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Foreword

This text corresponds to the material in the course on intermediate probability calculus for masters students
that has been lectured at the Department of mathematics at KTH during the last decades. Here this material is
organized into one document. There are topics that were not included in the earlier courses and a few previous
items have been omitted. The author is obviously indebted to Prof.em. Bengt Rosén and Prof.em. Lars Holst
who have built up the course.

Boualem Djehiche, Gunnar Englund, Davit Karagulyan, Gaultier Lambert, Harald Lang, Pierre Nyquist
and several others are thanked for having suggested improvements and for having pointed out several errors

and mistakes in the earlier editions.
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Chapter 1

Probability Spaces and Random

Variables

1.1 Introduction

In the first courses on probability given at most universities of technology, see, e.g., [12, 16, 101] for a few
excellent items in this educational genre, as well as in courses involving probability and random processes in
physics and statistical physics, see [17, 58, 62, 73, 78] or reliability of structures [32, 77] or civil engineering
[4], one seemingly considers all subsets, called events, of a space of outcomes. Then one treats a (in practice,
finitely additive) probability as a positive total mass = 1 distributed on these events. When the goal is to train
students in the use of explicit probability distributions and in statistical modelling for engineering, physics and
economics problems, the approach is necessary and has definite didactic advantages, and need not be questioned
(and the indicted authors are, of course, well aware of the simplifications imposed).

There is, however, a need to introduce the language' and viewpoint of rigorous mathematical analysis, as
argued in [43]. The precise (and abstract) mathematical theory requires a more restricted set of events than
all the subsets. This leads us to introduce algebras of sets and sigma algebras of sets. The material below has

approximately the same level of mathematical completeness as [20, 43, 44, 95] and [103, chapterl].

1.2 Terminology and Notations in Elementary Set Theory

We collect first a list of bullet points recapitulating some definitions, notations and rules of elementary (or
naive) set theory. The bulk of these are assumed to be familiar for the student, due to previous exposure via,
e.g., [16] or any other equivalent first course in probability. Therefore the presentation is kept at a concise level,
e.g., many of the rules of set theory stated below can be made evident by use of Venn diagrams, but these
illustrations are not provided in this summary.

We start by postulating an abstract space consisting of elements, denoted here by w. The elements are the

smallest quantities we deal with. The abstract space is also called the universal set and (in probability calculus)

LOn the other hand, one widely held opinion is expressed in [62, p.179] to the effect that ’the language favored by mathematicians
. adds little that is of value to (physicists)’. That notwithstanding, in [62, chapter 10] the merits of surveying ’the concepts and
jargon of modern probability theory’ (that is, what corresponds to chapters 1 and 2 in these notes) are recognized. The rationale
is that a natural scientist or an engineer will learn how to interpret the basic points of a mathematical discourse in a preferred

intuitive idiom.

11
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denoted by €. Later on we shall refer to {2 as the outcome space or sample space and w as an elementary

outcome.

Example 1.2.1 The examples of € first encountered in courses of probability theory are simple. The outcomes

w of a toss of coin are heads and tails, and we write the universal set as

Q = { heads , tails }.

Let now € be an abstract universal set and A, B e.t.c. denote sets, collections of elements in €.

e w € A means that an element w belongs to a set A. w ¢ A means that w does not belong to a set A.

() denotes the empty set, which has no elements.
A€ is the complement set of A. It consists of all elements w that do not belong to A. It follows that
(A9 = A.
Since 2 is the universal set, we take
Q° = 0.
{w e A| S(w)} stands for the elements w belonging to A that satisfy a property S.

A C B denotes the inclusion of sets. It means that A is a subset of B. This means that if w € A, then
w € B. In addition, we have for any set A C €.

Note that A C B and B C A if and only if A = B.

We use also on occasion the notation of strict inclusion A C B, which means that A # B.
If A C B, then B¢ C A°.
P(A) denotes the family of all subsets of A and is known as the power set of A.

A U B is the union of the sets A and B. The union consists of all elements w such that w € A or w € B
or both. We have thus

AUuQ =0
Aup=A
AUA=Q
AUB=BUA
and
AUA=A.
For a sequence of sets Ay, As, ... the union

U2 4, =A1UAU. ..

consists of the elements w such that there is at least one A; such that w € A;.
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e AN B is the intersection of the sets A and B. The intersection consists of all elements w such that w € A
and w € B. It is seen that

AN =A
AND=10
ANAS=10
ANB=BnNA
and
ANA=A.
For a sequence of sets A1, As, ... the intersection

ﬂ;?ilAi =A1NAnN...
consists of the elements w such that w € A; for all 1.

e The sets A and B are said to be disjoint if AN B = (). The sets Ay, As, ..., A, are pairwise disjoint if all
pairs A;, A; are disjoint for 7 # j.

e A\ B is the set difference of the sets A and B. It is the complement of B in A, and thus contains all
elements in A that are not in B, or, w € A and w ¢ B. Therefore we get

A\ B = AN B".

e De Morgan’s Rules

The following rules of computation are frequently useful in probability calculus and are easy to memorize.
(AUB)“ = A°N B°
(ANB)" = A°U B¢

These two formulas are known as De Morgan’s Rules.

One can prove the countably infinite versions of De Morgan’s Rules, too.
(U1 Ai)° = N2, AF

and
( z‘oilAi)c = U?ilAf-

e It is also readily proved that we have the distributive rules
AN(BUC)=(ANB)U(ANCQC)

and
AU(BNC)=(AuB)Nn(AUC).
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e A x B is the (Cartesian) product of the sets A and B. It consists of all pairs (w1, ws) such that w; € A
and wy € B.

The product Ay x Az X ... x A, consists of ordered n-tuples (wy,ws,...,wy,) such that w; € A; for each

i=1,...,n.

If A; = A for all i, then we write
A" =AxAx...x A

as a product of n copies of A.

e Intervals

If @ and b are real numbers, a < b, then
(a7 b)’ [a" b)7 (a" b]’ [a" b]

are intervals with endpoints a and b. These are subsets of the real line R, here taken as a universal set
with elements denoted by 2 (=a real number) such that (a,b) = {z € R | a < z < b}, [a,b) = {z € R |
a<z<b},(a,b)={r€R|a<xz<b}and [a,0] ={z € R|a <z <b} We take [a,a) = (). For
(a,b) and (a,b] we can let a = —o0 and for [a,b) and (a,b) we can allow b = +o00. Hence we can write

(—00,00) = {2 € R | —0o < 2 < co}. The set operations are, e.g., (a,b)°= (—o0, a] U [b, 00).

1.3 Algebras of Sets

Definition 1.3.1 (Algebra) Let 2 denote a universal set. A collection A of subsets of (2 is called an algebra,
or field if

1. Qe A
2. If A€ A, then A° € A, where A¢ denotes the complement of A.

3. IfAec Aand Be€ A, then AUB € A

.
Condition 1. above is known as non-emptiness, condition 2. above is known as closure under complement,
and condition 3. above is known as closure under union. Note that if A € A and B € A, then there is closure
under intersection, AN B € A, too. This follows since A, B¢ € A, hence A°U B € Aand AN B = (A°U B°)°
by De Morgan’s rule. Since ) = Q°¢, 0 € A.

Example 1.3.1 A = {0, Q} is an algebra.

Example 1.3.2 If Q is a finite set, then the power set P(2) is an algebra.

Definition 1.3.2 (Sigma - Algebra a.k.a. Sigma- Field a.k.a o -field ) A collection A of subsets of € is
called a o - algebra/field if it satisfies

1. 0c A
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2. If A€ A, then A° € A.

3. If A,, € A for each n in a countable collection (A,,)22;, then U2 4, € A.

n=1»

.
Here the condition 3. is referred to as closure under countable union. If an algebra is finite, then it is also
a Sigma - Algebra. A o - algebra A is usually constructed by first choosing an algebra, say C, of subsets of
Q) that generates A. By this we mean that we augment C by all possible countable unions of sets in C, their
complements, all possible countable unions of these complements ad infinitum. We shall describe this procedure
in some more detail in the sequel, when () = the real line, denoted by R.

Example 1.3.3 Let Q2 = {heads, tails}. Then
F = {{heads}, {tails}, {heads, tails}, 0}

is a sigma-field, and contains also all possible subsets of ().

Example 1.3.4 Let Q = {w1, w2, ws,ws}. Then
]:min = {@a {CU1,W2,CU3,CU4}},

]:1 = {(Z)) {Wl,WQ}, {W3,CU4}, {w13w23w33w4}}

and

fmax - {ma {wl}; {wQ}v {CU3}, {W4},
{w17w2}7 {wlaw3}; {w17w4}; {w27w3}7 {w2;w4}a {w37w4}5
{wi, w2, w3}, {wi, wa, wat, {wr, wa, wa}, {wa, w3, wa}, O}

are sigma-fields. Clearly
fminc-rlc‘/_'.max;

in the sense that, e.g., any set found in F; is found also in Fiax.

Example 1.3.5 Let Q = {w1,w2,ws}. Then

{(Z)a {wl}a {w2}7 {w3}a Q}

is NOT a sigma-field.

Let A, € A for each n in a countable collection (4, )22 ;. Suppose that for all n > 1

An C An+1
and we say that (A4,)22, is increasing. Then we can define
lim A, 0%, A, (1.1)

n—r00
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Then lim,, o A, € A. In words, w is in the limit of a increasing sequence of events, if w belongs to some A,,
and thereby to infinitely many sets in the collection.

Suppose that for all n > 1

AnJrl C An
and we say that (A,)22; is decreasing. Then we can define
lim A, ¥ N> A, (1.2)

n—oo

and lim,, ., A, € A. In other words, w is in the limit of a decreasing sequence of events, if w belongs to all A,,.

Example 1.3.6 Let 2 = R and suppose that we have a sigma field A such that all intervals of the form

[1,21) e A
n

{1,21> C [1,2L>
n n+1

[1,2) = lim [1,2— 1) :

n— 00 n

Then the sequence of events is increasing

and [1,2) € A, since

Note that a o algebra is clearly an algebra, but the converse is not always true, as the following example shows:
Example 1.3.7 Let 2 = R and let A denote the collection of subsets of the form:

Ui;l(ai,bi] —o<a; <b <40

for some 0 < k < +o0.

This is clearly an algebra, but it is not a sigma algebra. Consider the collection

An<0,21} n > 1.

n et

Then U2, A,, = (0,2), which is not in A. .

Example 1.3.8 Suppose that we have a sigma field A such that all intervals of the form
(a,b) € A,

where a < b are real numbers. Then
1 1 1 1
a———,a+— ) Cla——,a+ —
( n+1 nJrl) ( n n)

1 1
— I _ - 2
{a} im <a n,a+ ),

n—00 n

and thus

which shows that the singleton set {a} is an event, i.e., {a} € A.
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Theorem 1.3.9 Given any collection C of subsets of a set €2, there is a smallest algebra A containing C. That

is, there is an algebra A containing C such that if B is any algebra containing C then B contains A.

Proof Let F denote the family of all algebras of subsets of 2 which contain C. The axioms of set theory are
required to justify the existence of this family; it is a subset of P(P(Q2)) where P denotes taking the power set.
Let A = N{B|B € F}. Then, for any A € Aand B € A, AUB € B for all B € F and hence AUB € A.
Similarly, if A € A, then A¢ € A. Tt follows that A is an algebra and that C C A. Furthermore, A C B for any

algebra B containing C. .

Lemma 1.3.10 Let C denote an indexing set. If (A.).cc is a collection of o algebras, then A = N..A. (that is

the collection of sets that are in A, for all ¢ € C) is a o algebra.

Proof This follows almost directly from the definition. "

Corollary 1.3.11 Given a collection of sets C, there exists a smallest o algebra B containing each set in C.
That is, there exists a sigma algebra B such that if A is any other sigma algebra containing each set in C, then

BC A

Proof The proof follows in exactly the same way as the proof of the existence of a smallest algebra containing a
given collection of sets. The set of all possible sigma algebras containing S exists by the power set axiom?(applied
twice). Take the intersection. This exists by De Morgan’s laws. It is easy to check the hypotheses to see that

the resulting set is a o-algebra; if A is in all the o -algebras, then so is A°. If (A;)72, are in all the o algebras,

then so is U2, A;. The resulting collection is a o algebra and is contained in any other o algebra containing
each set in C. m
Referring to corollary 1.3.11 we say again that B is generated by C. In addition, we launch the notation

FCg,
which says that any set in the sigma field F lies also in the sigma field G.
Example 1.3.12 Let Q = {wy,wq, w3} and
F ={0,{wz, w3}, {w1}, {w1, w2, w3}}

is a sigma-field generated by the collection of sets {{w1}}, or, generated by the set {w;},

Example 1.3.13 Let A C Q. Then
F={Q,A, A0}

is the sigma-field generated by the collection of sets {{A}} or, by the set A,

2The power set axiom is stated as follows: Given any set A, there is a set P(A) such that, given any set B, B is a member
of P(A) if and only if B is a subset of A. Or, every set has a power set. Here one is stepping outside the realm of naive set theory

and considering axiomatic set theory with the Zermelo-Fraenkel azioms.
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Definition 1.3.3 (The Borel Sigma Algebra) The Borel o algebra B over R is generated by intervals of
the form (a,b).

Thereby the Borel o algebra B contains all sets of the form (—n,b), n is a positive integer, and
(—n,b) C (= (n+1),b)
and thus

(—00,b) = lim (—n,b)

n—roo

and since all sets (a,n) are in B,

(a,00) = lim (a,n)

is in B. In addition . .
{a} ZHILH;O <a ﬁ,a+ ﬁ) ,
and we see that all singleton sets belong to B. Furthermore,
(=00, a] = (a,0)%,
and thus in (—oo, a] € B, since there is closure under complements. Furthermore
(a,b] = (a,b) U{b} and [a,b) = (a,b)U{a}
are events in the Borel o algebra B, and
[a,6] = (a,b) U {a} U {b},

so that all closed intervals are in B.

In addition B must contain all finite or countable unions and complements of intervals of any of the preceding
forms. We may roughly say that B contains all subsets of the real line that can be obtained as an approximation
of countable combinations of intervals.

It is a deep and difficult mathematical result that there are in fact subsets of R that are not in the Borel
o algebra. These 'unmeasurable’ sets have no importance in engineering practice, as they are very hard to

construct. Next we recapitulate some further basics about the Borel o algebra.
Theorem 1.3.14 The Borel o algebra B over R is generated by each and every of
1. open intervals of the form (a, b)
2. half-open intervals of the form [a, b)
3. half-open intervals of the form (a,b]
4. closed intervals of the form [a, b]
5. left intervals (—oo, b)

6. right intervals (a, c0)
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7. open sets of R

8. closed subsets of R

The proof is left to the diligent reader.

Definition 1.3.4 (Borel function) A function f: R+ R is called a Borel function, if for every set A in B,
the Borel o algebra, we have that
fTHA) ={z e R| f(z) € A}

belongs to the Borel o algebra, i.e.,
1A e B.

We call f=1(A) the inverse image of A.
Familiar examples of functions, like continuous functions, differentiable functions, sums of such functions
and products of such functions, and limits of sequences of Borel functions are all Borel functions. It is difficult

to construct a function that would not be a Borel function.

1.4 Probability Space

A probability space is given by a triple (2, F,P), where € is a set of ‘outcomes’, F is a set of subsets of €, the
set of possible events and P : F — [0,1] is a function assigning probabilities to events. F is taken to to be a o
algebra.

Note that the word ’space’ has many different usages in mathematics, the triumvirate above is a space in a
different sense of the word than, say, when we talk about a Euclidean space or a Hilbert space, which are spaces
with a geometric structure. A Euclidean space or a Hilbert space does, of course, serve as €) of a probability

space in many applications.

1.4.1 Probability Measures

Intuitive instances of measures are length on the real line, area in two dimensions, volume in three dimensions,

when properly defined. The general definition of measure is
Definition 1.4.1 (Measure) A measure over a o- algebra is a non negative set function u : F — R satisfying
1. u(A) >0 for all A€ F and

2. if A; € F for all A; in the collection (A4;)2, of pairwise disjoint sets, then

p(U32 Ai) = p(As).
i=1
This is known as countable additivity.

u
If u(Q) = 1, then p is said to be a probability measure and we use the notation P for the generic probability

measure.
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The definition above is postulated for further mathematical developments of probability calculus.
For real world applications of probability the main problem is the choice of the sample space €2 of

events and the assignment of probability on the events.

We quote the following fundamental theorem of probability [81, ch. 1.5]. It tells that it is possible to construct
a probability measure on a sigma algebra generated by an algebra by first giving the measure on the generating
algebra.

Theorem 1.4.1 Let A be a set algebra and let o (A) be the (smallest) sigma algebra generated by A. If P is
a probability measure defined on A, then there exists one and only one probability measure P defined on o (A)
such that if A € A, then P(A4) = P(A).
We shall next find a few direct consequences of the axiomatic definition of a probability measure P.
Theorem 1.4.2 For any probability measure P we have

P(0) = 0.

Proof Consider Q2 = QU (U2, A4;), where A; =0 fori=1,2,...,. Then 4, NA; =0 and QN A4; =0, ie., the
sets in the union Q U (U2, A;) are disjoint. We set @ = P((})). Then countable additivity yields

1=P(Q) =P (QU (U2 4))

=P(Q)+ ) P(4) =1+ P(4)
i=1 i=1
=l4a+a+a+...,
which is possible if and only if a = 0. "

Theorem 1.4.3 (Finite Additivity) Any countably additive probability measure is finitely additive, i.e., for
all A; in the collection (A;)!; of pairwise disjoint sets

P(UL,4;) = ZP(Ai)-

Proof Take 4;, =P fori =n+1,n+2,...,. Then A; N0 = () and U2, A; = UX,;A;. Thus, by countable
additivity,

P(UL4;) =P(UZ, A) = iP(Ai)
= zn:P(Ai) +P0)+P0) +...

= ZP(Ai)

by virtue of Theorem 1.4.2 above. =

Theorem 1.4.4 For any A € F
P(A°) =1-P(A).
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Proof Q = AU A° and AN A° = (). Then finite additivity of Theorem 1.4.3 gives

1=P(Q) =P(AU A°) = P(A) + P(A°).

Theorem 1.4.5 (Monotonicity) For any A € F and B € F such that A C B, we have
P(A) <P(B).
Proof B =AU (BN A°). Then AN (BN A°) =0, and finite additivity gives
P(B)=P(AU(BNA))=P(4A) +P(BNA°) >P(A),

as P is a non negative set function. "
The identity in the proof above says also the following. If A € F and B € F and A C B, then we have

P(B\ A)=P(B) —P(A).
In the same manner we can prove the next theorem.

Theorem 1.4.6 For any A € F and B € F we have

P(AUB) = P(A) + P(B) — P(AN B).

Example 1.4.7 (Probability measure on a countable outcome space) We consider the special case 2 =
{w=(w;);—; | w; € {0,1}}. In words, the elementary outcomes are finite sequences of digital bits. € is count-

able. The sigma field F, is generated by the collection of sets Ay (a.k.a. cylinders) of the form
Ap ={w= (wi)le | wi = a1, w2 =Ty, oo, Wy =2y, }

for any integer k < n and arbitrary string of bits, x;,xy, ...2;,. We assign the weight p(w) > 0 to every

ke

elementary outcome w and require that ) p(w) = 1. Then the probability of any set A in F, is defined by

P(A) S pw). (1.3)

weA

It can be shown (an exercise to this section) that P is a countably additive probability measure, and therefore
(Q, F,, P) is a probability space. The measure P can be extended to the o-field of measurable subsets F of the
uncountable {(w;);~; | w; € {0,1}}.

1.4.2 Continuity from below and Continuity from above
A probability measure has furthermore the following properties:
1. subadditivity If A C U;A; then P(A4) < >, P(4;)

2. continuity from below If A; C Ay C ... and A = U;A;, then P(A) = lim; 4 P(4;).



22 CHAPTER 1. PROBABILITY SPACES AND RANDOM VARIABLES

3. continuity from above If A; D Ay D ... and A = N;A; then P(A) = lim;, 1o P(4;).

The proofs of the continuity properties are given below. One needs to recall (1.1) and (1.2).

Theorem 1.4.8 If B,, 1 U2, By, then P(B) = lim,,_,oc P (B,,).
Proof: We use the notation for ’set difference’,
A\ B=ANDB"
and we can write U2 | By, = U, (By \ Br—1) U By, since By, are increasing.
P(B) = P (U, By) = P (U (Bi\ Be_1) U By)

But the sets in the decomposition are seen to be pairwise disjoint, and hence the countable additivity yields

P (Up25(Bk \ Br1) UB1) = > P (Bi\ Bi1) + P (By)
k=2

= nlgr;OkZ_QP (Bi \ Bie_1) + P (By)

Now we observe that since Br_1 C By, we have
P (Bi \ Bip-1) =P (By) — P(Bg-1) .

Therefore, we get a telescoping series

Zn: P (B, \ Bi_1)+ P (B1) =P (By) — P (Bu_1) + P (Bp_1) — P (Bn_z) +...+
k=2

+P (B2) —P(B1)+P(B1) =P (B,).
In other words we have shown that

P(B) = lim P (B,).

n—r00

Theorem 1.4.9 If B,, | N2, By, then P (N2, By) = lim,, o P (By).
Proof: We use theorem 1.4.4 in the preceding
P (M2 Br) =1 =P (MZ1Bx) ) - (1.4)
When we apply one of De Morgan’s rules we get
(MRZ1Br)” = UL, By

Now we observe that if By D Byy1, then B C B, i.e., the complement events of a decreasing sequence of

events are an increasing sequence of events. Thus the theorem 1.4.8 above implies

P (U2, BS) = lim P (BS).
n—oo
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By one of the De Morgan’s rules we have that
P ((MiZ1Bk)") = P (U2, By)
= nhﬂn;o P(B;).
This we shall insert in (1.4) and get
P(Ny21Br)=1— lim P(B;)

n—r oo

=1- lim (1-P(By))

n—r00

=1—-1+ lim P(B,)= lim P(B,).
n—oo

n—oo

This completes the proof. "

1.4.3 Why Do We Need Sigma-Fields?

This subsection is based on [43, 44, 50] and its contents will NOT be actively examined. There are several
statements below and in the next subsection that should be verified (as exercises) but we do not expect the
student to do this piece of work, whereas these can be recommended for the seriously interested.

In broad terms, if € is finite or countably infinite, we can consider all subsets of 2 to be the family of
events. When (2 is uncountably infinite, as in the case of ) = the real line, one cannot build a useful theory
without confining the allowable subsets to which one will assign probability. Roughly said, all probabilities are
obtained by integrating over sets, and some sets are too nasty to be integrated over. It is, however, difficult
to show but for such €2 there does not exist a reasonable and consistent means of assigning probabilities to all
subsets without contradiction or without violating desirable properties. The student should be aware of
the problem so that the need for specifying F is understood.

Let us consider Q2 = {w | 0 < w < 1}, i.e., the outcome space is the unit interval in the real line R. Suppose
we want the set of events F to include intervals [a, b] C [0, 1] and the probability of any interval to be given by
the length of the interval:

P ([a,b]) =b—a. (1.5)

If we take a = b, we need to have the singleton sets {a} in F, and their probability is zero. If F is to be a
sigma-field, then the open interval (a,b) = U2 [a+ +,b— 1] must be in F, and the probability of such an open
interval is by continuity from below (see condition 2. in section 1.4.2 above)

P (o=t p ([o Lo 1) < (50 2) <0

i—00 1—00 7

Any open subset of €2 is the union of finite or countably infinite set of open intervals, so that F should contain
all open and closed subsets of 2. Hence F must contain any set that is the intersection of countably many open
sets, and so on.

The specification (1.5) of probability must therefore be extended from all intervals to all of F. We cannot
figure out a priori how large F will be. One might think that F should be the set of all subsets of ). However,

this does not work:

Suppose that we wish to define a measure p to called length, length(A), for all subsets A of R such
that
length ([a,b]) =b—a a <,
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and such that the measure satisfies the additional condition of translation invariance
length (A + y) = length (A)

where A+y={z+y|z e A}
This is now shown to lead to a contradiction. Take @@ = the set of rational numbers, i.e., Q = {p/q |
p € Z,q € Z}. For any real z € R let Q, = @ + . One can show that for any x € R and y € R

either @, = Q, or Q, and @, are disjoint. One can also show that @, N [0,1] # 0 for all z € R, or
in plain words, each @, contains at least one element from [0, 1].

Let V' be a set obtained by choosing exactly one element from the interval [0, 1] from each Q.. (V

is well defined, if we accept the Aziom of Choice®.)

Thus V is a subset of [0,1]. Suppose ¢1, ¢, ... is an enumeration of all the rational numbers in the

interval [—1, 1], with no number appearing twice in the list. Let for ¢ > 1
Vi=V+gqg.
It can be verified that all the sets V; are disjoint and
[0,1) c U2, V; C [-1,2].

Since V; are translations of V', they should have the same length as V. If the length of V is defined
to be zero, so [0, 1] would also have length zero by monotonicity. If the length of V' were strictly
positive, then the length of U2, V; would by countable additivity be infinite, and hence the interval

[—1, 2] would have infinite length. In either way we have a contradiction.

The difficulty will be resolved by taking F to be the Borel sigma algebra, c.f. definition 1.3.3 above, and by
construction of the Lebesgue measure.

For the construction of the Lebesgue measure we refer to [36, chapter 1.] or [91, chapter 11.].
We outline a rudiment of this theory. Lebesgue measure over the real line is defined as follows: The
length of an interval [a,b], (a,b), (a,b] or [a,b) is given by b — a (c.f. the measure length above).
The outer measure of a set A is given as the infimum over open intervals (I,,)52 ¢

oo

m*(A) = inf 1],
(In)3y i ACUR Ty 44

where |I,,| denotes the length of the interval I,,. A set B is said to be measurable, with measure
A(B) = m*(B) if for any set A C R it holds that

m*(A) = m* (AN B) + m* (AN B°).

The Heine Borel lemma states that every covering by open sets has a finite subcovering.

One then uses the Carathéodory Extension Theorem to show that Lebesgue measure is well defined

over the Borel o algebra .

Finally, why not be content with probability measures only on set algebras ? The answer is that a good
theory of probability needs limits of random variables and infinite sums of random variables, which require

events outside a set algebra.

3http://en.wikipedia.org/wiki/Axiom_of_choice
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1.4.4 P - Negligible Events and P -Almost Sure Properties

An event A € F such that P(A) = 0 is called a P - negligible event, or just negligible event, if there is no
possibility of confusion.

A property that holds everywhere except possible for w in a P -negligible set is said to hold P -almost surely
or we say that the property holds almost surely, and abridge this often to a.s.. Examples of such properties
will be in the sequel encountered under the guise of ’X > 0 a.s.” or ’convergence almost surely’, or 'continuity

of sample paths almost surely’, to mention the main ones.

Example 1.4.10 Let F to be the Borel sigma algebra, c.f. definition 1.3.3, restricted to [0,1]. Let A =|a, b)
with 0 < a < b <1 and P(A) = b — a. By definition 1.3.3 we know that singleton sets {a} belong to F and
thus P({a}) = 0. Hence, e.g., the set of rational numbers in [0, 1], i.e., % with p and ¢ positive integers p < ¢,

is a countable disjoint union of measurable sets, is by countable additivity P - negligible.

1.5 Random Variables and Distribution Functions

1.5.1 Randomness?

As will become evident by scrutiny of this section, random variables of probability calculus are functions with
certain properties, and have as such nothing to do with randomness, regardless of how randomness is defined,
and regardless of whether such a definition possible at all. Randomness has been aptly described as a negative
property [53, p.20], as it is not possible to definitely prove its presence, but it is possible to prove the absence
of it.

One makes customarily the interpretation of a random variable as a real valued measurement of the outcomes
of a random phenomenon that is governed by a physical probability. One criticism of the notion of physical

probability decried as 'mind projection fallacy’ has been voiced by Ed Jaynes [65, p.500]:

... (statistics) has never produced any definition of the term 'random variable’ that could actually
be used in practice to decide whether some specific quantity, such as the number of beans in a can,

is or is not 'random’.

Random variables and later random processes are in a very useful manner seen as mathematical models of
physical noise. As examples an engineer might quote thermal noise (a.k.a. Nyquist-Johnson noise, produced by
the thermal motion of electrons inside an electrical conductor), quantum noise and shot noise, see [11, 33, 71, 7].
Does this provide grounds for claiming a physical countably additive probability measure? The foundational
question of how to define randomness is, certainly, not resolved by this manceuver, at any rate not, if one in a
circular manner describes the physical noise as the result of many random events happening at the microscopic

level.
Remark 1.5.1 Physical noise, in particular measurement error (métfel), is described as follows in [52, p.13]:

... felens storlek och tecken (kan) inte individuellt pavisas nagon lag och de kan alltsa inte i forvig
beréknas eller individuellt korrigeras. ... Vanligen antas en viss relation foreligga emellan de oregel-

bundna felens storlek och deras frekvens.

As an interpretation in English, the quoted Swedish author describes random measurement errors as quantities,

whose magnitude and sign do not follow any known law and cannot be compensated for in advance as individual
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items. One assumes, however, that there is a statistical relation or regularity between the magnitudes and their
frequencies.

u

One foundational approach to discussing randomness is due to G. Chaitin [21]. Chaitin argues that randomness

has to do with complexity. Or, a random object cannot be compressed at all: since in randomness there is no

structure or pattern ("lag’, a known law in the Swedish quote above), you cannot give a more concise or less

complex description (by a computer program or a rule) other than the object itself. For a statistical modelling
theory with complexity as platform we refer to the lectures by J. Rissanen [86].

In the sequel we shall not pursue the foundational topics or the related critical discourses any further, but

continue by presenting probabilistic tools for modelling of noise and for modelling by means of noise.

1.5.2 Random Variables and Sigma Fields Generated by Random Variables

Definition 1.5.1 /Random Variable] A real valued random variable is a real valued function X : Q@ — R
such that for every set A € B, the Borel o algebra over R,

XA ={w: X(w) € A} € F. (1.6)

[ ]
The condition in (1.6) means in words that the pre-image of any A € B is in F, and X is called measurable , or

a measurable function from ) to R. We can also write
X:(QF)— (R,B).

Example 1.5.1 Let (2, F,P) be a probability space. Take F' € F, and introduce the indicator function of
F', to be denoted by xr, as the real valued function defined by

1 fwelF
XF(w):{ 0 ifwé¢F. (17)

We show now that xp is a random variable. We take any A € B and find that

0 if0¢g A 1¢ A
F if0¢A 1eA
Fe if0eA 1¢ A
Q if0e A, 1€ A

Xp' (4) = {w: xr(w) € A} =

Since F is a sigma field, we see that y'(A4) € F.

For the next result one needs to recall the definition of a Borel function in 1.3.4.

Theorem 1.5.2 Let f: R +— R be a Borel function, and X be a random variable. Then Y defined by
Y = f(X)

is a random variable.

Proof Let A be a Borel set, i.e., A € B. We consider

Y (A) = {we Q| Y(w) e A},



1.5. RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS 27

By construction we have Y (w) = f(X (w)), and thus
Y(A) = {w Q| f(X(w) € A} = fw € Q| X(w) € F1(A)},

where the inverse image is f~'(A4) = {x € R | f(z) € A}. Since f is a Borel function, we have by definition
that f~1(A) € B, since A € B. But then

{weQlX(w)ef (A} erF

since X is a random variable. But thereby we have established that Y~!(A) € F for any A in B, which by
definition means that Y is a random variable. L]

By this theorem we have, amongst other things, provided a slick mathematical explanation of one
basic tenet of statistics, namely that an estimator of a parameter in a probability distribution
is a random variable. Of course, for students of a first course in probability and statistics the

understanding of this fact may require much more effort and pedagogic ingenuity*.

Definition 1.5.2 A sigma field generated by a real valued random variable X, denoted by Fx and/or
o(X), consists of all events of the form {w: X (w) € A} € F, A € B, where B is the Borel o algebra over R.

Example 1.5.3 In example 1.5.1 it was verified that xr is a random variable for any F' € F. Then it follows
by the same example and the definition above that the sigma-field generated by xr is

Fyrw ={Q, F, F°,0}.

In view of example 1.3.13 F, . is the sigma-field generated by the set F', as seems natural.

Definition 1.5.3 A sigma field generated by a family {X; | i € I'} of real valued random variables X;,
denoted by Fx, icr, is defined to be the smallest o algebra containing all events of the form {w : X;(w) € A} € F,
A € B, where B is the Borel o algebra over R and i € I.

u
If it holds for all events in A in a sigma-field H that A € F, then we say that H is a subsigma-field of F and
write

HCF.
Example 1.5.4 Let Y = f(X), where X is a random variable and f is a Borel function. Then
Fy € Fx.

We shall now establish this inclusion. The sigma field generated by a real valued random variable Y, or Fy,
consists of all events of the form {w: Y (w) € A} € F, A € B. Now

{w:Y(Ww)e A} ={w: f(X(w) € A} ={w: X(w) € fHA)}.

4cf., K. Vinnman: How to Convince a Student that an Estimator is a Random Variable. Teaching Statistics, vol. 5, n:o 2,
pp- 49—54, 1983.
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Since f~1(A) is a Borel set, we have by definition of Fy that {w : X(w) € f~1(A)} € Fx. Therefore we have
shown that every event in Fy is also in Fx, and this finishes the proof of the inclusion Fy C Fx. n

The result is natural, as events involving Yare in fact events determined by X. If f(x) is invertible in whole

of its domain of definition, then clearly Fy = Fx.

Theorem 1.5.5 (Doob-Dynkin) Let X be a real valued random variable and let Y be another real valued

random variable such that Y is o(X) -measurable, or,

Y HA) = {w:Y(w) € A} € o(X)
for all A in the Borel o algebra over R. Then there is a (Borel) function H(z) (definition 1.3.4) such that
Y = H(X).

Proof is omitted, and is not trivial. The interested student can find one proof in [63, thm 23.2]. =

1.5.3 Distribution Functions

The probability distribution of a random variable X may be described by its distribution function F(x) =

P ({X < z}). This is a quick and convenient shorthand for the complete expression in the following sense
F)=P{X<z})=P({we Q| X(w) € (—o0,z]}).

Note that our preceding efforts pay here a dividend: (—oo, 2] is a Borel event, and as X is a random variable,
{we Q| X(w) € (—o0,z]}is an event in F and therefore we may rest assured that P ({w € Q | X (w) € (—o0,2]})
is defined. In the chapters to follow it will contribute to clarity of thought to indicate the random variable

connected to the distribution function, so we shall be writing there
Fy(z) =P ({X <x}). (18)

Remark 1.5.2 In statistical physics, see, e.g., [17], a distribution function pertains® often to a different concept.
For example, the distribution function of the velocities v of molecules in a gas is the fraction, f(v)dv, of molecules

with velocities between v and v + dv, and is shown in [17, p. 48] or [18] to be
fv)dv emmv ksT gy, (1.9)

where m is the mass, kp is the Boltzmann constant, and T is temperature. In probability theory’s terms f(v)
is is obviously the probability density of the velocity. The density above will be re-derived in section 11.3 using

an explicit and well defined random process, known as the Ornstein-Uhlenbeck process.

Theorem 1.5.6 Any distribution function has the following properties:
1. F'is non decreasing,

2. limy 400 F(x) =1 and lim,, o, F(z) =0,

5[17] is the textbook in SI1161 statistisk fysik for F3 (statistical physics for students of CTFYS at KTH).
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3. F is right continuous; lim, |, F'(y) = F(z)
4. If F(z—) = limyy, F'(y), then F(z—) = Pr{X < z} and
5. P{X =z} = F(x) — F(z—).
Proof Clear n

Theorem 1.5.7 If F satisfies 1., 2. and 3. above, then it is the distribution function of a random variable.

Proof Consider 2 = (0, 1) and P the uniform distribution, which means that P((a,b]) = b—a, for0 <a <b < 1.
Set

X(w) =sup{y: F(y) <w}.

Firstly, notice that if w < F(x), then X (w) < «, since ¢ {y : F(y) < w}. Next: Suppose w > F(z). Since F’
is right continuous, there is an € > 0 such that F(z 4+ €) < w. Therefore, X (w) >z + € > a. =
Next we define lim inf,, ; { o X, and lim sup,, , , . X, For the definitions of lim inf,, o x5, and limsup,, ,, . =,

for sequences of real numbers (z,,)22; we refer to Appendices 1.9 and 1.10. Here

%girgoan = 51711p (T}gfn Xm) (1.10)
and
limsup X,, = inf (sup Xm) ) (1.11)
n—-+oo n m>n
Theorem 1.5.8 If X, X5,... are random variables, then so are

inf X,,, sup X,,, limsup X,, and liminf X,.

Proof Provided F is a o algebra, it follows that {inf,, X,, < a} = U2 {X,, < a} € F. Now, the sets (—o0, a) are
in the Borel sigma algebra, proving that inf,, X,, is measurable. Similarly, {sup,, X,, > a} = U2 {X,, > a} € F.

For the last two statements, the conclusion is clear in view of (1.10) and (1.11) and by what was just found. =

1.6 Independence of Random Variables and Sigma Fields, I.I.D.

r.v.’s
We know from any first course in probability and statistics that two events A and B are called independent if
P(ANB)=P(A)-P(B).
We shall now see that we can exploit this to define independence of random variables and of sigma fields.
Definition 1.6.1 Assume that we have a probability space (2, F,P) and random variables X and Y on it.

e Two sigma fields H C F and G C F are independent if any two events A € H and B € G are independent,
ie.,

P(AN B) = P(A)P(B).
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e Two random variables X and Y are independent, if the sigma-algebras generated by them, Fx and

Fy, respectively, are independent.

It follows that two random variables X and Y are independent, if and only if
P(XcAYeB)=P(XcA) -PYe€B)

for all Borel sets A and B. In particular, if we take A = (—o0, 2| and B = (—o0,y|, we obtain for all z € R,
y€R
Fxy(z,y) =P (X € (-o00,2],Y € (—o0,y]) = Fx(2) - Fy (y), (1.12)

which is the familiar definition of independence for X and Y, see, e.g., [15], in terms of distribution functions. m

Theorem 1.6.1 Let X and Y be independent random variables and f and g be two Borel functions. Then
f(X) and ¢(Y) are independent.

Proof Set U = f(X) and V = g(Y). These are random variables by theorem 1.5.2. Then
Fu © Fx, Fv CFy,

as shown in example 1.5.4. Thus, if we take any A € Fiy and any B € Fy, it holds that A € Fx and B € Fy.
But Fx and Fy are independent sigma fields, since X and Y are independent. Therefore it holds for every set
A € Fy and every B € Fy, that P(AN B) = P(A)P(A), and therefore 7y and Fy are independent, and this
means that U = f(X) and V = ¢(Y") are independent, as was asserted. n

If we have two independent random variables X and Y that have the same distribution (i.e., Fx(x) =
Fy () for all ), we say that X and Y are independent, identically distributed r.v.’s and abridge
this with I.I.D.. The same terminology can be extended to state Xi,...,X,, as being I.L.D. r.v.’s.

Sequences of I.I.D. r.v.’s will be a main theme in the sequel.

1.7 The Borel-Cantelli Lemmas

Borel-Cantelli lemmas are indispensable, for example, for proving the law of large numbers in the strong form,
section 6.7.4 below, and for proving the almost sure continuity of sample paths of the Wiener process, see section
10.4.1.

We consider a sequence events A1, Ay, As, ... and are interested in the question of whether infinitely many

events occur or if possibly only a finite number of them occur. We set

k=n k=n

If G, in (1.13) occurs, this means that all Ay for k¥ > n occur. If there is some such n, this means in other
words that from this n on all Ay occur for k > n. With

H = U G = U ﬂ A
n=1 n=1k=n

we have that if H occurs, then there is an n such that all Ay with £ > n occur. Sometimes we denote H with

liminf Ay
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The fact that F,, occurs implies that there is some A for k > n which occurs. If F;, in (1.13) occurs for all

n this implies that infinitely many of the Ay:s occur. We form therefore

8

E=()F,= ﬁ D Ay,. (1.14)
1 n=1k=n

n

If F occurs, then infinitely many of Ag:s occur. Sometimes we write this as F = {A,, i.0.} where i.0. is to be
read as ”infinitely often”, i.e., infinitely many times. FE is sometimes denoted with limsup Ag, c.f. Appendix
1.10.

Lemma 1.7.1 Borel-Cantelli lemma If )~ P(A,) < oo then it holds that P(E) = P(A, i.o0) = 0, ie.,
that with probability 1 only finitely many A,, occur.

Proof One notes that F), is a decreasing set of events. This is simply so because
Fn:UAk:AnU< U Ak>:AnUFn+1
k=n k=n+1

and thus
F, D Fn+1-

Thus the theorem 1.4.9 above gives

P(E)=P([)| F.) = lim P(F,) = lim P( U 4e).
n=1 k=n

We have, however, by subadditivity that
P( U Ag) < Z P(Ay)
k=n k=n
and this sum — 0 as n — oo, if the sum " P(Ay) converges. Thus we have shown the proposition, as claimed. =

One can observe that no form of independence is required, but the proposition holds in general, i.e., for any
sequence of events.

A counterpart to the Borel-Cantelli lemma is obtained, if we assume that the events A;, As,... are inde-
pendent.
Lemma 1.7.2 Converse Borel-Cantelli lemma If A, Ao, ... are independent and

> P(A4,) =,
n=1
then it holds that P(E) = P(A4,, i.0) = 1, i.e., it holds with probability 1 that infinitely many A,, occur.

Proof We have by independence and probability of the complement

P(() 4) = [T P4p) = [T (1 - P(An)).
k=n k=n k=n

Since 1 —a < e ™ we get 1 — P(4;) < e~ P(Ar) and

P([ 45) < exp(— Y P(Ay)).
k=n

k=n
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If now )2 P(A,) = oo, then the sum in the exponent diverges and we obtain

P(() 45) =0.
k=n
Thus it holds also that

(N 40 =

1 k=n

C8

n

which implies by De Morgan’s rules that
PV Ja=1-P(J N4 =1-0=1
n=1k=n n=1k=n

i.e., that infinitely many Ax:n occur with probability 1. "

1.8 Expected Value of a Random Variable

1.8.1 A First Definition and Some Developments

Let X be a simple random variable. This is nothing but a special case of what will in the sequel be called
a discrete random variable. In detail, we think of a set of real numbers, {z1,...,2,}, such that X takes its
values in {x1,...,2m,}. The expected value E [X] (a.k.a mean or expectation) of a simple random variable is
defined to be

x] & ixiP (X =a;). (1.15)
i=1
Again we write P (X = x;), when we mean
P(X=a2)=P({weQ|X(w) =}
The numbers P (X = 2;), i = 1,...,m will be later called a probability mass function, p.m.f.
px () =P (X = ;).

The definition in (1.15) clearly depends only on the probality measure P for given X.
Now, we want to interpret in F [X] in (1.15) as an integral of X and use this inspirational recipe for non-simple
X. For this we must develop a more general or powerful concept of integration, than the one incorporated in
the Rieman integral treated in basic integral and differential calculus.

Here is an outline. We consider first an arbitrary nonnegative random variable X > 0. Then we can find

(see below) a infinite sequence of simple random variables X7, Xo, ..., such that

o forallwe
X1 (w) < Xo(w) <

e and for allw € Q
Xn(w) T X (w),

as n — o0.
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Then E[X,,] is defined for each n and is non-decreasing, and has a limit £ [X,,] T C € [0,00], as n — oco. The
limit C' defines F [X]. Thus
EX]Y lim B[X,]. (1.16)

n—oo
This is well defined, and it can happen that E[X] = +oc0. Let us take a look at the details of this procedure.
The discussion of these details in the rest of this section can be skipped as the issues inolved will NOT be

actively examined, but are recommended for the specially interested.

For an arbitrary nonnegative random variable X > 0 we define the simple random variable X,,,

n > 1, as (an electrical engineer might think of this as a digitalized signal)

k ek k+1 7. _ n
X (w) = e i gr <X (w) <HE E=0,1,2,...,n2" -1
n  else.

This means that we partition for each n the range of X (not its domain !), R4 U0, the nonnegative

real line, so that [0, n[ is partitioned into n2" disjoint intervals of the form

k k+1
En,k|: +:|a

on’ on

and the rest of the range R4 U0 is in F,, = [n,00]. Then we see that
1
| Xp(w) — X(w) < o if X(w)<n (1.17)

and
Xn(w) =n, if X(w) >n. (1.18)

When we next go over to n+1, [0, n+1[is partitioned into intervals of the form E, 41 j, = [%, %} .

This is smart, because each of the previous intervals is halved, i.e.,
Enk = Ent1,26 U Eng1 2641 (1.19)

But then it is clear that X,, < X,,+1. We show this for each w. First, if X,,(w) = £, then by (1.19

) either X, 1(w) = 525+ = & or Xpq1(w) = 2 > 225 = £ and thus X, (w) < Xpqq(w). If

Xp(w) =n, then X, (w) < X,41(w). By this and by (1.17 )- (1.18) we see that for each w

Xo(@) < X (@) 1 X (w).

Then
n2"71k
E[X))= > o P (X € B ) + 0P (X > )

k=0

n2"—1

k k+1 k
= F —Fx [ — P(X >n).
> w7 (%) -m () oz

We write this (for some omitted details see eq. (1.35) in an exercise of section 1.12.3) as

n2"—1
E[X))= > / X, (w)P(dw) + / X, (w)P(dw)
k=0 {w|Xn(w)EE, 1} {w|Xn(w)EEL}

and since Q = ({w | X, (w) € By }1%, {w | Xn(w) € E,}) is a partition of Q, we set

- [ Xu(@)dP)
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Then it is seen by X, (w) < X,,11(w) for all w and as Fy, ; = Eyq1.2k U Epy1254+1 that
E[X,] < E[Xn].
As E'[X,,] is a non-decreasing sequence, it has the limit F [X] < +o0.

Example 1.8.1 For A € B the function y4 defined on R by

xa(z) = { (1) ii ; j_ (1.20)

is a Borel function. Let X be a random variable. Then y4(X) is a random variable by theorem 1.5.2 and is

non negative and simple. We get
Exa(X)]=0-P(Xe€eA)+1-P(X €A).
We write then using (1.8)

E[xa(X)] =P (X € A) = /AdFX(x). (1.21)

We shall define E[X] for an arbitrary random variable in the next section.

1.8.2 The General Definition

Let X > 0 denote a random variable on (2, F,P). Then its expectation was above defined as

E[X] = / X(w)dP(w).
Q
Again, we often revert to a useful shorthand, or
E[X] = / XdP.
Q

Let F' = Fx be the distribution function associated with X, then this may be rewritten as

E[X] :/ zdF(z),
0
as follows by the considerations in the preceding example 1.8.1.
For a real valued random variable, its expectation exists if E[XT] := [~ azF(dr) < +oo and E[X "] :=
— f?oo xF(dx) < 400. Then the expectation is given by
E[X]=FE[XT] - E[X™].

