affected by
sample selection bias, except for the fact that the num-
ber of examples is reduced. Asymptotically, as long as
P (s = 1|x) is greater than zero for all x, the results
on a selected sample approach the results on a random
sample. In fact, this is true for any learner that models
P (y|x) directly. These are all local learners.

Figure 1 illustrates the effect of sample selection bias
on logistic regression for synthetically generated data,
where x is one-dimensional. The graph on the left
shows 1000 points where the x value is chosen uni-
formly between -10 and 10 and the y value is drawn
with probabilities calculated using a logistic function
(β0=3 and β1=2). The curve is the logistic function
obtained using the plotted points. The dashed line
is the separator between the two classes. The graph
on the right shows a selected sample of the points,
where the probability of each point being selected is
proportional to its x value. We also show the logistic
function obtained using the selected points. Although
the selected sample contains many less points on the
negative side than the original sample, the estimated
curve and the resulting separator are the same.

3.3. Decision tree learners

Decision tree learners such as C4.5 (Quinlan, 1993)
and CART (Breiman et al., 1984) split the input space
x in a recursive, top-down manner. Each branch of
the tree is a test on the value of one the features. For
discrete features, the tree branches into nodes corre-
sponding to each of the possible values. For real-valued
features, the tree branches into two nodes correspond-
ing to some threshold. To predict the class of a new
example, we work down the tree, at each node choos-
ing the appropriate branch by comparing the example
with the values of the variable being tested for that
node (Hand et al., 2001). The splitting criteria used
by different decision tree learners vary, but they are
all based on the nodes’ impurity after the split. For
example, CART uses the GINI index

GINI(t) = 1−
∑

y

P (y|t)
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Figure 1. Logistic regression is unaffected by sample selection bias.

where p(y|t) is the relative frequency of class y at node
t. GINI is maximal when the examples are equally dis-
tributed among the classes and minimal when all the
examples belong to one class. For each possible split,
CART calculates

∑k

i=1
ni
n
GINI(i), where n is the num-

ber of records at the node, ni is the number of records
at child i and k is the number of children induced.

C4.5 uses an information gain criterion given by

INFO(t) = −
∑

y

P (y|t)logP (y|t)

where P (y|t) is the relative frequency of class y at node
t. Like GINI, INFO is maximal when the examples
are equally distributed among the classes and minimal
when all the examples belong to one class.

Because the splitting criteria are dependent on P (y|t),
where t is a test on only one of the feature values, and,
in general, P (y|t, s = 1) �= P (y|t), the splits chosen
by the learners are sensitive to sample selection bias.
Thus, decision tree learners are global learners.

3.4. Support vector machines

In its basic form, the support vector machine (SVM)
algorithm (Joachims, 2000a) learns the parameters a
and b describing a linear decision rule

h(x) = sign(a · x+ b),

whose sign determines the label of an example, so that
the smallest distance between each training example
and the decision boundary, i.e. the margin, is max-
imized. Given a sample of examples (xi, yi), where
yi ∈ {−1, 1}, it accomplishes margin maximization by
solving the following optimization problem:

minimize: V (a, b) = 1
2a · a

subject to: ∀i : yi[a · xi + b] ≥ 1

The constraint requires that all examples in the train-
ing set are classified correctly. Thus, sample selection

bias will not systematically affect the output of this
optimization, assuming that the selection probability
P (s = 1|x) is greater than zero for all x.

Figure 2 illustrates the effect of sample selection bias
on SVM for synthetically generated data, where x
is two-dimensional. The graph on the left-hand side
shows 500 points for each of two classes, generated
from two different gaussians. The line is the maxi-
mal margin separator. The graph on the right-hand
side shows a selected sample from these points where
the probability of each point being selected is propor-
tional to its horizontal coordinate. We also show max-
imal marginal separator using the selected points. Al-
though the selected sample contains many less points
on the negative side than the original sample, the re-
sulting separator is not significantly altered.

