
Avd. Matematisk statistik

ELECTIVE HOMEWORK2 in SF2940 PROBABILITY THEORY

Examiner : Timo Koski, email: tjtkoski@kth.se

Write your solutions on only one page of each sheet. You should define and explain your
notation. Your computations and your line of reasoning should be written down so that they
are easy to follow. You will not gain points by submitting an answer without corresponding
computations.
Staple your sheets of solutions together, with the homework cover sheet (handed out, down-
loadable) as uppermost. There can be only one student name on each submitted set of
solutions.
THE DEADLINE FOR SUBMISSION: FRIDAY THE 9TH OF OCTOBER at 12.00 hours.
SUBMISSION AT LECTURES, EXERCISE CLASSES OR IN THE MAILBOX AT THE
ENTRY OF THE INST.f. MATEMATIK, LINDSTEDTSVÄGEN 25.
NO ELECTRONIC SUBMISSION IS PERMITTED.

The homework will be graded and the graded solutions will be handed back NO LA-
TER THAN THURSDAY THE 22ND OF OCTOBER (the rescheduled date of the Works-
hop/Räknestuga).

There are TEN (10) assignments in Homework2. The maximum number of points awarded
by each assignment is conferred next to it.

The bonus points gained will be valid in the exam 28th of October, 2015, AND in

the exam 7th of January 2016.

THE SCALE:

Bonus points in the exam −− graded points in the Homework2.

0 for 0 – 10 points,
1 for 11 – 20 points ,
2 for 21 – 30 points,
3 for 31 – 40 points,
4 for 41 – 50 points.

Bonus points from Homework1 will be added to the bonus points gained in Homework2.

- - - - - - - - - - - - - - - - - - - -
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Homework2: Assignments 1.–10.

1. {Xn}
∞
n=0

is a sequence of random variables with values in the interval [0, 1]. We set
Fn = σ(X0, X1, . . . , Xn). We assume that X0 = a, where 0 ≤ a ≤ 1. Let us also assume
that for n = 0, 1, . . .

P

(

Xn+1 =
Xn

2
| Fn

)

= 1−Xn,

and

P

(

Xn+1 =
1 +Xn

2
| Fn

)

= Xn.

Show that {Xn,Fn}n≥0 is a martingale. (4 p)

2. Let X1, X2, . . . , Xn be I.I.D. r.v.’s. N is independent of the Xn- variables. N has the
non negative integers as values. We set

SN = X1 +X2 + . . .+XN .

Show that
Cov(SN , N) = E[X ] · Var[N ].

This is in fact problem 13 in section 5.8.3 in LN with a typing error corrected. (2 p)

3. X is a discrete r.v. that is uniformly distributed on the integers {1, 2, . . . , n}, where
n > 1. I.e., pX(i) =

1

n
, i = 1, 2, . . . , n. We write also X ∈ U(1, . . . , n). Find E [X ] by

means of the the probability generating function (p.g.f.) of U(1, . . . , n). (2 p)

4. Y is a discrete r.v. with the positive integers as values. The probability mass function
of Y is of the form

P (Y = k) = c ·
1

k!
, k = 1, 2., . . . , .

(a) What is the value of c? (1 p)

U1, U2, . . . , are I.I.D. r.v.s with Ui ∈ U(0, 1). U1, U2, . . . , are also independent of Y .

(b) Set

M
def
= max (U1, U2, . . . , UY ) .

Show that for any t in the interval [0, 1]

P (M ≤ t) = gY (t),

where gY (t) is the p.g.f. of Y . Recapitulate the explicit expression for gY (t), too.

(3 p)
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5. The sequence {Xn}
∞
n=1

of random variables is such that E [Xi] = µ for all i, Cov (Xi, Xj)
= 0, if i 6= j and such that Var(Xi) ≤ c and for all i. Observe that the variances are
uniformly bounded but not necessarily equal for all i. Show that

1

n

n
∑

j=1

Xj
2
→ µ,

as n → ∞. (4 p)

6. Let X have the Erlang(n, 1) distribution. Y | X = x ∈ Po(x).

(a) Find the characteristic function of Y . (1 p)

(b) Show that
Y − E[Y ]
√

Var[Y ]

d
→ N(0, 1),

as n → +∞. (8 p)

7. Ω = (0, 1], F is the Borel σ-algebra of subsets of (0, 1]. P is the probability measure
on F such that P([a, b]) = b− a for 0 < a ≤ b ≤ 1. We define the sequence of r.v.’s Xn

by
Xn(ω) = nωn, n = 1, 2, . . . , .

Let n → +∞.
Does the sequence (Xn)n≥1

converge almost surely? Does the sequence (Xn)n≥1
con-

verge in probability? Does the sequence (Xn)n≥1
converge in mean square? Does the

sequence (Xn)n≥1
converge in distribution? Find the limits in each case, if they exist.

You are to justify your answers carefully. (4 p)

8. Θ ∈ U(0, 2π). We set
Xn = cos(nΘ), n = 1, 2, . . . , .

Let n → +∞.
Does the sequence (Xn)n≥1

converge almost surely? Does the sequence (Xn)n≥1
conver-

ge in probability? Does the sequence (Xn)n≥1
converge in mean square? Does sequence

(Xn)n≥1
converge in distribution? Find the limits in each case, if they exist.

You are to justify your answers carefully1. (5 p)

9. X = (X1, X2)
′

∈ N (µ, C), where

µ =

(

0
1

)

och C =

(

1 1/2
1/2 1

)

.

(a) Compute
P (X1 ≤ 1|X1 − 4X2 = 5).

(3 p)

(b) Find E [X2
1X2 | X2 = 2]. (3 p)

1Here the result of Assignment 10 below may turn out be useful.
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10. (Xn)n≥1
is a sequence of r.v.’s such that i) and ii) below are satisfied.

i) There is a real number L such that P (| Xn |≤ L) = 1. We say that every Xn is
bounded almost surely by the constant L.

ii) Xn
P
→ X , as n → +∞.

Let us now consider the steps (a) -(d) that lead to the conclusion in (e).

(a) Show that even the limiting r.v. X is bounded almost surely by L, or,

P (| X |≤ L) = 1.

Aid: Show that for any ǫ > 0

P (| X |≥ L+ ǫ) ≤ P(| X −Xn |≥ ǫ).

and draw the desired conclusion.

(b) Justify by the preceding that P(|X −Xn|
2 ≤ 4L2) = 1.

(c) Let I be the indicator function

I|X−Xn|≥ǫ =

{

1, if |X −Xn| ≥ ǫ
0, if |X −Xn| < ǫ .

Show that the inequality

|X −Xn|
2 ≤ 4L2I|X−Xn|≥ǫ + ǫ2

holds almost surely.

(d) Find now the limit of
E
[

| X −Xn |2
]

,

as n → +∞.

(e) Which theorem2 have You hereby proved? (C.f. the summary about relations
between convergences in LN pp.166−167).

(10 p)

2not currently stated in LN