If we encounter a case where E[X 1] = co and F[X ~] = oo, the expected value is not defined.

1.8.3 The Law of the Unconscious Statistician

The following theorem, sometimes known as the law of the unconscious statistician, is extremely useful for

computation and will be frequently cited in the sequel.

Theorem 1.8.2 Let X be a random variable and g a Borel function such that F [g(X)] < oc.

Blox)] = [ a00p = [ gwar) (1.22)

— 00
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Proof We follow [103, p. 317]. We assume that g(z) > 0, since otherwise we can use decomposition into the
negative and positive parts g+ and g~ as shown above. We assume in addition that g is simple, i.e., there are
Borel sets G1,Ga, ..., Gy, that are a partition of R such that

g(x)=gr, ifzeGr k=12....m.

and Up” | G = R. We can use the construction in (1.15) with ¥ = g(X)

ElY] = ing Y =gx). (1.23)
k=1
Here
{Y=g1} ={w|9(X(w)) = gu} = {w | X(w) € G} = {X € Gy}
And thus

P(Y =g,)=P(X €Gy).
Hence in (1.23)

EY] =S giP (X € Gy) =
kz:;gk K ;/X

where we used the result (1.35) in the exercises of this chapter, since ({X € G}),, is a partition of €, and
thus

9(X () dP(w) = / 9(X (w))dP(w),

cGy Q

E[Y] = /Qg(X(w))dP(w). (1.24)

On the other hand, the discussion in example 1.8.1 and the expression (1.21) tell us that

P (X €Gy) = / dF (z),

G
and thus . . .
EY]= P(X eGy) = dFx(x) = (x)dFx ()
;gk k ;gk /Gk ;/Gkg
~ [ @)
R
and thus

B[] = [R o()dFx (z).

Hence we have established the law of the unconscious statistician for non negative and simple g. The general
statement follows by approximating a non negative g by simple functions (see the preceding) and then using

gt and ¢g~. "

1.8.4 Three Inequalities for Expectations
Theorem 1.8.3 (Jensen’s Inequality) Suppose that ¢ is a convex function; namely, for any A € (0,1)
Ad(z) + (1= N)é(y) = ¢(Ax + (1= Ay).

Then
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Proof Let ¢ = F[X] and let I(z) = ax + b, where a and b are such that I(c) = ¢(c) and ¢(z) > I(z). Choose a

such that

h10 h hl0
Then set

With this choice of function,

Theorem 1.8.4 (Holder’s Inequality) If p, ¢ € [1, o] with % + % =1, then

E[| XY [] < E[IX["]/PE[lY|]"/.

(1.25)

Proof By dividing through by E[|X|P]/?E[|Y|9]'/4, one may consider the case of E[| X |P]'/? = E[|Y'|9]'/ = 1.

Furthermore, we use the notation
BIx P <X,

In chapter 7 we shall be specially interested in E[|X|?]'/2.

For x > 0 and y > 0, set
1 1
o(z,y) = —2P + —y? —ay
p q
for > 0, so that taking derivative with respect to x gives
Pu(w,y) = 2P —y

and
Gra(,y) = (p— 12?2,

For fixed y, it follows that ¢(z,y) has a minimum (in z) at zo = y*/®~1. Note that xf = y?/P~1 = ¢4 50

that

11 -
p(z0) = (]—j + E)y” —y =y = 0.

Since z( is a minimum, it follows that zy < %:cp + %yq. Setting x = X, y = Y and taking expectations yields

EIXY[] < -+ - = 1= [|X[[p[Y]}

D=
Q|

Let x4 denote the indicator function of a set A;

() 1 ifzeA
T) =
xa 0 ifz¢A

(1.26)

Theorem 1.8.5 (Chebychev’s Inequality) Suppose that ¢ : R — Ry. Let iq = inf{¢(y) : y € A}. Then

for any measurable set A,

iaP(X € A) < E[p(X)xa(X)] < E[p(X)].
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Proof Exercise n

One example of Chebychev’s inequality as stated above is

Var [X]

P(| X -E[X][>a) < —;

; (1.27)

1.8.5 Limits and Integrals

There are several results concerning interchange of limits and integrals, for Riemann integrals we refer to [69,
chapter 6.6.]. All of them rely crucially on the use of a o algebra, which is closed under countable unions. The
proofs require the full machinery of integration theory, c.f. [36, 63], and are therefore beyond the scope of these
notes and of this course. For the definitions of limsup and liminf we refer to Appendix 1.9 and to (1.10) and
(1.11).

Theorem 1.8.6 (Fatou’s Lemma) Let (X,,)22; be a sequence of non negative random variables. It holds
that

liminf E[X,] > E[liminf X,].

n—-+oo n—-+oo

Theorem 1.8.7 (Monotone Convergence Theorem) If 0 < X,, 1 X, then E[X,] T E[X].

We say that a property, described by an event A, for a random variable X holds almost surely, if
PXecA)=P{w]|X(w)eAd})=1

Theorem 1.8.8 (Dominated Convergence Theorem) If X,, — X almost surely, and |X,| < Y for all n
and E[| Y |] < +o0, then E[X,] — E[X].

1.9 Appendix: limsupz, and liminf x,

1.9.1 Sequences of real numbers

(2,,),— is any sequence of real numbers. For example,

1 n
J}n:(l—i-—) .
n

We next define lim inf,,_, o 2, and limsup,,_, ., Zx.
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1.9.2 limsupz,
Let b be a real number, —co < b < 400. We say that

b = limsup z,,
n—oo

if 1) and 2) below hold.
e 1) For every ¢ > b there is an integer N such that

n>N =uz,<ec

e 2) For every ¢ < b and for every integer N there is an n > N such that
Tp>cC.

In other words, for any € > 0 only finitely many of z,, can be larger than b+ €. Also, there are infinitely

many x, larger than b —e.

1.9.3 liminfz,
Let a be a real number, —oco < a < 400. We say that

a = liminf x,,
n—oo

if 1) and 2) below hold.

e 1) For every ¢ > a and for every integer N there is an n > N such that

Ty < C.

e 2) For every ¢ < a there is an integer N such that
n>N =ux,>c

In other words, for any ¢ > 0 there are infinitely many z,, smaller than a + €. Only finitely many of z,,

can be smaller than a — e.

1.9.4 Properties, The Limit of a Sequence

liminf, o 2, and limsup,,_, ., ©, always exist, as they can be £oo.
We have always that

liminf z,, < limsupz,.
n—00 n—o0

If

liminf z,, = limsup z,,,
n—00 n—o00

then the limit

lim z, ==«
n—r 00

exists and

lim x, = liminf z, = limsup x,,.
n—oo n—oo n—oo

This is easy to see, because the properties above imply that for all n > N we have infinitely many x,, with

a—e<xz, <b+e

But if a = b, then this yields the definition of a limit x = (a = b) of (z,,):-

n=1"
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Example 1.9.1

1
Tp = (—1)" <1+—), n=1,23,...,.

n
Then
liminfx, = -1, limsupx, = 1.
n—00 n—00
We show the latter.
1) If ¢ > 1, take an integer N > . Then if n > N

1
xn§(1+—)<c.
n

2) If ¢ <1 and N is an integer, then if n = 2k and 2k > N, then

1 1
xn:zgk:(—l) <1+2kz)1+ﬂ>c

Hence

limsupzx, =1
n—oo

1.10 Appendix: limsup 4, and liminf A,

Let A,, € A for each n in a countable collection (A,)%2 ;, where A is a sigma field. Let us define

n=1»
limsup A, % N2, US_,, A (1.28)
n—oo
and
liminf A, % 0%, N%_ A,. (1.29)
n—oo

Then limsup,,_, . 4, € A and liminf,,_, ., A, € A (you should convince yourself of this).
Clearly
hm mf A, Climsup A,,.

n—r00

If liminf, . A, = limsup,,_, ., A,, we say that

liminf A,, = limsup 4,, = hm Ap.

n—00 n— 00

Let x4 denote the indicator function of an event A € A;

1 ifweAd
XA(W):{ 0 ifwd¢ A (1.30)

Then one can verify that

{w€Q|ZXAn( =00} =M Use_ A,

and we say (clearly?) that A,, happens infinitely often. In addition,
{WEQ|ZXAC <OO} U 1ﬁm nAm’

and we say (clearly?) that A, happens ultimately (i.e, for all but finitely many n). Then (a quiz for self-studies)
Xnee  us_ A, = limsupxa,
n—oo
and

XUz nee_, A, = liminf xa,.
n— oo
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1.11 Appendix: Combinatorics of Counting and Statistics of Parti-

cles in Cells

Combinatorics is connected to probability in a great number of ways [15, 53]. Balls and urns are not idle toys, as
often portrayed by, e.g., certain former alumni, but important conceptual models, as shown below by statistics
of particles in cells. Here we recapitulate for ease of reference the customary rudiments.

Multiplication principle is a fundamental idea of counting. The principle says that if there are ny; ways of
doing operation 1 and no ways of doing operation 2, then there are nq - no ways of performing both operations.
Therefore n* equals the number of ways for picking k elements (no restriction on k) with replacement and with
regard to order in a collection of n items.

By the multiplication principle the factorial (n is a non negative integer)
nl=n-(n—-1)-...-3-2-1

with the convention 0! = 1, is the number of ways of ordering n items in a collection. Then we define the

expression (n)g for integers 0 < k < n by
e En-n—1)...-(n—k+1).

It is seen that (n) equals the number of ways to pick k items from the the collection n items without replacement
and with the order of the items in the subcollection taken into account.
Let P(n,k) be the number of ways to pick k items from the collection n items without replacement and

without the order of the items in the subcollection taken into account. Then by the multiplication principle
E'P(n,k) = (n)g

must hold, and we get

(n)k n!
P(n,k) = = .
(k) = S0 = G
The established symbol for P(n, k) is Z , the binomial coefficient (reads as 'n choose k’) for non negative

integers n and k, 0 < k < n, and thus

n n!
( k ) R

Then we have found three of the cases in the following table.

With regard to order | Without regard to order
With replacement nk ( ne : -1 )
Without replacement, k < n (n)g < Z )
The derivation of the expression " ka -1 is a longer exercise, which we do by changing to an different

interpretation of the combinatorial coefficients above.

Sampling with regard to order parallels distributing (k) distinguishable objects into (n) cells and sampling
without regard to order parallels distributing indistinguishable objects into cells. Sampling with replacement
corresponds to allowing more than one object in a cell, and sampling without replacement corresponds to

allowing no more than one object in a cell, hence k& < n. Thus we have the following table:
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Distinguishable Objects | Indistinguishable Objects
k—1
No restraints nk ( nt i )
Not more than one object per cell, k < n (n)k < Z )

Consider k£ balls and n cells with k; > 0 balls in cell 7 so that
kit+ke+...+k,=k

We call k;’s occupation numbers. We define the occupancy distribution by the n -tuple (ki, ks, ..., k,). Two
ways of distributing k indistinguishable objects into cells are called indistinguishable, if their occupancy dis-
tributions are identical. Let us now consider the following fundamental question: how many distinguishable
occupancy distributions can be formed by distributing k& indistinguishable objects into n cells 7 The answer is
n+k—1

k
by the space between n + 1 bars and the balls in the cells by stars between the bars. Thus

. To prove this, we use a device invented by William Feller. This consists of representing n cells

represents n = 11, k = 12 and the occupancy distribution (0,0,2,0,0,3,0,1,2,0,4).
Since the first and last symbols in a string of stars and bars must be bars, only n — 1 bars and k stars can
appear in any order. Thus we are back to counting the number of ways on how to pick k objects among n+k—1

objects without replacement and without regard to order. This equals by the preceding

<n+z_1>, (1.31)

and we have established the last of the arrays in the tables above.

In statistical physics one thinks of a phase space subdivided into a large number, n, regions (cells) and k
indistinguishable particles each of which falls into one of the cells. One could guess that each of the possible
n* arrangements of the k particles is equally probable, this is called Mazwell -Boltzmann statistics. If on the
other hand, each of the possible occupancy distributions for the particles is considered equally probable, and
no restrictions are made on the number of particles in each cell, then probability of each distinct arrangement

k—1
is1/ " Jrk . This is called Bose-Einstein statistics [17, p.354, Exercise 29.6 (b)]. If the k particles are
indistinguishable particles and one imposes the restriction that no more than one particle can found in a cell,

and the arrangments are equally probable, then the probability of an arragement is 1/ and one talks

3

about Fermi-Dirac statistics [17, p.354, Exercise 29.6 (a)]. The reference [17] loc.cit. shows how one derives
Fermi-Dirac and Bose-Einstein distribution functions (which are not distribution functions in the sense defined
above) from these expressions. One needs physical experiments to decide, which model of statistics holds for
a certain system of particles (e.g., hydrogen atoms, electrons, neutrons, protons). In other words, one cannot
argue solely from abstract mathematical principles as to what is to be regarded as equally likely events in reality
[53].
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1.12 Exercises

1.12.1 Easy Drills

1. (Q, F,P) is a probability space. A € F and B € F. P((AUB)°) = 0.5 and P(AN B) = 0.2. What is the
probability that either A or B but not both will occur. (Answer: 0.3).

2. (2, F,P) is a probability space. A € F and B € F. If the probability that at least one of them occurs is
0.3 and the probability that A occurs but B does not occur is 0.1, what is P(B) ? (Answer: 0.2).

1.12.2 Measures, Algebras and Sigma Fields

1. A measure that is finitely additive but not countably additive (From [87]) Let Q be countable.
We take
A={ACQ| Ais finite or A is finite }.
(a) Show that A is an algebra.
(b) Set

P(A) = 0 if A is finite
] 1 if AC s finite.

Show that P is finitely additive, but not countably additive measure on (2, A).

2. Let Q =[0,1). For each of the set functions p defined below, determine whether u satisfies the axioms of
probability. 0 <a <b < 1.

1. u([a,b)) = zjr—z.
2. p(la,b)) = b* — a.
3.

u(la,b)) = b2 — a?, pu((a, b)) = b — a.

3. Q = the non negative integers = {0, 1,2,...}. Since Q is countable, we can take F = all subsets of 2. Let
0 < 0 < 1 be given. For which values of 6 is it possible to give a probability measure P on (€, F) such
that P ({i}) =6, i =0,1,2...7

4. (From [43]) Let ©Q = [0,00). let F the sigma field of subsets of Q generated by sets of the form (n,n + 1)
forn=1,2,....

(a) Are the following subsets of Q in F 7
(i) [0, )
(i) Zs = {0,1,2,...}
(iii) [0, k] U [k + 1,00) for any positive integer k
(iv) {k} for any positive integer k
) [0, k] for any positive integer k
(vi) (1/3,2)
(b) Define the following set function P on subsets A of

P(A) =c > 37k,

{k€Z|(k+1/2)cA}

(v

If there is no k such that (k +1/2) € A, then the sum is taken as zero. Is P a probability measure
on (Q, F), and if so, what is the value of ¢?
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(¢) Repeat part (b) for F replaced by the Borel sigma field.
(d) Repeat part (b) for F replaced by the power set of €.

Show that P defined in (1.3) in example 1.4.7 is a countably additive probability measure.

Assume (2, F,P) and let A € F and B € F, and A C B. Show that

P(BNA°) =P (B)-P(4).
Show that the probability that one and only one of the events A and B occurs is

P(A) + P(B) — 2P(AN B).

Consider (2, F,P) and let A € F and B € F. Define
AAB ¥ (AN B9 U (BN A°). (1.32)

This is known as the symmetric difference of A and B. You should convince yourself of the fact that
AAB e F.

(a) Show that
| P(A) — P(B) |<P(AAB).

(b) Show that if A € F, B € F and C € F, then
P(AAB) <P (AAC)+P(CAB).

The sharp-eyed reader will recognize this as a form of the triangle inequality. One can in fact regard

P (AAB) as a distance or metric on events.

Show that if A and B are any two events, then

min (P(A),P(B)) > P(ANB) >P(A4)+P(B) — 1.
Show that if P(A) > 1—¢ and P (B) > 1—0, then also P (AN B) > 1—24. In words, if two events have
probability near to one, then their intersection has probability nearly one.

Aq,As, As,. .., and A, are events. Show that

Boole’s inequalities

Aq,As, As,. .., and A, are events. Prove that

(a)
P (Uj_14;) <Y P(4)).
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A1,As, As,..., and A, are independent events. Prove that their complements are A§,AS, AS,..., and AS
are independent events, too.
Suppose that AN B C C holds for the events A, B and C. Show that

P((C) <P (A°)+P(B). (1.33)

[68] Suppose that P is a finitely additive probability measure defined on a field G of subsets of a space (.
Assume that P is continuous at ), i.e., if A, € G for all n and A,, | 0, then P (A4,,) | 0. Show that P is a

probability measure on G.

This result is useful, since in applications one often encounters a finitely additive measure on a field G
rather than a mesure on a o-field F.

1.12.3 Random Variables and Expectation

1.

Let X be a simple function with the range Vx = {z1,..., 2, }. Then the sets
Gi={we Q| X(w) =z}
are a (measurable) partition of  in the sense that
GinGj,i#j, Q=U~LG;.

For any event A C Q let x4 be the indicator function of the event A,

xa(w) = { (1) iz Z j (1.34)

Then x4 - X is a simple random variable with the range V, ,.x containing those z; for which G; N A # 0.
Via-x is augmented with zero 0, if needed. Then we define [, XdP by

/XdP:/XA~XdP:E[XA~X].
A Q

Show that if AN B = {), then

XdP:/XdP+/XdP
AUB A B

Hint: Think of how y 4up can be expressed by means of x4 and xp.

Thus,
XdP = Z/ XdP. (1.35)
Q = Ja,
Let X be a positive random variable, P (X > 0) = 1, with E'[X] < oo. Show that
1 1
El—|>——. 1.36
HE 120

Note that this inequality is trivially true if E [%} = +00.

Let X and Y be independent random variables. Assume that F [|X|] < oo, E[|Y]] < 00, E[|XY]] < 0.
Show that
EX-Y]=E[X]-E[Y]. (1.37)

We do this in steps, c.f. [13, p. 403]. Our tools for this are the small pieces of integration theory in section
1.8 and the definition 1.6.1.
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4.

d.

10.

(a) Choose arbitrary A € Fx and B € Fy. Then show that
Elxa-xs] = Elxal- Elxs].

(b) By means of the item (a) check in detail that (1.37) holds for all simple random variables X and Y.
(c) Explain how you can obtain (1.37) for X > 0 and Y > 0.

Let F} € F and Fy € F. Prove that xr, + xr, is a random variable.

Show with the aid of Appendix 1.9 that

Xnee  use_ A, = limsup xa,
n—o0

and

Xuse nee_ A, = liminf x4, .
- n—oo

m=

Markov’s inequality Let X be such that P (X > 0) = 1, i.e., X is almost surely nonnegative. Show

that for any ¢ > 0
EX]
pa
Aid: Let A={we Q| X(w)>c}. Let xa be the corresponding indicator function, i.e.,

) 1 fwed
w) =
X 0 ifwé A

P(X >c¢)< (1.38)

Then we have clearly X > cx 4.

[30] Let for n =1,2,...

A A if nis even
"] B ifnisodd.

Show that
limsup 4, = AU B, 1im}_ann =ANB.
n—-+0oo

n—-+o0o

[30] Let {A,,}n>1 be as sequence of pairwise disjoint sets. Show that

limsup A,, = liminf 4,, = (.

n—-+oo n—-+00
Monotone class A class M of subsets of  is called a monotone class, if

lim A, e M

n—oo

for any increasing or decreasing sequence of sets {A,},>1 in M. Show that an algebra M is a sigma
algebra if and only if it is a monotone class. Aid: In one direction the assertion is obvious. In the other

direction, consider B,, = U}'_; Ay.
F1 and Fa are two sigma algebras of subsets of ). Show that
FiNFs

is a sigma algebra of subsets of ().
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Chapter 2

Probability Distributions

2.1 Introduction

In this chapter we summarize, for convenience of reference, items of probability calculus that are in the main
supposed to be already familiar. Therefore the discourse will partly be sketchy and akin in style to a chapter
in a handbook like [92].

We shall first introduce the distinction between continuous and discrete r.v.’s. This is done by specifying
the type of the distribution function. Appendix 2.5 provides a theoretical orientation to distribution functions
and can be skipped by first reading.

We start by defining the continuous random variables. Let first fx(x) be function such that
/ fx(x)dr =1, fx(x)>0, forallzinR.

Then the function

Fx(z) = /fx(u)du (2.1)

is the distribution function of a random variable X, as can be checked by theorem 1.5.7, and as was in advance
suggested by the notation. We say that X is a continuous (univariate) random variable. The function
fx(z) is called the probability density function p.d.f. (p.d.f.) of X. In fact (c.f. appendix 2.5) we have
for any Borel set A that

P(XecA= /Afx(z)dz.

In this chapter an array of continuous random variables will be defined by means of families of probability
densities fx(z). By families of probability densities we mean explicit expressions of fx(x) that depend on a
finite set of parameters, which assume values in suitable (sub)sets of real numbers. Examples are normal

(Gaussian), exponential, Gamma e.t.c. distributions.

The parameters will be indicated in the symbolical codes for the distributions, e.g., Exp(a) stands for
the exponential distribution with the parameter a, a > 0. The usage is to write, e.g., X € Exp(a),
when saying that the r.v. X has an exponential distribution with parameter a.

Next we say that X is a discrete (univariate) random variable, if there is a countable (finite or infinite) set

47
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of real numbers {zy}, one frequent example is the non negative integers, such that

Fx(z) = Z px (zk), (2.2)

where
px(l'k) = P (X = :Ck)

The function px (zx) is called the probability mass function (p.m.f.) of X. Then it must hold that

o0

> px(zk) = Lpx(ax) > 0.
k=—o0
Again we shall define discrete random variables by parametric families of distributions (Poisson, Binomial,

Geometric, Waring e.t.c).

It is found in appendix 2.5 that there are random variables that are neither continuous or discrete
or mixed cases of continuous and discrete. In other words, there are distribution functions that do
not have either a p.d.f. or a p.m.f. or a mixture of those. A well known standard instance is the

Cantor distribution, which is the topic in an exercise to this chapter.

In addition, since the calculus of integrals teaches us that P(X =) = [ fx(t)dt = 0, there is
a foundational difficulty with continuous random variables likely connected to the nature of real

numbers as a description of reality.

If the expectation (or mean) of X, as defined in section 1.8.2, exists, it can be computed by

o0

> akpx(xg)  discrete r.v.,
k=—o0
EX]=4 _ (2.3)
| zfx(z)dz continuous 1.v.

The law of the unconscious statistician proved in theorem 1.8.2; see (1.22), can now be written as

> H(zg)px(xp) discrete r.v.,
k=—o0

E[H(X)] = (2.4)

| H(z)fx(z)dx continuous r.v..

Thereby we have, with H(z) = (x — E[X ])2, the variance, when it exists, expressed by

k_ij: (zx — E[X])’ px(z1) discrete r.v.,
Var[X] = E[H(X)]| =4 _ (2.5)
_f (z — E[X])’ fx(z)dx continuous r.v.

It follows readily that we have Steiner's formula
Var [X] = E [X?] — (E[X])?. (2.6)

This formula facilitates computations, and is applicable in both discrete and continuous cases.
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Remark 2.1.1 In the sequel we shall frequently come across with I'(z), which is, for z with positive real part,

the Euler gamma function, see [93, p. 302] for a quick reference, and [54, ch. 6] for a story,

I'(z) = /000 t*~te~tdt. (2.7)

Some notable properties of I'(z) are

1
r <§) =, (2.8)
and
I'(n) = (n—1)! nis a nonnegative integer. (2.9)

Here we recall the convention 0! = 1. The following integral is useful and inherent in several expressions in the
sequel.

* s L(t+1)
/0 xtexdx:W, A>0,t>—1. (2.10)

2.2 Continuous Distributions

Many continuous and discrete distributions have one or more generative models. By a generative model one
means in probability theory a mathematical description of the way a particular probability distribution can
arise in a physical situation. For example, the logarithm of a product of many positive random variables is
a generative model for the log-normal distribution. We shall on occasion try to refer to such models, when

introducing a distribution.

2.2.1 Univariate Continuous Distributions

Example 2.2.1 (Uniform Distribution) X € U(a,b), a < b is a random variable with the p.d.f.

1
—a agxgb,

fx(@) = (2.11)

0 elsewhere.

We say that X has the uniform distribution on the interval (a,b). The parameters are a and b. We have

E[X] = GTM,Var x]= & IQG) .

Frequently encountered special cases are U(0,1) and U(—1,1). The uniform distribution has been discussed in

terms of ’complete ignorance’.

Example 2.2.2 (Triangular Distribution) X € Tri(—1,1) means that the p.d.f. of X is

fx(x) = { Lol fol <1 (2.12)

0 elsewhere.

This can also be written as
fx(x) =max (0,1 —|z|).

If one draws a function graph of max (0,1 — |z|), one realizes the rationale for the attribute triangular.

E[X] =0, Var[X] = %
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Example 2.2.3 (General Triangular Distribution) X € Tri(a,b) means that the p.d.f. of X is

fx(@) = %(1_%“6_(&71))') prsh (2.13)
0 elsewhere.
a+b b—a)?
E[X]= ; Var[x] = ¢ 24).

Example 2.2.4 (Normal Distribution a.k.a. Gaussian Distribution) X € N(u,0%), p € R, 0 > 0
means that the p.d.f. of X is

1 2 2
fx(x) = e~ @m0 oo < 2 < 400 (2.14)
ovV2lrm

We say that X has a normal distribution or a Gaussian distribution with the parameters x and o2, where
E[X] =, Var[X] = o2

The univariate normal or Gaussian distribution will be the platform on which to construct the multivariate

Gaussian distribution in chapter 8 and then eventually Gaussian processes in section 9.

Example 2.2.5 (Standard Normal Distribution or Standard Gaussian Distribution ) The special case
X € N(0,1) of (2.14) is called the standard normal distribution or the standard Gaussian distribution and its

p-d.f. is important enough to have a special symbol reserved to it, namely

1 2
p(z) ' ——e 2 o0 <z < +oo. (2.15)

V2T ’

The corresponding distribution function is designated by ®(z), i.e.,

B(z) / S(t)dt, —o0 <z < +oo. (2.16)
It follows readily that
O(—z) =1—(x), (2.17)
1
®(0) = 5. (2.18)

In the engineering and scientific literature [3] as well as in MATLAB®, one frequently meets the error function’
erf(z) dof 2 /Z e~ dt, —o0o <z < o0, (2.19)
V7 o
and complementary error function General

def 2 o —t2
erfc(z) = — e " dt, —oo <z <o00. (2.20)
ﬁ/x

IThe definition of erf(z) varies in the literature, c.f., for example [32, p.78].
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Clearly,
erfc(z) = 1 — erf(z).

By a change of variable in (2.19) we find that

O (z) = % <1+erf (%))

O (z) = %erfc (%) .

The distribution function of X € N(0,1), ®(x), is often numerically calculated for > 0 by means of the

and

'Q-function’ or the error function. or
A ™ [ ot o) =1- Q). (2:21)

where the following approximation 2 is known to be very accurate

~ 1 1 —z2/2
Q) ~ ((1%)x+%m> Var

Example 2.2.6 (Skew-Normal Distribution) A random variable X is said to have a skew-normal distri-
bution, if it has the p.d.f.
fx(x) =2¢(x)P(\x), —oo<a < o0, (2.22)

where the parameter —oo < A < oo and ¢(z) is the p.d.f. of N(0,1), and ®(x) is the distribution function of
N(0,1). We write X € SN (A) and note by (2.18) that SN (0) = N(0,1). We have two plots of fx(z) in figure
2.1.

If A\ — oo, then fx(x) converges (pointwise) to

2¢(x) ifxz>0

0 if z <0,
which is a folded normal distribution. If A — —oo, then fx(x) converges (pointwise) to

0 ifx>0

fx(@) = { 2¢(x) ifxz <0,

which is another folded normal distribution. The mean and variance as well as other properties of SN (\) are

established in the exercises to this chapter and to a later chapter.

Example 2.2.7 (Exponential Distribution) X € Exp(\), A > 0, and the p.d.f. is

%e‘w//\ 0<zx
fx(@) = (2.23)
0 x < 0.

E[X] =\, Var[X] = )\
2P.0. Borjesson and C.E.W. Sundberg: Simple Approximations of the Error Function Q(x) for Communication Applications.
IEEE Transactions on Communications, March 1979, pp. 639—643.
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Figure 2.1: The p.d.f.’s of SN (—3) (the left hand function graph) and SN (3) (the right hand function graph).

Example 2.2.8 (Laplace Distribution) X € L (a), a > 0, means that X is a continuous r.v., and that its
p.d.f. is

1
fx(x) = 2—ef|x|/a, —00 < x < +o00. (2.24)
a
We say that X is Laplace -distributed with parameter a.
E[X] =0, Var[X] = 2a?

The distribution in this example is for obvious reasons also known in the literature as the Double Exponential
distribution. We shall in the sequel provide exercises generating the Laplace distribution as the distribution of

difference between two independent exponential r.v.’s.

Example 2.2.9 (Gamma Distribution) Let X € ' (p,a), p > 0, a > 0. The p.d.f. is

' __e-x/a ) <z
fx(z) = (2.25)
0 z < 0.

Note that Exp (a) =T (1, a).
E [X] = pa, Var [X] = pa®.
Sometimes p is called the shape parameter and a is called the scale parameter. Note that the scale is squared

in the expression for variance.
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Example 2.2.10 (Erlang Distribution) The special case I" (k,a) of the Gamma distribution, where k is a

positive integer, is known as the Erlang distribution, say Erlang (k,a) 3.

Example 2.2.11 (Weibull Distribution) Let X € Wei(«, ), @ > 0, 8> 0. The p.d.f. is

ﬂ%zo"le’(z/ﬁ)a 0<z

fx(z) = (2.26)
0 z < 0.

Here « is the shape parameter, § > 0 is the scale parameter. Note that Exp(a) = Wei(1,a). The
exponential distribution is thus a special case of both the Gamma distribution and the Weibull distribution.

There are, however, Gamma distributions that are not Weibull distributions and vice versa. The distribution

was invented by Waloddi Weibull?.
2 1)\’
rit+—)—(r'f1+-— .
@ @

In fracture mechanics one finds the three parameter Weibull distribution Wei («, 3, ) with the

FE[X]=pT (1+é) , Var [X] = 2

p.d.f.
a—1
a (z=0 —(55%)~
=] 35 T ez
0 x <0.

« is, as above, the shape parameter, 8 > 0 the scale parameter and 6 is the location parameter.
If = 0, then Wei (o, 8,0) = Wei («, ).

Example 2.2.12 (x*(f)- Distribution with f Degrees of Freedom) If the random variable X has the
p.d.f. for f=1,2,...

L1 —xz/2
r27le
- if 0
fx(x) =< D(f/2)27/2 ne
0 if z <0,

then X is said to be x2(f)- distributed with f degrees of freedom. We write X € x?(f). Note that x2(f) =

T'(f/2,2).
E[X] = f,Var[X] = 2f2.

The following theorem explains the genesis of x?(f) and is included in section 4.7 as an exercise.

3This distribution has been named after A.K. Erlang (1878—1929), Danish mathematician and engineer, a pioneer in the

development of statistical models of telephone traffic, see, e.g., [84].
4(1887—1979), was an engineer, a commissioned officer of coastal artillery, and a mathematician. He was professor in machine

components at KTH. He studied strength of materials, fatigue, bearings, and introduced what we now call the Weibull distribution

based on case studies, i.e., not on generative models.
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Theorem 2.2.13 X;,..., X, are independent and N (0, 1) distributed. Then

fo € x2(n). (2.27)

Example 2.2.14 (Student’s t-distribution) If the random variable X has the p.d.f. forn =1,2,...

fX($): F(nTH) ! —o0o<r <o
VL (3) (1 4 =)0 ’

then X is said to be t(n)- distributed with n degrees of freedom. We write X € t(n).

n
n+2°

E[X] =0, Var[X] =

The following theorem about Student’s t-distribution is recognized from courses in statistics. It is in the sequel

an exercise on computing the p.d.f. of a ratio of two continuous r.v.’s

Theorem 2.2.15 X € N(0,1), Y € x?(n), where X and Y are independent. Then

ﬁ

e t(n). (2.28)

Example 2.2.16 (Cauchy Distribution) X € C (m,a) has the p.d.f.

1 a
——— - o< < too. 2.29
fx(@) ma+ (x—m)? oS s oo (2:29)
In particle physics, the Cauchy distribution C (m, a) is known as the (non-relativistic) Wigner distribution [37]
or the Breit-Wigner distribution [64, p.85]. An important special case is the standard Caychy distribution

X € C(0,1), which has the p.d.f.

1 1

fx(x) =
If we try to find the expectation of X € C (0, 1), we start by

by 1
/a H_—xdezi(ln(1+b2)fln(1+a2)).

o _=z

When b — oo and a — —oo, we see by the above that the integral f_oo T2
Moments of higher order do not exist for X € C'(0,1).

dx has no definite meaning® .

5Unless we define the integral by the Cauchy principal value.
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Example 2.2.17 (Rayleigh Distribution) We say that X is Rayleigh distributed, if it has the density, a > 0,

2z 712/a
“Le x>0
fx(w) = { 0 elsewhere.

We write X € Ra(a).
1 1
EX] = s Vma, Var [X] =a (1 — Zﬂ') .
The parameter in the Rayleigh p.d.f. as recapitulated in [92] is defined in a slightly different manner. The

Rayleigh distribution is a special case of the Rice distribution presented an exercise, which therefore is a

generative model for Ra (a).

Example 2.2.18 (Beta Distribution) The Beta function B (x,y) (see, e.g., [3, pp. 82—86]) is defined for
real » > 0 and s > 0 as

1
_ _ T(r)T(s)
B(r,s) = (1 —a) e = = 2.31
R A (231)
Taking this for granted we have
D(r+s) ' -1 -1
—_— (1 —2x)" tdr = 1. 2.32
e J, =0 (232
Since %z“l (1 —2z)*"1 >0 for 0 <z <1, we have found that
T(r+s) r—1 s—1
ST (1 —=x 0<x<1
fx (@) =q IOITE (1-2) (2.33)
0 elsewhere,

is a p.d.f. to be called the Beta density. We write X € S (r,s), if X is a random variable that has a Beta

density. This p.d.f. plays an important role in Bayesian statistics.

E[X] = —— Var[X] = (T+s)2(:~8+s+ o

b)
r—+s

The function "
B, (r,s) = / u" (1 — )" du, (2.34)
0

is known as the incomplete Beta function.
Example 2.2.19 (Gumbel Distribution) Let us consider the function
Flz)=e¢ , —oco<z<o0. (2.35)

One should check the sufficient conditions of theorem 1.5.7 ensuring that F'(z) is the distribution function
of some random variable X. The probability distribution corresponding to (2.35) is known as the Gumbel
distribution, and the compact notation is X € Gumbel. The Gumbel distribution belongs to the family of
extreme value distributions. This indicates that it emerges as a model for the distribution of the maximum
(or the minimum) of a number of samples of various distributions. This will be demonstrated for sequences of
independent and identically exponentially distributed X in chapter 6 below.

ElX]=r,
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where « is Euler’s constant = 0.577...5 , and
Var [X] = —.

The stated expectation and variance of Gumbel distribution will be derived by means of moment generating
functions (section 5.7) in an exercise to section 5.8.2 below. The Gumbel distribution and other extreme value

distributions are important, e.g., in structural safety analysis [77].

Example 2.2.20 (Continuous Pareto Distribution) A continuous random variable X has the p.d.f.

ak®

ZofT L > kv
= z 2.36
fx(@) {0 oy (2.36)

where k > 0, @ > 0, which is called a Pareto density with parameters k and «. We write X € Pa(k, ).
ak ak?
F|X]| = Var [ X|]= ———— 2.
X=Xl =T ge-z >

This distribution was found by and named after the economist and sociologist Vilfredo Pareto (1848-1923)7,
as a frequency of wealth as a function of income category (above a certain bottom level). In plain words this

means: most success seems to migrate to those people or companies, who are already popular.

Example 2.2.21 (Inverse Gaussian Distribution) A continuous random variable X with the p.d.f.

by 1/2 Az —p)?
> e 2% x>0, (2.37)

fx(@) = <

2ma3
is said to have the inverse Gaussian distribution a.k.a. Wald distribution. We write X € IG(u, A), where
E[X]=p>0,Var[X] = —.

The inverse Gaussian distribution is the distribution of the time a Wiener process with positive drift takes to

reach a fixed positive level.

Example 2.2.22 (K-Distribution) A continuous random variable X with the p.d.f.

2 ( Lvx En 1 Lvx
fx(x) = - ( . ) F(L)F(V)IV_L <2 T) , x>0 (2.38)

6 A review of Euler’s constant and related issues is recapitulated very readably in [54].
“We quote from the entry on V. Pareto in a classic Swedish Encyclopedia, Nordisk familjbok, Tjugoforsta bandet, Uggleuppla-

gan, 1915: "Pareto [-ta] Vilfredo, italiensk-schweizisk nationalekonom, f6dd 1848 i Paris, utbildades till ingenjor, men ofvergick sa
smaningom till nationalekonomien, ..., P. har tilldragit sig mycken uppmaérksamhet genom sin med matematiska formler demon-
strerade och af rikhaltiga statistiska uppgifter belysta teori om inkomstfordelningen mellan de olika samhé&llsmedlemmarna i skilda
lander, en fordelning som mindre motsvara en egentlig pyramid &n en sadan med konkava sidor och konvex bas, en toppsnécka

enligt P:s egen beskrivning.”
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is said to have the K-distribution. Here I,,_,(2) is the modified Bessel function of the second kind. We write

X € K(L, 1, v). It holds that

v+ L+1

s Lv

X € K(L, p,v) is the distribution of the product of two independent random variabels

E[X]=up, Var[X]

X:Xl'X27

where X7 € T'(1/L,L), and X2 € I'(u/v,v). K-distribution is used as a probabilistic model in Synthetic
Aperture Radar (SAR) imagery.

Example 2.2.23 (Logistic Distribution) We say that X has a logistic distribution, X € logistic(0,1) , if its
p.d.f. is

eI

—,—00 < x < 400. 2.39
(1+ev)? (2:39)

fx(z) =

The corresponding distribution function is
F, = / fx@®)dt = o(z).

The function o(x) = is known as the logistic function, hence the name of the probability distribution.

1
THe =
The function o(x) appears also, e.g., in mathematical biology and artificial neural networks.

E[X]=0, Var[X]= %2

2.2.2 Continuous Bivariate Distributions
(X,Y) is a bivariate random variable. Let
Fxy(z,y) =P (X <2,Y <y),—oc0o<x <00,—00 <y < 0.

If
z oy
Fxy(z,y) = / / fx.v(u,v)dudo,

where

/ / fxyy(l',y)dlﬁdy = 15 fX,Y(:rvy) Z 05

then (X,Y) is a continuous bivariate random variable. fx y(z,y) is called the joint probability density for
(X,Y). The main explicit case of a continuous bivariate (X,Y) to be treated in the sequel is the bivariate

Gaussian in chapter 8. The marginal distribution function for Y is

Fy(y) = Fx,y(c0,y) = /_y /_OO fxy(z,v)dedy

and [e’e)
fr(y) = d%FY(y) :[ fxy(z,y)dz
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is the marginal probability density for Y. Then, of course, the marginal distribution function for X is

Fx(z) = Fxy(z,00) = /_ /_ Ix.y(u,y)dydu.

and J -
fx(z) = %Fx(x) = [m fxy(x,y)dy

is the marginal probability density for X. It follows in view of (1.12) that X and Y are independent random

variables, if and only if
fxy(@,y) = fx(x)fy(y), for all (z,y). (2.40)

We have even the bivariate version of the law of the unconscious statistician for an integrable Borel function
H(z,y) as

By - [ N / " H(evy) oy (e, y)dydy. (2.41)

This is in the first place applied to H(z,y) = x - y, i.e., to computing covariances, which are defined or recalled
next. The covariance Cov(X,Y") of the r.v.’s X and Y is

Cov(X,YV) ¥ E[(X - E[X])(Y — E[Y])] (2.42)

Here E [X] and E[Y] are computed as in (2.3) using the respective marginal p.d.f.’s. It follows by properties
of integrals that
Cov(X,Y)=E[(X Y)] - FE[X]-E[Y]. (2.43)

In view of (1.37) it follows that
X and Y are independent = Cov(X,Y) = 0. (2.44)

The converse implication is not true in general, as shown in the next example.

Example 2.2.24 Let X € N(0,1) and set Y = X2, Then Y is clearly functionally dependent on X. But we
have
Cov(X,Y)=E[(X -Y)-E[X]-E[Y]=E[X? -0-E[Y]=E[X?] =0.

The last equality holds, since with (2.15) one has g(z) = 2°¢(z), so that g(—z) = —g(z). Hence E [X?] =
fj;f g(x)dz =0, c.f., (4.50) in the sequel, too.

It will be shown in chapter 8 that the converse implication holds for bivariate Gaussian (X,Y").

We standardize covariance® to get the coefficient of correlation between X and Y

def Cov(X,Y)

PXY = Nar[X) - /Var Y] (2.45)

It is shown in an exercise to this chapter that

lpxy| <1 (2.46)

The cases px,y = £1 correspond to Y and X being affine functions (e.g., Y = aX + b) of each other, the topic

of another exercise.

8in order to measure dependence in the common unit of the variables.
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2.2.3 Mean, Variance and Covariance of Linear Combinations of R.V.s

The following are important tools of computation, especially in the chapters on stochastic processes. The proofs
are omitted or left for self study.

E[Z a; X;] = Z a; B[ X (2.47)

n n n—1 n
Var[z a; X;] = Z a?Var(X;) + 2 Z Z a;a;Cov(X;, X;),
i=1 i=1

i=1 j=i+1
(2.48)

n m

Z Z aibjCov(Xi, X])

i=1 j=1

Cov iaiXi,iijj
i=1 j=1

These expressions are valid for both continuous and discrete distributions.

2.3 Discrete Distributions

2.3.1 Univariate
Example 2.3.1 (Bernoulli Distribution) Let X € Be(p). X has two values, usually numerically coded as
0 and 1. The p.m.f. is

px(x) = (2.49)
q=1—p x=0.
E[X]=p,Var[X] =p(1 —p).

Example 2.3.2 (Symmetric Bernoulli Distribution) We say that X € SymBe, if the p.m.f. is

1
2

px(z) = (2.50)

(SIS

Then

Example 2.3.3 (Discrete Uniform Distribution) X € U (1,2,...,n), where n > 1. The p.m.f. is

% r=1,2,....n
px(z) = (2.51)
0 else.
Le., we pick an integer in 1,2,...,n at random.
1 21
Ex] =" varx) = 200

2 12
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Example 2.3.4 (Geometric Distribution) 0 <p <1, ¢=1—p. The pm.f. of X € Ge(p) is
px(k)=q¢"p, k=0,1,2,...

Suppose p is the probability of an event occurring in a trial. Consider the trial of tossing a coin. Let us say
that the event of interest is ’heads’. We are interested in the probability of the number of independent trials
we perform, before we see the event 'heads’ occuring for the first time NOT INCLUDING the successful trial.
Let X be this random number. Then we write X € Ge(p).

q q
E[X]=2 Var[X] = =.
[X] ) [X] e

Example 2.3.5 (First Success Distribution) X € Fs(p), 0 <p <1, ¢=1—p. The p.m.f. is
px(k)=¢"p, k=1,2,....

Suppose again p is the probability of an event occurring in a trial. Consider the trial of tossing a coin (modelled
as an outcome of a r.v. € Be(p)). Let us say again that the event of interest is 'heads’. We are interested in
the probability of the number of independent trials we perform, before we see the event "heads’ occuring for the
first time INCLUDING the successful trial. Let X be this random number. Then we write X € Fs(p).

E[X]:%,Var[X]:

q
p_2.
Condsider the measurable space (2 = {(w;);~; |w; € {0,1}}, F), c.f., example 1.4.7 above, F, C F.

Then X above is defined as a map on () as

X (w) = "the first trial at which success occurs in w’.

However, if wg = (w; = 0);=,, i.e. wp is an infinite sequence of digital zeros (all failures, no successes),
we have

X (wp) = +o0.

The difficulty is that we have defined r.v.’s as measurable maps from (2, F) to the real numbers,
and +oo is not a real number. Hence X is in principle an extended random variable with values
in {+o00} UR. However, if we are computing with the probability model of an infinite sequence of

independent Be(p) trials, we have X € Fs(p). Then we must have
P(X =+0c0) =0,

since > 7o ¢* " p =1 and {X = +oo} = (UZX,{X = k})°. Therefore we can define X (wp) in any
preferred way, since this choice has no impact whatsoever on the computations of probabilities.

u
The literature in probability calculus is not unanimous about the terminology regarding the geometric distri-
bution. It occurs frequently (mostly?) that Fs(p) in our sense above is called the geometric distribution, see,
e.g., [48, p. 61], [55, p. 62].
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Example 2.3.6 (Binomial Distribution) X € Bin (n,p), 0 <p <1, ¢=1—p, and the p.m.f. is

n
px(k) = ( L )pkqn_k,k‘:O,L---,n-

This is the probability of an event occurring k times in n independent trials.
E [X] = np, Var [X] = ngp.
The distribution function of X € Bin (n,p) has been expressed? as

o) = = :Bq(n—x,x—i—l)
(@) kZ:OpX(k) B(n—x,x+1)’

where we used the beta function and the incomplete beta function in (2.31) and (2.34), respectively.

Example 2.3.7 (Poisson binomial Distribution) X € Pobin (p1,p2,...,pn), 0 < p; < 1,i=1,2,...,n,

px(k)=>_ [Ir: [T Q-0 (2.52)

AEF,i€A  jEAe

and the p.m.f. is

where Fy, is the collection of all subsets of k integers that can be selected from {1,2,3,...,n}. F} has < Z )

elements. Hence it is not feasible to use (2.52) for computation for large n.

Example 2.3.8 (Poisson Distribution) X € Po(\), A > 0, then its p.m.f. is
NG

k!’
E[X]=\Var[X] =\

px(k)=e k=0,1,2,... (2.53)

We shall in example 6.6.2 below derive the Poisson distribution as an approximation of Bin (n,p) for large n

and small p.

Example 2.3.9 (Compound Poisson Distribution) X € ComPo(\, ), A > 0, > 0, then its p.m.f. is

& k A7
px(k)=3" (T]’:') e k=012, (2.54)
2yl .

This expression is somewhat unwieldy, and the Compound Poisson distribution is more naturally treated by

the methods of probability generating functions developed in chapter 5.
E[X] = Au, Var [X] = Au(1 + p).

The Compound Poisson distribution has many applications, e.g., in particle physics [37, 64] and queuing theory.