In practice, a decision rule that classifies all the ex-
amples correctly may not exist because of class over-
lap. To allow for misclassified examples, one intro-
duces slack variables ξi > 0 for each example (xi, yi).
This is called a soft margin SVM classifier (Schölkopf
& Smola, 2002). The optimization is changed to

minimize: V (a, b, ξ) = 1
2a · a + C

∑n
i=1 ξi

subject to: ∀i : yi[a · xi + b] ≥ 1 − ξi, ξi > 0

If a training example lies on the wrong side of the de-
cision boundary, the corresponding ξi is greater than
1. Therefore,

∑n
i=1 ξi is an upper bound on the num-

ber of training errors. The factor C is a parameter
that allows one to trade off training error and model
complexity. We note that the algorithm can be gen-
eralized to non-linear decision rules by replacing inner
products with a kernel function (Joachims, 2000a).

While sample selection bias does not affect the hard
margin SVM, it does affect the soft margin version
because it considers the sum of ξi values. By making
regions of the feature space denser than others, sample
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Figure 2. SVM for separable data is unaffected by sample selection bias.

selection bias changes this sum and, with it, the deci-
sion boundary. Soft margin SVM is a global algorithm
because changes in P (x) will change the output.

3.5. Experimental results

To verify the effects of sample selection bias exper-
imentally, we apply Naive Bayes, logistic regression,
C4.5 and SVMLight (soft margin) (Joachims, 2000b)
to the Adult dataset, available from the UCI Machine
Learning repository (Blake & Merz, 1998). We assume
that the original dataset is not biased and artificially
simulate biasedness by generating a value for s for each
example, such that s is correlated with one of the input
features. When training, we only use the examples in
the training set for which s = 1. When testing, we use
all the examples in the test set, because we are inter-
ested in measuring the performance of the classifiers
on the original distribution of examples.

Figure 3 shows the results of applying the learners to
the Adult dataset using unbiased and biased training
sets of increasing size. For each size shown on the x-
axis, we generated 50 unbiased samples from the orig-
inal Adult training set. We also generated 50 biased
samples by assigning s such that examples with feature
age less than 30 are 9 times more likely to have s = 1
than examples with age more than 30. We trained
the learners using each of the 50 samples (in both the
biased and unbiased cases) and tested the models on
the Adult test set, to obtain the mean and standard
error of the error rate, as shown in the graphs.

In accordance with our analysis, for logistic regression,
the difference in error rate between using a biased or
an unbiased sample goes down as we increase the size
of the training set. Also, as expected, we see that
naive Bayes is very sensitive to sample selection bias.
The error rate using the biased sample goes up as we
increase the number of training examples.

Surprisingly, C4.5 performs very well under sample se-
lection bias. This might be explained by the fact that
even though the choice of splits is biased, the class es-
timates at the leaves are not. More research specific
to decision tree learners is necessary to understand the
effect of sample selection bias on them.

With SVM, we see that the error rate using the bi-
ased training set decreases as the training set sizes
increases. However, the difference between the er-
ror rates using biased and unbiased samples does not
decrease. This indicates that, asymptotically, SVM
(with soft margin) is affected by sample selection bias.

4. Correcting sample selection bias

In the last section, we saw that some classifier learning
methods are affected by sample selection bias, while
others are not. In this section, we present a bias cor-
rection method that can be applied to any classifier
learner, provided that we have a model for the se-
lection probabilities P (s = 1|x). The method works
by correcting the distribution of examples through re-
sampling and then applying the classifier learner to the
corrected sample. It bears resemblance to weighting
methods proposed in the statistics literature for miss-
ing data (Little & Rubin, 2002) and also to costing, a
cost-sensitive learning method by example weighting
presented in Zadrozny et al. (2003).

Classifier learners try to find h to minimize the ex-
pected value of loss function over the distribution of
examples given by

Ex,y∼D[l(h(x), y)].

The loss function is, in many cases, given by an indi-
cator of error I(h(x) �= y), but we make the analysis
more general by considering an arbitrary loss function.