9p. xv in H.G. Romig: 50— 100 Binomial Tables, John Wiley & Sons, Inc., New York, 1947.
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Example 2.3.10 (Pascal Distribution) Suppose p is the probability of an event occurring in a trial. Con-
sider the trial of tossing a coin. Let us say that the event is ’heads’. We are interested in the probability of the
number of independent trials we perform, before we see the event 'heads’ occuring n times INCLUDING the

nth success.

Texts in engineering statistics suggest the Pascal Distribution as a model of, e.g., the number of
days a certain machine works before it breaks down for the nth time. Or, a text can insist upon
that 'the number of days a certain machine works before it breaks down for the nth time’ is Pascal
distributed. One can remark that > applications of probability calculus are based on analogies, which
are to a certain degree halting’ (J.W. Lindeberg, [75, p.120]). One could once again repeat the words

‘mind projection fallacy’, too.

Let now X be the number of independent trials we perform, before we have seen the event occurring n times. The
random variable X has then said to have the Pascal Distribution, X € Pascal(n,p), n =1,2,3,...,0<p <1
and ¢ = 1—p. Its p.m.f. can be found, using the same kind of reasoning that underlies the Binomial distribution,
[101, p.58], as

k—1

pX(k:):P(X:k:):< 1)p”qk_", k=nn+1,n+2,... (2.55)
n—

k-1
Note that we must understand ( ) as =0 for k=0,1,2,...,n— 1. Note also that Pascal(1,p) = Fs(p).
n—

1—p)
p?

E[X]%,Var[X]n(

Example 2.3.11 (Negative Binomial Distribution) X is said to follow the Negative Binomial distribu-
tion, X € NBin(n,p), 0 <p <1, ¢=1—p, if its p.m.f. is

k—1

q q
FE[X]=n=,Var [ X]| =n—.
[X]=n-, Var[X] =n 5
Observe that Ge(p) = NBin(1,p). The p.m.f. in (2.56) can be established using the same kind of reasoning
that underlies the Binomial distribution, where one needs the interpretation of the coefficient (1.31) as given in

appendix 1.11.

"
There is a fair deal of confusing variation in the literature w.r.t. the terminology in the two examples above.
Sometimes the Pascal distribution defined as above and, e.g., in [101], is called the negative binomial distribution.
In some textbooks, e.g., in [49], the negative binomial distribution is as above, but in others it is known as the
Pascal distibution. The handbook [92] compromises with (2.55) as 'Negative Binomial or Pascal’ (!).

A pm.f. px(k) has a power-law tail, or is a power law, if it holds that
px(k)=P(X =k)~k™, ask— oo. (2.57)

A p.d.f. can also have a power-law tail defined in an analogous manner.
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Remark 2.3.1 The notation f(x) ~ g(z) (at = a) has the following meaning.
lim —= = 1. (2.58)
This means that the functions grow at the same rate at a. For example, if
fz) = 2% g(z) = 2 + =,

then

but at the same time g(z) — f(x) = .

Example 2.3.12 (Benford’s Law) We say that a random variable X follows Benford’s Law if it has the
p.m.f.

1
px(k) = P(X = k) =log, <1+E>’ k=1,...,9. (2.59)

This law is, by empirical experience, found as the distribution of the first digit in a large material of numbers.
Note that this is not the uniform distribution p(k) = %, for k = 1,2...9 that might have been expected.

Benford’s Law is known to be valid for many sources of numerical data.

Example 2.3.13 (Zipf’s Law (rank-frequency form)) We count the frequencies of occurrencies of some
N events (e.g., Swedish words in today’s issue of some Stockholm daily, digital or paper edition). Then we
determine the rank k of each event by the frequency of occurrence (the most frequent is number one and so

on). Then, if we consider px (k) as the frequency of a word of rank k, this is very likely found to be
px(k)=c- k77, (2.60)

where 7 is close to one, and where ¢ is the normalizing constant

N
c= I/Zk”V.
k=1

The probability mass function in (2.60) is known as Zipf’s law, and is an empirical or experimental assertion,
which seems to arise in many situations, and is not based on any theoretical generative model. The case with
v = 2 is known as Zipf-Lotka’s Law, and was discovered as a bibliometric law on the number of authors

making k contributions.

Example 2.3.14 (Waring distribution) We write X € War(p, «) and say that X is Waring distributed

with parameters & > 0 and p > 0 , if X has the p.m.f.
(k)
px(k) =p——2 — k=0,1,2,... (2.61)
(a0 + p)+1)

Here we invoke the ascending factorials

apy=a-(a+1)-...-(a+k—-1)=
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and analogously for (o + p)(x41). If p > 1, then E [X] exists, and if p > 2, then Var [X] exists, too. It can be

shown that there is the power-law tail
1
pX (k) ~ k1+p :

We shall in an exercise to chapter 3 derive War(p, «) under the name Negative-Binomial Beta distribution.

e} e} p+ o e}
E|X|=n——-Var|X| = + .
X p—1 X p=1[p=2 (p=1)(p-2)

This distribution was invented and named by J.O. Irwin in 1963'°. It has applications, e.g., in accident theory

and in the measurement of scientific productivity.

Example 2.3.15 (Skellam distribution) We write X € Ske(u1, p2) and say that X is Skellam distributed
with parameters gy > 0 and pe > 0, if X has the p.m.f. for any integer k

k/2
px (k) = e~ mtr2) <%) L) (24/p1 p12), (2.62)

where I (2) is the modified Bessel function of the first kind of order k.
E[X] = p1 — p2, Var [X] = p1 + pia.

It can be shown that if X; € Po(u;) and X5 € Po(ug) and X; and X» are independent, then X7 — X5 €

Ske(pi1, p2).
Skellam distribution is applied to the difference of two images with photon noise. It is also been found useful

as a model for the point spread distribution in baseball, hockey and soccer, where all scored points are equal.

2.3.2 Bivariate Discrete Distributions

(X,Y) is a bivariate random variable and as earlier
Fxy(z,y)=P(X <z,Y <y),—oc0o<z <00,—00<y < 0.

If
Fxy(z,y) = Z Z px,y (5, Yk),

—oo<zj<z —co<y,<y

where

> > pxvl@im) =1, pxy(z;,u) >0,

—oo<z,; <00 —oo<L Y <00

then (X,Y) is a discrete bivariate random variable. The function px y (z;,yx) is called the joint probability

mass function for (X,Y’). Marginal distributions are defined by

px(z) = > pxy(@ipu) ey = Y pxy(@ k)

—oo<YR <00 —oo<z ;<00

10J.0. Irwin: The Place of Mathematics in Medical and Biological Sciences. Journal of the Royal Statistical Society, Ser. A,
126, 1963, p. 1—-14.
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The covariance of (X,Y") is again
Cov(X,Y)=FE[(X Y)-E[X]-E[Y], (2.63)

where we know how to compute with the joint p.m.f. and with the marginal p.m.f.’s and the law of the

unconscious statistician.

Example 2.3.16 Bivariate Bernoulli distribution Let (X,Y’) be a bivariate random variable, where both
X and Y are binary, i.e., their values are 0 or 1. Then we say that (X,Y") has a bivariate Bernoulli distribution,
if the p.m.f is

pxy(@y) =01 —0)""" N1 -N"Y ze{0,1},yec{0,1}. (2.64)

Here 0 <0<1,0< A< 1.

2.4 Transformations of Continuous Distributions

2.4.1 The Probability Density of a Function of Random Variable

Let X be a continuous random variable with the p.d.f. fx(x). Assume that H(z) is strictly monotonous (=

either strictly increasing or strictly decreasing). The p.d.f. of Y = H(X) is ascertained as

d

: d_yH—l(y) | . (2.65)

fy(y) = fx (H (y))

Here H~'(y) is the inverse of H(z). In case the domain of definition of the function H(x) can be decomposed

into disjoint intervals, where H(x) is strictly monotonous, we have

d

: d—nyl(y) | x5 (), (2.66)

Fr) = fx (H ()
i
where H; indicates the function H restricted to the respective domain I; of strict monotonicity, and x, is the

corresponding indicator function.

Example 2.4.1 Let X € U (—%, %) Set Y = sin(X). We want to find the p.d.f. fy(y). When we recall the

graph of sin(x), we observe that sin(z) is strictly increasing on (fg, g) Then for —1 <y < 1 we have

Fy(y) =P (Y <y) =P (X < arcsin(y)),
since arcsin(y) is the inverse of sin(z) for z €] — 7/2,7/2[. As X € U (=%, %) we have

Fy(y) = amsm(y); Cr/2) 1cy<1 (2.67)

Then )
fyr(y) = —— 1 <y<l. 2.68
W= (268)
Example 2.4.2 Let X € U (0,27) and Y = sin(X). We want again to determine the p.d.f. fy(y). The
function H(x) = sin(x) is not strictly monotonous in (0, 27), hence we shall find the the p.d.f. fy(y) by means

of (2.66).



66 CHAPTER 2. PROBABILITY DISTRIBUTIONS

We make the decomposition (0,27) = I; Ul U I3, where Iy = (0,7/2), Iy = (7/2,37/2) and I3 = (37/2, 27).

Then for i = 1,2,3, H;(x) = sin(x) | I;, i.e., the function sin(x) restricted to H;, is strictly monotonous. In fact,

Hi(z) =sin(z) 0<z< g,

Then we have two cases (i)-(ii) to consider:
(i) 0 <y < 1. Then (draw a picture)

Fy(y)=P(Y <y)=P(0< X <H; ') +P(Hy ' (y) <X <37/2) + P (3r/2 < X < 2m)

=P (0 < X < arcsin(y)) + P (arccos(y) < X

IA
| =

3m/2) +

~arcsin(y) n 3m/2 —arccos(y) 1
27 27 4

Then

(i) =1 <y < 0. Then (draw a picture)
Fy(y) =P (Y <y) =P (H;'(y) < X <3n/2) + P (37/2 < X < H; '(y))

=P (arccos(y) < X <37/2)+ P (3r/2 < X < arcsin(y)) .

3mw/2 — arccos(y)  arcsin(y) — 3w/2
2m 2m

Thus we get again
1

frly) = —F/——, -1l<y<O.
) W\/@
In summary, it was found that
) = —— . —l<y<l
YY) = s T Y .
my/ 1 —y?

The p.d.f. derived above appears in the introduction to stochastic processess in chapter 9.

The p.d.f:s fy(y) derived in examples 2.4.1 and 2.4.2 are identical. Hence, if we were given a sample
set of LLD. outcomes of ¥ = sin(X) for X € U(—%,%) or of Y = sin(X) for X € U (0,27),
we would have no statistical way of telling from which of the mentioned sources the observations
emanate.
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2.4.2 Change of Variable in a Joint Probability Density

This section consists, for practical purposes, of one single formula, (2.69), and applications of it. The formula
follows by the rule for change of variable in multiple integrals. A very elaborate and detailed proof is constructed
in [82, pp. 148—168].
Let X = (X1, Xo,...,X,,) have the joint p.d.f. fx (x1,z2,...,2,). Define a new random vector Y =
(Y1,Ya,...,Yy) by
Yi=g:(X1,..., Xm), i=1,2,....,m,

where g; are continuously differentiable and (g1, g2, . .., gm) is invertible (in a domain) with the inverse
Xi:hi(yla---;ym); i:1,2,...,m,
where h; are continuously differentiable. Then the joint p.d.f. of Y is (in the domain of invertibility)

fY (ylv"'vy’m) :fX (h’l (ylva;---yym);---;hm (ylvaa"'aym)) | ‘]|5 (269)

where J is the Jacobian determinant

Oz Oz Oay
Oy1 Oy2 T OYm
Ozy  Qmy Ozo
) Bl . B
J = . Y1 - Y2 . Ym ) (270)
Oy1 9y2 T OYm

The main point of the proof in loc.cit. may perhaps be said to be the approximation of the domain of
invertibility of (g1, 92, - ., gm) by intervals I} in R™ with volume V' (I), and then to show that these
intervals are mapped by (g1,92,...,9m) to parallelepipeds P; with volume V (Pj). The volume

change incurred by this mapping is then shown to be

V(Py) = J |V (Ix).

Example 2.4.3 X has the probability density fx (x), Y = AX + b, and A is m x m and invertible. In this

case one finds that the Jacobian is J = det(A~!) and by general properties of determinants det(A~!) = dei =

Then Y has in view of (2.69) the p.d.f.

fy )= (47 =) (271)

Example 2.4.4 (Ratio of two random variables) Let X and Y be two independent continuous r.v.’s with
p.df’s fx(z) and fy(y), respectively. We are interested in the distribution of % We shall apply (2.69) by the

following transformation

X
U= v V=Y.
This is one typical example of the application of the change of variable formula. We are in fact
interested in a single r.v., here U, but in to order find its distribution we need an auxiliary variable,
here V', to use the terminology of [34, p. 68]. Then we determine the joint p.d.f., here fy v (u,v),

and marginalize to U to find the desired p.d.f..
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The inverse map is found as
X=mUV)=UV, Y=hUV)=V.

Then the Jacobian is by (2.70)

J = votZ .
0 1
By (2.69) and our assumption we get
fov (u,v) = fx (w) fy (v) |v]. (2.72)

Hence the distribution of the ratio U = % is given by the marginal density
fulu) = / fov (u,v) dv.
In [64, p. 237] this is written as

o) 0
fotw) = [ fx () fy (o)vdv = [ p wn) e (o) v, (2.73)

Example 2.4.5 (Bivariate Logistic Normal Distribution) (From the exam in sf2940 2010-01-12) X;,X,

are two independent standard normal random variables. We introduce two new random variables by

Y; Cal
1 TreXifeX2
X2
}/2 €

14+eX14eX2

We wish to find the probability density of (Y1, Y3). We write first, for clarity of thought,

X

Y1 g1 (leXQ) 1+e)e(1.1|-ex2
eX2

Yo 92 (X1, X2) TfeXifeXz

Then we solve to get
Xi=h (Y1,Y2) =InY; +In(14+e* +e) =InY; —In(1— (Y1 + Y2))

and similarly
X2 = h,2 (Yl,YQ) = hl}/Q —In (1 — (Yl + }/2)) .

Then we find the Jacobian, or

Ozy Oz
_ 13] 5]
T=1 ouy om
9y1 9y2
Entry by entry we get
axl 1 1
e —
oy 11— (y1 +y2)
8561 o 1
dy2 1= (y1 +y2)
61’2 1

oy 1— (g1 +u2)
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81'2 1 1

e
9y2 vz 1—(y1+y2)
Thus, the Jacobian determinant is

7(9561 81'2 8351 8x2

75_?41'53;2 5y2.5—y1

Yi1<y1_2+1—(yi+y2)>+1—(yi+y2) <i+m)
(o)

11 1 1 1 1 1 2 1 2

- — + (i

yiy2  yil—(+y2) y2l—(y1+y2) 1—(y1 +v2) 1—(y1+y2)
11 1 1 1 1

- —— 1 +
viye  nil—(y1+y2) vel—(y1+y2)

11 1 (1 1>
el e
yiye 1—(y1+y2) \y1 v

—ii-i- 1 (y1+y2)
yiy2 1—(y1+v2) \ vy

L= (yi+y2) tyr + e
iy (1= (1 +42))
B 1
e (L= (1 +42)
Let us note that by construction J > 0. Thus we get by (2.69) that

fy (Y1, 92) = fx, (ha (y1,92)) fx, (ha (y1,92)) | T |
_ 1
y1y2 (1= (y1 +12))
This is a case of the bivariate logistic normal distribution. Since 0 < y; < land 0 < y2 < 1,0<y; +y2 <1

¢(Inyr —In(1 = (y1+y2)) ¢(Iny2 —In (1 — (y1 +y2))) -

and with y3 = 1 — (y1 + y2), the bivariate logistic normal distribution can be taken, e.g., as a prior density on
the probability simplex {(y1,y2,v3) |0 <y < 1,6 =1,2,3;1=y1 +y2 + ys}.

Example 2.4.6 Exponential Order Statistics Let X1,..., X, be L.I.D. random variables with a continuous
distribution. The order statistic of X1,..., X,, is the ordered sample:

X(l) < X(g) <0< X(n),
Here

X(l) :min(Xl,...,Xn)

X(n) :maX(Xl,...,Xn)

and
X(ky = kth smallest of Xy,..., X, .

The variable X4 is called the kth order variable. The following theorem has been proved in, e.g., [49, section
4.3., theorem 3.1.].
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Theorem 2.4.7 Assume that Xi,..., X,, are L1.D. random variables with the p.d.f. f(z). The joint p.d.f. of

the order statistic is

fX(l),X(Q) ..... X(ny (yl, cen

n! n?fyk ify1<y2<...<yn,
) = § "= £ (2.74)
0 elsewhere.

[ ]
Let X1,...,X, be L1D. random variables with the distribution Exp(1). We are interested in the differences of
the order variables
X(l),X(i)fX(i_l), i:2,...,n.

Note that we may consider X (1) = X (1) — X(q), if X(g) = 0. The result of interest in this section is the following

theorem.
Theorem 2.4.8 Assume that X7,..., X,, are L.L.D. random variables X; € Exp(1), ¢ =1,2,...,n. Then

(a)

Xy eE L X X ckE L
<n [ = = X <o [ ——
) Pl ) Xa (i—1) Pl )

(b) Xy, X5 — X(i—1) for i =2,...,n, are n independent random variables.

Proof: We define Y; for:=1,...,n by
Yi=Xqu), Yi=Xu —Xu-n-

Then we introduce

1 0 0 0 0
-1 1 0 0 0
A= 0 -1 1 0 0 (2.75)
0 0 0 -1 1
so that if
Y1 X
Yy X(2)
Y=| ¥ | . X=| Xg |,
Y, X(n)
we have
Y = AX.
It is clear that the inverse matrix A~! exists, because we can uniquely find X from Y by
X(l)zyl, X(i):Yvi—l—Y;_l-i-...-i-Yl.
We write these last mentioned equalities in matrix form by
X =AY,
Then we have by (2.71)
_ 1
fy (y) = fx (A7ly) (2.76)

| det A|
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But now we evoke (2.74) to get

fx (A7ty) =nlf (y) f(yr+y2) - F i +y2+ o+ yn), (2.77)
since y1 <y1+y2<...<yr+y2+...+yn. As f(z) =€ %, we get
fl)fyi+y2) - flyr+ye+ ... Fyn) = e Ve~ (Witv2) | o~ (Witvat.. Fun)
and rearrange and use y1 = x(1) and y; = T(;) — T(i—1),
— e W= (n=Dyz | o—2yn—1,=Yn
— e e~ (n=D(@e)—zq)) ... o= (@Fm) —Tm-1)

Hence, if we insert the last result in (2.76) and distribute the factors in n! = n(n—1)---3-2-1 into the product
of exponentials we get

1
|det A]

fy (y) = ne ™ (n — 1)6—("—1)(50(2)—50(1)) e @M= Bn-D) (2.78)

Since A in (2.75) is a triangular matrix, its determinant equals the product of its diagonal terms, c.f. [92, p. 93].

Hence from (2.75) we get det A = 1. In other words, we have obtained

FX @y X=Xy Xy =X (a1 (z(l)’z@) L) T(n) T x(n))
=ne "0 (n — 1)e” MTDE@TW) L 2e7 2@ =T -2) ¢~ (@ =T(-) (2.79)

But, when we check against (2.23), (n — 1)e~(*~D(E@=2m) is nothing but the p.d.f. of Exp (ﬁ), and so
on, the generic factor in the product in (2.79) being (n + 1 — i)e’(”“*i)(z(i)*gc(i*l)), which is the p.d.f. of
Exp (ﬁ) .

Hence we have that the product in (2.79) is a product of the respective p.d.f.’s for the variables X(;) €
Exp (1) and for X(;y — X(;_1) € Exp (#) Thus we have established the cases (a) and (b) in the theorem
as claimed. -

There exists a more intuitively appealing way of realizing the fact above. First one shows that

n

1
Xy = min (X1,...,X,) € Exp ( )

(which is also seen above), if Xi,...,X,, are LL.D. random variables under Exp(1). Then one can argue by
independence and the lack of memory of the exponential distribution that X;; — X(;_1) is the minimum of

lifetimes of n 4+ 1 — ¢ independent Exp(1) -distributed random variables.

2.5 Appendix: Decompositions of Probability Measures on the Real
Line
2.5.1 Introduction

In this appendix we shall make a specialized investigation of probability measures on the real line and the Borel

o field, (R, B). The goal is to give a brief account of that these measures can be additively decomposed into a
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sum of an absolutely continuous part, a discrete part and a singular part, in the sense to be made clear in the
sequel. Then we check how such dispositions are related to continuous and discrete r.v.’s. We mention here the
lecture notes [87], not because these are the authentic source with priority on the results to be discussed, but
because we shall follow the good detail of presentation as loc.cit..

We start by a theorem that shows that a probability measure on the real line and its Borel sets can be

“induced (in the sense given in the proof below) by a random variable.

Theorem 2.5.1 If F satisfies 1., 2. and 3. in theorem 1.5.6, then there is a unique probability measure pu on
(R, B) such that pu((a,b)) = F(b) — F(a) for all a, b.

Proof: The sets (a,b] lie in the Borel o field. The theorem 1.5.7 gives the existence of a random variable X
with distribution F. Consider the measure this X induces on (R, B), which means that for any A € B we define

wx (A)

Then, of course, u((a,b]) def uX((a,b]) = F(b) — F(a). The uniqueness follows because the sets (a,b) generate

Lp(xea. (2.80)

the o field and we can hence apply theorem 1.4.1. "
We shall return the result in the theorem above. But we continue first by considering a generic probability

measure p on (R, B).

2.5.2 Decompositions of i on (R, B)

We have found in example 1.4.10 that the singleton sets {} € B. Then we can define the probability mass

function of yu as

p(2) Y w({z}), —oo<w< . (2.81)

It is clear that p(z) > 0.
Lemma 2.5.2 p(x) > 0 only for countably many z.
Proof: Set B, = {z|p(z) > 1}. Let a,,= number of points in B,, (=cardinality of By,). Then

1
1 Z ,U(Bn) Z ap—,

3

or, a, <n. Thus B, is a set with a finite number of elements. Next we observe that
{z|p(x) >0} =B UB2UB3U...

This shows that {z|p(z) > 0} is a countable union of finite sets, and such a union is a countable set. .
The singletons {x} such that p(x) > 0 are also called atoms of u. In view of this lemma we may define a

discrete part or pure point mass part of u as measure on (R, 5) by the countable sum

pp(A) = > plx), A€B
z€A|p(x)>0
We say that a probability measure p on (R, B,) is continuous, if its pure point mass measure is identically
Zero, or
p(x) =p({x})=0, forallzeR
Then we define for any A € B the measure

pe(A) = p(A) — pp(A).

Note that it must hold puc(A) > 0 for a measure, so we must and can check that pc(A) is a measure. Clearly,

pe is a continuous measure.
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Theorem 2.5.3 Every measure p on (R, B) can be expressed uniquely with an additive deomposition to its
continuous part and its discrete part by

f=pc + pp- (2.82)

u
By (2.82) we mean p(A) = pc(A) + pp(A) for any A € B.
We shall next proceed by decomposing additively the continuous part. We need a new definition. A measure
on p on (R, B) is called absolutely continuous with the density f(z), if it holds for every interval I C R
that

u(l) = /If(fv)dw, f(@) = 0. (2.83)
Then it follows that an absolutely continuous measure is a continuous measure. This is plausible, since
x+h
peh) < il =+ h) = [ fads =0,

as h — 0.

Theorem 2.5.4 For every probability measure p on (R, B) with density f(x) it holds for almost all 2 that
.1
tim L ({2~ bz 1)) = f(@) (2.8)

[ ]
It can be shown that f(z) > 0 and ffooo f(x)dx = 1. Conversely, any function with the last two properties

defines an absolutely continuous measure with density f(x).

Theorem 2.5.5 For every probability measure p on (R, BB) it holds for almost all = that

lim %u ({z — hya + b)) = g(a). (2.85)

Proof: is omitted. "
Let 11 be a probability measure on (R, B) and the corresponding g(x) be defined as in (2.85). By the absolutely
continuous part of 1 we mean the absolutely continuous measure p4 with density the g(z). It can be shown
that g(z) > 0 and f:r;: g(x)dz = 1.

Theorem 2.5.6 Let u be a continuous measure on (R, B). Let
[hs = j — LA (2.86)

Then pg is a continuous measure that satisfies for almost all
lim s ({& — hya + h}) = 0
no 2p S T e

u
The proof is omitted. The measure pg is called the singular part of . There are trivial examples of singular
measures, like the one that assigns measure zero to every Borel set. One can describe a purely singular

measure u as follows:
e /5 is a continuous measure.

e The whole mass of ug is on a set with zero (Lebesgue) measure.
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By theorem 2.5.3 we have for any probability measure on (R, B) that = puc + pup. By theorem 2.5.6 we have
e = pa + ps for any continuous measure pe on (R, B). This we summarise in the theorem below.

Theorem 2.5.7 Every probability measure o on (R, B) can be expressed uniquely with an additive deompo-

sition to its absolutely continuous part, its singular part and its discrete part

t=pia+ pis + pp- (2.87)

Now we start a journey backwards to the familiar notions in the bulk of this chapter.

2.5.3 Continuous, Discrete and Singular Random Variables

Let p be probability measure on (R, B). The distribution function of f is F),(z) defined by
Fu(x) = p(] —o0,2]), —oo<x< o0 (2.88)

The measure p is uniquely determined by F),(x). It follows that F),(x) satisfies theorem 1.5.6 and in 5. of
theorem 1.5.6 and we find

p(x) = Fu(z) — Fj(v—),

where p(x) is the point mass function of u as defined in (2.81). Indeed, by continuity from above of the

probability measure p we get

Fu(e=) = Jim Fy(x — h) = Jim s (| — o0, + ) = s | — 00,))

= p(] = oo,z \ {z}) = p (] — 00, 2]) — p({2}) = Fu(z) — p().

Let p be an absolutely continuous measure with the density f,(z). Then in view of (2.83)

FM(J:):/_I fulw)du, —oo <z < oo.

Then it can be shown for almost all « that

d

T Fu@) = fula).

In fact we have also the following theorem with a difficult proof, duely omitted.

Theorem 2.5.8 Let p be a probability measure on (R, B) and let F,(z) be its distribution function. Then
L F,.(z) exists for almost all z and

2 Fue) = o), (289)

where g(z) is given in (2.85). In addition, the absolutely continuous part pa of u is the probability measure

given by the density g(z).

u
As a consequence of the theorem above we can describe the distribution function F),(x) of a singular measure

by
(a) F,(x) is continuous.

(b) L F,(x) =0 for almost all .
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Finally,

Theorem 2.5.9 Let p be a probability measure on (R, B) and let F,(x) be its distribution function. Then
lacks a purely singular part pg, if Fj,(z) = ffoo d%F 1 (u)du except for a countable number of points.

u
This preceding narrative has amounted to the following. Let as in the proof of theorem 2.5.1 X be a random

variable. The probability measure X, which X induces on (R, B) is
X def
ur (A =P(Xed).
Then by (2.87),
pX = pX + g+, (2.90)

where for any B € B

d
@) = [ L@ wlm = Y )
P 2€Bp(2)>0

If the parts u and p¥ are missing in (2.90), we have what has been in the preceding called X a continuous
r.v.. If Mé{ and ,ug( are missing in (2.90), we have what has been in the preceding called X a discrete r.v.. In

addition, if ,ug( is missing in (2.90), we could call X a mixed r.v., and such r.v.’s are not much in evidence in

111

these notes and other texts at the same level *. If & and p3 are missing in (2.90), the random variable X is

called singular. The most famous example of a singular r.v. is the r.v. with a Cantor distribution.

2.6 Exercises

2.6.1 Distribution Functions

1. A stochastic variable X is said to follow the two-parameter Birnbaum-Saunders distribution, we
write X € BS («, ), if its distribution function is

oL \/E - \/E if0<az<

Fx(x) = << PoVe)) R
0 elsewhere,

where @ is the cumulative distribution function of N(0,1), « >0, 8 > 0.

(a) Verify by means of theorem 1.5.7 that Fx is in fact a distribution function.

(b) Show that % € BS (a, ﬂfl). This is known as the reciprocal property of the two-parameter Birnbaum-

Saunders distribution.

The two-parameter Birnbaum-Saunders distribution is a life time distribution and has been derived from

basic assumptions as a probabilistic generative model of failure times of material specimen.

2. Let X € BS («, ) (c.f. the exercise above). Let ¥ = In(X). Show that the distribution function of Y is

2 _
Fy(y) =2 (—sinh (%)) , —o0o <y <00,

(0%

where ® is the cumulative distribution function of N(0,1) and where x4 = In(3). This is known as the

distribution function of the sinh-normal distribution with parameters o, ¢ and 2.

H'We would need the Lebesgue-Stieltjes theory of integration to compute, e.g., the expectations and variances of such X.
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3. Justify for yourself that

P(a< X <b)=Fx(b) — Fx(a) + P(X = a). (2.91)

How is this related to (2.90) ?

. A distribution function F'(x) with the properties

(a) F(x) is continuous,

(b) L F(z) =0 for almost all z,

i.e, there is neither p.d.f. nor p.m.f., is the distribution function of a singular probability measure on
the real line. One example of such a distribution function is the Cantor function. We require first the

construction of the Cantor set or more precisely the Cantor ternary set.

One starts by deleting the open middle third £y = (1/3,2/3) from the interval [0, 1]. This leaves the union
of two intervals: [0,1/3] U [2/3,1]. Next, the open middle third of each of these two remaining intervals
is deleted. The deleted open intervals are Fs = (1/9,2/9)U (7/9,8/9) and the remaining closed ones are:
[0,1/9]U[2/9,1/3] U [2/3,7/9] U [8/9,1]. This construction is continued: E,, is the union of the middle
intervals after Ey, Fs, ..., E,_1 have been removed. The Cantor set C' contains all points in the interval

[0, 1] that are not deleted at any step in this infinite construction, or
C 0,1\ UX, E;.

It follows that C' is uncountable and it has length (=Lebesgue measure) zero, see [91, pp. 41, 81, 138, 168,
309]. Let now Aj, A, ..., Aan_q be the subintervals of U, E;. For example

EyUE, =(1/9,2/9) U (1/3,2/3) U (7/9,8/9) = Ay U Ay U As.

Then we define

0 z <0,
Folz)=4 £ 2z€4, k=12,...,2"-1,
1 1<ua,

with linear interpolation in between. Draw graphs of F,,(z) for n = 2 and for n = 3 in the same picture.
Show that F,,(xr) — F(z) for every x. The limiting function F(z) is the Cantor function. Then
F(z) is continuous and increasing and F'(z) is a distribution function of some random variable according
to theorem 1.5.7. %F(m) = 0 for almost every x, and F(x) has no p.d.f.. Discuss this challenge for

understanding continuity and distribution functions with your fellow student'2.

2.6.2 Univariate Probability Density Functions

1. X € Exp (\). Show that for a >0, \/%* € Ra(a).

2. Y € Exp (1). What is the distribution of X in

where a > 0 and 8 > 0. Answer: Wei(a, ).

3. Let X €U (—%,Z). Set Y = tan(X). Show that Y € C(0,1).

272

12in Swedish: diskutera cantorférdelning med din biankkamrat.
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4. We say that 'the r.v.’s X and Y are equal in distribution, if Fix(z) = Fy(z) for all z € R, and write
this as
x2y.

Note that this is a very special sort of equality, since for the individual outcomes w, the numbers X (w)
and Y (w) need not ever be equal.
Let X € N (0,1). Show that

x<_x. (2.92)

In this case X (w) # —X(w), except when X (w) = —X(w) = 0, which has probability zero. In addition
X £ — X means that the distribution of X is symmetric (w.r.t. the origin).

5. Let Z € N (p,0?). Let X = e?. Show that the p.d.f. of X is

1 _(ne—w?

e 22, x>0. (2.93)

fx(x) =

ToV 2T

This distribution is called the Log-Normal distribution.

6. X is a continuous r.v. and has the p.d.f.

1

Fx(z) = 2 cosh (%x) ’

—00 < & < 00. (2.94)

We say that X has the hyperbolic secant distribution, X € HypSech.

(a) Verify the claim that fx(z) in (2.94) is a p.d.f..

(b) Show that F[X] =0, and Var [X] = 1.

(¢) The p.d.f. fx(z) in (2.94) is plotted in figure 2.2. Explain in words the features that make this p.d.f.
different from the p.d.f. of N(0,1). Aid: Consider figure 2.3 and read next about skewness and
kurtosis.

Skewness of a random variable X is a measure of symmetry, or more precisely, the lack of
symmetry of its distribution. A continuous distribution is intuitively stated symmetric with
respect to a center point, if its p.d.f. looks the same to the left and right of the center point.
The symmetry of N(0,1) w.r.t. origin has been stated in (2.92) above. Clearly, N (u,0?) is

symmetric w.r.t. p. Skewness x; is formally defined as

et [<X - E[XDT E [X%] - 3E[X]0? — (E[X))?

k1 = E = : (2.95)

o3 o3

The reader should check the second equality. If X € N (,u, 02), then the skewness is com-
puted to be = 0, see (4.50).

Kurtosis is a measure of whether the distribution of X is peaked or flat relative to a nor-
mal distribution. High kurtosis (a.k.a. leptokurtosis) tends to have a distinct peak near the
mean, decline rather rapidly, and have heavy tails. Distributions with low kurtosis (a.k.a.
platykurtosis) tend to have a flat top near the mean rather than a sharp peak. A uniform
distribution would be the extreme case. Kurtosis ks is formally defined as

def [(XE[XW] _

K9 = E 04 (296)

fXeN (u, 02), then the kurtosis is computed to be = 3, see (4.50). Kurtosis is used to

measure how much a distribution differs from the normal distribution.
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Figure 2.2: The p.d.f. of X € HypSech.

7. Hermite Polynomials, Gram-Charlier Expansions, Skewness and Kurtosis In this exercise we
are going to study expansions of 'nearly Gaussian’ p.d.f.’s in terms of Hermite polynomials. The resulting
expansion of a p.d.f. is known as a Gram-Charlier'® Expansion [22]. The expansion has recently been in
frequent use for financial analysis. We need a short summary of the definition and properties of Hermite

polynomials.

The Hermite polynomials He,(z), n = 0,1,2,..., are in [96, p.273], [3, pp.204—209] or [92,
pp. 266—267] defined by the Rodrigues formula

mn
o dh o

He,(z) = (—1)"e P o

This gives Heg(z) = 1, Hey (z) = 2z, Hea(x) = 42% — 2, Hez(x) = 82° — 121, ldots e.t.c.. These
polynomials are known as the physicist’s Hermite polynomials'4. We shall use another
definition to be given next.

In probability theory [24, p. 133], however, one prefers to work with probabilist’s Hermite
polynomials by

Ho(@) = (~1)rer’ 2L g2 (2.97)

dz™

13Carl Vilhelm Ludwig Charlier (1862—1934) was Professor of Astronomy at Lund University. He is also known for the Charlier-
Poisson polynomials.

Tndeed, see p. 10 of Formelsamling i Fysik, Institutionen for teoretisk fysik, KTH, 2006
http://courses.theophys.kth.se/SI1161/formelsamling.pdf
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Figure 2.3: The p.d.f. of X € HypSech and the p.d.f. of X € N(0,1) (the thicker function plot).

The first seven are then given by
HO(:E) - 1,H1(£L') - ZL',HQ(JE) = 12 - 1,H3(£L') = x3 - 3:07

Hy(x) = 2" — 62% + 3, Hs(z) = 2° — 102® + 152, Hg(2) = 2% — 152 + 4522 — 15.

One can in addition define a system of multivariate Hermite polynomials, see [95, p.87]. The

Hermite polynomials, as given by (2.97), have the orthogonality property

/ esz/QHn(:c)Hm(:c)d:c =0, n#m, (2.98)
and for n = m,
/ e~ /2 (H,(z))? dz = nV/ 2. (2.99)

We can now explain the rationale behind the probabilist’s definition of Hermite polynomials.
Let now X € N(0,1). Then, by (2.98), if n # m, and the law of the unconscious statistician
(2.4) we have

E[H, (X)H, (X)) = \/% /_Oo e~ 2H, (2)Hp (x)dx = 0, (2.100)

and by (2.99
y (2.99) 2 L 2
E [Hn (X)} = \/—Q_W[ e (Hy(z))" dz =nl. (2.101)
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The technical idea of a Gram-Charlier expansion is as follows, [24, pp. 222—223]. Let fx(z) be a p.d.f..

We consider a symbolic expansion of the form
LM e)
fx (@) < cod(x) + T4 () + BTR4 (@) +..., (2.102)

where ¢(z) is the p.d.f. of N(0,1) in (2.15) and ¢(™ (z) = L ¢(x). The expansion has the attribute

dxm

‘symbolic’, as we are not assured of convergence.
In view of (2.97) we have
6" (2) = (=1)" () Hn (). (2.103)

Thus the right hand side of (2.102) is an expansion in terms of orthogonal polynomials of the type (2.98)
and (2.99)1°. Then we can determine the coefficients ¢,, by multiplying both sides of (2.102) with H, ()
and then integrating. The expressions (2.98), (2.99) and (2.103) give

) /_ (@) Ho(2)da (2.104)

We set
Z ¢<’“> (2.105)

Let next X be a standardized r.v., i.e., E[X] =0 and Var [X] = 1.

(a) Show that [22, pp 67—72]
~ c c
fa(@) = o) + Z 00 (@) + 0 (). (2.106)
Comment: Use the fact that X is standardized, so that, e.g., ffooo xfxdr = 0.
(b) Show that in (2.106)
C3 = —Ki,
where k1 is the skewness in (2.95).
(c) Show that in (2.106)
Cqy = R — 3,
where k9 is the kurtosis in (2.96).
As stated above, we do not claim in general the convergence of ﬁl(x) to fx(z) (or to anything), as n — oco.

In case convergence is there, the speed of convergence can be very slow. But this does not matter for us

here. We are interested in an expression like f4(x) giving us information about the 'near Gaussianness’ of

fx ().

. X € SN()). Show that

X% ex*(1).

. Exponential Growth Observed at a Random Time or a Generative Model for the Pareto

Distribution Let us consider the deterministic (i.e., no random variables involved) exponential growth,
or
z(t)=e, t>0, u>0.

We stop, or kill; the growth at an exponentially distributed time 7' € Exp(1/v). Then we observe the
state of the growth at the random time of stopping, or at random age, which is X = z(T") = e#?. Show

15The proper expansion in terms of Hermite polynomials is stated in theorem 9.7.1, but this is not Charlier’s concept.
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that X € Pa (1, ﬁ).
We have here a simple generative model for one of the continuous Pareto distributions in (2.36). Aid:

Note that since g > 0 and T' € Exp(1/v), we have P (X <1) =0.

10. Prove the law of the unconscious statistician (2.4), when H(x) is strictly monotonous, by means of (2.65).

2.6.3 Multivariate P.d.f.’s

1. Cov(X,Y) =0 but X and Y are dependent. The continuous bivariate random variable (X,Y) has
the p.d.f.

1 —y<zr<yld<y<l1

(2.107)
0 elsewhere.

fxy(@,y) = {
Show that Cov(X,Y) =0, but X and Y are not independent.

2. Prove that
P (a < X< b,C <Y < d) = nyy(b,d) — Fxﬂy(a,d) — Fx_’y(b, C) + nyy(a,c).

Technical Drill
2.1 The four r.v.’s W, X, Y and Z have the joint p.d.f

fwxyz(w zy, z)=16wryz, 0<w<l,0<zx<1,0<y<1l,0<z<Ll
Find P (O <W< %,% <X < 1). Answer: 1%.
3. (From [28]) The continuous bivariate random variable (X,Y") has the p.d.f.

ze V) 2 >0,y >0,
fX,Y('rvy) =

0 elsewhere.

(a) Find the marginal p.d.f’s of X and Y. Are X and Y independent ? Answers: fx(z) =e %,z >0,
fY(y) = W,y > 0. No.

(b) What is the probability that at least one of X and Y exceedsa > 07 Aid: Consider P ({X > a} U{Y > a})
and switch over to the complementary probability using De Morgan’s rules.
Answer: e~ + HLG — H%e_“(l"'“).
4. Let X € N(0,1) and Y € N(0, 1) be independent. Set

Show that U € C(0,1). Aid: The result (2.73) should be useful here.

5. X > 0 and Y > 0 are independent continuous random variables with probability densities fx (z) and
fv (y), respectively. Show that the p.d.f. of their product XY is

fxy(z) = /000 éfx (E) fy(y)dy = /000 éfX () fy (E) dy. (2.108)

Yy Yy
Technical Drills
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5 X eU(0,1),and Y € U(0,1) are independent. Let W = XY. Show that

fww)=—-lnw, 0<w<l1. (2.109)

6. X and Y are independent random variables with p.d.f.’s fx(x) and fy (y), respectively. Show that their

sum Z = X + Y has the p.d.f.
fa(z) = / Fx (@) fy (z — 2)de = / Fr () fx (= — v)dy. (2.110)

The integrals in the right hand side are known as convolutions of fx and fy. A convolution sum is valid

for the probability mass function of a sum of two indepedendent discrete random variables.

. X € Exp(1/A) and Y € Exp(1/u) are independent, A > 0, u > 0. Let Z “x_y.

(a) Show that E[Z] = § — %, and Var [Z] = &5 + #
(b) Show that Z has the p.d.f.

A=Az >0
= A€ : 2.111
Z) = .
fz(z) { /\,\Jﬁé“eﬂz 2 < 0. ( )

(¢) In probabilistic reliability theory of structures, [32], X would denote the random stress re-
sulting in a bar of constant cross section subjected to an axial random force. Y would denote the

resistance, the allowable stress, which is also random. Then R, the reliability of the structure, is

RYPp (X <V).

Show that
A

R=—.
At p
(d) If A = p, which known distribution is obtained for Z?

. (From [6]) (X,Y) is a continuous bivariate r.v., and its joint p.d.f is

6
fX,Y('rvy):?za OSZ'; Ogya 1§$+y§2

Find the marginal p.d.f’s fx(z) and fy (y). Answer:

6
=T 0<z<1
fX(w):{Iz 6.2

. (X,Y) is a continuous bivariate r.v., and its joint p.d.f is
c _. 2
fxy(@y)=—e"Y ax>1y=>0.
T

Show that ¢ = 2.

10. (X,Y) is a continuous bivariate r.v., and its joint p.d.f is

Fxy(,y) = { s (ey +e)e” ") 0<a,0<y

0 elsewhere.
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(a) Find the marginal p.d.f.’s fx(x) and fy(y). Answer:

fX(x):{ (ii 3 <0

Tree x> 0.
(b) Show that if ¢ = 0, then X and Y are independent, and that if ¢ > 0, X and Y are not independent.

11. (X,Y) is a continuous bivariate r.v., and its joint p.d.f is for
1

(14 2%)(1+y?)’

(a) Find the distribution function Fx y (z,y). Aid: Plain to see.

(b) Find the marginal p.d.f.’s fx(z) and fy (y).

fxy(zy) = —00 < & < 00, —00 < Y < 0.

12. The continuous bivariate random variable (X,Y") has the p.d.f.

eV 0<x<y
fxy(z,y) = (2.112)
0 elsewhere.
(a) Find the marginal p.d.f.’s of X and Y. Are X and Y independent ? Answers: fx(x) =e 2 >0
and = 0 elsewhere, fy(y) =ye ¥,y > 0, and = 0 elsewhere.
(b) Show that X and s+ are independent.

(¢) Give a generative model for (X,Y"). Aid: Note that Y € T'(2,1).

13. The t -distribution X € N(0,1), Y € x?>(n). X and Y are independent. Show that

X i), (2.113)

\/%

14. The F-distribution Let X; € x?(f1), X2 € x?(f2). X1 and X, are independent. Consider the ratio

def f
U= le
f2
Show that the p.d.f. of U is
r fi+fo fi h1/2 J1_q
fu(u) ’ 2 “s 0<u<oo
U = PR .
F(ﬁ)r(ﬁ) ( M)(fl-i-fz)/
2 2 1+ B

This is the p.d.f. of what is known as F -distribution or Fisher -Snedecor -distribution. The distri-
bution is important in the analysis of variance and econometrics (F-test). Aid: You need the technique
of an auxiliary variable, take V' = X,. Then consider (U,V) as a transformation of (X, X2). The

Jacobian of the transformation is J = f;_lv Find the joint p.d.f. fy,v(u,v), and marginalize to get

fU(u)
15. (From [49]) (X,Y) has the p.d.f.

—_

0 <z <2max(0,2—1) <y <min(l,z)
elsewhere.

o

fX,Y(iE,y) = {

Show that X € Tri(0,2), Y € U(0,1).
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(From [49]) X1 and X5 are independent and have the common the p.d.f.

473 0<z<1
fx(@) = { 0 elsewhere.

Set Y1 = X1/ X5, Y3 = X5/ X;. Find the joint p.d.f. of (Y1,Y3). Are Y7, and Y5 independent? Answer:

64 5/3 9

2 (Y192) O<yi<ya< Sy <1
Frvalongs) = 3 i v

0 elsewhere.

Y1 and Y5 are not independent.

(From [49]) (X,Y) has the p.d.f.

2
fxy(oy) = T O<BO<y
’ 0 elsewhere.

Show that
(a) fxtv(u) = g, 0 <u
(b) fX—Y(U) = W, —00 < v < 0.
In this exercise we study the bivariate Bernoulli distribution in example 2.3.16.

a) Show that the function px y (x,y) in (2.64) is a p.m.f..

(c) Are X and Y independent ? (Yes)

(a)
(b) Find the marginal p.m.f.s px(x) and py (y).
)
(d) What is the distribution of X? What is the distribution of Y7

(X,Y) is a discrete bivariate r.v., such that their joint p.m.f. is

(j + k)altk

pX,Y(jvk) =cC j'k/" 5

where a > 0.

—2a

e
2a

a) Determine c¢. Answer: ¢ =

(c) Find P(X +Y =r). Answer: P(X +Y =r)=c¢ 2a)” . >1L,P(X+Y =0)=0.

(a)

(b) Find the marginal p.m.f. px (j). Answer: px(0) = -, px(j) = c‘;-—fe“(j +a) for j > 1.
) (r—1)0»
)

(d) Find E [X]. Answer:3 (e7* 4+ a+ 1).
Let X7 € T'(a1,b) and X3 € I'(ag,b) be independent. Show that f(—; and X7 + X5 are independent.

Let X; € I'(r,1) and X5 € I'(s, 1) be independent.

(a) Show that Xl)ilxg and X; + X5 are independent.

(b) Show that Xl)ilXQ € B(r,s).

(See [56, pp.170—171] or [97, pp. 94—95].) X € N (vcos(¢),0?), Y € N (vsin(¢),o?), where X and Y

are independent. Set

R=+vX2+Y2
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(a) Show that the probability density fr(r) of R is

N G v
fr(r) = ¢ Iy (;) ; (2.114)
where Ip(z) is a modified Bessel function of the first kind with order 0. The distribution in this

exercise is known as the Rice distribution. We write
R € Rice (v,0).

The Rice distribution of R is the distibution of the envelope of the narrowband Gaussian noise [3,
section 8.3.1.]. The ratio % is known as the signal-to-noise ratio (SNR).
(b) Which distribution is obtained for v =0 ?
23. The Marcum Q-function'® is a special function important in communications engineering and radar
detection and is defined as

,Umfl

. 1 00 -
Qm(v,b) e —/ rme_( 2 )Im_l(rv)dr, (2.115)
b

where I,,_1(z) is a modified Bessel function of the first kind with order m — 1.

(a) Show that the Marcum Q-function can be written as

Qm(v,b):e_(b:—v) 3 (%)klk(vb). (2.116)

k

m

(b) Let Fr(r) be the distribution function of R € Rice (v, o),

Fr(r)= [ fr(u)du
0
Show that
Fr(r)=1-Q (23 g)

This is a useful statement, since there are effective algorithms for numerical computation of the

Marcum Q-function.

(c) Let R; € Rice (v;,0;) for i = 1,2, be independent. Show that

P(R2>Ri) = (\/57 \/E) - %E_Q;BIO (\/@) :

2 2
_ Vg _ V1 _ o1
where a = g and 8 = g and v = s

24. Marcum Q-function and the Poisson distribution This exercise is found in the technical report in
the footnote above. The results are instrumental for computation of (04 (g, g) Let X € Po(A), Y € Po()\),

where X and Y are independent.

(a) Show that
P(X =Y)=e 22\,

where Iy(z) is a modified Bessel function of the first kind with order 0.

16For this topic and the definitions used, see , e.g., G.V. Weinberg: Stochastic representations of the Marcum Q-function
and associated radar detection probabilities. Australian Goverment. Department of Defence. Defence Science and Technology
Organisation. DSTO-RR-0304 (approved for public release), 2005.
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(b) Show that

1
P(X<Y)= 5
We can perhaps make the surprising link between the Poisson distribution and Marcum Q-function

[14 e 2 o(2))] -

more explicit by the following observation.
By [3, Problem 21 (b). p. 297] we have

e = Iy (v) +2§:1n (), (2.117)

which can be established be means of the appropriate generating function of modified Bessel functions
of the first kind.
Then in view of (2.117) and (2.116) we obtain that

Q1 (\/ﬁ, \/ﬁ) = % [14+e 2 o (2))] .

25. (From [14]) X1, Xo,...,X,, are independent and identically distributed random variables with the distri-

bution function F(x) and p.d.f. f(z). We consider the range R = R (X1, Xs,...,X,,) defined by

def .
R = max X; — min X;.
1<i<n 1<i<n

This is a function of the n r.v.’s that equals the distance between the largest and the smallest. The text

[51, ch. 12] discusses the range as applied in control charts of statistical quality engineering.

The task here is to show that the probability distribution function of R is

Fr(z)=n / [F(t+z)— F(&)]" " f(t)dt. (2.118)
In general, Fr(x) cannot be evaluated in a closed form and is computed by numerical quadratures. Next
we find the formula in (2.118) by the sequence of steps (a)-(d).

(a) Set Z déf maxi<i<n Xi and Y déf minlgign Xi- Let

F(yaz):P(ngaZSZ) a—F(y,z):f(y,z)

" Oydz
Now show that ~ g
Falo) = [ P2 (2.119)
(b) Show next that
PY >y Z<z)=[F(z)-F@)" (2.120)
(¢) Show next using (2.120) that
Fly,2) =P (Y <y, 2 < 2) =P (2 < 2) - [F(2) - F(y)]" (2.121)

(d) Next use (2.121) to finally establish (2.118).

26. X; € Exp(1/A) and X2 € Exp(1/u) are independent r.v.’s. We let

Y < min(Xy, X2), Z < max(X1, Xo),R=Z — Y.

(a) Show that
)\ef,ua +M67/\a
P(R>a)=——F——.
(R za) A+
Aid: Draw a picture for R > a.

(b) Find the distribution of R, when A = . Hint: E.g., (2.118). Answer: R € Exp(1/X).
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2.6.4 Expectations and Variances

1. Let X € Ge(p), see example 2.3.4. Show that

q q
E[X]=2 Var[X] = =.
[X] ) [X] e

Aid: Tet f(p) = 15 = 3520 P%, [p| < 1. Then f'(p) = 3202, kp*~ and [ (p) = 352, k(k — 1)p" 2.
2. Let X € Fs(p), see example 2.3.5. Show that

1
B(X] = Var[X] = 1%'

Aid: As above for exercise 1. in this section.

3. Expectation and Variance of SN ()
Recall example 2.2.6.

(a) It needs first to be checked that the p.d.f. of X € SN (\) as given in (2.22) is in fact a p.d.f.. The
serious challenge is to show that

/ fx(@)dr =1 for all \.

Note that the chosen notation hides the fact that fx(x) is also a function of A. Aid: Define ¥ ()\) def

[ fx(x)dx. Then we have ¥ (0) = 1 and d%\\ll (A) = 0 for all A (check this) and thus the claim is
proved.

(b) Show that
2 A
ElX]|=\———.
1] \/;\/1+)\2

Aid: Introduce the auxiliary function ¥ () def [75. afx(x)dz and find that

d 2 1
S O Y e —
A \/;(1+)\2)3/2

E[X] /\Emdﬂa

and the constant of integration C' can be determined from ¥ (0).

(c¢) Show that

Then

_2 X
714+ A2
Aid: Use Steiner’s formula (2.6) and the fact that X2 € x2(1).

Var [X] = 1

4. Skewness and Kurtosis SN (\)

(a) Check that the skewness (2.95) of X € SN () is

o= () fair

Hence A = 0 implies k1 = 0, as should be.
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(b) Check that the kurtosis (2.96) of X € SN () is

(B [(x])"

ke =2(m—3) ————.
( : (Var [X])

5. Chebychev’s inequality Let X, Xs,...,X,, be independent r.v.’s, and identically X; € U(—1,1). Set
X = %2?21 X;. Use the Chebychev inequality (1.27) to estimate how large n should be so that we have

P (| X |> 0.05) < 0.05.
Answer: n > 2667.

6. |Coefficient of Correlation| < 1 The coefficient of correlation is defined in (2.45). The topic of this
exercise is to show that (2.46), i.e., |px,y| < 1 holds true.

(a) Let now X and Y be two r.v.’s, dependent or not. Assume that E[X] = E[Y] = 0 and Var [X] =
Wﬂﬂzl.%wﬁ&hﬂXﬂgl.M&&me@FYfZOﬂwg%mmE“X—Yf}20
Expand (X —Y)? to show the claim.

(b) The r.v.’s are as in (a). Show that F[XY] > —1. Aid: Consider (X +Y)?, and apply steps of

argument similar to the one in case (a).

(¢) We conclude by (a) and (b) that |[E[XY]| < 1 under the conditions there. Let now X and Y be
two r.v.’s, independent or dependent. Assume that F'[X] = pux and E [Y] = py and Var [X] = 0%,
Var[Y] = o%. Set Z; = X—;}’:—X, and Zy = Y—;y“—y Now prove that |px,y| < 1 by applying the

conclusion above to Z; and Zs.

7. When is the Coefficient of Correlation = £1 7  Show for the coefficient of correlation px y as
defined in (2.45) that
px,y:i1©YZGX+b.

8. X € '(p,1/A). Show that

(m+p-—1)!

B1X™] = (r— 1)

2.6.5 Additional Exercises

1. X € Ge(p), 0 < p < 1. Let m be an integer > 2. The floor function or the integer part of a real
number z is
|z ] 2 the largest integer smaller than . (2.122)

3]

Ry, =X—m- Ly,

We set

and

(a) Show that the marginal p.m.f. of L,, is
i.e., Ly, € Ge((1 —p)™) and that the marginal p.m.f. of R, is

(1-p)p

P(Rm:r):ma

r=0,1,...,m—1.
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(b) Show that L,, and R,, are independent r.v.’s.

. Let X € Exp(1/)). Invoking again the integer part (2.122) we set

and
R,=X—-m-L,,.

Show that L,, and R,, are independent r.v.’s. Determine even the marginal distributions of L,, and R,,.

. X € Exp(1/)), and

D=X-|X].

D is the fractional part of X, as [ X | is the integer part of X. Show that the p.d.f of D is

{ de 2T g<d<1

fo(d) = °

0 elsewhere.

. Let X1, Xs,..., X, be LLILD. random variables under a continuous probability distribution with the dis-

tribution function Fx (x). Let 6 be the median of the distribution, i.e., a number such that

% = Fx(0).

Find the probability distribution of the number of the variables X7, X5, ..., X,, that are less than 6.

. Chen’s Lemma X € Po()\). H(z) is a locally bounded Borel function. Show that

BIXH(X)] = \E[H(X +1)]. (2.123)

Chen’s lemma is found, e.g., in [9]. The cited reference develops a whole theory of Poisson approximation
as a consequence of (2.123).

. X € Po()). Show that

E[X"] = /\ni ( ";1 ) E[X*]. (2.124)

k=0
Aid: Use Chen’s Lemma with a suitable H(z).

Skewness and Kurtosis of Poisson r.v.’s Recall again (2.95) and (2.96). Show that if X € Po()),
A > 0, then

()

1
K1 = —=,
1 \/X
(b)
34 1
Ko = -.
2 by
X € Po(\), A > 0. Find
1
E|l——]|.
B3

Answer: 1%\ (1 — e*)‘). Why can we not compute I [%] ?
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. Let X1, X5,..., X, are .1.D. and positive r.v.’s. Show that for any k£ <n

[X1+X2+...+Xk} _k

X+ Xo+...+X,,| n

Aid: Deal first with the case n = 2.

(From [88]) X € Po(X), A > 0. Show that

1 oo
P(X <k)=— e tthdt, k=0,1,2,....
N

Mill’s inequality X € N(0,1). Show that
2

2e T
<4/- . 2.12
P<|X|>t>_ﬁ ; (2.125)

Aid: Show first that P(] X |>t) = 2P(X > t). Then find P(X > t) and provide the desired upper bound
by observing that if = > ¢, then $ > 1.

Mill’s inequality and Chebychev’s Inequality Let Xi,..., X, are LLD. and € N(0,1). Set X =
LS | X;. Use Mill’s inequality (2.125) to find and upper bound for P(| X [> ¢) and n_lake a comparison
with the bound by Chebychev’s Inequality. Aid: The reader is assumed to know that X € N (0, %)



Chapter 3

Conditional Probability and

Expectation w.r.t. a Sigma Field

3.1 Introduction

Conditional probability and conditional expectation are fundamental in probability and random processes in
the sense that all probabilities referring to the real world are necessarily conditional on the information at hand.
The notion of conditioning does not seem to play any significant role in general measure and integration theory,
as developed by pure mathematicians, who need not necessarily regard applied processing of information as a
concern of their theoretical work.

The conditional probability is in a standard fashion introduced as

def P (A N B)
P(A|B) = ———= 3.1
(a1 5) e 25 (31)
which is called the conditional probability of the event A given the event B, if P(B) > 0. P (B | A) is defined
analogously. We shall in this chapter expand the mathematical understanding of the concepts inherent in the

definition of conditional probability of an event in (3.1).

3.2 Conditional Probability Densities and Conditional Expectations

We are operating with the notations for bivariate random variables in section 2.2.2 above. The conditional
density for Y given X = z is for fx(x) > 0 defined by

Jyix=2(¥) = 7fxf;((z,)y). (3.2)
We have that
Jyix=2() fxx(@,9) (3.3)

S vl tydt
Clearly
/ Jy|x=2(y)dy =1 for all .

In this setting P(Y <y | X = z)= Fy|x—.(y) = [ fy|x=s(u)du is the conditional distribution function of ¥’
under the condition X = x. The conditional density fy|x—.(y) is thus the derivative of Fy|x_,(y) with respect
to y.

91
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In the sequel we shall use a special symbolic notation for conditional distributions P(Y <y | X = )
using the earlier distribution codes. For example, suppose that for any x > 0
Lovlr <y
f Y|X:x(y) =

0 elsewhere.

Then we write this in view of (2.23) as Y | X =« € Exp(z).

Our calculus should be compatible with (3.1). One difficulty is that the event {X = 2} has the probability = 0,
since X is a continuous random variable. We can think heuristically that the conditioning event {X = z} is
more or less {x < X < x + da} for an infinitesimal dz. We obtain (c.f., (3.1))

Fyix—(y) =PY <y|X=2)=P(Y <ylz <X <z+dr)

Plx <X <wx+dx,Y <y) Fxy(z+dr,y)—Fxy(zy)

Pz < X <x+dx) Pla < X <z+dx)
- %FX,Y(za y)dﬂC _ %FX,Y(za y)
fx(z)dx fx(z)

and thus 52

0 gaag EXY (T,9)  fxy(z,y)

oY) = — Fyx—u(z,y) = = 1% .
Frix=) gy X (=9) fx(x) fx(x)
In the same way as in (3.2) we can write
fxy(@y) = fx(@) frix=(y),

and this yields

fet) = [ Ix@) fyixea(o) do. (3.4

For a bivariate discrete variable (X,Y’) we have

pxy (Tk, Y;) ,
—x )= —"—"——>=~ forj=0,1,2,...,.
pY‘X k(y]) pX(-Tk) J

Example 3.2.1 The operation in (3.4) is used in Bayesian statistics and elsewhere in the following way. Let
Jy|e=o(y) be a probability density with the parameter 6, which is regarded as an outcome of the r.v. ©. Then
fo(0) is the prior p.d.f. of ©.

To illustrate the idea precisely, think here of, e.g., the r.v. Y | © = 6 € Exp(0), with the p.d.f.
Jyie=o(y) = %e‘y/e, where 6 is an outcome O, which is a positive r.v. with, e.g., © € Exp(\).

Then the Bayesian integral or the mixing integral
fel) = [ fecowe(@)as (35)

defines a new p.d.f. fy(y) (sometimes known as a predictive p.d.f.), which may depend on the so called

hyperparameters (like \ in the preceding discussion) from fg(#). Following the rules for conditional densities

foly=y(0) = L}ig’)y)

we obtain also



3.2. CONDITIONAL PROBABILITY DENSITIES AND CONDITIONAL EXPECTATIONS 93

and furthermore

__ Ivie=e(y)fe(0)
20, frie=o(y) fo(0) do°

This is Bayes’ rule (with p.d.f.’s), and constitutes an expression for the posterior p.d.f of © given Y = y.

fory=y(0) (3.6)

In view of the preceding we define quite naturally the conditional expectation for Y given X = zj, by

def =
BY | X=2)= Y i pyix=a ()

j=—00
The conditional expectation for Y given X = z is given by

EY |X=2)% /_OO Yty x=2(y) dy. (3.7)

Theorem 3.2.2 Double Expectation

> E(Y | X =ar)px(x) discrete r.v.
k=—oc0
E(Y)={ _ (3.8)
| EY | X =2z)fx(z)dx continuous r.v..

— 00

Proof We deal with the continuous case. The conditional expectation E(Y | X = x) is a function of z, which
we denote by H(z). Then we have the random variable H(X) = E(Y | X) for some (what has to be a Borel)

function H. We have by the law of unconscious statistician (2.4) that

BIHCO) = [ H@)fx () da

- [ B X =05 ds,

— 00

and by the definition in (3.7)

= /_O; </_Z Ylyvix=2(y) dy> fx(x)de = /_O:Oy/_z fxy (@, y) de dy

and from the definition of marginal density

_ /Zy/Z Py () do dy = /OO yfv(y) dy = B(Y).

— 00

=fy(y)

The proof for the discrete case is now obvious. =

We write the result (3.7) above as the rule of double expectation
EY)=E(EY | X)). (3.9)
The conditional variance of Y given X = x is defined by
def

Var (Y | X =2) = E((Y — py|x=)’ | X = 2),

where p1y|x—, = E(Y | X = z). In addition Var(Y' | X = x) = H(z) for some Borel function H(x). There is

no rule equally simple as (3.9) for variances, but we have the following theorem.
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Theorem 3.2.3 (Law of Total Variance)
Var(Y) = E(Var(Y | X)) 4+ Var(E(Y | X)). (3.10)

u
The law of total variance above will be proved by means of (3.46) in the exercises to this chapter. We shall next
develop a deeper and more abstract (and at the same time more expedient) theory of conditional expectation
(and probability) that relieves us from heuristics of the type {z < X < x + dz} for an infinitesimal dz’, and

yields the results above as special cases. We start with the simplest case, where we condition w.r.t. an event.

3.3 Conditioning w.r.t. an Event

We have a random variable X on (£, F,P) and take A € F. We assume that P(A) > 0. We recall the definition
of f 4, XdP in an exercise in chapter 1, or,

/XdP:/XA~XdP:E[XA~X].
A Q

Definition 3.3.1 For any random variable F [|X|] < co and any A € F such that P(A) > 0. The conditional
expectation of X given A is defined by

BIX | A] = ﬁ/AXdP. (3.11)

Example 3.3.1 (Conditional Probability) Let ya be the indicator function of A € F

1 fweA
xA(w)={ 0 iwdA (3.12)

Then x4 is a random variable on (Q, F,P). We take B € F with P(B) > 0. Then we have

E[XA“ﬂﬁ/BXAdP

and by an exercise in chapter 1,
1

= — XA - xBdP.
P(B) /Q
It holds that

XA XB = XANB

(check this !). Then

/XA'XBdPZ/XAdeP
Q Q

=0-P((ANnB))+1-P(ANB)=P(ANB).

Thus

P(ANB)
P(B)

The alert reader cannot but recognize the expression in the right hand side of (3.13) as the conditional probability

of A given B, for which the symbol P (A | B) has been assigned in (3.1).

Elxa|B] = (3.13)
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3.4 Conditioning w.r.t. a Partition

Let P = {A, As,..., Ay} be a partition of Q, i.e., A; € F,i=1,2,....k A;NA; =0,j#iand UF_ 4; = Q.
We can call any set 4; a cell of P. We assume that P (A4;) > 0. The sigma-field o (P) generated by P is such
that there are no subsets of any of 4; in o (P). We say that any A; is an atom of o (P).

Consider the following schedule. Somebody chooses randomly (whatever this means in an operational sense)
an w €  and informs you about in which cell of P, say A;, w lies. For example, the information might be the

index of the cell. Thus our information is an outcome of the random variable

k
@) = 3 i)

We can thus say that having access to a partition means having access to a piece of information. The partitions

are ordered by inclusion (are a lattice), in the sense that
P1 C P2

means that all cells in Ps have been obtained by partitioning of cells in P;. P; is coarser than Py, and Py is
finer than Pp, and P, contains more information than P;.

Then we can compute the conditional expectation of X given A; using (3.11) or
E[X | A / XdP. (3.14)

But hereby we have defined a random variable, by the assignment
QBW’—)E[X|AZ], IfCAJGAAZ

Then we can define, see [13, p. 495], the conditional expectation w.r.t. to a partition. We remind once more
about the definition of the indicator function in (3.12).

Definition 3.4.1 The conditional expectation given the information in partition P is denoted by

E[X | P], and is defined by
k

E[X|P)( Z E[X | Aj]. (3.15)

u
The point to be harnessed from this is that F [X | P] is not a real number, but a random variable. In fact it
is a simple random variable in the sense of section 1.8.1. We shall next pay attention to a few properties of

E[X | P], which foreshadow more general conditional expectations.

(a) E[X |P] is measurable w.r.t. the sigma-field o (P) generated by P, as E[X | P] is a constant on each

partioning set.

(b) Take one of the partitioning sets A; in o (P). Then

k
/AjE[X|7>]dP:;E[X|Ai]/A xa, (w)dP(w)

J

k
= LB 4] [ a0 xa (@) = BIX | 4] [ dPo),
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since x4, (w) - xa,(w) = 0 for all w, unless i = j, and (x4, (w))2 = x4, (w) for all w, and thus we get

—BIX|4) [ dP) = EIX | 4]P(4)),

J

= / XdP.
Aj

/AVVE[X | P]dP :/AVXdP. (3.16)

By (3.14) this equals

We summarize; the desired result is

Our strategy is now to define conditional expectation in more general cases by extending the findings (a) and
(b) (i-e., (3.16)) about E[X | P]. The way of proceeding in the next section is necessary, because the restriction
to P(A;) > 0 will make it impossible to construct conditional expectation by an approach, where the mesh of

cells of the partition gets successively smaller (and the partition becomes finer and finer).

3.5 Conditioning w.r.t. a Random Variable

Definition 3.5.1 Let Y be a r.v. such that E[| Y |] < oo, and let X be an arbitrary random variable. Then

the conditional expectation Y given X, E[Y | X|, is a random variable such that
1. E[Y | X]is Fx -measurable.

2. for any event A € Fx we have

/AE[Y|X]dP:/AYdP.

We shall say later a few words about the existence of E'[Y | X] as defined here.
We can define conditional probability of an event A given X by

P(A|X) ¥ Elxal| X],

where x4 is the indicator function (see eq. (3.12)) of the event A in €.
We shall need the following lemma that helps us in accepting that F [Y | X]| is unique almost surely.

Lemma 3.5.1 Let (2, F,P) be a probability space and let G be a sigma field contained in F. If X is a G
-measurable random variable and for any B € G

/ XdP =0, (3.17)
B
then X = 0 almost surely (i.e., P(X =0)=1)

Proof Take any € > 0. Then P (X > ¢) = 0. This is seen as follows.

OSEP(XZE):/ EdPS/ XdP = 0.
{X>e} {X>e}

The last equality is true by assumption, since {X > ¢} € G. In the same way we have that P (X < —¢) = 0.
Therefore
P(—e<X<eg)=1



3.6. A CASE WITH AN EXPLICIT RULE FOR CONDITIONAL EXPECTATION 97

for any € > 0. Let us set

n n

An{l<X<l}.

Then P (A4,,) = 1, and since A,, is a decreasing sequence of events, {X = 0} = NS, 4,, and by continuity of
probability from above (see theorem 1.4.9 in chapter 1)

P({X =0})= lim P(4,)=1,

n—o0

as was to be proved. "

Note that the Doob-Dynkin theorem 1.5.5 in Chapter 1 implies that there is a Borel function H such that
E[Y | X] = H(X).

We can every now and then give more or less explicit formulas for H. One such case is investigated in section

3.6 that comes next.

3.6 A Case with an Explicit Rule for Conditional Expectation

The question of existence and uniqueness of E[Y | X] may require deep theorems to be proved, but in many
practical cases we can find an explicit formula, so that we can verify the conditions 1. and 2. in definition 3.5.1
above directly. We shall next present such a case.

Let us suppose that (X,Y) is a continuous bivariate random variable

Fxy (z,y) = //fxyuv)dudv

We assume that E'[Y | X] exists. We shall show that the preceding definition 3.5.1 checks with the formula
(3.7).

Theorem 3.6.1 Let Y be ar.v. such that E[| Y |] < oo, and let X be a random variable such that (X,Y") has
the joint density fx,y on all R x R. Then

f_ yfxy (@, y)dy
I fxy (zy)dy

Proof By virtue of definition 3.5.1 we need to find a Borel function, say H(x), such that for any Borel event A

E[Y | X =21]= (3.18)

we have
H(X)dP :/ YdP. (3.19)
XeA XeA

Note that {X € A} is an event in Fx. Let us start with the right hand side of (3.19). Since A € B,

YdP = / XA(X (@)Y (@)dP (w)
XeA Q

where x4 () is the indicator of A € B, see (1.26), and one may compare with the idea in an exercise in Chapter

1. But we can write this in the usual notation

/ o / T A@dFxy (o,y)
_ /A ( [ i nyy(x,y)dy) iz, (3.20)
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Furthermore, in the left hand side of (3.19)

HOOIP = [ xa(X (@) H(X ()P @)

XeA Q

+oo
= / xa(x)H(z)dFx (x)

— 00

and as dFx (z) = fx(z)dz = fjooj Ixy(z,y)dydx

- /:o xa(z)H(z) (/0:0 fx,y(x,y)dy) dx

:/AH(x) </j fx,y(x,y)dy) dz. (3.21)

Now, (3.19) requires that we can choose a Borel function H(z) so that the expressions in (3.20) and (3.21) are

/A </_:O ny,Y(z,y)dy> de = /AH(z) (/_:O fX,y(:E,g)dy) d.

If these integrals are to coincide for each Borel set A, then we must take

equal, i.e.,

P2 vtxy(@y)dy

H(x ,
) I fxy (e, y)dy

which is the assertion in (3.18), as was to be proved. =

3.7 Conditioning w.r.t. a o -Field

Definition 3.7.1 Let Y be a r.v. such that E[| Y || < co. Let G be a sub o field of F, i.e., G C F. Then the

conditional expectation Y given G , F[Y | G], is a random variable such that
1. E[Y | G] is G-measurable.

2. for any event A € G we have

/E[Y|g] dP:/YdP. (3.22)
A A

u
We do not prove that the random variable E [Y | ] exists, as the proof is beyond the scope of these notes/this
course. The interested student can check, e.g., [103, p. 27] or [63, p. 200].
We have, when Fx is the o field generated by X,

EY | Fx]=E[Y | X],

hence this definition extends the definition 3.5.1.

In addition we can define the conditional probability

P(A|G) € Elxa|g]. (3.23)
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3.7.1 Properties of Conditional Expectation

The statements in the following theorem are the ranking tools for computing with conditional expectations.
When a sigma field is generated by a random variable X, and thus E[Y | Fx] = E [Y | X], the properties below
reduce back to the properties of E[Y | X]| in section 3.2 above. Thus, for example, (3.9) above is the rule of
double expectation below.

In [20] the following basic properties of and useful rules for manipulation with the conditional expectation

are given the nice descriptive names recapitulated below.
Theorem 3.7.1 a and b are real numbers, E[|Y || < oo, E[| Z || < o0, E[| X || <oocand HC F, G C F,

1. Linearity:
EflaX +bY |G| =aE[X |G|+ DE]Y | G]

2. Double expectation :
EIEY [G]] = E[Y]

3. Taking out what is known: If Z is G -measurable, and F [| ZY |] < oo

E[ZY |G| = ZE[Y | G|

4. An independent condition drops out: If Y is independent of G,
EY | G]=EY]
5. Tower Property : If H C G,
EEY |Gl | H]=E[Y [ H]

6. Positivity: If Y > 0,
E[Y |gG]>0.

All equalities and inequalities hold almost surely.
Proof See, e.g., [103, pp. 29-30].
1. The proof of linearity is more or less straightforward and is left as an exercise.

2. To prove the rule of double expectation we observe that by assumption the condition in (3.22) is to hold
for all A in G, hence it must hold for 2. This means that

E[Y |G)dP = [ YdP = E[Y],
Q Q

as claimed.

3. We start by verifying the result for Z = xp (see (3.12)), where B € G. In this special case we get

/AZE[Y|g]dP:[4XBE[Y|g]dP:[4mBE[Y|g]dP:/ YdP,

ANB

where we used (3.22), since AN B € G, and

= / XBYdP.
A
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On the other hand, by (3.22), the conditional expectation of E [ZY | G] satisfies

/E[ZY|g]dP=/E[XBY|g]dP:/XBYdP
A A A

Hence we have shown that

/ ZE[Y|g]dP:/E[ZY|g]dP
A A
for all A € G, and hence the lemma 3.5.1 about uniqueness says that
/ (ZEY |G)—FE[ZY | G])dP =0
A

implies
EY |G|=E[ZY | G]
almost surely.

We can proceed in the same manner to prove that the result holds for step functions

n
7 = ZanAJ"
j=1

where A; € G for j = 1,2,...,m. Finally, we approximate a general Z by a sequence of step functions

(recall the operations in section 1.8.1 in Chapter 1).

Since we assume that Y is independent of G, Y is independent of the random variable x4 for all A € G.
Due to (2.44) Y and x4 have zero covariance, and this means by (2.42)

EYxal=E[Y]E[xal.

Therefore
/ YdP = / XaYdP =E[Yxa] = E[Y]E[xa]
A Q

:E[Y]/QXAdP:E[Y]/AdP:/AE[Y]dP

since F [Y] is a number, whereby, if we read this chain of inequalities from right to left

/AE[Y]dP:/AYdP,

for all A in G. Comparison with (3.22) shows that this means

E[Y]=FE[Y]9].
We shall play a game with the definition. By the condition (3.22) we have again for all A € G that

E[Y |G]dP = | YdP. (3.24)
JEvigie= |

With respect to H, we get for all A € H

/E[Y|’H] dP:/YdP. (3.25)
A A
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But since H C F, A € H, we have thus in from (3.24) and (3.25)

/AE[Y|H]dP:/E[Y|g]dP,

A

which holds for all A € H. But when we check and apply the definition (3.22) once again, we get from
this the conclusion that
EEY [G]|H] = E[Y [H],

as was to be proved.

6. We omit this.

Example 3.7.2 Taking out what is known This example is encountered in many situations. Let H(z) be

a Borel function. X and Y are random variables. Then the rule of taking out what is known gives
EHX) Y |Fx|=H(X)-E[Y | Fx].

.
To get a better intuitive feeling for the tower property, which is an enormously versatile tool of computation, we
recall example 1.5.4. There X is random variable and for a Borel function Y = f(X). It was shown in loc.cit.
that

Fy C Fx.

Then the tower property tells us that for a random variable Z
EEZ| Fx]| Fr]|=FE|Z]| Fy].

How do we interpret this? We provide an answer to this question in section 3.7.4 below by using the interpre-

tation of a conditional expectation E[Y | X| as an estimator of Y by means of X.

3.7.2  An Application of the Properties of Conditional Expectation w.r.t. a o-
Field

Lemma 3.7.3 Le Y be a random variable that has the variance Var(Y") < co and let X be an another random

variable (in the same probability space as Y'). Set
Y =E[Y | Fx]

and

y &y _vy.

-

Then it holds that
Var(Y) = Var(Y) + Var(Y).

Proof We recall the well known formula, see, e.g. [15, p. 125],
Var(Y) = Var(Y 4+ Y) = Var(Y) + Var(Y) + 2Cov(Y, Y).
We must investigate the covariance, which obviously must be equal to zero, if the our statement is to be true.
We have
Cov(Y,Y)=E {f/ : 57} - B [}7} E M . (3.26)
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Here we have, since Y=Y - }A/, that
E[V-V|=E[PY]|-E[7?].
We use first the rule of double expectation (property 2.)
E[VY|=E|E|VY | Fx|| =
and take out what is known (in Fx) (property 3.)
:EﬁEwyaﬂ:Eﬁﬂ

Therefore in (3.26)
E[V-Y]=o.

Furthermore

and the rule of double expectation (property 2.)
=E[Y]-E[E[Y |Fx]]=E[Y]-E[Y]=0.

Thus even the second term in the right hand side of (3.26) is equal to zero. Thereby we have verified the claim
as asserted. n

3.7.3 Estimation Theory

There is an important interpretation of the quantities treated in lemma 3.7.3. We regard
Y=E[Y|Fx]=E[Y|X]
as an estimator of Y based on X. Then Y is the estimation error

Y=Y _-V.

In fact we should pay attention to the result in (3.46) in the exercises. This says that if E [YQ] < oo and
E [(g(X))Q} < 00, where H(z) is a Borel function, then

E [(Y - H(X))Q] = E[Var(Y | X)] + E ((E v X]— H(X))Q) . (3.27)
This implies, since both terms in the right hand side are > 0 that for all H(x)
ERY—EWWXW}gERY—Humﬂ (3.28)

In other words, H*(X) = Y=E [Y' | X] is the optimal estimator of Y based on X, in the sense of minimizing
the mean square error. The proof of lemma 3.7.3 above contains the following facts about optimal mean square

estimation:

Eﬁﬂzo (3.29)
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e the estimation error Y is uncorrelated with the estimator Y

Cov(Y,Y) =0. (3.30)

e The variance of Y can be decomposed as
Var(Y) = Var(Y) + E [Var(Y | X)], (3.31)
since by (3.27), (3.28) and by (3.29)

Var(Y) = E [Var(Y | X)].

This framework yields a particularly effective theory of estimation (prediction, filtering, e.t.c. [90]), when later

combined with the properties of Gaussian vectors and Gaussian stochastic processes.

3.7.4 Tower Property and Estimation Theory

Suppose now that X is random variable that we are planning to (or should) use in order to estimate Z, which
is not observable to us. Unfortunately, we do not have direct data or observations of X either, but we have
merely access to Y = f(X), where f is not invertible. We could think of observing X via an A/D -converter

(e.g, a hard limiter) or a clipping or both. The tower property tells us, as stated above, that
EEZ| Fx]|Fy]=E[Z]| Fy]. (3.32)

Now we recall from the preceding section that F [Z | Fy] is our best mean square estimate of Z based on Y.
By the same account Z=E [Z | Fx] is the best mean square estimate of Z based on X. But then, of course,
we have in the left hand side of (3.32),

%ZE[2|.7Y:|

ie., Z is our best mean square estimate of Z based on Y. Then we understand that the tower property (3.32)

tells us simply that
Z=E[Z| Fy],

or, in other words, that our best mean square estimate of Z based on Y is in fact an estimate of Z | This is
what is lost, when being forced to estimate Z using Y rather than X. The loss of information is also manifest

in the inclusion Fy C Fyx.

3.7.5 Jensen’s Inequality for Conditional Expectation

Theorem 3.7.4 Let ¢ : R — R be convex function. Let X be a random variable such that F [| X]|] < co and
that E [|p(X)|] < co. Let G C F. Then

p(E[X[G]) <E[p(X)]4]. (3.33)

Proof: is omitted, since it can be done as the proof of theorem 1.8.3 in chapter 1.. "
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3.8 Exercises

3.8

1.

2.

3.8
1

.1 Easy Drills
A and B are two events with P(A4) > 0 and P(B) > 0. AN B =10. Are A and B independent?
P(ANB) =02, P(A) = 0.6 and P(B) = 0.5.
(a) Is ANB =07
(b) Are A and B independent?
(c) Find P(A°U B°).
Given P(ANB°) = 0.3, P((AUB)¢) = 0.2 and P(AN B) = 0.1, find P(A | B).
If P(A| B) < P(A), show that P(B | A) < P(B).

A and B are two events with P((AU B)°) = 0.6 and P(AN B) = 0.1. Let E be the event that either A
or B but not both will occur. Find P(E | AU B).

A and B are two disjoint events. Show that

P(A|AUB) =

.2 Conditional Probability
. Let (2, F,P) be probability space. Let B € F and P(B) > 0. Then we define for any A € F

(lEfP(AﬂB)

O

or, PT (A) =P (A| B) in (3.1). Show that (€, F,PT) is a probability space.

The Chain Rule of Probability Let A;, As,..., A,, n > 2 be a events such that P (ﬂ?;llAi) > 0.
Show that
P (N 4) =P (A, [ NPA) - P(Ag | ApN AP (Ay | AP (Ay). (3.34)

3

This rule is easy to prove and often omitted from courses in probability, but has its merits, as will be seen.

Law of Total Probability P = {4, As,..., Ar} is a partition of Q. Thus A; € F, ¢ = 1,2,....k,
A;NA;=0,j#1iand UF_, A; = Q. Show that for any event B € F
k
P(B)=Y P(B|A)P(4). (3.35)

i=1
The expression is known as the law of total probability . How is this related to the expression in (3.15) ?
Inverse Probability or Bayes’ Formula P = {A;, Ay, ..., Ay} is a partition of Q, ie., A; € F,
i=1,2,....k A;NA;=0,j+#iand UF_A; = Q. Show that for any event B € F and any A,

P(B|A)P(A)

P (A, |B) = Zlep(B | A;)) P (4;)

. 1=1,2,... k. (3.36)

The expression is nowadays known as Bayes’ Formula or Rule, c.f. (3.6), but was in the past centuries

called the rule of inverse probability.
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5. X € Exp (A), A > 0. Show that
P(X>t+s|X>s)=P (X >t). (3.37)
This is known as the lack of memory property of the exponential distribution.
6. X € Fs(p), 0 < p < 1. Show that for every pair (k,m), k=0,1,...,m=0,1,0,1,...,
PX>m+k|X>m)=P(X >k). (3.38)
This is known as the lack of memory property of the first success distribution.

7. Let X7 and X5 be two independent r.v.’s with the same p.m.f. px (k) on the positive integers, k = 1,2,..
We know that px (k) < ¢(< 1) for every k. Show that P (X; + X2 =n) <c.

.y

8. X1,Xa2,...,Xpn,...1s a sequence of independent and identically distributed r.v.’s € Po(2). N is indepen-
dent of the X,,, and N € Po(1). We consider the following sum of a random number of random
variables Sy = X; + Xo+ ...+ Xy, So = 0. Find that

P(Sy=0)=e" L (3.39)
The same formula will be derived using generating functions in an exercise of chapter 5.

9. The following is an idea in molecular biotechnology about a p.d.f. of p-values, when testing hypotheses of

gene expressions in microarrays:

(3.40)

A+ (1=XN)-ap*! 0<p<1
flp) =
0 elsewhere.

Here 0 < A < 1, and 0 < a < 1. This distribution has been called the BUM distribution. The acronym
BUM stands for Beta-Uniform Mixture. Find a generative model for the the BUM distribution.

10. X € U(0,1). Find P (X <z | X2 =y).

11. Poisson Plus Gauss Distribution [33, p.327] Let N € Po(\), X € N (0, 02), N and X are independent.
Set
U=N+X.

Show that the p.d.f. of U is
e N w2

fulu) = Zﬁye_ 27 (3.41)

k=0

12. This exercise is excerpted from [84, p. 145—146]', and is in loc.cit. a small step in developing methods for
treating measurements of real telephone traffic.

Let N € Po(At). Let T | N = n € Erlang (n, 1), see example 2.2.10. Show that

E[T] = Xst.
The model discussed in loc.cit. is the following. N is the number of phone calls coming to a telephone

exchange during (0,¢]. If N = n , then the total length of the n calls is T. Hence E [T] is the expected
size of the telephone traffic started during (0, ¢].

1[84] is the Ph.D.-thesis (teknologie doktorsavhandling) from 1943 at KTH by Conrad 'Conny’ Palm (1907—1951). Palm was an
electrical engineer and statistician, recognized for several pioneering contributions to teletraffic engineering and queueing theory.
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13. X € Exp(1), Y € Exp(1) are independent. Find the distribution of X | X +Y = ¢, where ¢ > 0 is a

constant.

14. X1, Xo,...,X,,... is a sequence of independent and identically distributed r.v.’s € Be (1/2). N is inde-
pendent of the X;’s, and N € Po(\). We consider the r.v.’s

H:X1+X2+...+XN;§/1:0,N:0, Yé:N—Xl_
Show that Y7 € Po (%) and Y; € Po (%) and that they are independent.

15. (From [49]) Let N € Ge(p) and set X = (—1)". Compute

(a) E[X]and Var [X]. Answer: 52, 7528

2—p
(b) the p.m.f. of X. Answer: px(1) = ﬁ, px(—1) = é:

DI

16. (From [30]) Given P(A) = a and P(B) = b, show that 22=1 <P(A | B) < ¢.

3.8.3 Joint Distributions & Conditional Expectations

1. (From [97]) Let (X,Y) is a bivariate random variable, where X is discrete and Y is continuous. (X,Y’)
has a joint probability mass - and density function given by
OP(X=kY<y) _ )\(Ag!)ke*”y for k=0,1,2,..., and y € [0, 00)

fxy(ky) = { 9y

0 elsewhere.

(a) Check that
Z/ fxy(k,y)dy = / > fxy (b y)dy = 1.
k=0"0 0 k=0

(b) Compute the mixed moment E [XY] defined as

EXY] :Z/ ky fxv (k, y)dy.
k=070

Answer: %
(¢) Find the marginal p.m.f. of X. Answer: X € Ge(1/2).

(d) Compute the marginal density of Y here defined as

0 elsewhere.

fy(y) = { Sreo fxv(ky) yel0,00)

Answer: Y € Exp(1/A).

(e) Find
px‘y(k|y) =P(X=klY=y),k=0,1,2,...,.

Answer: X|Y =y € Po(A\y).
(f) Compute E [X|Y = y] and then E [XY] using double expectation. Compare your result with (b).

2. (From [35]) Let X € Po(\) and Y € Po(u). X and Y are independent. Set Z = X + Y.

(a) Find the conditional distribution X | Z = z. Answer: X | Z = z € Bin (z, ﬁ)
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(b) Find E[X | Z==z|, E[X|Z], Var [X | Z = z] , Var[X | Z]. Answer: z)\Jr , E[X | Z] = Z)\i#,
Var[X|Z:z]—zA+#(1——) Var[X | Z] = %( AJm)
(c) Find the coeflicient of correlation px,z,
Cov(X, Z)
PX,z =
\/Var [ X]/Var [Z]
Answer: ﬁ
3. (From [35]) X € Exp(\) and Y € U(0,0). X and Y are independent. Find P (X >Y). Answer:

%(1—6 &

4. (From [35]) The joint distribution of (X,Y) is for 8 > —1 and a > —1.

c(a,B)yPl—2) 0<z<1,0<y<uz,
fxﬁy(xvy){[)( )y (1~ x)

elsewhere.
(a) Determine ¢ (o, 3). Aid: Consider a suitable beta function, c.f., (2.31).
(b) Find the marginal distributions and compute F [X], Var [X].
(c) Determine E[X |Y =vy], Var[X |Y =y|, E[Y | X =2, Var[Y | X = x].
Answers

(a) c(a,B) = (B+1)F(0¢+B+3)

T(a+DI(B+2) *
(b)
fx(x) = cﬂ(?f)xﬂﬂ(l —x)* 0<z<1,
fr () Coiof;ﬁl)yﬁ(l )t o<y <,
. B+2
EX]= a++3
B (a+1)(B+2)
Var [X] = (a+B+4)((a+p+3)2
) +1
«
E[XIY:ylzlfaJrQ(l*y),

_ o la+ DA —y)?
Var[X|Y—y]—m.

You obtain E[Y | X = z], Var[Y | X = 2] from this by replacing y with 1 — = and « with 8 and S
with a.
5. (From [35]) Let X1, Xo,..

Let ther.v. I € U (1,2,.
Then

., X, be independent and Po(};) -distributed random variables, respectively.
..,n), c.f., Example 2.3.3. Find E [X;] and Var [X[]. Answer: Let A = L 3" |

E[X[] =\
and

Var[X7] =X — A + — Z)\Q

171
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(From [35]) Let X1, X2,...,X, be independent and identically Exp(1/)) -distributed random variables.
Let in addition Sp =0 and S,, = X1 + Xo + ...+ X,,. Set

N = max{n | S, < x}.

N is a random time, equal to the number of that random sample, when S,, for the last time stays under
2. Then show that N € Po (\x).

Show using the properties of conditional expectation, that if X and Y are independent and the expectations

exist, then
E[X - Y]=E[X]-E[Y]. (3.42)

Let (X,Y) be a continuous bivariate r.v. with the joint p.d.f.

) ety O<z<y<l
Fxy(@y) = { 0 elsewhere.
(a) Find ec.
(b) Find fx(z) and fy(y).
(¢) Find E [X].
)

(d) Find E[X | Y =y].

Answers: (a) ¢ =2, (b) fx(z) =1+22-322,0<z <1, fy(y) =3y%0<y <1 (c) E[X] =3, (d)
EIX|Y =y =3y

. Let (X,Y) be a continuous bivariate r.v. with the joint p.d.f. in (2.112). Find fy|x—(y). Answer:

e(m_y) xr < Y
0 elsewhere.

fY\X:m(y) = {

Let X € Exp(1/a), Y € Exp(1/a) are independent. Show that X | X +Y =z € U(0, 2).
Let X € Exp(1), Y € Exp (1) are independent. Show that XL_H, e U(0,1).

Rosenblatt Transformation, PIT? Let X = (X1,...,X,,) be a continuous random vector with the
joint distribution Fx (z1,...,x,). We transform (Xy,...,X,) to (Y1,...,Y,) by

Yi=9i(Xi),

where the transformations y; = g; (x;) are given by

i = g1(71) = Fx, (z1)
Y2 = g2(72) = Fx,|x,=a, (T2)

(3.43)
Yn = Gn(Tn) = Fx,|X1=21,... Xn_1=2n_1 (Tn) -

Note that we are using here an application of the chain rule (3.34).

Show that (Y1,...,Y,) are independent and that Y; € U(0,1),i=1,2,...,n.

2The author thanks Dr. Thomas Dersjé from Scania, Sédertilje for pointing out this.
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In structural safety and solid mechanics this transformation is an instance of the isoprobabilis-
tic transformations . In econometrics and risk management® this transformation is known
as PIT = probability integral transform. PIT is applied for evaluating density forecasts*
and assessing a model's validity. Thus the PIT is used for transforming joint probabilities for
stochastic processes in discrete time. Here the arbitrariness of the ordering in Xy, ..., X,,, that

is regarded as a difficulty of the Rosenblatt transformation, is automatically absent.

13. Let (X,Y) be a bivariate random variable, where both X and Y are binary, i.e., their values are 0 or 1.
The p.m.f of (X,Y) is

l1—zx

Py (@y) = (1= ) (07 (1 - 9)“‘1’))1 (Wa-N") T zefoihye o) (349)
Here 0<7<1,0<0<1,and 0 <A< 1.

a) Check that px y(x,y) is a p.m.f..

(
(b) Find the marginal p.m.f. px ().

(
(d
(e) Find E[Y | X =x] forz =0 and z = 1.

)
)

¢) Find the p.m.f. py|x—,(y) for all z € {0,1}, y € {0, 1}.
) What is the meaning of #7 What is the meaning of A?
)

14. (From [49]) Let (X,Y) be a bivariate r.v. such that
Y| X =2¢€Fs(x), fx(r)=32* 0<ax<l.
Compute E [Y], Var [Y], Cov(X,Y) and the p.m.f. of Y. Answers: E[Y] = 2 Var[Y] = 3, Cov(X,Y) =

—g» and py (k) = gy yoerore k> 1

3.8.4 Miscellaneous

1. (From [20]) Let A and B be sets in F and let x4 and x g be the respective indicator functions, see equation
(3.12). Assume that 0 < P(B) < 1. Show that

P(A|B) ifweB

P(A|B°) ifw¢B. (3.45)

Elxa| xs] (w){

2. (From [20]) Let B € G, P (B) > 0 and let X be such that E'[|X|] < co. Show that

E[E[X[G]|B]=E[X]|B].

1—e—A

3. (From the Exam in sf2940, 23" of October 2007) X € Po (A). Show that E [e!¥ | X > 0] = e (eket — 1).

4. Mean Square Error Let H(x) be a Borel function and X random variable such that F {(H(X))Q} < 00.
Then show that

E [(Y - H(X))Q] = E[Var(Y | X)] + E ((E v X]— H(X))Q) . (3.46)

3Hampus Engsner, when writing his M.Sc-thesis, pointed out PIT for the author.
4Diebold F.X., Gunther T.A & Tay A.S.: Evaluating density forecasts, 1997, National Bureau of Economic Research Cambridge,

Mass., USA
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Aid: We start with the identity
E (YfH(X))Q} -E [(YfE[Y | X]+ E[Y | X] - HX))?|.