Under sample selection bias, a classifier learner will
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Figure 3. Error rate using biased (dotted) and unbiased (dashed) training sets. Each point shows the mean error rate for
a given sample size and the bars show the standard error, computed using 50 different training sets for each size.

minimize instead

Ex,y,s∼D[l(h(x), y)|s = 1]

because only the examples with s = 1 are available.

Assume that we know the selection probabilities P (s =
1|x) and that they are greater than zero for all x. Let
D̂ be a new distribution such that

D̂(x, y, s) ≡ P (s = 1)
D(x, y, s)

P (s = 1|x) .

where P (s = 1) =
∑

(x,y,s)∼D P (s = 1, x) is the overall
selection probability.

The following theorem shows that if we change the
distribution of examples from D to D̂, we will obtain
the desired expected value under sample selection bias.

Theorem 1 (Bias Correction Theorem) For all dis-
tributions, D, for all classifiers, h, for any loss func-
tion l = l(h(x), y), if we assume that P (s = 1|x, y) =
P (s = 1|x) (that is, s and y are independent given x)
then

Ex,y∼D[l(h(x), y)] = Ex,y,∼D̂[l(h(x), y)|s = 1]

Proof:
Ex,y,s∼D̂[l(h(x), y)|s = 1]
=

∑
x,y l(h(x), y)PD̂(x, y|s = 1)

=
∑

x,y l(h(x), y) PD(s=1)
PD(s=1|x)PD(x, y|s = 1)

=
∑

x,y l(h(x), y) PD(s=1)
PD(s=1|x)

PD(s=1|x,y)PD(x,y)
PD(s=1)

=
∑

x,y l(h(x), y)PD(x, y)
= Ex,y∼D[l(h(x), y)]

The left-hand side (Ex,y∼D[l(h(x), y)]) is the expected
value that we would like to minimize but cannot di-
rectly under sample selection bias. The right-hand side
(Ex,y,s∼D̂[l(h(x), y)|s = 1]) can be minimized as long
as we can draw examples from D̂.

As discussed in Zadrozny et al. (2003), obtaining
a sample from a weighted distribution given a finite
set of training examples is not completely straightfor-
ward. They have demonstrated that costing, a method
based on rejection sampling, achieves the best results
in practice. For this reason, we recommend using cost-
ing for sample selection bias correction, where instead
of using costs as weights we use the selection ratio
P (s = 1)/P (s = 1|x) as a weight for each example.



Up to now, we have assumed that we know the selec-
tion probabilities P (s = 1|x). In practice, we would
have to estimate these from data. If we have a sample
(x, s) ∼ D (note that y is not necessary), we can use it
to estimate these probabilities by feeding the sample
to a classifier learner that outputs class membership
probability estimates (using s as the label). Obtain-
ing this sample is not difficult in many practical sit-
uations. For example, in medical treatment, we only
know the outcome of the treatment (y) for patients x
that were given the treatment (s = 1). On the other
hand, we can obtain examples of the form (x, s) that
are drawn from the population as a whole.

4.1. Evaluation under sample selection bias

In evaluation, for a given a classifier h, we want to
obtain an estimate of the classifier loss, given by

Ex,y∼D[l(h(x), y)].

Usually this is done by applying the classifier to a set
of test examples drawn from D and obtaining the em-
pirical loss on the test examples: 1

m

∑
(x,y)

l(h(x), y),
where m is the number of available examples.

Under sample selection bias, we only see the examples
for which s = 1, and instead obtain an estimate of

Ex,y,s∼D[l(h(x), y)|s = 1],

which generally is not an unbiased estimate of the loss.

As seen in Section 3, local learning methods are in-
sensitive to sample selection bias. However, the eval-
uation step is always affected by sample selection bias
because we are calculating an expected value over the
whole input space (which is always “global”). There-
fore, we argue that accounting for sample selection bias
on the evaluation step is more important than account-
ing for sample selection bias during learning.