When we square this and compute the expectation we get

E [(Y - H(X))Q} —A+2B+C, (3.47)
where
A=E {(Y—E[Y | X])Q} :
B=EB(Y-E[Y|X]) (E]Y|X] - HX)),
and

C=F [(E v | X]— H(X))Q} .
Now use double expectation for the three terms in the right hand side of (3.47). For A we get
E[E|(v-ElY|X)?]|X],

for B
EE[Y-E[Y|[X]-ElY | X]-H(X))|X],

and for C,
EE|(B)Y | X]- HX)? | X]| = E[(ElY | X] - H(X))],

where the known condition dropped out. Now show that the term B is = 0, and then draw the desired

conclusion.

When one takes H(X) = E[Y], a constant function of X, (3.46) yields the law of total variance in
(3.10)
Var[Y] = E|(Y - E [Y])Q} = E[Var(Y | X)] + Var[E[Y | X]]. (3.48)

(From [12]) Let X and Y be independent random variables and assume that E [(XY)?] < co. Show that
Var [XY] = (E[X])* Var(Y) + (E[Y])? Var [X] + Var [Y] Var [X].
Aid: Set Z = XY, and then use the law of total variance, equation (3.48) above, via
Var[Z] = E [Var[Z | X]] + Var (E[Z | X]),
and continue using the properties of variance and conditional expectation.

The linear estimator }A/L, of Y by means of X, optimal in the mean square sense is given (as will be shown
in section 7.5) by
~ oy
Y =py +p— (X —py),
ox

where py = E[Y], pux = E[X], 0% = Var[Y], 0% = Var[X], p = <25,

Oy ‘0X

(a) Show that
E [(Y - ?L) X] ~0. (3.49)

This says that the optimal linear estimation error is orthogonal to X.

(b) Show that Y — Y7, is uncorrelated with X.
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(¢c) Show that if Y = E[Y | X], then
E [(Y - ?) h(X)} =0 (3.50)

for any Borel function h such that £ [(h(X))?] < occ.
7. (From [12])
(a) Let X7, Xo,..., X, be independent and identically distributed (I.I.D.) random variables and let

S=X,+Xo+ ...+ X,

Show that g
E[X;|S]= . (3.51)
(b) Let X € N(0,k), W € N (0,m) and be independent, where k and m are positive integers. Show
that
k
FX | X+W|=—(X+W).
XX+ W] = (x4 0)

Aid: The result in (a) can turn out to be helpful.

8. Let X € Pa(k, ) as in example 2.2.20. Show for b > a > k that
a [e3
P(X>b|X>a):(E) .

The term scale-free is used of any distribution (discrete or continuous or mixed) that looks essentially

the same when looked at any scale, or such that
P(X>b|X >a)

depends only on the ratio a/b and not on the individual scales a and b. Zipf’s law is also scale-free in this

sense.

Recently the scale-free property has been observed for the degree distribution of many networks, where
it is associated with the so-called small world phenomenon®. Examples are the World Wide Web, and

human web of sexual contacts and many networks of interaction in molecular biology.

9. Let N € Po (32 ). Let
X|N=nex*2n+2).
Set R = 0v/X. Compute directly the density of R and show that you obtain (2.114), i.e., R € Rice (v, 7).

Aid: You will eventually need a series expansion of a modified Bessel function of the first kind with order

0, as a real function see, e.g., [92, section 12.4]% or [3, p. 288].

10. Assume that X | P = p € Ge(p) (= NBin(1,p)) and P € 3 (a, p). Show that X € War(p, «), as defined in
example 2.3.14. We apply here the Bayesian integral of (3.5). This fact should explain why the Waring
distribution is known under the name Negative-Binomial Beta distribution.

5A small world network is a graph in which the distribution of connectivity is not confined to any scale and where every node
can be reached from each other by a small number of steps.

60r, see p.9 of Formelsamling i Fysik, Institutionen for teoretisk fysik, KTH, 2006
http://courses.theophys.kth.se/SI1161/formelsamling.pdf.
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11. let X € N(0,1) and Y € N(0,1) and X and Y be independent. Take a real number A. Set

;o { Y, ifAY > X
—Y, if Y < X.
Show that Z € SN (). Hence we have here a generative model of SN ().
12. X € N(0,02) and f(z) is the p.d.f. of N(0,02). U € U(0, f(0)) and is independent of X.
Show that X | U < f(X) € N (0,5%)), where 5 = 5 + 5.
13. X € SymBe. Let X =z and p € [—1,1]. Then set

v — x  with probability 1/2+ p/2
| —z with probability 1/2 — p/2.

Show that Cov(X,Y) = p.

3.8.5 Martingales

The exercises below are straightforward applications of the rules of computation in theorem 3.7.1 on a sequence
of random variables with an assorted sequence of sigma fields, to be called martingales, and defined next.

Definition 3.8.1 Let F be a sigma field of subsets of €2. Let for each integer n > 0 F,, be a sigma field C F
and such that

Then we call the family of sigma fields (F;,),,>, a filtration.

A important example of a filtration is given by
fn :O'(Xl,...,Xn),

i.e., the sigma field generated by Xi,..., X,. This means intuitively that if A € F, then we are able to decide
whether A € F,, or A ¢ F,, by observing X1,...,X,.

Definition 3.8.2 Let X = (X,,)°2, be a sequence of random variables on (2, F,P). Then we call X a

n=1
martingale with respect to the filtration (F,), -, if

1. E]| X, |] < oo for all n.
2. X, is measurable with respect to F,, for each n.
3. For n > 1 the martingale property holds:

.
The word martingale can designate several different things, besides the definition above. Martingale is, see
figure 3.17, a piece of equipment that keeps a horse from raising its head too high, or, keeps the head in a
constant position, a special collar for dogs and other animals and a betting system.

It is likely that the preceding nomenclature of probability theory is influenced by the betting system (which

may have received its name from the martingale for horses ...).

"http://commons .wikimedia.org/wiki/User:Malene
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Figure 3.1: Shannon Mejnert riding on Sandy in Baltic Cup Show on 28th of May 2006 at Kallehavegaard
Rideklub, Randers in Denmark. The horse, Sandy, is wearing a martingale, which, quoting the experts,
consists of: .." a strap attached to the girth and passes between the horse’s front legs before dividing into two
pieces. At the end of each of these straps is a small metal ring through which the reins pass.’

L. Let (Fp),>, be a filtration and E [|X[] < co. Set
X, =FE[X|F)].
Show that (Xp),-, is a martingale with respect to the filtration (F,),,-.

2. Let (X,),2, be a sequence of independent, nonnegative random variables with E [X,,] = 1 for every n.
Let
MO = 13]:0 = (Qa®)7

My=X1 Xo-... Xy,

and
fn:U(Xl,...,Xn).

Show that (M), is a martingale with respect to the filtration (F,),,>¢-
3. Let X be a martingale with respect to the filtration (]:")nzl' Show that then for every n
EX,u1|=E[X,)=...=E[X4].
(Recall that a martingale in the sense of figure 3.1 keeps the horse’s head in a constant position.)
4. Let X be a martingale with respect to the filtration (]:n)nzl- Show that then for every n >m > 1

EX, | Fn] =Xm.
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5. {X,},-, are independent and identically distributed with E [X,,] = pu and Var [X,,] = 0. Define

Wy =0, W, = zn:X

i=1
Frn=0(X1,...,X,),
and
Sn = (Wn - nﬂ)2 - n02'
Show that {S,},~, is a martingale w.r.t. {Fpn},— .

Let {X,},2, be a sequence of independent random variables. In many questions of statistical inference,
signal detection e.t.c. there are two different probability distributions for {Xn}zozo. Let now f and g be
two distinct probability densities on the real line. The likelihood ratio L,, is defined as
def [ (Xo) - f(X1) ... f(Xn)
"og(Xo) g (X)) g (X))

where we assume that g (z) > 0 for all z.

(3.54)

(a) Show that L, is a martingale with respect to F,, = o (X1,..., X,), if we think that g is the p.d.f.
of the true probability distribution for {X,} ;. That g is the the p.d.f. of the true probability
distribution is here simply to be interpreted as the instruction to compute the required expectations

using g. For example, for any Borel function H of X

Bl = [ @y
(b) Let
l, =—InL,.

The function I(n) is known as the (- 1 x) loglikelihood ratio. Show that (w.r.t. the p.d.f. of the
true distribution g)
Elps1 | Fol > 1.

Aid: Consider Jensen’s inequality for conditional expectation in theorem 3.7.4.

7. Stochastic Integrals We say that (Xy,),-, is predictable, if X,, is F,,—1 measurable, where (F,), >

is a filtration. Let us define the increment process AX as

(AX), ¥ X, — X, 1,

with the convention X_; = 0.

(a) Show that a sequence of random variables (X,),, is a martingale if and only if
E{(AX), | Faa] =0, (3.55)

forn=20,1,....
(b) For any two random sequences X = (Xy,),, -, and M = (M,,), -, the discrete stochastic integral
is a sequence defined by
(X+M), €3 X, (AM), (3.56)
k=0
Assume that X is predictable, M is a martingale and that E [| X} (AM), |] < co. Show that (X x M)
is a martingale.

Aid: Set Z, = > _o Xk (AM), and find the expression for (AZ), and use (3.55).
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8. Why Martingales? We have above worked on some examples of martingales with the verification of
the martingale property as the main activity. Apart from the potential charm of applying the rules of
conditional expectation, why are martingales worthy of this degree of attention? The answer is that there
are several general results (the stopping theorem, maximal inequalities, convergence theorems e.t.c.) that
hold for martingales. Thus, it follows by martingale convergence, e.g., that in (3.54) the likelihood ratio

L,, — 0 almost surely, as n — oo.

What is the 'practical’ benefit of knowing the the convergence L,, — 07 Aid: Think of how you would use
L, to decide between Hy : X; € g, H1 : X; € f.

More about martingales and their applications in statistics can be studied, e.g., in [102, ch. 9.2.]. Appli-

cations of martingales in computer science are presented in [79].
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Chapter 4

Characteristic Functions

4.1 On Transforms of Functions

Several of the readers are presumably informed about the multifarious advances in science and engineering
obtained by Fourier, Laplace, Mellin transforms and other transforms. Clumped together the aforementioned
techniques constitute a branch of mathematics broadly referred to as transform theory. It would be very
surprising, were transforms of some kind not to turn out to be important in probability theory, too.

Many of the transforms are integrals of an exponential function multiplied by a function f(z) to be trans-
formed. The key to success is that the exponential function converts sums into products. We set i = v/—1 (so
that i2 = —1). In electrical engineering one writes j = v/—1, but we do not follow this practice here.

o~

1. The Fourier transform f(¢) of f(z) is defined as

f(t) = /OO e~ f(2)d. (4.1)

This requires that f is integrable, or, that [~ | f(z) | dz < +oo, [100, p.166].

The operation of Fourier transform in (4.1) can be understood as
F o~
fe=
which means that a function of z is transformed to a (transform) function of ¢ (=the transform variable).

Remark 4.1.1 The literature in mathematical physics and mathematical analysis uses often the definition

-5 [ T e f(a)de.

:% .

There is also .

fr= [ e o

—0
widely used, with j in place of 7, in electrical engineering. This state of affairs is without doubt a bit
confusing. Of course, any variant of the definition can be converted to another by multiplying by the
appropriate power of 2m, or by replacing ¢ with 27t. When encountered with any document or activity
involving the Fourier transform one should immediately identify, which particular definition is being used.
We are, moreover, going to add to confusion by modifying (4.1) to define the characteristic function of a

random variable.

117
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2. The Laplace transform fg(t) of f(x) is

ﬁuw=/maﬂvuwm

0

This is a simplified formal expression, we are neglecting considerations of existence and the region of

convergence, c.f., [100, p. 39].

3. The Mellin transform fu (t) of f(x) is

fm(t) = / 27 f(x)da.
0
Here t is a complex variable.

An important desideratum is that we should be able to uniquely recover f from f, or, that there should be
an inverse transform. There is, under some conditions, see [100, p.171], the Fourier inversion formula given
by

1 BRSPS
= — T f(t)dt. 4.2
f@)=5= [ e (12)
This is the operation
/\]_-71
[ f (4.3)

Therefore we can talk in about unique Fourier transform pairs

(£.7).

which have in the past been collected in printed volumes of tables of Fourier transforms.

Since the distribution function

Fx(x) =P ({X <x}).

completely determines the probabilistic behaviour and properties of a random variable X, we are obviously lead
to work with transforms of Fx(z), or more precisely, we deal with the transform of its p.d.f. fx(z), when it
exists, or with the transforms of the probability mass function px (z).

The Fourier transform exercises its impact by the fact that, e.g., differentiation and integration of f corre-
spond to simple algebraic operations on f, see [100, Appendix C 4.]. Hence we can in many cases easily solve,
e.g., differential equations in f by algebraic equations in the transform f and then invert back to obtain the
desired solution f. We shall meet with several applications of this interplay between the transformed function
and its original function in probability theory, as soon as a suitable transform has been agreed upon.

For another illustration of the same point, the Mellin transform is important in probability theory for the
fact that if X and Y are two independent non negative random variables, then the Mellin transform of the
density of the product XY is equal to the product of the Mellin transforms of the probability densities of X and
of Y. Or, if the Mellin transform of a probability density fx (z) of ar.v. X >0is fay (£) = IS 2t fx () de,
then

~

fMXY (t) = f/\/(x (t)f/\/(y (t)
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4.2 Characteristic Functions: Definition and Examples

4.2.1 Definition and Necessary Properties of Characteristic Functions
We begin with the formal definition.

Definition 4.2.1 (Characteristic Function) The characteristic function ¢ x (t) of the random variable X is
for t € R given by

S} .
ST oetrpy(zr)  discrete r.v.
k=—o0

px(t)=E[e"] = (4.4)
J e fx(z)dx continuous r.v..

u
This is the complex conjugate of the Fourier transform, needless to say. Let us recall that e!® = cos(tx) +
tsin(tz). Then we have
E [e"*] = E[cos(tX)] 4 iE [sin(tX)] .

We can regard the right hand side of the last expression as giving meaning to the expectation of the complex

random variable e®X in terms of expectations of two real random variables. By definition of the modulus of a

complex number | e* | = \/ cos?(tx) 4 sin?(tz) = v/1. Therefore

Elle™ | =1LE][ "] =1

Hence the function e¥® is integrable (w.r.t. to dFy), and ¢x(t) exists for all ¢t. In other words, every
distribution function/random variable has a characteristic function.
We are thus dealing with an operation that transforms, e.g., a probability density fx (or probability mass
function) to a complex function ¢x (t),
Ix c'_}; PX-
The following theorem deals with the inverse of a characteristic function.

Theorem 4.2.1 If the random variable X has the characteristic function ¢x (t), then for any interval (a, ]

P(X=a)+P(X=0) .1 [T emita _emith
P X <b = lim — | —————px(t)dt.
(a <X <b)+ 2 7Yoo 27 o ex®)

Proof: The interested reader can prove this by a modification of the proof of the Fourier inversion theorem
found in [1007 p.172—173]. n
Here we have in other words established that there is the operation
Ch~t
ox — fx.
The following theorem is nothing but a simple consequence of the preceding explicit construction of the inverse.

Theorem 4.2.2 (Uniqueness) If two random variables X; and X» have the same characteristic functions,
ie.,
ox, (t) = ox,(t) forallt € R,

then they have the same distribution functions
Fx,(x) = Fx,(x) for all z € R,

which we write as
X, 2 X,
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There are several additional properties that follow immediately from the definition of the characteristic function.
Theorem 4.2.3 (a) px(t) exists for any random variable.

(b) »x(0)=1.

(e) lex(t) [< 1.

(d) @x(t) is uniformly continuous.

(e) The characteristic function of a + bX, where a and b are real numbers, is
Patox (t) = e px (bt).

(f) The characteristic function of —X is the complex conjugate Py (t).

(g) The characteristic function is real valued if and only if X 4 X (the distribution of X is symmetric about

Zero).
(h) For any n, any complex numbers z;, [ = 1,2,...,n, and any real ¢;, [ = 1,2,...,n we have
Z Zzﬁkgox (tl — tk) > 0. (45)
1=1 k=1
[ ]
Proof:

(a) This was proved above.
(b) ¥ |;—o= € = 1. We have ¢x(0) = E [¢"] = 1.
(¢) This is a part of the proof of (a).

(d) Let us pause to think what we are supposed to prove. A function @x(t) is by definition wuniformly
continuous in R [69, p. 68], if it holds that for all € > 0, there exists a ¢ > 0 such that |px (t+h)—@x(t)] <
e for all |h| < 6 and all t € R. The point is that ¢ is independent of ¢, i.e., that § depends only on e. In
order to prove this let us assume, without restriction of generality that h > 0. Then we have

|<px(t+h)7gﬁx(t)| :| E [eitX (eihX . 1)} |§ EH eitX (eihX . 1) |]

SE |eitX|| eihXil | —E | eihXil | .
( ) [I ( ) 1]
=1
From the expression in the right hand side the claim about uniform continuity is obvious, if £ [| (eihx — 1) |] —
0, as h — 0, since we can then make F [| (eihX — 1) |] arbitrarily small by choosing h sufficiently small
independently of ¢.
ihX X — 1) | <2, we can apply dominated

It is clear that e’ —1 — 0 (almost surely), as h — 0 . Since | (e

convergence theorem 1.8.7 to establish E [| (eihX — 1) H — 0. Hence we have proved the assertion in part

(d).
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(e) The characteristic function of a 4+ bX is by definition
Varox(t) = E {eit(a-i-bX)} = E [eiteitX)
= eite  [¢0X] = eiotx (bt).
(f) The characteristic function of —X is by (e) with @ = 0 and b = —1 equal to
p-x(t) = px(-t) = B [e7"]

= Ecos(—tX)] + iF [sin(—tX)] = E[cos(tX)] — i F [sin(tX)],

where we used cos(—x) = cos(x) and sin(—z) = — sin(z),

= Ecos(tX)] 4+ i F [sin(tX)],
where Z stands for the conjugate of the complex number z, and then

= Ee"X] =px(t).

(g) Let us first suppose that the characteristic function of X is real valued, which implies that T (¢t) = px(t).
But we have found in the proof of (f) that Py (¢) is the characteristic function of —X. By uniqueness of
the characteristic functions, theorem 4.2.2 above, this means that X 4 X , as was to be shown.

Let us next suppose that X 4 _X. Then ex(t) = o_x(t) and by (f) p_x(t) = Px(t), and therefore

px(t) = Px(t), and the characteristic function of X is real valued.

(h) Take any n and complex numbers z; and real ¢;, [ = 1,2,...,n. Then we write using the properties of

complex numbers and the definition of ¢ x

N
Il
i
=~
Il
i
o~
Il
i
=~
Il
i

n n
E Zleltlxzkef’bth

I=1 k=1 I=1 k=1
n n n 77/7
=F ZZzlemxzkeTkX =F Zzlemxz zke“k‘X]
I=1 k=1 1=1 k=1

and as | w |*=w -w > 0 for any complex number w,

n
| Zzleith |2] >0,
=1

=F

which proves (4.5).

u
The properties (a)-(h) in the preceding theorem are necessary conditions, i.e., they will be fulfilled, if a
function is a characteristic function of a random variable. The condition (h), i.e., (4.5) says that a characteristic
function is non negative definite.

There are several sets of necessary and sufficient conditions for a complex valued function to be a
characteristic function of some random variable. One of these is known as Bochner’s theorem. This theorem
states that an arbitrary complex valued function ¢ is the characteristic function of some random variable if
and only if (i) -(iii) hold, where (i) ¢ is non-negative definite, (ii) ¢ is continuous at the origin, (iii) ¢(0) = 1.
Unfortunately the condition (i),i.e., (4.5) is in practice rather difficult to verify.
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4.2.2 Examples of Characteristic Functions

Example 4.2.4 (Standard Normal Distribution) X € N(0,1). The p.d.f. of X is, as stated,

1 2
_ —xz°/2
r) = —¢ , —oo <z < +o0. 4.6
ola) = <= (4.6)
Then by (4.4)
o] ' 1 )
ty= [ ™ e 2 dy
px (1) / or

and if we are allowed to move differentiation w.r.t. ¢ inside the integral sign, we get

Wy _ d _ d e 1 o2 /2
)= —px(t)= | — d
A0 = Foxtt) = [ Fer =i
7 : 1 2 T ) 1 2
_ . itx —x~/2 _ i itx (_ —z /2) _
= ixe e dr = " —— ( —ze dr =
/ V2T / V2T
and by integration by parts we obtain
B T T B T
— et P /2 J_roo . / <ti2eztz e 7 /2> dx
V2T = V2T
=0 —tox ().
In other words we have encountered the differential equation @g)(t) + tpx(t) = 0. This equation has the

2 . .
/2 or, in other words we have the equation

% (etz/Qtpx(t)) =0.

integrating factor e

We solve this with ¢ (£) = Ce /2. Since ¢x (0) = 1 by (b) in theorem 4.2.3 above, we get C' = 1. Thus we
have obtained the result
X eN(0,1) < ox(t) =e /2 (4.7)

We observe that e*/2 is a real valued function. Hence theorem 4.2.3 (g) shows that if X € N(0,1),
then —X € N(0,1), which is also readily checked without transforms. Indeed,

P(-X<z)=P(X>-2)=1-P((X <-—2)

—1-®(—a)=1-(1-®(2)) =D (2) =P (X <a),

where we used a well known property of ®(x), which in its turn rests upon the fact that ¢(—z) = ¢(z).

Actually we have by this provided the solution to an exercise in section 2.6.2.

Example 4.2.5 (Normal Distribution X € N (u,0?)) Let Z € N(0,1) and set X = 0Z + p, where o > 0

and p is an arbitrary real number. Then we find that

Fﬂz)P(ng)P(zs%) - <x“)
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where ®(z) is the distribution function of Z € N(0,1) and £ ®(z) = ¢ (). Thus we obtain by by (4.6) that

_ N e L N i
fX(w)—szX()—U¢( - )—Ume " .

Hence X € N (u,0?). But by (e) in theorem 4.2.3 we have

2

2
it — <5t

Ox(t) = Yozu(t) = ey (ot) = ee™ ™3

where we used (4.7). Without any doubt we have shown that

X € N(u,0%) & px(t) = et~ "2 . (4.8)

Example 4.2.6 (Poisson Distribution) Let X € Po(\), A > 0. Due to definition (4.4)

oo zt)\

o ith 7/\)‘]6 Y
=) c - Z

k=0 =0

7/\66“)\

. e/\(eitfl)

)

where we invoked the standard series expansion of e® for any complex z. In other words, we have found the
following:
X € Po(N) & px(t) = M=), (4.9)

u
Some of the next few examples are concerned with the continuous case of the definition by evaluating the integral
n (4.4). The reader with a taste for mathematical rigor may become consterned for the fact that we will be
proceeding as if everything was real valued. This is a pragmatic simplification of the presentation, and the
results in the cases below will equal those obtained, when using a more rigorous approach. The computation of
Fourier transforms and inverse Fourier transforms can then, of course, require contour integration and residue
calculus, which we do not enter upon in the main body of the text. An exception is the section on Mellin

transforms.

Example 4.2.7 (Exponential Distribution) Let X € Exp (\), A > 0. By definition (4.4)

@X(t) ti /6 m/k dr
0
_1 /671«1/»7“) doe Lt 1 —wamn-n| 11 __1
) X L/ —ib) o AGE—(I/N)  (1—in)
0

Thus we have )

11—t

X € Exp(\)  ¢ox(t) = (4.10)



124 CHAPTER 4. CHARACTERISTIC FUNCTIONS

Example 4.2.8 (Laplace Distribution) X € L (1) says that X has the p.d.f.

1
fx(x) = 56_‘35‘, —00 < T < +00. (4.11)
The definition in (4.4) gives
1 itr  —|x|
px(t) = 5 | e dx

We compute the integral by applying the definition of |z| to get

[e'e] 0 [e%e}
/eitmef\z\dz: /emer dz+/emeﬂ dz. (4.12)
o —o0 0

We change the variable x = —u, in the first integral in the right hand side of (4.12), which yields

/eme”” dx:/e_”“e_“( 1)du
— 00 [e ]
oo o0
= /67”“67“ du = /eit“e*“ du,
0 0

which is seen to be the complex conjugate of the second integral in the right hand side of (4.12). This second
integral is in its turn recognized from the directly preceding example as the characteristic function of Exp(1).
Thus we get by (4.10)

it —x
de = .
/e e x T
0
Hence oo
1 e || 1 1 1
_ T de —
2/6 S G
1 1 N 1 Sl 1+at+1—at\ 1
2 \14it 1—it) 2 1412 1 t2

In summary,

1

= 4.1
14 ¢2 (4.13)

The theorem 4.2.3 (g) shows that if X € L (1), then X 4_x.

Example 4.2.9 (X € Exp(1), Y € Exp(1), X and Y independent, Distribution of X —Y) Let X € Exp(1),
Y € Exp(1). In addition, X and Y are assumed independent. We want to find the distribution of X — Y. The
rules of computation with characteristic functions above entail

ox—y(t) = ox(t) - oy (t) = ox(t) - py (1),

and by (4.10)
1 1 1 1

T 1t 1—i(—t) 1—it 1+t
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1
IR
Here a reference to (4.13) gives that if X € Exp(1), Y € Exp(1), X and Y independent, then

X-YeL(l). (4.14)

WehaveXngYfX,too.

Example 4.2.10 (Gamma Distribution) Let X € ' (p,a), p > 0, a > 0. The p.d.f. is

1 oxPt
() av © z/a 0<z

fx(z) = (4.15)
0 z < 0.

® 1
/ 1 xp e %/ dy

oo 1 p—1 .

/_x e—e((1/a)=it) g..
T'(p) a?

0

By definition (4.4)

We change the variable v = z ((1/a) — it) > © = u/ ((1/a) — it) and get

1 7 u du
Y po/ 1/a Yy ((1/a) —it)

o0
1 1
= — 5 /up_le_“ du.
aP T'(p) ( 1/a ) —it)
0

By definition of the Gamma function I'(p f uP~le~" du, and the desired characteristic function is

1 1 B 1
a? ((1/a) —it)? (1 —iat)”’

Thus we have found that !

A i (4.16)

X el (pa) & px(t) =

Example 4.2.11 (Standard Cauchy) X € C (0, 1) says that X is a continuous r.v., and has the p.d.f.

1 1
1 N _ 41
fx(z) T 00 < & < 00 (4.17)

We are going to find the characteristic function of X € C'(0,1) by the duality argument or the symmetry
property of the Fourier transforms, see [100, p. 252]. Since all transforms involved are real, we have no

difficulty for the fact that the characteristic function is the complex conjugate of the Fourier transform.
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Remark 4.2.1 The symmetry or duality property of the Fourier transform in (4.1) is as follows.

~

If f(z) 5 f(¢), then f(z) 5 2nf(—1).

By (4.13) we know that
1

“ e
Let us hence apply the symmetry property first with ¢x (z) = ﬁ Then the symmetry property tells that

XeL(l)e ox(t)

Ch 1 - _
= 2o 1) =27 —e~ It = [t
ex () T2 - fx(—t) =2m 5¢ me

o~

But it is an obvious property of scaling of the Fourier transform (by (4.1)) that if f(z) EA f(t), then af(x) EA

~

af(t) for any real constant a. By the scaling a = 1/7 we get

1 1 1 1
—px(x) = R gl =
T

= —[t|
w1+ 22 ™ '

X eC(0,1) & px(t) =e M. (4.18)
Once more we find that X < —X.

Example 4.2.12 (Point Mass Distribution) For the purposes of several statements in the sequel we intro-

duce a probability mass function with a notation reminiscent of the Dirac pulse.

So(x) = { (1) i;i (4.19)

Then §. is a distribution such that all mass is located at ¢. In the terminology of appendix 2.5 §. defines a

purely discrete measure with one atom at ¢. Then, if X € §.,
ox(t) = e'e. (4.20)

Example 4.2.13 (Bernoulli Distribution) Let X € Be(p). Here p = P(X = 1). Then we apply again the
discrete case of the definition (4.4) and get

px(t) = E[e"X] = "1 —p) +e'p = (1 —p) +€'p.

X € Be(p) & ox(t) = (1 —p) +e'p. (4.21)

Example 4.2.14 (Symmetric Bernoulli Distribution) The characteristic function of X € SymBe with
p.m.f. in (2.50) is computed as
it

@X(t) — B [eitX] _ efz't + el

N |

% = cos(t).
X € SymBe < ¢x(t) = cos(t). (4.22)
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Example 4.2.15 (Binomial Distribution) Let X € Bin(n,p). The discrete case of the definition (4.4)

yields
- i - i n n— - n it \F n—
px(t)=> ™ P(X =k)=> ¢ pPrA—p)h=>" (ep)" (1—p)"*
k k
k=0 k=0 k=0
= (eitp + (1 —p))n s
where we used the binomial theorem. We have thus found
X € Bin(n,p) & ¢x(t) = ((1 —p) +''p)". (4.23)

4.3 Characteristic Functions and Moments of Random Variables

One can compute moments by differentiation of the characteristic function.

Theorem 4.3.1 If the random variable X has the expectation, E [| X |] < oo, then

d d

%W((t) li=0= %@x(o) =iE[X]. (4.24)
If E[| X |*] < oo, then
ke
%@X(o) =i"E[X"]. (4.25)

Proof: Formally, %(px (t)=FE [%eitx} = FE [iXe"X]. Hence %(px (0) = ¢E [X]. The legitimacy of changing
the order of diffentiation and expectation is taken for granted. "

We can do some simple examples.

Example 4.3.2 (The Cauchy Distribution) In (4.18) X € C(0,1) was shown to have the characteristic

function ¢x (t) = e~I!l. Let us note that |t| does not have a derivative at t = 0.

Example 4.3.3 (Mean and Variance of the Poisson Distribution) We have in (4.9)

ex(t) =N,
Then d . .
E(px(t) = e)‘(el —1) et
and by (4.24)
BIX] =+ ox(0)= A

as is familiar from any first course in probability and/or statistics.

d2

ﬁ@X(t) — M) 22 0ty e/\(e“—l)i2>\ez't7
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and from (4.25)
1 d?

E[X?] = Fﬁm(o) = A2+

Thus
Var[X] = E [X?] — (E[X])> = X2+ A= A2 =\,

which again agrees with the expression derived in any first course in probability and/or statistics.

4.4 Characteristic Functions of Sums of Independent Random Vari-

ables
Let X1, X5, ..., X,, be n independent random variables. We consider their sum
n
Sn=X1+X2+...+Xn=ZXk.
k=1
Theorem 4.4.1 X;, X5, ..., X, are independent random variables with respective characteristic functions

ox,(t), k=1,2,...,n. Then the characteristic function ¢g, (¢) of their sum S, = > ;_; X is given by

s, (1) = px, () - x5 (1) - - - px, (B). (4.26)

Proof: ¢g, (t) = E [¢'*5"] = B [et(Xit+XettXn)] = B [eitX1eitXz . . #Xn] Then we can recall theorem

1.6.1 above, and suitably applied this gives by independence that
= B [¢tX0] B [¢X2] .. B [¢itXn]

=ox, (1) px, (1) - - px, ().

Corollary 4.4.2 X, X5, ..., X,, are independent and identically distributed random variables with the char-
acteristic function px(t), X £ X},. Then the characteristic function vs, (t) of their sum S,, = Zle X; is given
by

s, (t) = (ex(t)" (4.27)

u
If X and Y are independent random variables with probability densities fx and fy, respectively, then their
sum Z = X 4+ Y has, as is checked in (2.110), the p.d.f. given by the convolutions

£ = [ ax@ic-ade= [ (- iy
If we write the convolution symbolically as, say,

fz=Ix@ fv,

then we have in the theorem 4.4.1 established the rule of transformation

Ch
fx @ fy = ox - py.
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This is plainly nothing but a well known and important property (convolution theorem) of Fourier transforms,
[100, p. 177].
As applications of the preceding we can prove a couple of essential theorems.

Theorem 4.4.3 X, Xo, ..., X, are independent and X} € N (,uk,ai) for k =1,2,...,n. Then for any real

constants ay,...,an
n n n
S, = Zaka eN (Z Qg fbk, Zaiai) . (4.28)
k=1 k=1 k=1

Proof: By (4.26) we obtain
PSSy (t) = Pa1 Xy (t)wthz (t) CeetPan X, (t)
and by (e) in theorem 4.2.3 we get

= px, (a1t) - px, (azt) - ... - px, (ant).

2,2
akakt

By assumption and (4.8) we have ¢x (axt) = e+t~ =2 This yields

2

. 2a3¢2 .
ezugagt— 02'122 R ezunant—

o242 42

2,2,2
. _ ojajt
iprart >

PX (alt) 2.¢ (aQt) et PX, (ant) =e

and some elementary rearrangements using the properties of the exponential function we find

. S0, afoit
n =1%%%%
el > k1 HkQKt— 5

or

A _Zzzlai%
ps, (1) = ! Zhoy st ==

A comparison with (4.8) identifies ¢g, (t) as the characteristic function of N (Y}_; arpr, > p_, aioz). By
uniqueness of the characteristic function we have shown the assertion as claimed. "

Example 4.4.4 Let X1,..., X, are LLD. and € N(p,0?). Set X =1 3" | X;. Thus X € N (/L, %2)

Next we deal with sums of independent Poisson random variables.

Theorem 4.4.5 X1, Xs, ..., X, are independent and X}, € Po(\;) for Kk =1,2,...,n. Then

Sy = Zn:Xk € Po (i )\k> . (4.29)
k=1 k=1

Proof: By (4.26) we obtain
PSn (t) = ¥x, (t) " PX, (t) et PX, (t)
and when we invoke (4.9)

_ e)\l(eit’fl)e/\g(eitfl) oo e)\n(eit’fl)

_ e(,\1+...+>\n)(eit1)_

Thus
s (t) = eOr oA (e 1),
But another look at (4.9) shows that the right hand side of the last equality is the characteristic function of

Po (3"}, Ax). Thus by uniqueness of characteristic functions the claim follows as asserted. n
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Example 4.4.6 (Binomial Distribution as a Sum of Independent Be(p) Variables) By a comparison
of (4.21) with (4.23) it follows by uniqueness of characteristic functions that if X € Bin (n, p), then

XLU,4Us+... +U,,

where Uy, are independent and identically distributed (I.I.D.) Uy € Be(p), k =1,2,...,n.

Example 4.4.7 (Sum of Two Independent Binomial Random Variables with the same p) X; € Bin (nq,p),
X € Bin (ng2,p), X1 and X5 are independent. Then

X1 + X2 € Bin (n1 + ng,p) . (430)
To check this, by (4.23) and (4.26) it holds
Px1x,(t) = (1 =p)+ep)"™ - (1 —p) +€p)™

_ ((1 _p) + eitp)nri-nz ,

which proves the assertion.

Example 4.4.8 (Poisson binomial Distribution ) X € Pobin (p1,p2,...,pn), 0 < p; < 1,71 =1,2,...,n,
of Example 2.3.7 is naturally defined as the sum of independent U; € Be (p;), i = 1,2,...,n that are independent,
or

X=U +...+U,.

From this the mean and variance given in Example 2.3.7 are immediate. In addition, the characteristic function
is
n

ox(t) =[] (1 —p; +pje"). (4.31)

Jj=1

Example 4.4.9 (Gamma Distribution a Sum of Independent Exp()\) Variables) Let X € T" (n, \), where
n is a positive integer. Then the finding in (4.16) shows in view of (4.10) that X is in distribution equal to
a sum of n independent Exp(\)-distributed variables. In view of (2.2.10) we can also state that a sum of n

independent Exp(\)-distributed variables has an Erlang distribution.

Example 4.4.10 (Sum of Two Independent Gamma Distributed Random Variables) Let X; € I' (nq, \)
and Xo € I' (n2, A). Then in view of (4.16) and (4.26) we get that

X1+X2€F(n1+n2,)\).
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4.5 Expansions of Characteristic Functions

4.5.1 Expansions and Error Bounds

We recall the complex exponential for a purely imaginary argument, or with a real ¢t and x,

(itx)? n (itz)3 n (itz)*

e —1+; i =1+itx + 3] m
Lemma 4.5.1 For real x we have
. " (ix)* . |z|n L 2]z
v < 4.32
e kz_o R =i G T (4-32)

Proof: The proof is by complete induction. For n = 0 we claim that
€ — 1 |< min (jal, 2),

which is easily seen by drawing a picture of the complex unit circle and a chord of it to depict e®® — 1.
We make the induction assumption that (4.32) holds for n. We wish to prove the assertion for n + 1. By
complex conjugation we find that it suffices to consider x > 0. We proceed by expressing the function to be

bounded as a definite integral.

n+1 iz k ) n+1 k
ezzﬁZ(ld) *61Z7172(k')
k=0 k=1
_ iz ()T e ()"
= e — _kz(k+1)!_/o le —kzzo o 1d(zt)

Thus

n

W (iz)* v it)k
|eiw—z(k,) |g/0 |e”—z(2 | d(it).

k=0 ’ k=0

At this point of the argument we use the induction hypothesis, i.e., (4.32) holds for n. This yields

T s (i)t v ¢t 2pn
/ |e”—§ (z2) |dt§/min id , id dt
0 k! 0 (n+1)1" n!

- ) |SC|"+2 2|1.|n+1
min .
- (n+2)!" (n+1)!

(Why does the last inequality hold ?) In summary, we have shown that

n+l . \k n+2 n+1
i (iz) 2] 2|z|

— <
e ;;) R =i S )

which evidently tells that the assertion (4.32) holds for n + 1. The proof by induction is complete. "

The bound (4.32) leads immediately to the next bound for expansion of characteristic function.

Lemma 4.5.2 For a random variable X such that F [| X |"*] < oo we have

" (it)"E [ X*] [ EX | 2ex|n
WX(t)_;;)T ISE[mln((n+1)!, p )} (4.33)
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Proof: By the definition of px (t) we have

" (it)*E [ X " (it ’“E [XF
ox( - 30 I p ey -y BOPE DAL
k=0 k=0
n \k Yk n k: k
=|E itX (Zt)k'X I<E Z X ‘|

k=0
Now we apply the error bound in (4.32) on the expression inside the expectation, and the upper bound in (4.33)
follows. "
For ease of effort in the sequel we isolate an important special case of the preceding. With n = 2 we have in
(4.33) the error bound

tX[]? 2tX|?
E [min<| | Q)] <|tI*E
3! 2!

min(|t||X|3,2|X|2)]
3! '

Let o(t) denote any function such that lim;_,o @ — 0 (Landau’s o -notation). o(t) is also called ’small ordo’.

In our case we construct a small ordo by observing that

o(t?) =|t|’E

min (|t]| X2, 2|X|2)]
3!

( — 0. Thus we can write

ox(t) =1+itE[X] - gE [X?] +0 (). (4.34)

In view of the preceding there is also the following series expansion.

Theorem 4.5.3 Suppose that the random variable X has the nth moment E[| X |"] < oo for some n. Then

px(t) =1+ E[X*] o+ ollt™): (4.35)

4.5.2 A Scaled Sum of Standardised Random Variables (Central Limit Theorem)

Let us now consider the following problem. X;, Xo, ..., X, ... is an infinite sequence of independent and
identically distributed random variables with F [X;] = p and Var [X;] = o2 for k = 1,2,...,. We standardise
the Xgs by subtracting the common mean and then dividing the difference by the common standard deviation

or
X —p

o
Thereby Y ’s are independent and identically distributed. In addition, we assume the standardization E[Y;] =0
and Var [Y;] = 1. Let us furthermore add the first n of the Y};’s and scale the sum by the factor —= so that

L
z” _Z” Y
o T Vn4 Y= «\/n

We shall now compute the characteristic function of W,, and then see what happens to this function, as n — oc.

Yi =

It turns out that the scaling must be taken exactly as \/Lﬁ for anything useful to emerge.
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By (4.27) with Y £V}, it follows that

ew, (t) = Ps %(t) = ((p%(t))n.

x
By property (e) in theorem 4.2.3 we have that go%(t) =y (ﬁ) Thus

o= (o ()

When we expand ¢y (ﬁ) as in (4.34) we obtain, as E'[Yj] = 0 and Var [Y;] = 1,

() ()
pw, (t) = (1—%+o<%)>n.

It is shown in the Appendix 4.6, see (4.42), that now

Thereby we get

lim ow, (t) = et°/2, (4.36)

n—oo
In view of (4.7 ) we observe that the characteristic function of the scaled sum W, of random variables converges
by the above for all ¢ to the characteristic function of N(0,1). We have now in essence proved a version of the
Central Limit Theorem, but the full setting of convergence of sequences of random variables will be treated

in chapter 6.

4.6 An Appendix: A Limit

4.6.1 A Sequence of Numbers with the Limit e”

The following statement appears under various guises in several of the proofs and exercises.

Proposition 4.6.1
n
Cp — C= (1 + C—") — e asn— oo. (4.37)
n
Proof: Let us consider
In (14 <)

Cn
n

nln (1 + c_n) =cy - (4.38)
n

Here we recall a standard limit in calculus (or, the derivative of Inx at © = 1)

1
lim 2OED)
h—0 h

Since ¢, — ¢ by assumption, we have that <= — 0, as n — co. Thus

T Ul
n— 00 T"

)

we get in (4.38) that
lim nln (1 + C—n) =c
n—00 n

Let x,, = nln (1 + %") Since e* is a continuous function we have
Cn " x c
(1+—) =e" = e
n
[ ]

The proof above is strictly speaking valid for sequences of real numbers. We shall next present two additional

arguments.
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4.6.2 Some Auxiliary Inequalities

Lemma 4.6.2 For any complex numbers w;, z;, if |w;| <1 and |z| < 1, then

Tz = TTwil <> 1z — wil. (4.39)
1=1 =1 =1

Proof We have the identity

n n n—1 n—1 n—1
| Hzi—Hwi |=| (20, — wi) Hzi—i—wn <H Zi — le> |
i=1 =1 1=1 =1 =1

and the right hand side of this inequality is upper bounded by
n—1 n—1
i=1

i=1
since |wy| <1 and |z;| < 1. Then we use an induction hypothesis. n
Lemma 4.6.3 For any complex numbers v and v,
|u" —v™| < |u —v|nmax(|ul, [v])" (4.40)
Proof We have the identity
un _ ,Un _ (u _ ,U)un—l 4 ,U(un—l _ ,Un—l)

and then

lu™ —v"| < |u — | [u™ " + |v]jum Tt =T (4.41)
Our induction hypothesis is that

Jun =t — "1 < Ju = vf(n — 1) max(ful, [o])" 2.

When we apply this in right hand side of (4.41) we get

n |)n—2'

" = "] < fu—ol]u" | + [vlju — vf(n — 1) max(Jul, [v

We note that

[u" ™| < max(ful, [o])"

and that

2 1

[o] - max(Jul, [v])"~* < max(Jul, [v]) - max(Jul, [v])"~* = max(Jul, [v])" "

Thus we have obtained
u™ —v"| < fu— v max(ful, [v])" 7" + [u = v|(n — 1) max(|ul, [v])",

which proves (4.40) as asserted. .
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4.6.3 Applications

The situation corresponding to (4.37) is often encountered as

12 2\\"
lim (1——+0(—)) :e_t2/2.
n—00 2n n

1. Let us set

3l

Thenn~0(%): of -,

2 (7))

31

135

(4.42)

) 0, as n — 0o. Thus ¢, — —%, as n — oo, and (4.42) follows by (4.37), since

2. Let us now check (4.42) using the inequalities in the preceding section. With regard to lemma 4.6.2 we

take for all ¢

and

Then |w;| <1 and |z;] <1 and

2n

e (£ (9) - (-

and in view of the lemma 4.6.2 above we get

(-5 (5) - (-5) 1= (5))

3 ‘ﬁm

°()

When n — oo, — 0, by definition of Landau’s o. Since

3|

2n

12 2\\" 2
(-elE) =
2n n

3. If|u|< 1and |v|< 1, then we get in (4.40)

2\" >
(1——) —>e_t/2, as n — oo,

it now follows that as n — oo
as was to be proved.

n

[u" — " < |u—vn

t2 t2 t2
o= (1-g+e(5) = (-5).
2n n n

we obtain again as n — oo, that

and thus with
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4.7 Exercises

4.7.1 Additional Examples of Characteristic Functions

1. Let a < b. Show that
itb ita

e —e
X eU(a,b )= ———. 4.43
c V() & ex() = Sos (1.43)
2. Let X € Tri(—1,1), which means that the p.d.f. of X is
1—|z] |z|<1
= 4.44
Ix(@) { 0 elsewhere. ( )
Show that
sin £\ >
XeTri(1,1)<:><pX(t)< t2> : (4.45)
2

3. Let X7 €U (f%, %) and Xo € U (f%, %) Assume that X7 and X5 are independent. Find the distribution
of X1 + XQ.

4. X € N(0,1). Show that the characteristic function of X? is
1

2(t) = ——. 4.46
5. Assume that X7,..., X,, are independent and N (0, 1) distributed. Show that
> X7 ex’(n). (4.47)
i=1

Aid: You can do this with little effort by inspection of (4.16).
6. Stable Distributions

(a) Xi,...,X, are independent and C(0,1) -distributed. Set S,, = X7 + ...+ X,,. Show that
1
-5, € C(0,1).
n

In other words, %Sn Lx.

(b) Xy,...,X, are independent and N(0, 1)-distributed. Set S,, = X; + ...+ X,,. Show that
1

=S8, € N(0,1).

=S, €N LY

. . 1 d
In other words, in this case ﬁSn = X.

(¢) Xisar.wv. and Xq,..., X, are independent r.v.’s and X}, L X for all k. Set Sp,=X1+...+X,. If

there exist sequences of real numbers a,, > 0 and b,, such that for all n > 1
Sh 4 anX + by,
then the distribution of X is said to be stable. Show that if
ox(t) = et 0<a<2,e>0, (4.48)

then the distribution of X is stable. (It can be verified that px (¢) is in fact a characteristic function.)
Interpret (a) and (b) in terms of (4.48).
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7. Let X1,...,X,,... be independent and C(0,1) -distributed. Set S,, = X7 + ...+ X,,. Show that
1 & Sk
k=1

Note that the r.v.’s Sk are not independent.

8. (From [35]) Here we study the product of two independent standard Gaussian variables. More on products
of independent random variables is given in section 4.7.4.

(a) X7 € N(0,1) and X3 € N(0,1) are independent. Show that the characteristic function of their

product Y = X; - X5 is
1

t) = .
@Y( ) m
(b) Z1 € T'(a,b) and Zy € T'(a,b) are independent. We set

(4.49)

U:ZI_ZQ)

and suppose we know that U £ Y, where Y has the distribution in part (a) of this exercise. What

are the values of a and b ? Answer: a =1/2,b=1.

9. (From [35]) The r.v. X has the characteristic function ((t). Show that |¢(¢)|? is a characteristic function.
Aid: Take X; and X5 as independent and X3 4 X as well as X 4 X. Check the characteristic function
of Y = X1 - XQ.

10. X € IG(p, A) with p.d.f. given in (2.37). Find its characteristic function as

(%)[l—@]'

px(t)=e

11. X € K(L, p,v) as in example 2.2.22. What could ¢x (t) be ? Aid: None known.
12. X € Ske(u1, pi2) as in example 2.3.15.

(a) Show that

ox(f) = e~ (patmn) T e

(b) Find F[X] and Var [X] using ¢x (t).

(¢) Show that the sum and the difference of two independent Skellam-distributed variables are Skellam-
distributed.

4.7.2 Selected Exam Questions from the Past Decades

1. (5B1540 02-08-21, slightly simplified) The random variables X1, Xs,..., X,, ..., are LL.D. and have the

probability mass function
1 1 1
“1)== — 1) ==,
px(-1) 4,px(0) 2,px( ) 1

We define the random variable (random time) N by
N = min{n | X,, = 0},

i.e., N is the smallest (or first) n such that X,, = 0.
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(a) Show that N € Fs(3).
(b) Show that the characteristic function of Sy = Z]ngzl X is gy (t) = 1/(2 — cost).
(c¢) Find Var (Sy) (Answer: Var (Sy) =1).

2. (5B1540 04-05-26) The random variable Y, is uniformly distributed on the numbers {j/2"|j = 0,1,2,...,2"—
1}. Ther.v. X, 11 € Be (%) is independent of Y,,.

(a) Show that

(b) Show that
2" 1 itl/2n

k=1 =0

3. (5B1540 00-08-29) X € Exp(l), Y € Exp(l) are independent random variables. Show by means of
characteristic functions that v
X+ 2 max(X,Y).

4. (an intermediate step of an exam question in FA 181 1981-02-06) Let X1, X, ..., X,, be independent and

identically distributed. Furthermore, a1, a2, ..., a, are arbitrary real numbers. Set
Yi :a1X1 —l—ang—i—...—i—aan

and
Y2 = anXl + an,ng 4+ ...+ aan.

Show that
Y £ ;.
4.7.3 Various Applications of the Characteristic Function

1. In section 10.4.1 and elsewhere we shall require the following result.
X € N(0,0%). Show that

0 n is odd
E[X" = 4.50
X { OMlg2  n=2k k=0,1,2,... (4:50)
Aid: ([66, pp. 23-24]): We have
px(t) =2
Let o
A) = Zmex (t),

where @&?) (t) = ox (1), gpg)(t) = —to?px(t). Show by induction that for n > 2,

PP () = —(n— 1ol 2 () — toe ¢V (1),

Then we get
PP(0) = —(n - Dy 2(0), n>2, (4.51)

which is regarded as a difference equation with the initial value wg;)(()) = 0. Solve (4.51).
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2. The Rice Method is a technique of computing moments of nonlinear transformations of random variables
by means of characteristic functions [104, pp. 378-]. Let H(z) be a (Borel) function such that its Fourier
transform H () exists. X is a random variable such that E [H(X)] exists. Then we recall the formula for
inverse Fourier transform in (4.2) as

H(z) ! / h ¢ H(t)dt.

T2

Then it follows, if the interchange of integral and expectation is taken for granted, that
1 - itX 77 1 - itX ) 77
E[H(X)] = %E U e H(t)dt] = %/ E [e"*] H(t)dt,

— 00 — 00

and by definition of the characteristic function

E[H(X)] 1/00 ox (1) H(t)dt. (4.52)

:% .

This is the tool of the Rice method. It may turn out that the integration in the right hand side can be
performed straightforwardly (often by means of contour integration and residue calculus).
Assume that X € N(0,0?). Show that

02

Elcos(X)] =e7.

Aid 1.: An engineering formula for the Fourier transform of cos(z) is, [101, p.413],
~ 1
H(z) = cos(z) & H(t) = 5 (6= 1) +6(t+1),

where §(t) is the Dirac’s delta ’function’.
Aid 2.: If you do not feel comfortable with Dirac’s delta, write cos(x) by Euler’s formula, in this attempt

you do not really need (4.52).

4.7.4 Mellin Transform in Probability

The transform is named after Hjalmar Mellin'. The Mellin transform of probability densities is being applied
in communications engineering, econometrics, biology, classification, analytic combinatorics and other fields.
The point in this context is that products of random variables are part of the problem at hand, and that the

conclusion about the distribution of these products can be derived by Mellin transforms.

Example 4.7.1 A financial portfolio is valued in a domestic currency (e.g., SEK). The prices of shares and
other instruments are uncertain and are modeled as random variables. In addition the exchange rates are

uncertain, hence the value of the portfolio in, say, JPY may be modelled by a product of two random variables.

Example 4.7.2 In statistical methodology an important role is played by the following result. Suppose X €
N(0,1), Y € x*(f), X and Y are independent. Then we know (presumably without a proof (?)) by any first

course in statistics that x

VY/f

IRobert Hjalmar Mellin (1854 - 1933) studied at the University of Helsinki, where his teacher was Gésta Mittag-Leffler, who left
Helsinki for having been appointed to professor of mathematics at the University of Stockholm. Mellin did post-doctoral studies

e t(f) (4.53)

in Berlin under Karl Weierstrass and in Stockholm. From 1908 till retirement Mellin served as professor of mathematics at the
Polytechnic Institute in Helsinki, which subsequently became Helsinki University of Technology, currently merged to a constituent
of the Aalto University.
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Figure 4.1: Mellin Auditorium, Aalto University Main Building, Otaniemi.

i.e., the ratio follows the Student’s t -distribution. We hint thereby that this can shown by a Mellin transfor-

madtion.

For a random variable X > 0 with the probability density fx(x) we define the Mellin transform as
Py (2) = / 7 fx (z)da. (4.54)
0

Considered as a function of the complex variable z, fM « (2) is a function of the exponential type and is analytic

in a strip parallel to the imaginary axis. The inverse transformation is

fx(z) = 1 /L 77 Fany (2)dz, (4.55)

- 2mi
for all z, where fx(z) is continuous. The contour of integration is usually L = {¢ —ico, ¢+ ico} and lies in the
strip of analycity of fM < (2).
General Properties of the Mellin Transform

Several of the exercises below require proficiency in complex analysis to the extent provided in [93].
1. Let X > 0 be a random variable. Then show that

(a) For any real constant a > 0,

P, (2) = @7 Fauy (2). (4.56)
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(b) For any constant «,

Fixa (2) = Fray (@2 —a+ 1) (4.57)
In particular, the Mellin transform of % is
Pty (2) = faay (2 +2) (4.58)
2. Let X >0 and Y > 0 be independent continuous random variables. Show that
Frtsey (2) = Frase (2) ey (2). (4.59)

3. Let X >0 and Y > 0 be independent continuous random variables. Show that

.]/C\M (Z) = .]/C\MX (z)f./\/ly(_z + 2)' (460)

<<

4. Let fx(x) and fy(y) be two probability densities on (0,00). Let

<1 x <1 x
hz:/ —f <—>f ydy:/ —fx (y) f <—>dy. 4.61
(z) E b v (y) oy x (y) fy ; (4.61)
Compute the Mellin transform of h(z). Aid: Recall (2.108) in the preceding.

The function h(z) is called the Mellin convolution of fx(z) and fy (y).

5. X € U(0,1). Show that
~ 1
where the strip of analycity is the half-plane Re(z) > 0.

6. X €' (p,1). Show that

s (0) = g =) (4.63)

where the strip of analycity is the half-plane Re(z) > 0.
7. The Mellin transform of a probability density is

where the strip of analycity is the half-plane Re(z) > 0. Find fx (z). A piece of residue calculus is required

for the inversion in (4.55).

8. The random variables X, k =1,2,...,n are independent and have the density
(a+ 1Dz f0<z<l1
€T =
Ix(@) { 0 elsewhere.
(a) Show that
~ a+1\"
P = (250) (4.65)

(b) Show that
(atD" ra (ln %)n_l fo<z<l1

T, xi (2) = { (n—1)t

(4.66)
0 elsewhere.

9. In example 2.2.22 it was claimed that if
X = Xl : X27

where X; € T'(1/L, L), and Xo € T' (uu/v, v) are independent, then X has the p.d.f. in (2.38). Verify this

by means of the appropriate Mellin transforms. Aid: None available.



142 CHAPTER 4. CHARACTERISTIC FUNCTIONS

The Mellin Transform of the Product of n Independent N(0,1) Variables

The requirement X > 0 would seem to be a serious impediment to usefulness the Mellin transform in probability
calculus. However, let X = max{X,0} denote the positive part of X and X~ = max{—X,0} denote its
negative part. Thus X = X* — X, and

XY =XTYT XY - XYT4+ XYV,

and then the Mellin transform of X can be defined for XY. This or other similar tricks enable us to extend the
transform to the general case?. Then we can show, e.g., that the product of n independent N (0, 1) variables is

(the student is not required to do this)

IR T A A .

where the contour of integration is a line parallel to the imaginary axis and to the right of origin. The integral

may be evaluated by residue calculus to give

oo

Iy, x,.(2) = Z ﬁR(z, n,7),
j=0 \&T

where R(z,n,j) denotes the residue of (g—j) - I'™ (z) at the nth order pole at z = —j. People knowledgeable in
special functions recognize by (4.67) also that I, X (x) is an instance of what is called Meijer’s G-function
(or H-function) [3, pp.419—425], which is a generalization of the hypergeometric function. The residues can
be evaluated by numerical algorithms, and therefore the probability density and the corresponding distribution
function are available computationally, and by virtue of compilation efforts in the past, in tables of of function

values.

10. Let X1,..., X, be independent N(0,0?) variables. Show that

e s @) = ——— / o ((;; )n)_zr" (2) dz. (4.68)

(2m02)"/? 2 Jo—ioe
11. Establish the result in (4.49) by means of (4.68).

The Mellin Transform is a Fourier Transform

Make the change of variable x = e* and z = ¢ — it in (4.54). Then we get the transform

Puleit) = [ e pe (") da. (4.69)
0
and the inverse in (4.55) as
1 [~ ~ _
fx(e") = o / eteT fryy (¢ — it)dt. (4.70)

This shows in view of (4.1) and (4.2) that we have in fact the pair of a function and its Fourier transform as in
(4.3),
(fx (e e, Faax (e —it))

2M.D. Springer & W.E. Thompson: The Distribution of Products of Independent Random Variables. SIAM Journal on Applied
Mathematics, Vol. 14, No.3, 1966, pp. 511—526.



Chapter 5

Generating Functions in Probability

5.1 Introduction

The topic in this chapter will be the probability generating functions and moment generating functions in
probability theory. Generating functions are encountered in many areas of mathematics, physics, finance and
engineering. For example, in [3] one finds the generating functions for Hermite, Laguerre, Legendre polynomials
and other systems of polynomials. The calculus of generating functions for problems of discrete mathematics
(e.g., combinatorics) is expounded in [41]. In control engineering and signal processing generating functions are
known plainly as z-transforms, see [93, 100]. The generic concept is as follows.

Consider a sequence of real numbers (ay),—, €.8., ar could be the value of the kth Hermite polynomial Hj,

at 2. The (ordinary) generating function of (ax),—, is defined as

G(t) =) aptt
k=0

for those values of ¢, where the sum converges. For a given series there exists a radius of convergence R > 0 such
that the sum converges absolutely for | ¢ |< R and diverges for | ¢ |> R. G(t) can be differentiated or integrated
term by term any number of times, when | t |[< R, [69, section 5.4]. We recall also Abel’s Theorem: if R > 1
then limyq G(t) = 3", ak. In the sequel limits with ¢ 11 will often be written as ¢ — 1.

In many cases the G(t) can be evaluated in a closed form. For example, the generating function of (proba-

bilist’s) Hermite polynomials Hy(z) in (2.97) is
G(t) = ™73 = 3" Hy(a)t*.
k=0

The individual numbers, H(z), in the sequence can be recovered (generated) from the explicit G(¢) by differ-

entiation.

5.2  Probability Generating Functions

In this section we consider only discrete random variables X that have the non negative integers (or a subset

thereof) as values. We have the probability mass function
px(k)=P(X =k), k=0,1,2,...

143
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The first example that comes to mind is X € Po()), see example 2.3.8. In the case of a finite set of values we
take px (k) = 0 for those non negative integers that cannot occur, e.g., when X takes only a finite number of
values.

Definition 5.2.1 ( Probability generating function ) X is a non negative integer valued random variable.
The probability generating function (p.g.f.) gx(t) of X is defined by

o) B[] = 3 (b (5.1)
k=0

n
We could be more precise and talk about the p.g.f. of the probability mass function {px(k)},—,, but it is

customary and acceptable to use phrases like 'p.g.f. of a random variable’ or 'p.g.f. of a distribution’.

Example 5.2.1 (P.g.f. for Poisson distributed random variables) X € Po(\), A > 0. The p.g.f. is

N Oy (7 ) L
gx(t)ZZtke ’\Eze ’\Z =€ Aoe,
k=0 k=0

where we used the series expansion of e**, which converges for all . In summary,
X € Po(\) = gx(t) = D, (5.2)

We write also
gro(t) =™V teR.

Note that gx (1) = Yp—opx(k) = 1, so the series converges absolutely at least for | ¢ |< 1. In addition,
9x(0) = px(0). By termwise differentiation we get

d o0 B o0 B
95 (1) = Zgx(t) = Dkt px(k) = Y ket pxc (k).
k=0 k=1

Then it follows that
g% (0) = px (1).

If we differentiate successively and evaluate the kth derivative gg?) (t) at t =0, we get

(k)
k) =P (x =y = 50

In this sense we can recover (generate) the probability mass function px(n) from gx ().

k=0,1,2,.... (5.3)

Example 5.2.2 X € Po()), then by (5.2) gg(l)(t) = XMt~ and gg(l)(O) = e~ *)\, as should be.

Theorem 5.2.3 (Uniqueness) If X and Y are two non negative integer valued random variables such that

gx(t) =gy (t) forallt,

then
px(k) =py(k) k=0,1,2,...
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We write this as

("X and Y are equal in distribution’).

Proof: Since gx(t) = gy (t) holds for a region of convergence, we can take that the equality holds for some

region around origin. Then we have by (5.3) for all k&

(k) (k)
px(k’) _ ng!(O),py(k) _ gyk|(0)

But the assumption implies that ggf)(()) = ggc)(()), and hence px (k) = py (k) for all k. n

The uniqueness theorem means in the example above that (5.2) can be strengthened to
X € Po(\) & gx(t) = D, (5.4)

We can think of the generating functions of functions of X. The 'p.g.f. of Y = H(X)’ would then be

o0

gy (t) = gux) = E {tH(X)} — ZtH(k)Px(k)-
k=0

Example 5.2.4 Let Y = a + bX, where X is a non negative integer valued random variable and a and b are

non negative integers. Then
gy (t) = B[] = 0B [1X] = 2B | (1) "] = t9x (1), (5.5)

if t¥ is in the domain of convergence of gx.

Let us next compute additional examples of p.g.f.’s.

Example 5.2.5 (P.g.f. for Bernoulli random variables) X € Be(p), 0 < p < 1. Here P(X = 1) = p,
P(X=0)=1-—p=gq (and . The p.g.f. is

gx(t) =t°(1 —p) +tp=q+pt.

Hence we have
X € Be(p) & gx(t) = q+ pt. (5.6)
We write also
gBe(t) = ¢ + pt.

We note that gx(0) = ¢ = P(X = 0), gg)(t) = p and thus gg(l)(()) =p=PX =1) and ggf)(()) = 0 for
k=2,3..., as should be.

Example 5.2.6 (P.g.f. for Binomial random variables) X € Bin(p), 0 <p <1, ¢=1—p. The p.g.f. is

gx(t) =>_t* ( . )ml REDY ( . ) (tp)"(1 —p)"*
k=0

k=0

=((1=p)+tp)" =(g+1tp)",
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where we used the binomial theorem.
X € Bin(p) & gx(t) = (¢ +1tp)". (5.7)
We write also

gBin(t) = (g +1tp)".
When both (5.6) and (5.7) are taken into account, we find

gBin(t) = (gBe(t))" - (5.8)

Example 5.2.7 (P.g.f. for Geometric random variables) X € Ge(p), 0<p<1,q=1—p. px(k) = ¢*p,
k=0,1,2,.... The p.g.f. is

gx(t) = _t*p(1—p)* =p> (tg)",
k=0 k=0

which we sum as a geometric series to get
p

T1-gqt
if | t|< %, where the radius of convergence is obtained from the radius of convergence of geometric series.

P_ <l (5.9)

X € Ge(p) & gx(t) = gce(t) = T gt ¢ .

Example 5.2.8 (P.g.f. for First Success random variables) X € Fs(p), 0 <p <1, ¢=1—p. px(k) =

¢ 'p, k=1,2,.... The p.g.f. is
(2:(%(1)’c - 1)

o0

o0 n
_ — p
gX(t):Ztkqu 1:p tqu 1:_Z(tq)k:
k=1 1 qk:l

and we sum the geometric series, if | ¢ |< i, to get

_p(_ L \_p(_a \__»pt
g \1—qt g \1—qt 1—qt

pt 1
—, |t|< - 5.10
o i< (5.10)

ESH RS

k= k=0

X € Fs(p) & gx(t) = grs(t) =

Example 5.2.9 (P.g.f. for X +1, X € Ge(p)) Let X € Ge(p), 0 <p<1l,g=1—p. WesetY =X + 1.
Since X has values £k = 0,1,2,...,, the values of Y are k = 1,2,...,. To compute the p.g.f. of Y we can use
(5.5) with a = 1 and b = 1 and apply (5.9)

D pt
ty=+t- ty=¢t. — = |
gy (t) gx () T—gt 1—gqt

Here a look at (5.10) and the uniqueness of p.g.f. entail

X +1 € Fs(p).
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This makes perfect sense by our definitions. If X € Ge(p), then X is the number of independent attempts
in a binary trial until one gets the first success NOT INCLUDING the successful attempt. The first success
distribution Fs(p) is the distribution of the number of independent attempts in a binary trial until one gets the
first success INCLUDING the successful attempt. Clearly these very conceptions imply that X + 1 € Fs(p), if
X € Ge(p). Hence we have re-established this fact by a mechanical calculation. Or, we have checked that p.g.f.
corresponds to the right thing.

5.3 Moments and Probability Generating Functions
We find first a formula for ggp(l). We call

EX(X-1)-...- (X = (r—1))]
the rth (descending) factorial moment of X.

Theorem 5.3.1 (Factorial Moments by p.g.f.) X is a non negative integer valued random variable, and
E[X"] < oo for some r > 0. Then

VM =EX(X-1)...-(X—(r—1))]. (5.11)
Proof: By successive differentiations
g% () = i k(k—=1) . (k= (r = D))" "px (k)

Then we observe that

ik(k:f1)~...~(k:7(r71))px(k:):E[X(X71)~...~(Xf(r71))].

k=r
As a clarification, by the law of the unconscious statistician (2.4)

EX(X-1)-...- (X = (r—=1))] :ik(kfl)'...'(k*(?"*l))px(k),

k=0

but the terms corresponding to k = 0,1,...,7 — 1 contribute obviously by a zero to the sum in the right hand
side, and hence the claim in the theorem is true. "
A number of special cases of the preceding result are of interest as well as of importance. We assume that the

moments required below exist.

g¥ (1) = E[X]. (5.12)

As we have
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it follows that
Var[X] = ¢¢ (1) + E[X] - (E[X])°

or

2
Var[x] = ¢¢(1) + 6 (1) - (60 V) " (5.13)
Example 5.3.2 X € Po()\), and from (5.4)
g9 (1) = XA |y =

ggf)(l) — \2pAE-1) o= )\2,

and
2
Var[X] = ¢ (1) + g%’ (1) - (g&”(l)) =N AN =

5.4 Probability Generating Functions for Sums of Independent Ran-

dom Variables

Let again X7, Xo, ..., X, be n independent non negative integer valued random variables and consider their

sum

Sn:X1+X2+...+Xn:ZXk.
k=1

Then clearly S,, has, by basic algebra, the non negative integers as values. The results about the p.g.f. of the

sum follow exactly as the analogous results for characteristic functions of the sum .

Theorem 5.4.1 If X, Xo, ..., X, are independent non negative integer valued random variables with respec-
tive p.g.f:s gx, (t), k =1,2,...,n. Then the p.g.f. gg,(¢) of their sum S,, = >_}_, X} is given by

95, (1) = gx, (1) - 9x, (1) .. - gx,, (). (5.14)
Proof: gs, (t) = E [t = E [t(X1+Xet4X0)] = B [¢X14X2 . . ¢Xn]. Then theorem 1.6.1 and independence
(of Borel functions of independent random variables) entail together that
=E[tN]E[t*] ...  E[t7Y]
=9x,(t) - gx, () .. gx,, ().
.
Example 5.4.2 (Sums of Independent Poisson Random Variables) X;, X, ..., X, are independent

and Xy € Po(Ar), Ay, >0 for k=1,2,...,n. Then (5.4) and (5.14) entail

gs, (t) = M=) gAa(t=1) o An(t=1) — (Mt Aat ) (E-1)

Thus S, € Po(A1 + A2 + ...+ \,), as was already found by means of characteristic functions.
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Corollary 5.4.3 X, Xo, ..., X,,, are independent and identically distributed non negative integer valued
random variables with the p.g.f. gx(¢), X 2 X,. Then the p.g.f. gs, (t) of their sum S,, = Zle X; is given by
9s.(t) = (9x(1))" . (5.15)

The assertions in (5.15) and (5.8) give another proof of the fact in Example 4.4.6.

5.5 Sums of a Random Number of Independent Random Variables

We consider N, X7, Xo, ..., X,,..., which are independent random variables with non negative integers as
values. X1, Xo, ..., X,,..., are furthermore identically distributed with the p.g.f. gx(¢). The p.g.f. of N is

gn ((t)). We want to study the sum of a random number of X}’s, or,

0 if N =0
Sy=14{ ' (5.16)
X1+X2+...+XN, lfNZ:l

In operational terms of a computer simulation, we generate first an outcome N = n, then the independent

outcomes of X1,Xs ... X, and thereafter add the latter outcomes.
Theorem 5.5.1 (Composition Formula) The p.g.f. gg, (t) of Sy defined in (5.16) is
gsy (t) = gn (9x (1)) - (5.17)
Proof: By definition of p.g.f. and double expectation in (3.9)
gsy(t) = E [t°V] = E[E [t°~ | N]].

Since F [tSN | N } is measurable with respect to the sigma field generated by N, we can write by the Doob-
Dynkin theorem 1.5.5 that H(N) = E [t°~ | N|. Then

E[E[°" | N]] = B[H(N)],
and by the law of the unconscious statistician (2.4)
E[H(N)] = iH(n)P(N:n) = iE [tV | N =n] P (N =n)
n=0 n=0
and as py (n) = P (N = n), this equals
=SB | N ] g (1) = 30 B [ (o),
n=0 n=0

where we took advantage of the assumed independence between the r.v.’s in the sum and the variable N (an

independent condition drops out). But then (5.15) yields

=Y (9x(8)"px (n).
n=0
In view of the definition of the p.g.f. of N the last expression is seen to equal

=gn (9x (1)) -

u
We refer to gg, (t) = gn (gx(t)) as the composition formula. An inspection of the preceding proof shows

that the following more general composition formula is also true.
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Theorem 5.5.2 (Composition Formula with Characteristic Function) X;, X, ..., X,,... are inde-
pendent and identically distributed random variables with the characteristic function ¢x (¢). N is independent
of the X}s and has the non negative integers as values with the p.g.f. gn (¢). The characteristic function g, (t)
of Sy defined in (5.16) is

psn () = gn (px (1)) (5.18)

Example 5.5.3 Let N € Po(\), X;, € Be(p) for k = 1,2,.... From (5.6) gx(t) = ¢ + pt and from (5.4)
gn(t) = et Then (5.17) becomes

gsn (1) = gn (gx (1)) = eMNatPt=1) = Al—ptpt=1) _ Ap(t—1)

)

ie.,
gsy (t) = eAP(t=1)

By uniqueness of p.g.f.s we have thus obtained that Sy € Po(Ap). The result is intuitive: we can think of
first generating N ones (1) and then deciding for each of these ones, whether to keep it or not by drawing
independently from a Bernoulli random variable. Then we add the ones that remain. This can be called
"thinning’ of the initial Poisson r.v.. Therefore thinning of Po()) is probabilistically nothing else but drawing

an integer from Poisson r.v. with the intensity A modulated by p, Po(Ap).

[ ]
The result in theorem 5.5.1 has many nice consequences, when combined with the moment formulas in section

5.3. Let us assume that all required moments exist.
e By (5.12) g\’(1) = E[X] and thus
E[Sn] = g5, (1) = g (9x(1) - 65 (1)

and since gx (1) =1,
=gy (1)-¢¢ (1) = E[N] - E[X].

In summary

E[Sy]=EI[N]- E[X]. (5.19)
e We shall next show

Lemma 5.5.4
Var [Sy] = Var [N] (E [X])* + E[N] Var [X]. (5.20)

Proof: We start handling this by (5.13) and get

var[sw] = o (1) + g (1) - (652 (1) (521)

We need the second derivative of gy (9x(t)), or

2

980 =g (ax(®) - (95'®) "+ 98 (9x(£) 920,

and find its value at t =1 as

ger (1) =gy (1) (gﬁﬁ)(l))2 +g¥ (1) g2 (1). (5.22)
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Now we have by the rule for factorial moments (5.11) both
2
g% (1)) = E[N(N = 1)] = B [N*] - E[N],

and
g% (1) =E[X? - B[X].

By inserting these formulas in (5.22) we get
95 (1) = (E[N? - EN)) (E[X])> + E[N] (E[X?] - E[X]).

In addition by (5.19)
9$)(1) = E[N]- E[X].

When we insert these in (5.21), i.e., in
Var[Sy] = g2 (1) + g (1) — (52 (1))
we get
= (E[N?] - E[N)) (E[X))*+ E[N] (E [X?] - E[X]) + E[N]- E[X] - (E[N]- E[X])*.

We simplify this step-by-step (one simplification per line), e.g., with eventual applications of Steiner s
formula (2.6),

= E[N*] (E[X))* - E[N](E[X])* + E[N] (E [X?] - E[X]) + E[N]- E[X] - (E[N] - E[X])?
= (B[N — (2IN)?) (E[X)? - E[N] (B[X] + E[N] (E [X?] - EIX]) + EIN]- E[X]
= Var[N](E[X])* = E[N|(E[X])’ + E[N] (E [X*] - E[X]) + E[N]- E[X]
= Var [N](E [X])2 — E[N](E [X])2 +E[NJE [XQ] —E[N]E[X]+ E[N]-E[X]
= Var[N] (E[X])* — E[N](E [X])* + E[N] E [X?]
= Var[N] (B[X])* + E[N] (B [x?] - (B[X))?)

— Var [V] (B [X])? + B [N] Var [x],

which is (5.20), as was to be shown. .

5.6 The Probability of an Even Number of Successes

One of the powerful applications of ordinary generating functions is to solve various recurrences or difference
equations, see [41, 45]. As one demonstration of these capabilities, we compute the probability of an even
number of successes in the first k£ of an infinite Bernoulli sequence.

We consider an infinite sequence {X,,},>1 of independent Be(p) -distributed random variables, which means
that p is the probability of success and ¢ = 1 — p is the probability of failure for every X,,. We refer to the X,
as (Bernoulli) trials. For any k > 1

Ej, = {an even number of successes in the first k trials}.
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Since the infinite sequence lacks memory due to independence, we can always drop a finite number of trials in
the beginning and yet, in this new infinite sequence, the probability P (E})) is for any k unaffected.

If the first trial is a failure, in order for the outcome to be in EFj, there must be an even number of successes
in the next k — 1 trials (lack of memory), or, in other words the outcome of the next k — 1 trials is in Ex_;. If
the first trial is a success, then there must be an odd number of successes in the next k — 1 trials, or, in other
words the outcome of the next k — 1 trials is in the complement E;_,. Thus we can write

By, = (Ej—1 N {failure in the first trial }) U (Ej;_, N {success in the first trial }).
This expresses Ej as a union of two disjoint events, and therefore
= P (Ei—1 N {failure in the first trial }) + P (Ef_; N {success in the first trial }).
But as the trials are independent, we get
P (Ey,) = P ({failure in the first trial }) P (Ez_1) + P ({success in the first trial }) P (Ef_,) . (5.23)

We let pi be defined by
ef
p P (E).

Then we can write (5.23) as the difference equation or recursion

Pk = qpr—1 +p (1 —pr—1). (5.24)

This is actually valid only for k£ > 2. Namely, if £ = 1, an even number of successes can come about in only one
way, namely by making zero successes, and thus we take p; = ¢. If the equation in (5.24) is to hold for k£ =1,
ie.,

g=p1=qpo+p(l—po),

we must take pg = 1. The initial conditions for the equation in (5.24) must therefore be taken as

P1=¢,po = 1. (5.25)

Here is a first method of solution of (5.24). We write (5.24) as

pr — (¢ — P)Pk—1 = p. (5.26)

Hence we are dealing with a non homogeneous linear difference equation of first order with constant
coefficients. One can solve (5.26) with the analytic techniques of difference equations [45, pp. 13—14].

We consider first the homogeneous equation

px — (¢ —p)pr—1 = 0.

The standard ’Ansatz’ for its solution is py = ¢12*, where ¢; is a constant to be determined. This
gives clearly the general solution of the homogeneous difference equation as pkH =c1(q —p)*. We
need next to find a particular solution of the nonhomogenous equation

pr — (¢ — P)pr—1 = p-

In this situation one seeks for a constant as a particular solution. One sees that pf = 02% is a

particular solution, where co is a constant to be determined. Then we have by linearity the complete
solution of (5.24) as the sum of the two solutions

1
Pk =pp + 08 =c1(q—p)* +oog
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The constants ¢; and ¢ are next determined by the two initial conditions pg = 1 and p; = q. This

gives the system of equations ¢; + 2 =1, ¢1(1 — 2p) + £ = (1 — p). Its solution is ¢; = 1 and
co = 1. Hence we have obtained the complete solution as
1 L1 i
pr=5a=p)"+5=50+-p").

This is the expression we should rediscover by using the generating function.

Let us introduce the (ordinary) generating function, see [55, pp. 86-87] or [35],

G(t) = pit".
k=0

When we first multiply both sides of (5.24) by t* and then sum over k = 1,2, ...

oo o0 o0 o0
Zpktk = thpk_ﬂfk*l —l—ptz A ptztkflpk_l
k=1 k=1 k=1 k=1

=gty pith +pty P —pt> . (5.27)
k=0 k=0 k=0
By (5.25) we observe that
Zpktk =G(t) —po=G() - 1.
k=1

Then we have in (5.27) that

Glt) — 1 = qtG(t) + 1p—_tt —ptG(),

where we have symbolically used ..~ t* = 1. We solve algebraically w.r.t. G(t) to get

1 pt

A T I (R

An expansion by partial fractions yields
1 1 1
G(t) = +—2 +—2
l—gt+pt 1—q+pl—-t 1—qg+pl—qt+pt

111 1
21—t  21—qt+pt’

where we used 1 — g + p = 2p. Thereby

L 1
1—t  1—qt+pt

2G(t) =

If we recast the two terms in the right hand side as sums of respective geometric series we obtain

23 pith =)t (g p)Fth =D (14 (¢ - p)h)tk (5.28)
k=0 k=0 k=0 k=0
When we identify the coefficients of t* in the power series in the both sides of (5.28) we get
1
pe=5(1+@-p*) k>0, (5.29)

which agrees with the expression found by the first method.
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5.7 Moment Generating Functions

5.7.1 Definition and First Properties

In this section we consider general random variables X in the sense that X need not have non negative integers

as values.

Definition 5.7.1 (Moment generating function) The moment generating function (m.g.f.) gx(¢) for a

random variable X is defined by

o0
ST oefrpx(zg)  discrete r.v.,
k=—o0

Yx (1) B [eX] = (5.30)

[e ]
[ e fx(z)dx continuous r.v.,

— 00
if there is a positive real number h such that E [etx] exists for | ¢t |< h.

u
The requirement of existence of F [etx} is not satisfied for any A > 0, for example, by a random variable
X € C(0,1). Thus X € C(0,1) has no m.g.f. and, as has been pointed out in example 2.2.16, has no moments
either for that matter. Having said that, let us note that the analysis of optical fiber communication in [33] is

completely based on m.g.f.s. The pertinent uniqueness theorem is there, but we omit the proof.

Theorem 5.7.1 (Uniqueness) If X and Y are two random variables such that
Yx(t) =y (t) forall |t <h,

then

("X and Y are equal in distribution’).

u
The proof of the following theorem should be obvious in view of the proofs of the analogous theorems for

characteristic and probability generating functions in the preceding .

Theorem 5.7.2 If X, X5, ..., X,, are independent random variables with respective m.g.f.s ¥x, (t), k =
1,2,...,n, which all exist for [¢| < h, for some h > 0. Then the m.g.f. g, (t) of the sum S, = >} X}, is
given by

Vs, (1) = tx, (1) - ¥x, (1) - - ¥, (D). (5.31)

There is again the immediate corollary.

Corollary 5.7.3 If X7, X5, ..., X, are independent and identically distributed random variables with the
m.g.f. ¥x(t), which exists for |t < h, h > 0. Then the m.g.f. ©g, () of the sum S,, = > }'_; X}, is given by

s, (t) = (Yx ()" (5.32)
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Example 5.7.4 (M.g.f. for Random Variables Taking Values in Non Negative Integers ) If X is a
r.v. taking values in non negative integers the m.g.f. is by definition (5.30) in the discrete case, assuming

existence of ¥x (t),
oo

vx(t) =Y epx (k) =Y (¢)" px (k) = gx (') |
k=0

k=0
where gy (¢!) is the p.g.f. of X with e’ in the domain of convergence of the p.g.f.. In view of this several

examples of m.g.f.s are immediate. We get by (5.4)
X € Po(\) & thx (1) = M),
from (5.7)
X €Bin(p) & ¢x(t) = (¢ +¢'p)",

and from (5.10)

pe’

X € Fs(p) & ¥x(t) = T—get’

t < —In(1 —p).

Example 5.7.5 (M.g.f. for Y =aX +b) If X is a r.v. with the m.g.f. ¢ x(¢), which exists for |at| < h, and

Y =aX + b, where a and b are real numbers, then

Py (t) = e - ¢x (at). (5.33)

Example 5.7.6 (M.g.f. for X € N(0,1)) If X is € N(0,1), we have by the definition (5.30)

P
t) = et e /2 dx
vx(t) / NeE:
and complete the square to get
+2 1 2 £2
— o5 —(I—t) /2 d — o
=e e r =€
/ V2T

=1
Here we used the fact that the integrand in the underbraced integral is the probability density of N(¢,1). This
m.g.f. exists for all ¢.
2
X € N(0,1) & ¢hx(t) =€ . (5.34)

Example 5.7.7 (M.g.f. for X € N(u,0%)) If X € N(u,0?), we have shown in example 4.2.5 above that if
Z € N(0,1) and X = 0Z + pu, then X € N(u,0?). Then as in (5.33)

Ux (t) = e™ - Yz(at),
and this gives by (5.34)

2,2 2,2
Yx(t) = e 2 = ettt
o242

X € N(u,0?) & hx(t) = e T2, (5.35)
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Example 5.7.8 (M.g.f. for a sum of independent normal random variables) Let X; € N(u1,0?) and
X5 € N(pa2,03) be independent. Then by (5.31)

Px1+X5 (t) =X, (t) “Yx, (t) =

and by (5.35)

2,2 02 2 02 02 2
— etﬂl-i-gl; . pth2t 2; — eﬂlh-l—uz)-i—%
Hence we have again established that
X1+ Xy € N(uy + po, 05 + 032). (5.36)

Example 5.7.9 (M.g.f. for an Exponential Random Variable) Let X € Exp(a), a > 0. The p.d.f. is

Le—z/a 4>
a >

0 x < 0.

The definition in (5.30) entails

and if % —t>0,1i.e.,if % > t, we have

Thereby we have found
X € Expla) & Yx(t) = ———, = >t (5.37)

Example 5.7.10 (M.g.f. for a Gamma (Erlang) Random Variable) X € I' (n,a), where n is a positive

integer. In other words, we consider an Erlang distribution. Then example 4.4.9 and (5.37) yield

XeF(n,)\)@wx(t)=<1_1at>n, é>t. (5.38)

The proof of the statement in theorem 5.5.1 can be modified in an obvious manner to establish the following

composition rule.
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Theorem 5.7.11 (Composition Rule with m.g.f) X;, X5, ..., X, ... are independent and identically dis-
tributed random variables with the m.g.f. ¥x(¢) for |[t| < h. N is independent of the Xjs and has the non
negative integers as values and with the p.g.f. gy (¢). The m.g.f. ¥g, (t) of Sn defined in (5.16) is

Ysy (t) = gn (Vx (1)), (5.39)

wheer we assume that ¢ x (¢) is in the domain of convergence of gy ().

5.7.2 M.g.f. is really an Exponential Moment Generating Function, E.m.g.f !

The introduction to this chapter stated that ordinary generating functions of sequences of real numbers (ak);O:O

are functions (power series) of the form
(oo}
G(t) =) arth.
k=0

Yet, we have welcomed the m.g.f. as defined in (5.30), which is not at face value compatible the idea of ordinary

generating functions. For the sake of pedagogic coherence it should be appropriate to settle the issue!.

Let us suppose that we have a random variable X such that all moments F [X k] k=1,2,..., exist. Then

a generating function for the sequence (E [X k} );’;0 in the ordinary sense would be

iE [X*] ¢F.

This does not produce the moment generating function as defined in (5.30). Symbolically we have that

s [1 1tX} - ,iE XTTe

and this is the ordinary generating function of (E [X k} ):O:o' On the other hand, if we set

o B1XM
2t
k=0

we can apply the series expansion of e to obtain by termwise expectation

E[e"] = i E [gk] tF, (5.40)

k=0

which equals the moment generating function 1 x (t), as treated above. However, in mathematics, see, e.g., [41,
p. 350], the power series
ook
EG(t) = Etk
k=0
is called the exponential generating function of the sequence of real numbers (ak),;“;o. In order to adhere
to the standard mathematical terminology we should hence call any ¢x (t) = F [etX ] the exponential moment
generating function (e.m.g.f.).
But the practice of talking about moment generating functions has become well established and is thereto
time-honoured. There is in other words neither a pragmatic reason to campaign for a change of terminology to
e.m.g.f.’s, nor a realistic hope of any success in that endeavour.

The take-home message is the following theorem.

IThe point is made by J.P. Hoyt in The American Statistician, vol. 26, June 1972, pp. 45—46.
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Theorem 5.7.12 Let X be a random variable with m.g.f. ¥ (¢) that exists for |¢| < h for some h > 0. Then

(i) For all k > 0, E [|X|*] < 0o, i.e, moments of all orders exist.

(i)
E (X" = 4{(0). (5.41)

Proof: We omit the proof of (i). To prove (ii) we observe that

= E[XF
k=0 '
by successive differentiation one finds that the coefficient of % is equal to wgf) (0). =

5.8 Exercises

5.8.1 Probability Generating Functions

1. Pascal Distribution Let X € Pascal(n,p),n=1,2,3,...,0<p < 1and ¢ =1 — p, see Example 2.3.10.
Its probability mass function is then

k—1
pX(k)P(Xk)< )p”qk_", k=nn+1,n+2,.... (5.43)

Show that the p.g.f. of X is
pt \" _
gx(t) = (—) D<o

1—qt
Note: Consider also the examples 5.2.8 and 5.2.9.
2. Negative Binomial Distribution Let X;, ¢ = 1,2,...,n, be independent and have the distribution
X, € Ge(p). Define
Y=X1+Xo+...+X,.

(a) Find the p.g.f. of Y.

(b) Show that if Z € Pascal(n,p), then Y’ L7 -n.

(c) Show that the probability mass function of Y is

n+k—1
py(k)=< N )p”q’ﬂ k=0,1,2,...

Hence Y has the Negative Binomial distribution, Y € NBin(n, p). Aid: The part (c¢) does not require
a generating function. Use the finding in (b) and (5.43).

3. X1,Xs,..., X, are independent Poisson distributed random variables with E [Xj] = % Show that the
pgf of Y, =37 kXj is

—1

n k
gy, (t) = X T
4. N assumes values in the nonnegative integers.

(a) Show that YW=l —$™% 'P(N > k) th,  for [t| < 1.
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(b) Show that E[N] =22 P (N > k).

5. ([35]) The r.v.’s X1,Xs,..., X, are independent and identically disributed. Their common distribution
function is Fx (z). We consider the random variable N, which has the positive integers as values and has
the p.g.f. gn(¢). N is independent of X1,Xo,..., X,,. Set

Y = maX{Xl,Xg, e ,XN}

Show that
Fy (y) = gn (Fx(y)) -

Aid: The law of total probability (3.35) may turn out to be useful.

6. (From [49]) The r.v. X has the p.g.f. gx(t) =In (%qt) Determine F [X], Var [X], and the p.m.f. of X.
Answers: E[X] = Var[X]=e—1, px(k) = @, k>1.

7. Let us introduce
- def _
gleXQ(t) 1e] E I:tXI X2],

where X; and X5 are two independent r.v.’s with non negative integers as values. Hence ¢ is an extension
of the notion of p.g.f. to a random variable with integers as values. Let X7 € Po(u;) and Xo € Po(uz),
X1 and X5 are independent.

(a) Show that

Gx,—x, (t) = e~ (mtp2)tpattpa/t (5.44)

(b) Find the p.m.f of X; — X5 by means of the extended p.g.f. in (5.44).
Aid: The generating function of modified Bessel functions Iy (z) of the first kind is

o0

eo(t+t) = 7 L(@)tt it £0,

k=—o0

see [3, pp. 292—293].
Answer: X1 — Xo € Ske(u1, p2), see (2.62) 2 .

5.8.2 Moment Generating Functions

1. X is a random variable with values in the non negative integers. We know that
E[X]=1.

Let B be the event B = {X > 0}. We consider X truncated to the positive integers, X|B, i.e., X
conditioned on B (recall section 3.3). We have in addition that

X|B € Fs(p).

Find the m.g.f. of X as
pet
1—(1—pet’

2This is how John Gordon Skellam (1914-1979), a statistician and ecologist, derived the p.m.f. (2.62).

ox(t) =1-p+




160 CHAPTER 5. GENERATING FUNCTIONS IN PROBABILITY

2. X € Ra(a), c.f., example 2.2.17. Compute the m.g.f. of X. Answer:

’l/))((t) =1+ gte(i)%?/Q\/g (erf(f/—i) +1) ,

where erf is the error function
f(x) 2 / ' it <z <
erf(z) = — e , —oco<x<o00
VT Jo

3. M.g.f. of the Gumbel distribution Let distribution function of the r.v. X be
Fx(z)=e¢ , —oo<uz<o0.
Or, X € Gumbel, as defined in example 2.2.19.

(a) Find the m.g.f. of X. What is the region of existence ? Answer: ¥x(t) =T(1 —1), |t| < 1.
Aid: Find the p.d.f. of X and use the appropriate part of the definition in (5.30). In the resulting

integral make the change of variable u = e* and be sure to find the right limits of integration.
(b) Show that E[X] =~ = Euler’s constant.

Aid: Karl Weierstrass® re-expressed (You need not check this) the Gamma function in (2.7)

with
1 ad T z
R — YT 1 _) -
I'(z) e r]:[:1 ( tr)e

where  is Euler’s constant. Show now that

A1) 1 (1
I'(x) x —\r r+ax)
The function %”Z?I(;E ) is known as the Digamma function.
(c¢) Show that Var [X] = ’%

4. Find the m.g.f. of the logistic distribution with p.d.f. in (2.39). Answer: B(1 —t,1+1t), -1 <t < 1,
where B is the Beta function given in (2.31).

5. Difference of two independent Gumbel variables V' € Gumbel and W € Gumbel are independent.
In other words their common distribution function is found in (2.35). Show that

U=V —W € logistic(0, 1),

where the distribution logistic(0,1) is given in Example 2.2.23.

Hint: The two directly preceding exercises should be useful.

6. (a) Find the m.g.f. of X € U(0,2). Answer: x(t) = 5 (e*" = 1).

(b) E[X"] = HQ—J:l Determine the distribution of X. Answer: It is an easy guess that case (a) has
something to do with this.

7. E[X" = %—1—1 Find the distribution of X.

8. E[X"] =cforn=1,2,...,. Find the distribution of X. Answer: X € Be(c), if 0 < ¢ < 1. There is no
solution for ¢ ¢ [0, 1].

3(1815—1897) spent a long career as teacher of mathematics at a gymnasium (high school) in Germany. He became Professor
of mathematics at Technical University of Berlin. Weierstrass has a fame in posterity as the ’father of modern analysis’.
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5.8.3 Sums of a Random Number of Independent Random Variables

1. Let X be a random variable assuming values in 0,1, 2,.... Assume that
(5.45)
1
px(k) = / w-(1—w) " tdu, k=1,2,....
0
(a) Show that
1
kYy=———— k=1,2,....
pX( ) k(k+ 1)) y 4y
Aid: Apply a suitable Beta function (2.31).
(b) Show that the p.g.f. gx(t) is
1—t)In(l -t
ox(t) =1+ LZOREZD,
(c) Let X1,Xa, ..., Xp,... be LL.D. with the probability mass function in (a). N € Po(m) and N is

independent of Xj:s. Set
Sn=X1+Xo+...+ Xy, Sop=0.

Show that the p.g.f. of Sy is
=t
gsy () = (1 —=8)™ .
Check that you get gs, (0) = 1. What is the distribution of Sy ? Hint: Try the world wide web
with Lea-Coulson Model for Luria -Delbriick Distribution or Lea-Coulson Probability

Generating Function for Luria -Delbriick Distribution as search words.

2. (5B1540 02-08-21, reconsidered) The random variables X1, Xa,..., Xy, ..., are L1D. and have the prob-
ability mass function

1 1 1
px(=1) = 7.px(0) = 5, px(1) = ;
Let N € Fs (%) and be independent of the X}’s. Find the characteristic function of Sy =5 évzl Xp. (Aid:

Use (5.18).)
In an exercise to chapter 4 we defined for the same r.v.’s X,, the random variable N ' by
N’ =min{n | X,, =0},

so that N’ is the smallest (or first) n such that X,, = 0. It was found that the characteristic function of
is ps_,(t) =1/(2 — cost). What is the reason for the difference in the results about N and N'?

3. (FA 181 1982-02-05) Let X1, X5, ..., X,,, ... be independent and identically distributed with X} € N(0, 1),
k=1,2,...,n. N is a random variable with values in the positive integers {1,2,...}. N is independent
of the variables X1, Xs,...,X,,.... We set

Sy=X1+Xo+ ...+ Xn.