We can use the bias correction theorem for evaluating
a classifier if we have estimates of the selection prob-
abilities P (s = 1|x). We simply have to weigh each
example by P (s = 1)/P (s = 1|x) when calculating the
expected loss on the biased test sample. The unbiased
empirical estimate of the loss should be calculated as

1

m

∑
(x,y,s)

P (s = 1)

P (s = 1|x) l(h(x), y) = P (s = 1)
∑

(x,y,s)

l(h(x), y)

P (s = 1|x) .

4.2. Example

To illustrate how the bias correction method works,
we constructed an example using the KDD-98 compe-
tition dataset, available from the UCI KDD Archive
(Bay, 2000). We assume we know the selection prob-
abilities P (s = 1|x) and we enforce the selection of
examples using these probabilities. By doing this, we

can compare the estimates of the expectation obtained
using the whole sample and using the selected sample.

The KDD-98 dataset contains information about peo-
ple who have made donations to a charity. For the
purpose of this example, we only need to look at
two variables: income and amount. Income indi-
cates the person’s income level and takes values in
{0, 1, 2, 3, 4, 5, 6, 7}. Amount is the donation amount
in the last campaign. We only use examples of people
who have donated in the last campaign. In the nota-
tion of the theorem, income is x and amount is l. (We
chose to side-step h(x) and y and assume we have l
directly for each example). Let s be such that

P (S = 1|X = x) =

{
0.3 if x ∈ {0, 1, 2, 3}
0.9 if x ∈ {4, 5, 6, 7}

where the overall selection probability P (s = 1) is 0.6.

The empirical estimate of the expected amount ob-
tained by averaging the amounts of all the examples
is 15.62. Because there is a positive correlation be-
tween income and donation amount, if we select the
examples according to the probabilities above, we will
overestimate the expected amount.

To demonstrate this experimentally we can assign s
values for each example according to the probabilities
above and calculate the empirical mean of l using only
the examples that have s = 1. By repeating this for
1000 different random draws of s, i.e., 1000 different
selected samples, we obtain the distribution of esti-
mated expected values of Y seen in Figure 4 (left). The
vertical dashed line (on the left side) shows the esti-
mated expected amount using the whole sample. The
graph shows that, by using only the selected examples
to estimate the expected value of l, we consistently
overestimate it, as expected.

In contrast, Figure 4 (right) shows the distribution
of estimated expected values for l, when we use only
the selected examples but apply the bias correction
method. The distribution is centered near the value
estimated from the whole sample (and the mean is
15.62). Therefore, we can conclude that the proposed
method succeeds at correcting the bias. We note, how-
ever, that there is a slight increase in variance.

5. Conclusions

We presented a formal definition of sample selection
bias in classifier learning. By studying the behavior of
different classifier learners under sample selection bias,
we separated them into two categories:

• local: the asymptotical behavior only depends
on P (y|x). Examples: logistic regression, hard
margin SVM.
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Figure 4. Distribution of the uncorrected (left) and corrected (right) estimates of expected amount (l) when different
selected samples are used. The vertical dashed line shows the estimated expected value using the whole sample.

• global: the asymptotical behavior depends on
both P (x) and P (y|x). Examples: naive Bayes,
soft margin SVM, decision tree learners.

While global learners are affected by sample selection
bias, local learners are not. This is a new categoriza-
tion, different from the more usual categorization of
learning methods into discriminative and generative
(Ng & Jordan, 2002). As seen in Section 3.1, although
generative (or Bayesian) methods model P (x|y), P (y)
and P (x), their behavior is generally independent of
P (x) (although this is not true for naive Bayes).

This categorization is also useful for defining situations
in which we can learn from both labeled and unlabeled
data, an area of research that has received some atten-
tion in recent years (see, for example, Szummer and
Jaakkola (2003)). Clearly, global learners can take ad-
vantage of unlabeled data, while local learners cannot.

For global learners, we showed that we can still learn
correctly under sample selection bias if we have data to
estimate the selection probabilities P (s = 1|x). Also,
we showed how to evaluate a classifier using a biased
sample and estimates of the selection probabilities.
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