We assume that
P(N=k)<1l,k=12,....

Show now that Sy cannot be a normal random variable, no matter what distribution NV has, as long as

this distribution satisfies our assumptions. Aid: The result in (5.18) should turn out to be useful.
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4. Let X1,Xs,...,X,,... be a sequence of independent and identically distributed r.v.’s € Po(2). N is
independent of the X,,, N € Po(1). Set Sy = X1 + X2+ ...+ Xy, So = 0. Find using the appropriate
p.g.f.’s that

P(Sy=0)=¢" (5.46)

Compare with (3.39) in the preceding.
Answer: 1 —1.4-0.9%

6. (Due to Harald Lang) X1, Xo,..., X,,... is a sequence of independent and identically distributed r.v.’s
that assume values in the non negative integers. We have P (X,, = 0) =p . N assumes also values in the
non negative integers, is independent of the X,, and has the p.g.f. gn(¢). Set Sy = X1 + Xo + ...+ Xy,
So = 0. Express P (Sy = 0) in terms of gn(t) and p. Answer: gy (p).

7. (Due to Harald Lang) Let p be the probability that when tossing a thumbtack (North American English),
or a drawing pin (British English) 4 it falls on its pin (not on its head). A person tosses a thumbtack
a number of times, until the toss results in falling on the pin for the first time. Let X be the serial
number of the toss, when the falling on the pin occurred for the first time. After that the person tosses
the thumbtack an additional X times. Let Y be the number of times the thumbtack falls on its pin in the
latter sequence of tosses. Find the p.m.f. of Y,

(a) by a reasoning that evokes conditional probability,

(b) by finding the p.g.f. of Y.

Answer: py (k) = %, k>1.
8. Compound Poisson Distribution Let X;, £ = 1,2,..., be independent and have the distribution

X € Po(u). Let N € Po(A). N is independent of the Xj’s. Set
Sn=X1+Xo+ ...+ Xn.

(a) Show that the p.g.f. of Sy is
gsy (t) = X, (5.47)

(b) Show that
E[Sy] = A, Var [Sy] = Ap(1 + p).

(¢) In fact a good definition of the compound Poisson distribution is that it is the probability distribution
on the non negative integers with the p.g.f. in (5.47). In example 2.3.9 the compound Poisson
distribution was defined in terms of the p.m.f. in (2.54). Explain why the two definitions actually
deal with one and the same thing, i.e., Sy € ComPo(\, 1) in the sense of example 2.3.9.

9. Let X1, X5,...,X,,... be independent and identically distributed with X € Exp(1/a), k = 1,2,.....
N € Fs(p). N is independent of the variables X7, Xs,..., X,,,.... We set

Sn=X1+Xo+ ...+ Xn.

Show that Sy € Exp (ﬁ)

4a short nail or pin with usually a circular head, used to fasten items such as documents to a wall or board for display. In
Swedish: haftstift.
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10. (From [49]) Let 0 <p < 1. ¢=1—p. X;1,Xs,...,X,,... are independent and identically distributed with
X, € Ge(q), k=1,2,...,. N € Ge(p). N is independent of the variables X1, Xo,..., X,,.... We set

Syn=X1+Xo+ ...+ Xn.

(a) Show that the p.m.f. of Sy is psy (k) = bl b > 1, ps, (0) = 5.

(b) Show that Sx | Sy > 0 € Fs(a), and show that a = é:—g.

11. (From [49]) Let X1, Xa2,...,Xp,... be independent and identically distributed with X € L(a), k =
1,2,...,. N, € Fs(p). N, is independent of the variables X1, Xo,...,X,,.... We set

Sn, = X1+ Xo+ ...+ Xn,.
Show that \/pSn, € L(a).

12. (From [49]) Let X1, Xs,...,X,,... be independent and identically distributed with X} € Po(2), k =
1,2,...,. N €Po(1). N is independent of the variables X7, Xo,...,X,,.... We set Sop =0, and

Sy=X1+Xo+...+ Xn.

Show that
E[Sn] =2, Var[Sy]| = 6.

13. (From [49]) Let X3, Xo,...,X,,,... be independent and identically distributed. N is independent of the

variables and has the non negative integers as values.
SNn=X1+Xo+...+ Xy.

Show that
Cov(X;1+Xo+...+ XnN,N)=FE[X]- Var[N].

14. (From [49]) Let X1, Xa,...,X,,... be independent. E[X;] = m*, where m # 1, k = 1,2,...,. N is
independent of the variables and € Po(\). We set

Sn=X1+Xo+ ...+ XN
Show that

E[X1+X2+...+XN]:%(e“m*l)fl).

5.8.4 Various Additional Generating Functions in Probability

1. (From [41]) The Dirichlet probability generating function
Dirichlet probability generating function Dx () of a random variable X with values in the positive integers

is defined as

Dx(t)=) ngk)-
k=1

Find F [X], Var [X] and E [In X] expressed in terms of Dx (t) and its derivatives.
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2. The exponential generating function for factorial moments
The kth (descending) factorial moment is denoted by E [X [k]] and defined by

E[X[’ﬂ —EX(X—1)(X—2)-...- (X — (k—1))].

Let X be a random variable that assumes values in the nonnegative integers. Show that the exponential

generating function for factorial moments is
EGx(t) = B [(1 + S)X} .
3. The ordinary moment generating function was in the preceding argued to be
1 (oo}
E =) E[X*]t"
[ Rpaey

What is one main disadvantage of this function as a tool in probability ?

4. Check that the solution in (5.29) satisfies (5.24) as well as (5.25).

5.8.5 The Chernoff Inequality
1. Let X be a random variable with the m.g.f. ¢)x (¢). Show that for any constant ¢
P(X>¢)< Itn>161 e by (t). (5.48)

Aid: Try to find a suitable way of using the Markov inequality (1.38). The inequality in (5.48) is known
as the Chernoff Inequality or the Chernoff Bound.

2. Let X1,...X,, be independent and identically Be(p)-distributed. Show that

1 — n
_ : (1—c)t o —ct
P (n ,; X, > c) < Intzl(I)l {pe +(1—p)e } . (5.49)

3. We continue with (5.49). Show that

e B oA I R

Aid: Minimize the upper bound in (5.49) as a function of ¢ by differential calculus.

We define for 0 <z <1 and 0 < y < 1 the number
def T 1—2x
D(zly) = zln—+ (1 —2)Iln ,
(@)™ T 4+ (1= 2)n =

which is non negative, as can be checked. Then we can recast the bound in (5.50) as

1 n
P(=Y X, > < e nD(plpte) 5.51

The number D (p|p + ¢€) is called the Kullback distance between the probability distributions
Be (p) and Be (p + €), see [23].

4. (From [33, p. 324]) N € Po(\). Show that

P (N >a) < <5)ae‘”,

where a > A.



Chapter 6

Convergence of Sequences of Random

Variables

6.1 Introduction

This chapter introduces and deals with the various modes in which a sequence of random variables defined in a
common probability space (2, F,P) can be said to converge. We start by three examples (for as many different
senses of convergence, there will be a fourth mode, almost sure convergence, later in this chapter).

Results about convergence of sequences are important for the same reasons as limits are important every-
where in mathematics. In probability theory we can find simple approximations to complicated or analytically
unaccessible probability distributions. In section 6.5 we clarify the formulas of propagation of error by conver-
gence of sequences. In section 7.4.2 we will give meaning to a sum of a countably infinite number of random
variables that looks like Zio a; X;. In section 10.5 we will define by a limit for a Wiener process an integral
that looks like [* f(t)dW (t).

Example 6.1.1 (Convergence to Gumbel Distribution) Let X, Xo,..., X,,,... be an L.ID. sequence of

Exp(1) -distributed r.v.’s. Let us consider the random variable
Xmax = maX{Xl,XQ, e ,Xn}

It is clear that Xpax is a well defined r.v., since it holds for any « € R that {Xpax < 2} =N {X; <z} € F.
We wish to understand or approximate the probabilistic behaviour of Xy, for large values of n, which we study
by letting n — oco. Let x > 0. By independence
P (X < 7) = P (N, {X; < 2}) = [[ P ({X; < 2})
i=1

= (Fx(2))" = (1-e")",

since all X, € Exp(1). Then
P (Xmax <7) = (1—e)" =0,

asn — o0o. This is an intuitive result, but it does not contribute much to any the purpose of useful approximation
we might have had in mind. We need a more refined apporoach. The trick turns out to be to shift X,,,x by a

suitable amount depending on n, or precisely by —Inn,

Y, =Xnpax —Inn, n=12 ... (6.1)

165
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Then for any x € R

Now we get, as n — 00,

Let us write
Fy(z)=e*", —c0<z<o0. (6.2)

This is the distribution function of a Gumbel distributed random variable Y, c.f. example 2.2.19. Hence it

should be permissible to say that there is the convergence of Y,, to Y in the sense that Fy, (z) — Fy (z).

Example 6.1.2 (Weak Law of Large Numbers ) X;, Xs,... are independent, identically distributed (I.1.D.)
random variables with finite expectation y and with variance o2. We set S,, = X1 + Xo +...+ X,,, n> 1L
We want to understand the properties of the arithmetic mean %Sn for large values of n, which we again study
by letting n — oco.

We need to recall that by I.I.D. E [%Sn] = p and Var [%Sn] = n—12n02 = "—: Then Chebyshev’s inequality
in (1.27) yields for any € > 0 that

Thus we have for any ¢ > 0
Sn
P(| ——u|>e) — 0,
n

as n — oco. Again it should be correct to say that there is the convergence of i—" to p in the sense that the
probability of an arbitrary small deviation of i—" from p goes to zero with increasing n.

For example, we know by the (weak) law of large numbers that %Zzzl X jp, as n — oo, if
X1,...X, are independent and identically Be(p)-distributed. Therefore (5.51) tells that the prob-
ability of %2221 X being larger than p goes to zero exponentially in n, and that the rate of
convergence is determined by the Kullback distance D (p|p + €).

Example 6.1.3 (Convergence of Second Order Moments ) X;, Xo, ... is a sequence three point random

variables such that )

:%7

It is immediate that £ [X] =0 and that E [X?] = (=1)? - 5= + 0% (1 — 1) + (+1)?- 5= = L. Hence

P (X, =-1) P(Xn:O):l—l,P(Xn:H):i,
n

2n
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asn — 00. Again we can regard this convergence of the second moments as a notion of probabilistic convergence

of the sequence X1, X, ... to 0. To be quite accurate, we are saying that X,, converges to zero in the sense that
E [(Xn - 0)2} 0,

as n — oQ.

6.2 Definitions of Modes of Convergence, Uniqueness of the Limit

Now we launch the general formal definitions of the three modes of convergence suggested by the three examples

in the section above in this chapter.

Definition 6.2.1 (Convergence in Distribution) A sequence of random variables (Xn):i% converges in
distribution to the random variable X, if and only if it holds for the sequence of respective distribution
functions that

Fx,(z) = Fx(z) asn— o0

for all 2 that are points of continuity of Fx(x).

We write convergence in distribution compactly as
d
X, — X, asn— oo.

Remark 6.2.1 We try next to justify the presence of points of continuity in the definition above. Let X, be

a random variable which induces, see (2.80), on the real line the total mass at the point %,

1
P(Xn:—)zl.
n

Then for any real z

S=3=

Thus we see that, as n — oo
x#0: Fx, (v) = Fx(x),
but
x=0:Fx,(0)=0 does not converge to Fx(0)=1.

But it is reasonable that the convergence Fx, () — Fx(x) for & # 0 should matter, and therefore we require
convergence of the sequence of distribution functions only for the points of continuity of the limit distribution

function.



168 CHAPTER 6. CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES

The notation X, 4 X will be systematically distorted in the sequel, as we are going to write, e.g.,
d d
X, — N(0,1), X, = Po(N),

and so on, if X € N(0,1), X € Po()\) and so on. In terms of the assumed licence to distort we have in the

example 6.1.1 found that

Xmax —Inn i Gumbel.

A second mode of convergence is formulated by the next definition.

Definition 6.2.2 (Convergence in Probability) A sequence of random variables (Xn):i% converges in
probability to the random variable X, if and only if it holds for all € > 0 that

P(| X, X |>¢) =0,

as n — oQ.

We write this compactly as

P
X, —= X, asn— oo.

The limiting random variable may be a degenerate on, i.e., a constant. This is the case in example 6.1.2, where

we found that

“+o0

n—p CONverges in r-

Definition 6.2.3 (Convergence in r-mean) A sequence of random variables (X,,)

mean to the random variable X, if and only if it holds that
Ell X,—-X1|"—=0,

as n — o00. .

We have the compact expression
X, 5 X.

If » > s, then X,, — X implies X,, = X. In the sequel we shall be exclusively concerned with the case r = 2.

Here we talk about convergence in mean square
2
E|X, - X|"—=0, asn— oo.

The chapter 7 below will be devoted to this convergence and its applications. Obviously, X, 2 X is the case
encountered in Example 6.1.3.
The limiting random variable in all of these modes of convergence is unique in distribution. This will now

be proved in the case of convergence in probability.

Theorem 6.2.1 if X, LS X,asn — oo and X, LY Y, as n — oo, then

4

X =Y.
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Proof: We apply in this the inequality in (1.33). For given ¢ > 0 we take C' = {|X —-Y| <€}, A= {|X,, - Y| <
€/2} and B = {|X,, — Y| < ¢/2}. We check first that the condition

ANBCC,
required for (1.33) is valid here. We note by the triangle inequality that
X = Y] = (X = Xo) + (Xn = V) < [X = Xy 4] X, — V)|

But AN B is the event that both A = {|X,, — Y| <¢/2} and B = {|X,, — Y| < ¢/2} hold. Hence if the event
AN B holds,
X = Xo|+1X, —Y)| <€¢/24¢/2=F¢,

i.e., if the event A N B holds, then
X —Y|<e

Thus we have checked that AN B C C.
The assumptions X, LS X, as n — oo and that X, s Y, as n — oo mean that

PAY=P{|X,—-Y]|>¢€¢/2})—=0

and
P(B)=P{|X,-Y|>¢/2}) =0

as n — co. Hence the inequality (1.33) implies that
P(CY)=P{|X-Y|>¢€})=0

for any € > 0. Hence we have shown that
P(X#Y)=0,

as was desired. n

6.3 Relations between Convergences

The modes of convergence formulated above are related to each other by an easily memorized catalogue of

implications. The big picture is the following:

as n — o0.

as n — oo. If ¢ is a constant,
P d
X, —>ce X, —ec

as n — oco. The last implication can also be written as, c.f. (4.19),
X, Leex, L5,

We shall now prove each of these statements.
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Theorem 6.3.1
X, 5 X=X,>X (6.3)

as n — o0.

Proof: We use Markov’s inequality, (1.38). We check readily that this implies for a non negative random
variable U (U > 0) and a > 0, that for r > 1

1
Then we apply this to U =| X,, — X | and get
1
P(|Xn—X|>e)< —F[ X, —X[T].
€

Thus the desired conclusion follows. n

Theorem 6.3.2
X, B x=x,%Xx (6.4)

as n — o0o.
Proof: Let us set Fx, (z) = P (X,, < z). By some basic set operations we get
P(X,<z2)=P{X,, <z}n{| X, - X|<e})) +P{{X, <z}n{| X, — X |>¢€})
(a case of the obvious application of finite additivity: P (4)=P (AN B) + P (AN B°)). We observe that
| X, —X|<ee —e<X, —X<e¢
S —X,—e<-X<-X, +e¢€
S X, —e<X<X,+e¢

Hence we can conclude that X,, <z = X < z + ¢, for the event {X,, <z} N{| X,, — X |< €}, which implies
that {X,, <z} N{| X,, — X [< e} C{X <z +e}N{| X, — X |< €} and then

P{Xp <a}n{[ Xn - X [<e}) SP{X <z+e}fN{[ Xn - X [<e}).
Thus we have obtained
PX,<2)SPHU{X<az+en{| X, -X|<e})+P({X, <z} n{| X, — X [|>¢€}),
SPUX<a+e)+P{ Xu—X[>6)),
where we implemented twice the generic rule P (AN B) < P (A). Hence we have obtained
Fx,(x) < Fx(x+e)+P{| X, — X |>€}). (6.5)
If we change X,, = X, x — 2 — ¢, X — X,,, we can as above prove that
Fx(x—e€) < Fx, (2)+P ({| X, — X |>€}). (6.6)
As n — oo, the two inequalities (6.5) and (6.6) and the assumption X, L X entail (c.f., appendix 1.9) that

Fx(z —e) <liminf Fx, (z) <limsup Fy, () < Fx(xz + ¢) (6.7)

n—00 n—oo
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If we now let € | 0, we get by existence of left limits and right continuity (theorem 1.5.6) required of distribution
functions
Fx(z—) <liminf Fx, (z) <limsup Fx, () < Fx(z). (6.8)
n—oo

n—o0
But the definition 6.2.1 requires us to consider any point 2 of continuity of Fx(x). For such a point
Fx(z—) = Fx(x)

and we have obtained in (6.8)

Fx(z) < 1inr_1>inf Fx, (x) <limsup Fx, () < Fx(x), (6.9)
n—0o0 n—o00
and therefore
liminf Fx, (x) = limsup Fx, (z) = Fx (). (6.10)
n—o0 n—o0

Thus the desired limit exists and
lim Fx, (x) = Fx(z). (6.11)

n—roo

This is the assertion that was to be proved. "

For the proof of the next theorem exploits the point mass distribution . in (4.19).

Theorem 6.3.3 Let ¢ be a constant. Then
X, Lcaex,%¢ (6.12)
as n — oo.
Proof:
= X, Be= X, % ¢ asn— o0, is true by (6.4).
< : We assume in other words that X, i> de, a8 n — 00. Let us take € > 0 and consider in view of definition
6.2.2
P(|X,—c|>e)=1-P(—e< X, —c<e
by the rule (2.91)
= 1—(Fx,(c+e)—Fx,(c—e)+P (X, =c—¢))
=1—Fx, (c+e)+Fx,(c—¢)—P(X,,=c—¢)
<1-—Fx, (c+e)+ Fx, (c—e),

since P (X,, = ¢ — €) > 0. Now, by assumption
Fx,(c+e)— Fx(cte) =1,

since

1 z>c¢
Fx(z){ 0 z<ec¢

and ¢+ € is a point of continuity of Fx (z). By assumption
Fx, (c—€)—= Fx(c—¢€) =0,
where ¢ — € is a point of continuity of Fx (x). Thus
1—Fx, (c+e)+Fx,(c—¢)—>1—-140=0,

as n — 0o, and we have proved the assertion as claimed. "
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6.4 Some Rules of Computation

The following statements contain useful rules of computation, but the pertinent proofs, except the last one, are

left to the interested reader.

Theorem 6.4.1 (X,,),,; and (Yy,),>, are two sequences such that X, B X andY, BV, asn— co. Then

X, +Y, 5 x4V

Theorem 6.4.2 (X,,), -, and (Y,), -, are two sequences such that X,, -+ X and Y,, =+ Y, as n — oo for some
r > 0. Then
Xn+Yn 5 X4Y.

The following theorem has been accredited to two past researchers in probability!.

Theorem 6.4.3 (Cramér -Slutzky Theorem) (X,,), ., and (Y,),~, are two sequences such that X, 4 X

P .
and Y,, — a, as n — 0o, where a is a constant. Then, as n — oo,

X, +Y, 3 X +a

X, -V, %X —a

4 for a # 0.

alfs
S|

u
The proof of the next assertion is an instructive exercise in probability calculus and the definition of continuity

of a function.

Theorem 6.4.4 (X,,),~, is a sequence such that X, Lt a, as n — 0o, where a is a constant. Suppose that

h(z) is a function that is continuous at a. Then

h(Xn) = h(a), (6.13)
as n — oo.
Proof: Take an arbitrary e > 0. We are to show that

P (| h(Xn) —h(a) |>€) =0,

IHarald Cramér (1893-1985) was a mathematician and actuary. He was professor of mathematical statistics at the University of

Stockholm. Evgeny Evgenievich Slutzky (1880-1948) was a Russian mathematical statistician, economist and political economist.
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. . P .
as n — oo. We shall, as several times above, find an upper bound that converges to zero, if X,, — a is assumed.

We write on this occasion the expression in the complete form
P (| h(Xn) = h(a) |> €) =P ({w € Q[ | h(Xn(w)) = h(a) [> €}).
Since h(z) is continuous at a we have that for all € > 0 there exists a 6 = §(e) > 0 such that
|z —al|<d=|h(z)—h(a)|<e
If we take the logical negation of this implication we get that
| h(z) — h(a) |[> e=|x—al> 4.
For the corresponding events this gives the inclusion
{w e Q| h(Xn(w)) = ha) [> €} C {w € Q| | Xn(w) —a|> o},

Thus we get
P ({we Q[ h(Xn(w)) —h(a) [>€}) <P ({w e Q]| Xp(w) —a > d}).
But by assumption we have that
P{{we Q| X,(w)—al|>d}) =0,

as n — 0o, which proves the claim as asserted. "

The next example shows how these results are applied in statistics.

Example 6.4.5 Let (X,,),~, be a sequence of independent r.v.,s X,, € Be(p), 0 <p < 1. Let S,, = X; + Xo +
...+ X,. We wish to study the distribution of

%Sn -p

15,(1-15,)’

n

Q=

as n — 0o. The r.v. @ is used for building confidence intervals for p, where p is carries a statement about an

unknown population proportion. In order to handle this expression we note the following. We can write

Thus

n 1\ (Xk—p)
RS (Xop) TR

Jis, (1-1s,)  [isd0-is.)
p(1—p)

The rationale for the introducing this identity will become soon clear. We define for = € [0, 1] the continuous

function
x(1—2x)
h(x) =
(=) p(l—p)
Then
\/L_ Z . (Xr—p)
n = /p(1-p)
= . 6.14
RENICTS .

By properties of Bernoulli variables
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: 1y (Xe=p)
Hence we observe in the numerator of () that 7 Y kel Jo(ion) is a scaled sum of exactly same form as the

scaled sum in section 4.5.2 above (replace p — p, o — +/p(1 —p) in @) The provisional argument in

loc.cit. entails that
(X

1« k—D) 4
P T

as n — o0o. In the denominator of (6.14) we observe that the weak law of large numbers, example 6.1.2 above,
implies

lSn K D,

n
as n — co. Then we get by (ii) in Cramér -Slutzky theorem that (1 — 15,) K (1 —p). Thus (6.13) in the
theorem above implies, as 0 < p < 1, that

h (%Sn> 5 hp) =1.

But then case (iv) in the Cramér -Slutzky Theorem entails that

as n — oo, which resolves the question posed. In the section 6.6.3 we ascertain that the central limit theorem

suggested in section 4.5.2 by means of characteristic functions is valid.

6.5 Asymptotic Moments and Propagation of Error

As an application of the preceding rules for computing limits we shall next consider in terms of asymptotic
moments what is known as propagation of error. Propagation of error is formally stated concerned with
expressing the mean and variance of a (suitably smooth) function Y = ¢g(X) of a random variable X in terms
of p = E[X] and 02 = Var[X]. Two well known formulas [15, pp.273—274] or [51, section 9.9] in propagation

of error are J

Elg(X)] = g(u), Var [9(X)] = 0* —g(2)|o=p- (6.15)
It can be a difficult task to judge or justify in a general way when these formulas should be applicable. Calcula-
tions of the propagation of error based on the formulas above have for many decades provided practically very
accurate approximations, e.g., in instrument technology [52, 83]2. We shall clarify the approximations above
by the most common justification of approximations in probability calculus, i.e., by means of convergence in

distribution of a sequence of random variables.

Remark 6.5.1 If we approximate the expectations as in (6.15) with g(z) = 1/x we get

> {%] ~ ﬁ (6.16)

as a practically minded rule for computing E [+]. But if X € C(0,1) , then + € C(0,1). For C(0,1), the
expectation does not exist, as shown in example 2.2.16. Hence, an approximation like (6.16) makes no sense in
this situation.

2see also H.H. Ku: Notes on the Use of Propagation of Error Formulas. Journal of Research of the National Bureau of Standards

- C. Engineering and Instrumentation. Vol 70C, no 4, October - December, 1966
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Suppose that {X,},>1 is a sequence of random variables such that
Vi (X — ) % N (0,0%), (6.17)

as n — oo. We say that p and 0?/n are the asymptotic mean and asymptotic variance, respectively, of
the sequence {X,,}n>1. The obvious example is X,, = %2?21 Z; of Z;, 1.1D. variables with y = E[Z;] and
o? = Var[Z,].

Note that we do not suppose that p, = E[X,], 02 = Var[X,] and that p, — p and 02 — o2. In fact
E [X,], and Var[X,,] are not even required to exist.

Theorem 6.5.1 (Propagation of Error) Let {X,},>1 be a sequence of random variables such that (6.17)
holds. Let g(x) be a differentiable function with the first derivative ¢’ () which is continuous and that g (1) # 0.
Then it holds that

V) =g 4 (0.0% (570)). (6.15)
as n — oQ.

Proof: By the mean value theorem of calculus [69, p.100] there exists for every x and p a number & between x

and p such that
9(x) = g(p) = g ()& — p). (6.19)
Thus there is a well defined function of w, Z,, such that | Z, — p |<| X,, — o | and by (6.19)

’

g (Xn) - g(ﬂ) =49 (Zn) (Xn - M) . (620)
In fact, 7, is a random variable, a property we must require, but this will be proved after the theorem.
By (i) and (iii) of the Cramér -Slutzky Theorem 6.4.3

(¥u—m) = 2= VI (X = )] 4 0- N (0.0%).

as n — oo. Hence X,, — it = 0 in view of theorem 6.3.3 and (6.12). Since | Z, — u |<| Xy, — p |, we get that
| Z, — |§ 0 (it is here we need the fact that Z, is a sequence of random variables), as n — co. But then
(6.13) in theorem 6.4.4 implies, as n — oo, that

! P 7’
9 (Zn) = g (), (6.21)
by the assumed continuity of the derivative g (). Now we have in (6.20)
Vi (9(Xn) — g(1) = Vng (Zy) (Xn — 1)

=9 (Zu) Vi (Xn —p).
By (6.17) and (iii) of the Cramér -Slutzky Theorem 6.4.3 and by (6.21)

/

Vi (g(Xa) = g(1) % ¢ (0)X,

where X € N(0,0?). Hence we have established (6.18) as claimed. n

It is, of course, still a matter of judgement to decide whether the approximation in the theorem above can
be used in any given situation.
The following indented section of text verifies that Z,, defined in (6.20) is a random variable and can be

skipped at the first reading.
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We have earlier maintained that unmeasurable sets lack importance in practice, as they are very
hard to construct. The claim that Z, in (6.20) is a random variable seems innocuous for such a
setting of mind. However, we can ask, if there is a proof the claim. The mean value theorem of
calculus gives Z,, as a well defined function of w by (6.20). According to the definition 1.5.1 we need
in addition to show that Z,, is a measurable map from F to the Borel o algebra. To that end we fix

an arbitrary n and drop it temporarily from the notation. Let us define for each w € €,

wldw  Ex@=
H(X(w)) = { SN0 if X (w) # p.

H(X (w)) is a random variable, as g (X (w)) is a random variable and a ratio of two random variables

is a random variable. We set for each w €

We should actually be writing G,,(2), as there is a different function G(z) for each w, but we abstain
from this for simplicity. Then G(z) is a random variable and is continuous as a function of z and
(6.20) corresponds to finding for fixed w a root (at least one exists by the mean value theorem of
calculus) Z(w) to the equation

G(z) = 0. (6.22)

(i) We assume first that G(X (w))G() < 0. Then we can apply the method of bisection to
construct a root to (6.22). We assume first that X (w) < p. Then we set for k =1,2,...,

ao(w) = X(w),  bo=p
ap(w) = ag—1(w) br(w) = mp—1(w), if Glag—1(w))G(mp—1(w)) <0
(6.23)
ap(w) = mp—1(w) b (w) = bp—1(w), if Glag—1(w))G(mg—-1(w)) > 0.
Here a1 (@) + ber @)

mg(w) = 5 ,

which explains the name bisection (draw a picture) given to this iterative method of solving

equations. By the construction it holds that
G(ag(w))G(bg(w)) <0 (6.24)

Since X is a random variable, m; is a random variable, and since G(z) is a random variable, too,
both a; and by are by (6.23) random variables. Therefore, by the steps of construction of the
bisection, each my, is a random variable. It holds that ax—1(w) < ar(w) and bg(w) < bg—1(w),
ar(w) < bi(w) and ax(w) — br(w) = 57 (1 — X (w)). Thus we have the limit, which we denote
by Z(w),

Z(w) = lim my(w) = lim ax(w) = lim by (w).

k—o0 k—o0 k—o0
Since Z(w) is a pointwise limit of random variables, it is a random variable (this can be verified

by writing the statement of convergence by means of unions and intersections of events).

Then it follows by continuity of G(z) and (6.24) that

G*(Z(w)) = lim G(ax(w))G(bp(w)) <0

k—o0
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or that G?(Z(w)) = 0, i.e., G(Z(w)) = 0 so that Z(w) is a root of (6.22) between X (w) and p,
and Z is random variable, as was claimed.

If we assume that X (w) > 0 we get the same result by trivial modifications of the proof above.

(ii) The case G(X (w))G(p) > 0 contains two special cases. First, there is a unique root to G(z) = 0,
which we can find by a hill-climbing technique of as limit of measurable approximations. Or,
we can move over to a subdomain with a root, where the bisection technique of case (i) again

applies.

The method of bisection is a simple (and computationally ineffective) algorithm of root solving, but
in fact it can be evoked analogously in a constructive proof the theorem of intermediate values [69,

pp.71-73] of differential calculus.

6.6 Convergence by Transforms

6.6.1 Theorems on Convergence by Characteristic Functions

Let us start again by some examples of what we shall be studying in this section.

Example 6.6.1 As in example 6.1.3 we have the sequence (Xn):g of three point random variables
P(Xp=—1)= —,P(Xp=0)=1 -~ P(Xp=+1) = —
L o’ S n’ m T oon’
We have found, loc.cit., that
X230,

n

as n — oo. We know by (6.3) and (6.12) that
X230=Xx,50e X, %0

If we compute the characteristic function of X,, we get

1 _, 1 ; 1 .
t) = — —it 1—- = —10 =it
2, (1) on* + < n) o on*

_ 1 i it —it
_(1 n)+2n(e te )

and by Euler’s formula for cost

As n — 0o, we see that

(PXn(t) — 1= eio.

We have in the preceding introduced the distribution ., c.f., (4.19) above. The characteristic function of d. is
by (4.20)
ps. (ﬁ) =1- ¢t

Hence we have obtained that
©x,. (1) = w50 (1),

as n — 00. Clearly this corresponds to the fact that X, 0.
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Example 6.6.2 (Xn):z is a sequence of random variables such that X,, € Bin (n, %) forn=1,2,...,, A>0.

We have by (4.23) that
A S\
n n

<1+%(e“1))n,

— e/\(Eitil) = vro(N),

which we rewrite as

and then by a standard limit as n — oo,

where we recognized the result (4.9). In words, we should be allowed to draw the conclusion that
X, % Po(N).

This result tells rigorously that we can approximate X € Bin (n, %) for small p and large n by Po(np).

In fact these two examples present two respective examples of the workings of the following fundamental

theorem.

Theorem 6.6.3 (Continuity Theorem for Characteristic Functions) (a) If X, 4 X, and X is a ran-

dom variable with the characteristic function ¢ x (t), then
ox, (t) = px(t), forallt,
as m — 00.
(b) If {px, (t)}52, is a sequence of characteristic functions of random variables X,,, and
ox, () = ¢(t), forallt,

and ¢(t) is continuous at ¢ = 0, then ¢(t) is the characteristic function of some random variable X

(p(t) = px(t)) and
X, —+ X.

"
The proof is omitted. We saw an instance of case(a) in example 6.6.1. In addition, we applied correctly the
case (b) in example 6.6.2, since M1 is continuous at t = 0.

With regard to the ’converse statement’ in (b) it should be kept in mind that one can construct sequences
of characteristic functions that converge to a function that is not a characteristic function.

By means of characteristic functions we can easily prove (proof omitted) the uniqueness theorem for con-

vergence in distribution.
Theorem 6.6.4 (Uniqueness of convergence in distribution) If X, S X, and X, LY Y, then

x4y,
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6.6.2 Convergence and Generating Functions
We note the following facts.

Theorem 6.6.5 If {X,,},>1 is a sequence of random variables with values in the non negative integers and
p.e.f’s gx, (t). If
9x, () = gx (1),

d
as n — oo, then X,, — X, as n — oo.

Theorem 6.6.6 {X,},>1 is a sequence of random variables such that the m.g.f.’s 1x, (¢) exist for |¢t| < h for
some h > 0. Suppose that X is a random variable such that its m.g.f. ¥x(t) exists for |[t| < hy < h for some
hi1 > 0 and that

Yx, (t) = ¥x(t),

d
as n — oo, then X,, — X, as n — oo.

6.6.3 Central Limit Theorem

We can now return to the sum scaled by ﬁ in the section 4.5.2 above and formulate and prove the finding

there as a theorem.

Theorem 6.6.7 (Central Limit Theorem) X, X5, ..., X, ... is an infinite sequence of independent and
identically distributed random variables with E [X;] = p and Var [X}] = o2 for k = 1,2,...,. Define

def X —

1 n
an%; -

Then
W, % N(0,1), asn— oco. (6.25)

Proof: In section 4.5.2 we have shown that for all ¢

lim o, (t) =e /2. (6.26)
n—oo
Since the function e~*"/2 is the characteristic function of N (0,1) and is continuous at t = 0, it follows in view
of case (b) of theorem 6.6.3 and by uniqueness of characteristic functions that W, AN (0,1), as n — 0. "

The Berry-Esseen® theorem (1941, 1942, respectively) gives us the speed of convergence in the central limit

theorem :

Cp
o3 yn’
where p = E [|X |3} Since the 1940’s there has been an intensive activity for finding the best value of the
constant C. By the year 2011 the best estimate is known to be C' < 0.4784.

There are several more complex versions, extensions and generalizations of the central limit theorem, e.g.,

|Fw, (z) — ®(x)] <

to martingales.

3Carl Gustav Esseen, (1918-2001), appointed in 1949 to professor of applied mathematics at KTH, the Royal Institute of
Technology. In 1962 his professorship was transferred to mathematical statistics and in 1967, he obtained the first chair in

mathematical statistics at Uppsala University.
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6.7 Almost Sure Convergence

6.7.1 Definition
The final mode of convergence of sequences of random variables to be introduced is almost sure convergence.

Definition 6.7.1 (Almost Sure Convergence) A sequence of random variables (Xn);:g converges al-
most surely or with probability one to the random variable X, (X exists and has values in R) if and only
if it holds that

P({we QX,(w) > X(w)asn —o00 })=1.

We express this more compactly as

a.s.

X, = X.

Let us set
C={weX,(w) = X(w)asn —  }.

This means, in the language of real analysis [36], that the sequence of measurable functions X, converges 'point-
wise’ to the limiting measurable function X on a set of points (=elementary events, w), which has probability
one. We are thus stating that P (C') = 1 if and only if X,, “3 X. We shall next try to write the set C' more
transparently.

Convergence of a sequence of numbers (z,),~; to a real number z means by definition that for all e > 0
there exists an n(e) such that for all n > n(e) it holds that |z, — x| < e. By this understanding we can write C

in countable terms, i.e. we replace the arbitrary €’s with 1/k’s, as

1
C =N Upei Nu>m {w €] Xn(w) — X(w) I< E} . (6.27)

By properties of o-fields it holds that C' € F, and thus P (C) is well defined.

6.7.2 Almost Sure Convergence Implies Convergence in Probability
Next we augment (6.3) and (6.4) by one more implication.

Theorem 6.7.1

a.s.

X, x=Xx,58Xx (6.28)
as n — oQ.

Proof: Let us look at the complement C¢ or, by De Morgan’s rules, from (6.27)

1
C®=UpZ My Up>m {w e Q|| Xn(w) — X(w) |> E} . (6.29)

Let us set (revert from arbitrary 1/k to arbitrary e > 0)
Ap(e) ={w e Q] | Xp(w) — X(w) |> €}

and
By, (€) = Up>m A (€) . (6.30)

Then we set
A(e) = N1 B (6) = N5y Un>m An (€)-
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1
c=UR, A ).
C° = U2, (k)

In view of (1.14) and the discussion around it

Then clearly

A(e) = {w € Q|A,, (¢) infinitely often }.

Of course, X, (w) — X (w) if and only if w ¢ A (¢). Hence, if P (C') = 1, then P (A (¢)) =0 for all € > 0.

We have as in section 1.7 that B, (¢) is a decreasing sequence of events with limit A (¢). Therefore,
by continuity of probability measures from above, i.e., theorem 1.4.9, it follows that if P (A (€)) = 0, then
P (B, (¢)) = 0. But by construction in (6.30), A, (¢) C By, (¢). Hence

P (B (€)) 2 P (An (¢)) = P ({w € Q | Xp(w) = X(w) > €}).

Hence P (B,, (¢)) — 0 implies
P{we Q| Xp(w)— X(w) |>€}) =0,

as n — 0o, which we have as m — oo. =

6.7.3 A Summary of the General Implications between Convergence Concepts
and One Special Implication

We have thus shown that as n — oo,

X, X=Xx,5%x
X, L X=X,5X
X, Bx=x,%Xx

If ¢ is a constant,

P d
X, = ce X, — de.

There are no further implications that hold in general. It is shown in the exercises in section 6.8.5 that almost
sure convergence does not imply convergence in mean square, and vice versa. It can be shown by examples that
X, & X does not imply X, “% X.

Additional implications between convergence concepts can be established under special assumptions. The
following result shows in this regard that if we have a sequence of r.v.’s that are almost surely bounded by a
constant, and the sequence converges in probability to the r.v. X, then the sequence converges in mean square
to X, too.

Theorem 6.7.2 (X,,),-, is a sequence of r.v.’s such that i) and ii) below are satisfied:
i) There is a positive real number L such that P (| X,, |< L) =1 for every n.
i) X, 5 X, as n — +o0.

Then
X, =X (6.31)

as n — o0.

The steps of the required proof are the exercise of subsection 6.8.4 below.
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6.7.4 The Strong Law of Large Numbers
The statement

We let X1, Xo,... be LLD. with E[X;] = m and Var [X;] = 02 < co. We define S, = X1 + Xo + -+ + X,,.
We are interested in showing the strong form of the law of large numbers (SLLN), i.e., a law of large
numbers such that S, /n — m as n — oo with probability one or almost surely. This means that we want to

prove that

P(lim &:m)zl,
n—,oo M

i.e., that there exists a set C with P(C') = 1, where
Sn
C= {w| lim |ﬂm|0}
n—oo n

We need in other words to prove that for every w € C and for every € > 0 there is N(w, ¢) so that if n > N(w, ¢)
holds that |S,,/n —m| < e.

S
It suffices to prove that |— — m| > & can occur only a finite number of times, i.e.,
n
: Sn
lim P{|— —m|>e some n>N|=0.
N —o00 n

Note the distinction with regard to the law of large numbers in the weak form, which says that that for alle > 0
Sn
P({|—-m|>¢) = 0asn— oo.
n

In words: for the law of large numbers in the strong form |S,,/n — m| must be small for all sufficiently large n
for all w € C, where P(C) = 1.

In tossing a coin we can code heads and tails with 1 and 0, respectively, and we can identify an w with
a number in the interval [0, 1] drawn at random, where binary expansion gives the sequence of zeros
and ones. The law of large numbers says in this case that we will obtain with probability 1 a number
such that the proportion of 1:s in sequence converges towards 1/2. There can be ”exceptional” -w -

for example the sequence 000 ... is possible, but such exceptional sequences have the probability 0.

After these deliberations of pedagogic nature let us get on with the proof*.

The Proof of SLLN

Without restriction of generality we can assume that E(X;) = m = 0, since we in any case can consider X; —m.
We have Var [S,] = no?. By Chebyshev's inequality (1.27) it holds that
Var [S),] no? o?

P(ISal > ) S S5 = 055 =

Unfortunately the harmonic series Y °1/n is divergent so we cannot use Borel-Cantelli lemma 1.7.1 directly.
But it holds that Y 7°1/n? < oo and this means that we can use the lemma for n?, n =1,2,.... We have

2

P(|Sn2| > 7’L2€) < 7’),2—52

4Gunnar Englund is thanked for pointing out this argument.
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S
In other words it holds by Borel-Cantelli lemma 1.7.1, that P( L;| > ¢ i.0.) = 0 which proves that S,z /n? — 0
n

almost surely. We have in other words managed to establish that for the subsequence n?, n =1,2,... there is

convergence with probability 1. It remains to find out what will happen between these n2. We define therefore

D, = max |Sk— Spz/,
n2<k<(n+1)?

i.e., the largest of the deviation from S,> that can occur between n? and (n + 1)2. We get

(n+1)2 -1
D? = —5,2)% < —5,2)?
7 gl S Sl € D (S S

where we used the rather crude inequality max(|z|, |y|) < (Jz] + |y|). This entails

(n+1)2-1

E[DI < > E[(Sk—S2))].

k=n?2

But E [(Sk — Sp2)?] = (k —n?)o? < 2no? as n? < k < (n+ 1)? and there are 2n terms in the sum and this
entails
E [D2] < (2n)(2n)0” = 4n’0”.

With Chebyshev's inequality (1.27) this gives

P (D, > n’) < =

In other words, D,,/n? — 0 holds almost surely. Finally this yields for k between n? and (n + 1)? that

|Sn2| + D, < |Sn2| + D, N

A < 2 0.

Sk
|?|§

This means that we have succeeded in proving that S,,/n — 0 with probability 1. We have done this under the
condition that Var(X;) = 02 < oo, but with a painstaking effort we can in fact prove that this condition is not

necessary. n

6.8 Exercises

6.8.1 Convergence in Distribution

1. (5B1540 2003-08-27) The random variables X1, Xo, ... be LLD. with the p.d.f. fy(z) = 1=z

Tr

(a) Check that fx(z) = 1=5%2 is a probability density. Aid: First, note 1 — cosz = 2 (sin Z)2. Then

Tx? 2
recall (4.45), and the inverse transform (4.2), i.e.,

=5 | e .

:% .

(b) Show that + (X1 + Xz + ...+ X,,) 4 C(0,1), as n — oo. Aid: Use (4.2) to find ¢x (t).

2. Assume that X € Ge(p). Show that
pX A Exp(1),

aspl 0.
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3. (5B1540 2004-08-25) Y,, is uniformly distributed over the set {j/2";j =0,1,2,...,2" =1}, n=1,2,....
Show by means of a sequence of characteristic functions that
d
Y, = U(0,1),
as n — oo.

4. (From [35]) This exercise studies convergence in distribution in relation to convergence of the corresponding
sequence of expectations.

{Xn}n>1 1s a sequence of r.v.’s such that for a real number r

\
o

1-1 2=
P<an>{1 "

n

(a) Show that

as n — oQ.

(b) Investigate lim,, o F [X,] for r < 1, r = 0 and r > 1. Is there convergence to the expectation of the
limiting distribution §y?

5. X € Po()). Show that

as A — oo.

6. (From [35]) {X,,}n>1 is a sequence of independent r.v.’s such that

1
27’1,

ae)

»

3

Il

o)

\
——
N[ N

1
=2

as n — 0.
7. (From [35]) {X,,}n>1 is a sequence of independent r.v.’s such that

r=—1

P(Xn:c){ .

(SIS

Let N € Po(\). N is independent of {X,,}n>1. Set Y = X; + X9 + ... + X . Show that

Y
— % N(0,1),

>

as A — oo.

8. (From [35]) {Xl(n)}lzl is for each n a sequence of independent r.v.’s such that

p(x-n) {170 Y
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Let N assume values in the non negative integers. N is independent of {X l(n)}121 for each n. Set
S¢ =X x{M L x(

Show that
S 4 po(1),

as n — o0.

9. (From [35]) {Xn}n>1 is a sequence of independent r.v.’s, X,, € Po(\) for each n. N is independent of
{X,}n>1, and N € Ge(p). Set

Sn=X1+Xo+...+Xyn, Sop=0.

Let now A — 0, while at the same time p — 0, so that £ — a, where « is a pre-selected positive number.

Show that
d «
Sy — F .
N S(a+1)

10. (From [49]) {X,,}n>1 is a sequence of independent r.v.’s, X,, € C(0,1). Show that

ef 1 L
Ynd:f—max(Xl,...,Xn)iFy(y):e =iy >0,
n

as n — oo. Aid: arctan(x) + arctan(l/z) = § and arctany =y — %—T + %—T - y% -

11. (From [49]) {X,}n>1 is a sequence of independent r.v.’s, X,, € Pa(1,2).

(a) Show that

Y, ¥ min (X1, ..., X)) 51,

as n — o0.

1
n(Y, — 1) % Exp (5) ,
as as n — 00.

12. (From [49]) X,, € Ge(A/(n+ X)), where A > 0. Show that

X, 1
Zn 4 Exp (—) ,
n A

as n — 00.
13. (From [49]) X,, € Bin(n?,m/n), where m > 0. Show that

X,—m-n ¢
—— > N (0,1
\/ﬁ (’ )5

as n — 0o.
14. (From [49]) {X,,}n>1 is a sequence of independent and identically distributed r.v.’s, with the characteristic

o) = { 1= V=T <1

0 It > 1.

function

Show that
1 & d
— > Xk S X,
k=1

as n — oo, where @y (t) = e V2l and compare with (4.48).
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15.

16.

17.

18.

19.
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(From [49]) {X,,}n>1 is a sequence of independent r.v.’s, X, € La(a) for each n. N is independent of
{X,}n>1, and N € Po(m). Set

Sn=X1+Xo+...+Xyn, Sop=0.
Let now m — +o00, when at the same time a — 0, so that ma? — 1. Show that then

Sy 5 N(0,2).

(From [49]) {X,}n>1 is a sequence of independent r.v.’s, X,, € Po(u) for each n. N is independent of
{Xn}n>1, and N € Po(A). Set

SN:X1+X2++XN, SOZO
Let now A — oo, while at the same time p — 0, so that pA — v > 0. Show that

Sy -5 Po(v).

(From [49]) {X,}n>1 is a sequence of independent r.v.’s, X,, € Po(u) for each n. N is independent of
{Xn}n>1, and N € Ge(p). Set

S]\/'Z)(l—i-)(g—i-—i-)(]\/'7 SOZO
Let now 1 — 0, while at the same time p — 0, so that 2 — « > 0. Show that then

I

SN—d>Ge< @ )

a—+1

(From [83])

Let {T,,}n>1 be a sequence of random variables such that
Vi (T, —60) % N (0,6%(0))

as n — co. Let g(x) be a differentiable function with the first derivative ¢’ () which is continuous and
g (0) # 0. Show that
Vn(9(Tn) —9(0))
; — N (0,1), (6.32)
9 (Tn)o(Tn)
as n — oo. We can think of a sequence of statistical estimators 7T, of the parameter 6 that has the
asymptotic mean zero and the asymptotic variance o2(6)/n. The difficulty is that the asymptotic variance

depends on the parameter to be estimated. The result above provides of way of overcoming this so that

we can, e.g., find approximate confidence intervals for g(f), which are independent of 6.
[Propagation of Error]

(a) X € N(u,0?). Find the exact value of Var [eX].

(b) X € N(p,0?). Find Var [eX] using (6.15) and compare with (a).
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6.8.2 Central Limit Theorem

1.

(From [35]) X € I'(a,b). Show that
w LY N(0,1)
Var(X) n

as a — 00. Use both of the following two methods:

(a) The central limit theorem.

(b) The continuity theorem 6.6.3.

. (From [35]) Use the result in the preceding example to show that the x?(n) distribution with a large

number of degrees of freedom is approximately N(0,1).

(From [35]) {X,}n>1 is a sequence of independent r.v.’s, X,, € U(0, 1) for every n. Take
Y, = eV (X1 Xp ... X))V

Show that
Y, LN Log-Normal,

as n — oo. The Log-Normal distribution is found in (2.93). Here the parameters of the Log-Normal

distribution are y = 0 and o2 = 1.
(From [35]) Let {X,,}n>1 be a sequence of independent r.v.’s, X,, € U(0, e) for every n. Show that
(X1-Xo-...- Xn)l/‘/ﬁ 4 Log-Normal,

as n — 0o. The Log-Normal distribution is in (2.93). Here the parameters of the Log-Normal distribution

are = 0 and 02 = 1.

{Xn}n>11s a sequence of independent and identically distributed SymBer - r.v.’s, i.e., they have with the

common p.m.f.

L k=41
SCR S
Set
X
Sn=3 “E.
k=1 k

Show that the following statements of convergence hold, as n — oo:

(a) %i"] — 1. For this statement it is an advantage to know that >, _; + —Inn — v, where v is

Euler’s constant = 0.577 . . ..
(b)
Sp — E[Sy]

Inn

4 N(0,1).

. (From [49]) {X,,}n>1 is an LID. sequence of r.v.’s and F [X] = p < oo for for each n. N, is independent

of {X,,}n>1, and N,, € Ge(pn).

Let now p, — 0, as n — oco. Show that
d
P (X14+Xo+ ...+ Xn,) = Exp(p),

as n — o0.
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7. (From [49]) {X,,}n>1 is a sequence of positive I.I.D. r.v.’s with E [X,,] = 1 and Var [X,,] = 0. For n > 1

S, X X+ X,

Show that 5
\/sn—\/ﬁ$N(0,%),

as n — oQ.

8. {Xi}i>1 are LLD. N(u,0?). Find the asymptotic distribution of {e”"},>1, where T}, = £ 3" | X.

6.8.3 Convergence in Probability

1. (From [35]) Let X} € Be (pr), k =1,2,...,n. The variables X} are independent.

Sn =Y Xx.
k=1
Show that
e 0,

as n — 0o. Aid: Use Chebychev’s inequality (1.27).

2. (From [35]) Xi, k=1,2,..., is a sequence of independent random variables such that
P(Xk:2’€):l P(Xk:ka):l.
2’ 2

Investigate, whether the weak law of large numbers holds for this sequence. Aid: Check first that
> op_q Xk < 0 with probability 1/2 and Y;_, X > 0 with probability 1/2. Then you can deduce
that the weak law of large numbers does not hold.

3. (From [35]) Let X1, Xa,..., Xa2p4+1 be independent and identically distributed r.v.’s. They have a distri-

bution function Fi (z) such that the equation Fx(m) = 1 has a unique solution. Set

Mn = median (Xl, XQ, .. .X2n+1) .

The median of an odd number of numerical values is the middle one of the numbers. Median is thus
algorithmically found by sorting the numerical values from the lowest value to the highest value and
picking the middle one, i.e., the one separating the higher half of the list from the lower half. Show that

P
M, — m,
as n — 0o.

4. (sf2940 2012-02-11) X5, Xs,..., X,,,... are independent and identically distributed r.v.’s. X, 4 X, and
E[X]=u, Var[X] = 0% > 0. Set

_ 1 &
Xn=—-> X,
k=1
Show that
1 & -
WL A (639

as n — 0o0. Aid: In order to do this you may prefer considering the following
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(a) Check that

(b) Part (a) yields

1 - — \2
$= D (- X)' -
i=1

Apply the weak law of large numbers and a suitable property of convergence in probability to prove

the assertion.

5. X1,Xa,...,X,,...are independent and identically distributed r.v.’s., X,, 2 X for each n, and F [X] = u,
Var [X] =02 > 0. Set

7n = l ZXIC;
L
and
1 2 2
SE = nle(Xk—Xw
k=1
Show that

as n — 0o. Aid: The result in (6.33) is definitely useable here.
6. Show that the ¢(n) distribution converges to N(0,1), as n — co. Aid: Consider exercise 5. in this section.
7. X1,Xo,...,X,,...1s a sequence of r.v.’s such that as n — oo,
X, 5x, Xx,5v (6.34)
Show that P (X =Y) = 1. Aid: Convince yourself of the inclusion of events

{|IX +Y|>2e} C{IX]|>e}U{]Y]> €}

8. Let X1, Xs,..., be independent r.v’s and € U(—1,1). Let

def 22:1 Xk
Dk X+ 2 X3

Y
Show that
v, 5o,
as n — 00.

9. (From [49]) X1, X9,..., Xy, ...is asequence of independent r.v.’s. Xj, € Exp(k!). Let S, = X5 +...+X,,.
Show that

& 4 Exp(1),
n

as n — +00.
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6.8.4 Proof of Theorem 6.7.2
This exercise consists of the steps (a) -((d) for establishing Theorem 6.7.2, c.f., [50].
(a) Show that even the limiting r.v. X is bounded almost surely by L, or,
P(XI|<L)=1.

Aid: Show that for any € > 0
P(|X[>L+6)<P(|X—X,[>0).
and draw the desired conclusion.

(b) Justify by the preceding that P(|X — X,,|> < 4L?) = 1.

(c) Let I be the indicator function

, LI X - X, > e
X=Xnl2e ™ 0,3 |X — Xp| <€

Show that the inequality
|X — Xo|? <4LLx_x, |5 + €

holds almost surely.

(d) Determine now the limit of
E [| X-X, |2} ,

as n — +00.

6.8.5 Almost Sure Convergence, The Interrelationship Between Almost Sure
Convergence and Mean Square Convergence, Criteria for Almost Sure Con-
vergence

The exercises here rely on the Borel-Cantelli lemmas in the section 1.7.

1. Let, as in the proof of theorem 6.28,

An () € {1 X — X |> &}

and
Bm (E) = UanAn (E) .
Then show that

(a) X, *¥ X, asn — oo & P (B, (g)) — 0, as m — oco. Aid: Part of this is imbedded in the proof of
theorem 6.28.

(b) X, ®¥ X, as n — 00, if 3, 1 P (A, (€)) < oo for all € > 0.

2. (From [48, p.279]) Define

v n3 with probability n =2
"1 0 with probability 1 — n—2

Then show that X,, &% 0, but that the sequence X,, does not converge in Ls.

Aid: You need a result in the preceding exercise 1. in this section.
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3. (From [48, p.279]) Define a sequence of independent r.v.’s

v _ 1 with probability n !
"1 0 with probability 1 —n~!

Then show that X, 2 0, but that the sequence X,, does not converge almost surely.

Aid: You need a result in the preceding exercise 1. in this section.
4. (From [35]) X € U(0,1). Write an outcome X = z in its binary expansion
x = 0.a1a2a3a405 . . .
where ai = 0 or ar = 1. Show that
hl a -
n k 2’
k=1
as n — 0o.

5. {Xn}n>1 is a sequence of random variables such that there is a sequence of (non negative) numbers
{€n}n>1 such that > €, < oo and

> P (| Xnp1— Xn [> €n) < +00. (6.35)
n=1

Show that there is a random variable X such that X,, 3 X, as n — oo.



192 CHAPTER 6. CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES



Chapter 7

Convergence in Mean Square and a
Hilbert Space

7.1 Convergence in Mean Square; Basic Points of View

7.1.1 Definition
We restate the definition of convergence in mean square.

Definition 7.1.1 A random sequence {X,},-; with E [X?] < oo is said to converge in mean square to a

random variable X, if
E[|X, - X[’ =0 (7.1)

as n — oQ.

We write also
X, > X.

This definition is silent about convergence of individual sample paths (X, (w)),~; (a fixed w € Q ). By a sample

path we mean that we take a fixed w € Q and obtain the sequence of outcomes (X, (w)),—,. Hence, by the

above we can not in general claim that X,,(w) — X (w) for an arbitrarily chosen w or almost surely, as shown

in the preceding.

7.1.2 The Hilbert Space L, ({2, F,P)

Convergence in mean square, as defined above, deals with random variables X such that F [X 2} < 00. Then
we say that X € Ly (Q, F,P). For X € Ly (Q, F,P) and Y € Lo (2, F,P) we can set

x,7) ¥ pxy]. (7.2)
We can easily verify that
(i) (X,Y) = (¥, X),
(i) (X, X)>0,(X,X)=0<«< X =0 almost surely.
(i) (aX +0bY,Z) = a(X,Z) +b(Y,Z), where Z € Ly (2, F,P) and a and b are real constants.

193
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In view of (i)-(iii) we can regard random variables X € Ls (2, F,P) as elements in a real linear vector space
with the scalar product (X,Y). Hence Ls (2, F,P) equipped with the scalar product (X,Y) is a pre-Hilbert
space, see e.g., in [96, Appendix H p. 252]! or [89, ch. 17.7] and [92, pp. 299—301]. Thus we define the norm

(or length)
| X € VX X). (7.3)

SX V)Y X —v |=VEX -Y)% (7.4)

X, 3 X & 0(Xp, X) > 0.

and the distance or metric
Then we can write

In fact one can prove the completeness of our pre-Hilbert space, [63, p. 22]. Completeness means that if
0(Xpn, Xm) =0, asmin(m,n) = oo,

then there exists X € Lo (Q, F,P) such that X, % X. In other words, Lo (2, F,P) equipped with the scalar
product (X,Y") is a Hilbert space. Hence several properties in this chapter are nothing but special cases of
general properties of Hilbert spaces.

Hilbert spaces are important, as, amongst other things, they possess natural notions of length, orthogonality
and orthogonal projection, see [36, chapter 6.] for a full account. Active knowledge about Hilbert spaces in

general will NOT be required in the examination of this course.

7.2 Cauchy-Schwartz and Triangle Inequalities
The norm of any Hilbert space, like here (7.3) in Lo (2, F, P), satisfies two famous and useful inequalities.

Lemma 7.2.1 X € Ly, (Q,F,P), Y € Ly (Q, F,P).

|EIXY]| < B[XY[] < VE[X[ - VE[Y]). (7.5)

VE[X £YP] < VEIXPI+ VE[YP]. (7.6)

u
The inequality (7.5) is known as the Cauchy-Schwartz inequality, and is but a special case of Holder’s inequality
in (1.25) for p = ¢ = 2. The inequality (7.6) is known as the triangle inequality.

7.3 Properties of Mean Square Convergence

Theorem 7.3.1 The two random sequences {X,,} -, and {Y,} 2| are defined in the same probability space
and X, € Ly (Q, F,P) for all n and Y,, € Ly (Q, F,P) for all n. Let

X, 2 XY, Y.
Then it holds that

(a)
E[X]= lim E[X,]

IThe reference is primarily to this book written in Swedish, as it is the texbook for S11140 Mathematical Methods in Physics
http://www.kth.se/student/kurser/kurs/SI114071=en_UK, which is a mandatory course for the programme CTFYS at KTH.
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(v)
E[IXP] = lm E[1X.[]

(c)
E[XY]= lim E[X, Y]

n—o0

(d) If Z € Ly (Q, F,P), then
E[X -Z]= lim E[X,Z].

n—00

Proof We prove (c), when (a) and (b) have been proved. First, we see that |E [X,, ;]| < oo and |E [XY]]| < oo
by virtue of the Cauchy - Schwartz inequality and the other assumptions. In order to prove (c¢) we consider

|E[XnYn] = EIXY]| < E|[(Xn = X)Yn + X (Y = V) [],
since |E [Z]| < E[|Z]]. Now we can use the ordinary triangle inequality for real numbers and obtain:
E[[(Xn = X)Yo + X (Yo = Y) [ < E[[(Xy = X)Yoll + E[|X (Y, = Y)[].

But Cauchy-Schwartz entails now

E[|(Xn = X)Ya|] < VE[Xn — XPIVE[|Ya]?]

and

E((Ya - Y)X[ < VE[Y, - YPIVE[X]].

But by assumption \/E [|X,, — X[!|—= 0, E [|Y,|?| = E [|[Y|?] (part (b)), and \/E[|Y;, — Y|?]— 0, and thus the
assertion (c¢) is proved. =

We shall often need Cauchy’s criterion for mean square convergence , which is the next theorem.
Theorem 7.3.2 Consider the random sequence {X, }, -, with X,, € Ly (Q, F,P) for every n. Then
E[|Xn—Xml’] =0 (7.7)
as min(m,n) — oo if and only if there exists a random variable X such that
X, > X.

u
The assertion here is nothing else but that the pre-Hilbert space defined section 7.1.2 above is complete. A

useful form of Cauchy’s criterion is known as Loéve’s criterion:

Theorem 7.3.3
E(|Xn— Xml’] 2 0= E[X,X,,] = C. (7.8)

as min(m,n) — oo, where the constant C is finite and independent of the way m,n — oc.
Proof Proof of <=: We assume that E [X,, X,,] — C. Thus
E[|Xn = Xunl’] = E[Xn - Xy 4+ X - Xon — 2X0 - Xin)]

- C+C-20=0.
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Proof of =: We assume that E [|X,, — X,,|?] = 0. Then for any m and n
E [XnXm] =k [(Xn - X) Xm] +E [XXm] :

Here,
E[(X,—- X)X, — E[0X]=0,
by theorem 7.3.1 (c), since X, 32X according to Cauchy’s criterion. Also,

EXXn] > E[X?]=C

by theorem 7.3.1 (d). Hence
E[X,Xn| = 0+C=C.

7.4 Applications

7.4.1 Mean Ergodic Theorem

Although the definition of converge in mean square encompasses convergence to a random variable, in many

applications we shall encounter convergence to a constant.

Theorem 7.4.1 The random sequence {X,}, - is uncorrelated and with £ [X,] = u < oo for every n and

Var [X,,] = 0% < oo for every n. Then

as n — oQ.

Proof Let us set S, = 2 > =1 Xn. Wehave E[S,] = pand Var [S,] = 152, since the variables are uncorrelated.

T n

For the claimed mean square convergence we need to consider

E [lS" - Mlﬂ =E [(Sn - B [Sn])Q] = Var [S,] = %02
so that
E |5, — pl*] = 102 —0
n

as n — 00, as was claimed. n

7.4.2 Mean Square Convergence of Sums

Consider a sequence {X,,} ~ ; of independent random variables in Ly (Q, F,P) with F [X;] = p and Var [X;] =
o2. We wish to find conditions such that we may regard an infinite linear combination of random variables as

a mean square convergent sum, i.e.,

n oo

2
E a; X; — E a; X,
i=0 i=0
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as n — oo. The symbol >-°°  a;X; is a notation for a random variable in Ly (€2, F, P) defined by the converging

sequence. The Cauchy criterion in theorem 7.3.2 gives for Y,, = Z?:o a; X; and n < m that

| Z aiXi|2] =o? Z a? 4 p? ( Z ai> ) (7.9)

1=n—+1 1=n-+1 i=n—+1

ElY,-Y,]?| =E

since by Steiners formula EZ% = Var(Z) + (E [Z])” for any random variable that has variance. We need to

recall a topic from mathematical analysis.

Remark 7.4.1 The Cauchy sequence criterion for convergence of sums states that a sum of real numbers

Q;
oo
>_ai
i=0

converges if and only if the sequence of partial sums is a Cauchy sequence. By a partial sum we mean a finite

sum like

That the sequence of partial sums is a Cauchy sequence says that for every € > 0, there is a positive integer N
such that for all m > n > N we have

|Sm - Sn| =

1=n+1

which is equivalent to
n+k
lim > a; =0. (7.10)

k—oo j—p

This can be proved as in [69, p.137—138]. The advantage of checking convergence of >_:° ; a; by partial sums is

that one does not need to guess the value of the limit in advance.

u
By the Cauchy sequence criterion for convergence of sums we see in the right hand side of (7.9) by virtue of

(7.10) that E [|Y,, — Y;,|?] converges by the Cauchy sequence convergence of sums to zero if and only if
e incase u #0
o0
Z |a;] < oo,
i=0
(which implies Y% a? < o0)

e in case =0

oo
E a? < oo.
1=0

7.4.3 Mean Square Convergence of Normal Random Variables

Let us suppose that we have
X, € N (pn,07) (7.11)

and, as n — oo,

X, 3 X. (7.12)
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Thus (7.12) implies in view of Theorem 7.3.1 (a) and (b) that there are numbers p and o2 such that
tn — = FE[X], o2 —=0?=Var[X].
Then the characteristic functions for X,, are

iun,t—%aitz

ex,(t)=e
Therefore we have for all real ¢ that
iut—%o’zt2

X, (t) — € )

and thus X € N (u, 02) by the continuity theorem 6.6.3 for characteristic functions
Theorem 7.4.2 If X;, ¢ N (un, U%) and X, 2 X, as n — oo, then X is a normal random variable.

u
As an application, we can continue with the sums in section 7.4.2. If X; are independent N (M,UQ), and
Yoicolail < oo, then

3 a; X; €N p 3 ai,o? 3 a? | . (7.13)
=0 i=0 =0

7.5 Subspaces, Orthogonality and Projections in L, (2, F,P)

A subspace M of Lo (Q, F,P) is a subset such that
e If X € M and Y € M, then aX + bY € M, for all real constants a and b.

If M, is a subspace for « in an arbitrary index set I, then N,ec7 M, is a subspace.
If a subspace M is such that if X,, € M and if X,, 2 X, then X € M, we say that M is closed.

Example 7.5.1 Let My = {X € Ly (2, F,P) | E[X] = 0}. This is clearly a subspace. By Theorem 7.3.1 (a)
My is also a closed subspace. It is also a Hilbert space in its own right.

Example 7.5.2 Let {0} = {X € Ly (2, F,P) | X =0 a.s.}. Then {0} is a subspace, and a subspace of any
other subspace.

[ ]
Let X = (X3, X3,...) be a sequence of random variables in Ly (2, F,P). We define the subspace spanned
by X1, Xa,...,X,, which is the subspace £X consisting of all linear combinations Yo, a; X, of the random

variables, and their limits in the mean square, or

n

LY =5p{X1, Xo,..., X,}. (7.14)

Since we here keep the number of random variables fixed and finite, the limits in the mean square are limits of

Y,, = Zai(m)Xi as m — 00.
i=1

Next we define orthogonality [96, p. 253];
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Definition 7.5.1 Two random variables X € Ly (Q, F,P) and Y € Ly (2, F, P) are said to be orthogonal, if
(X,Y)=0. (7.15)

If X € My and Y € My, the subspace in example 7.5.1, then orthogonality means that
(X,)Y)=FE[XY]=0,
and we are more used to saying that X and Y are uncorrelated.

Definition 7.5.2 Let X € Ly (Q, F,P) and M be a subspace of Ly (2, F,P). If it holds for all Y in M that
(X,Y) =0, we say that X is orthogonal to the subspace M, and write this as

X 1 M. (7.16)

We define the subspace M+
M+ UX e L, (Q,F,P)| X L M} (7.17)

[ ]
One might also want to check that M+ is actually a subspace, as is claimed above.
The following theorem is fundamental for many applications, and holds, of course, for any Hilbert space,
not just for Lo (2, F, P), where we desire to take advantage of it.

Theorem 7.5.3 Let M be a closed subspace of Lo (Q, F,P) Then any X € Lo (22, F,P) has a unique decom-
position
X = Projy, (X)+ Z (7.18)
where Proj,,;(X) € M and Z € M*. In addition it holds that
X — Projy X ||= mi X — Nl
| rojp X [|= min | vVl (7.19)

Proof is omitted, and can be found in many texts and monographs, see, e.g., [26, pp. 35—36] or [36, p.204—206].
The theorem and proof in [96, p. 262] deals with a special case of the result above. "
For our immediate purposes the interpretation of theorem 7.5.3 is of a higher priority than expediting its proof.
We can think of Proj,,(X) as an orthogonal projection of X to M or as an estimate of X by means of M.
Then Z is the estimation error. Proj,,(X) is optimal in the sense that it minimizes the mean squared error
| X =V 2= E[(X - V)2,

This interpretation becomes more obvious if we take M = £X as in (7.14). Then Proj,,;(X) € M must be

of the form
Projp (X) =) aiX;. (7.20)
i=1
which is an optimal linear mean square error estimate of X by means of X, X5... X,. The coefficients

a; can be found as a solution to a system of linear equations, see the exercises below.

Example 7.5.4 We reconsider M in example 7.5.1 above. Then the random variable 1, i.e., 1(w) = 1 for
almost all w, is orthogonal to M, since
E[X-1]=FE[X] =0,

for any X € Mj. The orthogonal subspace MOL is in fact spanned by 1,
My ={Z|Z=c-1,cc R}.
Every X in Lo (2, F,P) can then be uniquely decomposed as

X = Projy(X)+ 2, Projy,(X)=X-E[X],Z=E[X] 1.
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Example 7.5.5 X and Y are random variables in Lo (€2, F,P). Let us consider the subspace M = LY C M,
(example 7.5.1 above) spanned by Y — uy, where py = E[Y]. Thus Proj,;(X — ux), px = E[X], is a random
variable that is of the form

Projy (X —pux) =a(Y — py)

for some real number a. Let
Z=(X—-px)—alY —py).

Then we know by theorem 7.5.3 that for the optimal error Z
Z 1LY,
which is the same as saying that we must find a that satisfies
(Z,a (Y — py)) = 0.
When we write out this in full terms we get
El[(X = px) —a(Y = py)) -a(Y = py)] = 0 (7.21)
54

aB[(X = px) - (Y = py)] - a’E

—

(Y - MY)Q} =0
=
aCov (X,Y) = a*Var(Y),

which gives
Cov (X,Y)
B Var(Y)
This makes good sense, since if X and Y are independent, then Cov (X,Y) = 0, and Proj,,(X —ux) =0 (=
the random variable O(w) = 0 for all w € Q). Clearly, if X and Y are independent, there is no information

about X in Y (and vice versa), and there is no effective estimate that would depend on Y. Let us write

, o Cov(X,Y)  Cov(X,Y) /Var(X)

(7.22)

Var(Y) — /Var(X),/Var(Y) +/Var(Y)

Var(X)

= pPX,Y * Wa

where px y is the coefficient of correlation between X and Y. Then we have

=

r(X

X —px :PX,Y'iT(Y
54
X:MXJFPXY'&'(Y*HY)WLZ-
’ Var(Y)
Therefore, the the best linear mean square estimator of X by means of Y is
X VVarlX) oy . (7.23)

X = + LY
XY N (V)

~—

(Y —puy)+ 2

<

=
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7.6 Exercises

7.6.1 Mean Square Convergence
1. Assume X, € Ly (Q, F,P) for all n and Y,, € Ly (Q, F,P) for all n and
X, 2 XY, >,
as n — 0o0. Let a and b be real constants. Show that
aXy, +bY, 20X + bY,

as n — 00. You should use the definition of mean square convergence and suitable properties of || X || as
defined in (7.3).

2. Consider
We, n>1.

x| =

-
k=1
where Wy, are independent and N (0, 0?) -distributed.

(a) Determine the distribution of X,.

(b) Show that there is the convergence

2
X,=>X asn— oo,

and that X € N (0,257 ).

3. The sequence {X,},~, of random variables is such that E [X;] = p for all 4, Cov (X;,X;) =0, if i # j
and such that Var(X;) < c and for all 7. Observe that the variances are thus uniformly bounded but not
necessarily equal to each other for all ¢. This changes the setting from that in theorem 7.4.1 above. Show
that

1 n
- E X]‘iﬂ,
n -

Jj=1

as n — oQ.

7.6.2 Optimal Estimation as Projection on Closed Linear Subspaces in L, (2, 7, P)
1. Let X € My, see example 7.5.1. Assume also that Yi,...,Yxy are in My. The closed subspace in My
spanned by Y7,...,Yyn is
M= LY.
We want to find the optimal projection of X to L), which means to find Proj,,(X) = Zgﬂ arYy such
that £ [(X - V)Q} is minimized for V € LY. We set

rymk:<Ym,Yk), mzl,,N,k/’Zl,,N
(7.24)
Yom = (Yo, X), m=1,...,N.
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(a) Show first that if a1,...,ay are solutions to the linear system of equations
N
Zak’)/mk = Yom; M = 17"'5Na (725)
k=1
then
X — Proj (X) L LY, (7.26)

c.f., (7.21) above.
(b) Show that

E [(X — (@ Yy + ...+ aNYN))Q} (7.27)
is minimized, if the coefficients a1, ..., ay satisfy the system of equations (7.25).
Aid: Let by,...,by be an arbitrary set of real numbers. set

N
Proj,,(X) = Z apYy.
k=1

for ay,...,ay that satisfy the system of equations (7.25). Then we can write the estimation error e

using an arbitrary linear estimator b1Y; + ...+ byYn in 5% as

N
e=X-—(Yi+...+byYn) = (X = Projy (X)) + Y (ax — by) Y.
k=1

Expand now E [¢?] and recall (7.26).

2. Let P = {A1,Ag,..., A;} be partition of Q, ie., A, € F, i = 1,2,....k, AiNA; =0, j # i and

Uk A; = Q. Let xa, i = 1,..., k be the indicator functions of the cells A; i = 1,..., k, respectively. Note
that every xa, € Lo (2, F,P). We take the subspace spanned by all linear combinations of the indicator

functions

LY =30 {XA1, Xaz»---, XA, }- (7.28)

In other words, £ is spanned by random variables of the form

k
Z CiXA; (w)a

i=1
where ¢;s are real constants.
Let X € My, (example 7.5.1). Find the optimal projection Proj,»(X) of X to L. A good hint is that

the answer should coincide with the expression for the conditional expectation E [X | P] in section 3.4

above.

(From [50]) Let X have a Rayleigh distribution with parameter 202 > 0, X € Ra (20?), or

ag

x —x?/20° >0
fX(-T) _ { 7€ xr =

0 elsewhere.

Let Z € U(0,1) (=the uniform distribution on (0,1)). X and Z are independent. We multiply these to
get
Y =7 X.
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(a) Consider M = LY, the subspace spanned by Y — E[Y]. Find that the best linear estimator in mean

square sense, Proj,;(X — E [X]), is

Aid: This is an application of the results in example 7.5.5, see (7.23). Preferably use the expression
for a from (7.22).

Show that
_vy?2
e 202

E[X|Y]=

o

Var Q(3)

where the Q-function Q(x) = \/%7 fzoo e~ 7 dt is the complementary distribution function for the
standard normal distribution, i.e., ®(z) =1 — Q(x).

Aid: Find the joint p.d.f. fx y(z,y) and the marginal p.d.f. fy(y) and compute E[X | Y = y] by
its definition.

Remark 7.6.1 This exercise shows that the best estimator in the mean square sense, E [X | Y],
see section 3.7.3 in chapter 2., and the best Ilinear estimator in the mean square sense,
Proj,;(X — E[X]), by no means have to be identical.
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Chapter 8

Gaussian Vectors

8.1 Multivariate Gaussian Distribution

8.1.1 Why Gaussianity ?

The Gaussian distribution is central in probability theory, since it is the final and stable or equilibrium
distribution to which other distributions gravitate under a wide variety of smooth operations, e.g., convolutions
and stochastic transformations, and which, once attained, is maintained through an even greater variety of
transformations.

In the sequel, see the chapters 10 and 11, we shall discuss the probability theory in relation to molecular
motion, [10, 17], and physical noise in a physical system. The pertinent events in the system could be the
individual impacts of small molecules, or the electric force from many electrons moving in a conductor. The
total force applied by these small molecules or electrons is the sum of the random forces applied by an individual
particle. Since the total force is a sum of many random variables and the microscopic fluctuations are fast as
compared to the motion of the system, we can think of evoking the central limit theorem to model the noise
with a Gaussian distribution.

Let us collect from the preceding chapters the following facts;

e X is a normal a.k.a. Gaussian random variable, if
1

_ — stz (z—p)?
T) = e 20 ,
fx(@) oV 2w

where y is real and o > 0.
e Notation: X € N(u,0?).

Properties: X € N(u,0%) = E[X] = u, Var[X]| = o2.

X € N(u,0?), then the moment generating function is

1/1X(t) - B [etX] _ etu+%t202, (8.1)
and the characteristic function is

px(t) = B [e"X] = itnm3t’e", (8.2)

X € N(u,0%) =Y =aX +be N(au+b,a’0?).

205
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e X € N(u,0%) = Z =22 N(0,1).

We shall next see that all of these properties are special cases of the corresponding properties of a multivariate
normal/Gaussian random variable as defined below, which bears witness to the statement that the normal

distribution is central in probability theory.

8.1.2 Notation for Vectors, Mean Vector, Covariance Matrix & Characteristic
Functions

An n x 1 random vector or a multivariate random variable is denoted by

X1

X2 ’
X = ) = (X1, Xo,...,Xn) ,

Xn

where " is the vector transpose. A vector in R" is designated by

For the clarity of expression we note that

is a scalar product (i.e. a number) and

’

XX = (Z'Z'$j)n7n

i=1,j=1

is n x n-matrix. The same statements hold for the random variable X' X and the random matrix, or matrix of
random variables, XX’
We denote by Fx (x) the joint distribution function of X, which means that

Fx(X) :P(XSX) :P(Xl S.Tl,XQ S$2,...,Xn an)
The following definitions are natural. We have the mean vector
E[X4]
E [X5]
E[X]

which is a n x 1 column vector of means (=expected values) of the components of X.

The covariance matrix is a square n X n -matrix
Ox = B [(X = jix) (X = pix) |

where the entry ¢; ; at the position (i, j) of Cx is

Cij “E (X — i) (X5 — )],
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that is the covariance of X; and X ;. Every covariance matrix, now designated by C, is by construction symmetric
c=c¢C (8.3)

and nonnegative definite, i.e, for all x € R"
x Cx > 0. (8.4)

It is shown on courses in linear algebra that nonnegative definiteness implies det C > 0. In terms of the entries

ci,j of a covariance matrix C = (Ciyj)?:ﬂ;:jﬂ the preceding implies the following necessary properties.
1. ¢ij = ¢j; (symmetry).

2. ¢;; = Var (X;) = 07 > 0 (the elements in the main diagonal are the variances, and thus all elements in

the main diagonal are nonnegative).

3. ¢i; < ¢ii- ¢ (Cauchy-Schwartz’ inequality, c.f., (7.5)). Note that this yields another proof of the fact
that the absolute value of a coefficient of correlation is < 1.

/

Example 8.1.1 The covariance matrix of a bivariate random variable X = (X7, X3) is often written in the

2
O = 71 p‘;m : (8.5)
po102 05

where 0? = Var (X;), 05 = Var (X3) and p = Cov(X,Y)/(0102) is the coefficient of correlation of X; and Xs.
C is invertible (= positive definite) if and only if p? # 1.

following form

Linear transformations of random vectors are Borel functions R™ — R™ of random vectors. The rules for

finding the mean vector and the covariance matrix of a transformed vector are simple.

Proposition 8.1.2 X is a random vector with mean vector ux and covariance matrix Cx. B is a m X n matrix.
If Y = BX + b, then
EY =Bux +b (8.6)

Cy = BCxB'. (8.7)
Proof For simplicity of writing, take b = ;x = 0. Then
Cy = EYY = EBX (BX) =

— EBXX B = BE [Xx’} B = BCxB'.

We have

Definition 8.1.1
ox (s) ) [eis X} = / e’ *dFx (x) (8.8)

is the characteristic function of the random vector X.
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In (8.8) s'x is a scalar product in R”,

’
S X = E S;T;.

=1

As Fx is a joint distribution function on R™ and fRn is a notation for a multiple integral over R™, we know

that
/ dFX (X) = 1,

which means that ¢x (0) = 1, where 0 is a n x 1 -vector of zeros.

Theorem 8.1.3 [Kac’s theorem] X = (X1, Xo, - ,Xn)/. The components X1, Xa, -+, X, are independent
if and only if

ox (s) = B [ X] = [ ox.(s0).
i=1
where ¢, (s;) is the characteristic function for Xj.

Proof Assume that X = (X, Xo,--- ,Xn)/ is a vector with independent X;, i = 1,...,n, that have, for
convenience of writing, the joint p.d.f. fx (x). We have in (8.8)

ox ()= [ e () dx

= / . / gils1@1ttsnn) H fx, () dxy -+ - dxy,

o - i=1
(8.9)
=/ eI (wl)dwl"'/ e o, (wn) dn = ¢x, (51) - - dx,, (5n);
where ¢x, (s;) is the characteristic function for Xj.
The more complicated proof of the assertion in the other direction is found in [61, pp.155—156]. "

8.1.3 Multivariate Normal/Gaussian Distribution

Definition 8.1.2 X has a multivariate normal or Gaussian distribution with mean vector p and covariance

matrix C, written as X € N (p, C), if and only if the characteristic function is given as

dx (s) = i =35 Cs, (8.10)

The next statement is a manifestation of the Cramér-Wold theorem! or the Cramér-Wold device, [67,
p. 87], which states that a probability measure on (R™, B (R")) is uniquely determined by the totality of its
one-dimensional projections. Seen from this angle a multivariate normal distribution is characterized by the

totality of its one dimensional linear projections.

1Hermann Wold, 1908 - 1992, was a doctoral student of Harald Cramér, then Professor of statistics at Uppsala University and
later at Gothenburg University http://en.wikipedia.org/wiki/Herman_Wold
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Theorem 8.1.4 X has a multivariate normal distribution N (u, C) if and only of
aX=>Y aX (8.11)
i=1

. . . ’
has a normal distribution for all vectors a = (a1, az,...,an).

Proof Assume that a' X has a multivariate normal distribution for all a and that 1 and C are the mean vector

and covariance matrix of X, respectively. Here (8.6) and (8.7) with B = a’ give
Ea'X = a/u,Var [a,X} = a Ca.

Hence, if we set Y = alX, then by assumption ¥ € N (a, u,a,Ca) and the characteristic function of Y is by
(8.2)

ita/u—%tza,Ca

ey (1) =e

The characteristic function of X is by definition

Thus

ox (a) — Feia X _ Oy (1) i p—sa Ca
Thereby we have established that the characteristic function of X is
7%5/05.

px (s) =e™#

In view of definition 8.1.2 this shows that X € N (i, C). The proof of the statement in the other direction is

obvious. n

Example 8.1.5 In this example we study a bivariate random variable (X, Y)/ such that both X and Y have
normal marginal distribution but there is a linear combination (in fact, X +Y’), which does not have a normal
distribution. Therefore (X,Y)" is not a bivariate normal random variable. This is an exercise stated in [80].
Let X € N (0,0%). Let U € Be (3) and be independent of X. Define

v X itU=0
-X ifU=1.

Let us find the distribution of Y. We compute the characteristic function by double expectation

ey (t)=E [ ] = E[E [ | U]]

:E[e“Y|U=0}-%+E[eitY|U=1}-

DN | =

:E[e”X|U:0]-%+E[e—“x|U:1}é

and since X and U are independent, the independent condition drops out, and X € N (0, 02),

1 #2452 1252 #2452

:E[eitX}.%+E[e*itX], = _.e 2 +%6 2 —e¢ 2,

|~
\V]
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which by uniqueness of characteristic functions says that Y € NV (0, 02). Hence both marginal distributions of
the bivariate random variable (X,Y) are normal distributions. Yet, the sum

X4y — 2X ifU=0
0 ifU=1

is not a normal random variable. Hence (X,Y) is according to theorem 8.1.4 not a bivariate Gaussian random

variable. Clearly we have
X 10 X
= . 8.12
()0 e ) (5 o

Hence we multiply (X, X ), once by a random matrix to get (X, Y), and therefore should not expect (X, Y), to
have a joint Gaussian distribution. We take next a look at the details. If U = 1, then

()68 G (3)
(7))~ (3)

The covariance matrix of (X, X)" is clearly

and if U = 0,

We set

One can verify, c.f. (8.7), that 02C; = A;Cx A} and 02Cy = A;Cx A,. Hence 62C is the covariance matrix
of (X,Y), if U =1, and 02Cj is the covariance matrix of (X,Y), if U = 0.

It is clear by the above that the joint distribution Fx y should actually be a mizture of two distributions
F)((l)y and F)(g )Y with mixture coefficients (%, %),

1 1
Fxy(r.y) = 5 FYy(eu) + 5 Fy(2.0).

We understand this as follows. We draw first a value u from Be (%), which points out one of the distributions,
F )((u%,, and then draw a sample of (X,Y) from F )((u%, We can explore these facts further.

Let us determine the joint distribution of (X, Y)/ by means of the joint characteristic function, see
eq.(8.8). We get

) . 1 . 1
(,DX7Y(t, S) — F |:ez(tX+SY):| — FE |:6’L(tX+SY) | U = 0:| . 5 + E |:6’L(tX+SY) | U= 1:| . 5
) 1 . 1
_ E{ z<t+s>X>} 2 E{ z(H)X} 2
¢ s T D
1 _a+9?02 1 _—9202
—e 2 —e 2.

From the above

<t—s>2=<t,s>cl(z> <t+s>2=<t,s>co<§>-
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We see that Cq and Cq are non-negative definite matrices. (It holds also that det C; = det Cy = 0.)

Therefore , ,
1 7(t+s)2a'2 1 7(t—s)2a2 1 7(725 Cps 1 70‘25 Cis
2 2 2 2

where s = (t, s),. This shows by uniqueness of characteristic functions that the joint distribution
0 0
of (X,Y) is a mixture of N << 0 ) ,02C0> and N << 0 ) ,0201> with the mixture coefficients

(575'

Additional properties are:

1. Theorem 8.1.6 If Y = BX + b, and X € N (u, C), then

YeN (B;Hb,BCB’) .
Proof We check the characteristic function of Y; some linear algebra gives

ey (s)=F {eis,Y} =F {eis,(b"‘Bx)} =

ﬂﬁ§ﬂ

./ ., .,
— s bE {ezs BX} — ¢ls bE

or )

oy (s) = e PE | (P7%) X] . (8.13)
Here )

> ei(B s) x] o (B,s) '
Furthermore , ,

e (5s) = ) i1 () ()
Since ) ,
(B/s) 0= s/B,u, (B/s) C (B/s) = s/BCB/s,
we get
ei(B,s) u—%(B/S) C<B/S) _ eis/Bu—%s/BCB/s-

Therefore

ox (B/S) _ eis B,ufés BCB s (814)

and by (8.14) and (8.13) above we get
Y (S) = €is bng (B/S) = eis beis B#*és BCB s
_ ez‘s'(bJrBu)—;s/BCB/s7

which by uniqueness of characteristic functions proves the claim as asserted. "
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2. Theorem 8.1.7 A Gaussian multivariate random variable has independent components if and only if the

covariance matrix is diagonal.

Proof Let A be a diagonal covariance matrix with A;s on the main diagonal, i.e.,

A1 O 0 0
0 X O ... O
A= 0 0 A3 ... 0
0 : 0
0 0 0 A\n
Then
ox (t) = it 3t At _

= ei i “iti_% >iea )‘it?

— eiultl_%)‘lt?eiMZtZ_%)‘th - eiuntn—%knti

is the product of the characteristic functions of X; € N (u;, \;), which are by theorem 8.1.3 seen to be

independent. "

3. Theorem 8.1.8 If C is positive definite ( = det C > 0), then it can be shown that there is a simultaneous

p.d.f. of the form
1

———————¢€
(27)n/2y/det C

Proof It can be checked by a lengthy but straightforward computation that

fx (x) = — 5 (x—px) Cfl(X—HX)_ (8.15)

L7 ’ !
'S p—%s Cs e—%(x—u) C l(x_“)dx.

— / eZS/X 1
w (2m)n/2,/det(C)

4. Theorem 8.1.9 (X;, Xg), is a bivariate Gaussian random variable. The conditional distribution for X

given X1 = 21 is

02
N (m +p- U_l(xl —1),05(1 — p2)) : (8.16)

where s = E(X32), i1 = E (X32), 02 = y/Var (X2), 01 = y/Var (X;) and p = Cov(X1, X3)/ (01 - 02) .

Proof is done by an explicit evaluation of (8.15) followed by an explicit evaluation of the pertinent con-

ditional p.d.f. and is deferred to Appendix 8.4. "

Hence for bivariate Gaussian variables the best estimator in the mean square sense, F [X; | X1],
and the best linear estimator in the mean square sense are one and the same random variable,

c.f., example 7.5.5 and remark 7.6.1.

Definition 8.1.3 Z € N (0,1) is a standard Gaussian vector, where I is n x n identity matrix.

Let X € N (ux, C). Then, if C is positive definite, we can factorize C as

C=AA,
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for n x n matrix A, where A is lower triangular, see [80, Appendix 1]. Actually we can always decompose
C=LDL,

where L is a unique n X n lower triangular, D is diagonal with positive elements on the main diagonal, and we
write A = Lv/D. Then A~! is lower triangular. Then

Z=A" (X~ px)

is a standard Gaussian vector. In some applications, like, e.g., in time series analysis and signal processing, one
refers to A~! as a whitening matrix. It can be shown that A~! is lower triangular, thus we have obtained Z
by a causal operation, in the sense that Z; is a function of Xi,..., X;. Z is known as the innovations of X.

Conversely, one goes from the innovations to X through another causal operation by X = AZ + b, and then
X =N (b, AA’) .

Example 8.1.10 (Factorization of a 2 x 2 Covariance Matrix) Let

< 2 ) €N (1,C).

Let Z; och Zs be independent N(0,1). We consider the lower triangular matrix

g1 0
B-— , 8.17
< pos o2/ 1 — p? ) (8.17)

which clearly has an inverse, as soon as p # £1. Moreover, one verifies that C = B - B,, when we write C as in

(8.5). Then we get
X, Z
= B 8.18
(%)) 515)

where, of course,

8.2 Partitioned Covariance Matrices

Assume that X, n x 1, is partitioned as

’

X = (Xy,X2) ,

where X7 is p x 1 and X5 is ¢ X 1, n = ¢ + p. Let the covariance matrix C be partitioned in the sense that

c- Y1 X2 , (8.19)
Yo1 Yoo

where Y11 is p X p, Y99 is ¢ X q e.t.c.. The mean is partitioned correspondingly as

[i= ( 1 ) . (8.20)
2
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Let X € N, (u,C), where N,, refers to a normal distribution in n variables, C and p are partitioned as in
(8.19)-(8.20). Then the marginal distribution of Xs is

Xa € Ny (p2,¥22),

if Yoy is invertible. Let X € N, (i, C), where C and p are partitioned as in (8.19)-(8.20). Assume that the

inverse 22_21 exists. Then the conditional distribution of X; given Xy = x5 is normal, or,
X, | Xs=xz €N, (HHQ,EHQ) : (8.21)

where
Hyp = M1+ D125 (%2 — pi2) (8.22)

and
Yip =% — V12855 Loi.

By virtue of (8.21) and (8.22) the best estimator in the mean square sense and the best linear estimator

in the mean square sense are one and the same random variable .

8.3 Appendix: Symmetric Matrices & Orthogonal Diagonalization

& Gaussian Vectors

We quote some results from [5, chapter 7.2] or, from any textbook in linear algebra. An n X n matrix A is

orthogonally diagonalizable, if there is an orthogonal matrix P (i.e., PP =PP = I) such that
P AP =A,
where A is a diagonal matrix. Then we have
Theorem 8.3.1 If A is an n X n matrix, then the following are equivalent:
(i) A is orthogonally diagonalizable.
(ii) A has an orthonormal set of eigenvectors.
(iii) A is symmetric.

u
Since covariance matrices are symmetric, we have by the theorem above that all covariance matrices are

orthogonally diagonalizable.
Theorem 8.3.2 If A is a symmetric matrix, then
(i) Eigenvalues of A are all real numbers.
(ii) Eigenvectors from different eigenspaces are orthogonal.

u
That is, all eigenvalues of a covariance matrix are real. Hence we have for any covariance matrix the

spectral decomposition

C= Z )\ieie;, (823)
i=1
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where Ce; = \;e;. Since C is nonnegative definite, and its eigenvectors are orthonormal,
! !
0 S €Z-C€i = )\ieiei = )\i;

and thus the eigenvalues of a covariance matrix are nonnegative.

Let now P be an orthogonal matrix such that
P CxP = A,

and X € N (0,Cx), i.e., Cx is a covariance matrix and A is diagonal (with the eigenvalues of Cx on the main
diagonal). Then if Y = P'X, we have by theorem 8.1.6 that

Y e N(0,A).

In other words, Y is a Gaussian vector and has by theorem 8.1.7 independent components. This method of
producing independent Gaussians has several important applications. One of these is the principal component

analysis, c.f. [59, p. 74]. In addition, the operation is invertible, as
X =PY

recreates X € N (0,Cx) from Y.

8.4 Appendix: Proof of (8.16)

/

Let X = (X1,X2) € N(ux,C), ux = < = ) and C in (8.5) with p? # 1. The inverse of C in (8.5) is
M2

o1 = 1 0‘% —po109
oto3(1—p*) \ —poioa o}

Then we get by straightforward evaluation in (8.15)

1 1 ! ~—1
— —5(x—px) C7 7 (x—px)
X)=——— ¢ 2
fx () 27y det C
-1 eme, (8.24)
2mo1094/1 — p?
where
Q(z1,22) =
1 <$1M1)2 2p(x1 — 1) (w2 — pi2) <$2M2)2
2y - + :
(1-p2) o1 0102 02
Now we claim that
1 7%(12—[@(@))2

fX2|X1:$1 (1'2) = 5_2\/%6 )
a p.d.f. of a Gaussian random variable Xo|X; = 27 with the (conditional) expectation fi2(x1) and the (condi-
tional) variance &9

; o B
fia(w1) = po +PU—2($1 — p1), G2 = 021/ 1 — p?.
1

To prove these assertions about fx,|x,—s, (72) we set

1 *72(11*#1)2

e *71 , 8.25
o1V 21 ( )

fXI (:Cl) =
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and compute the ratio %W We get from the above by (8.24) and (8.25) that

fxi x, (21, 22) o1V2n -3 (IwzHé(zrm)Z

= e ,
fx(z1) 2mo1094/ 1 — p?

which we organize, for clarity, by introducing the auxiliary function H(z1,2) by

1 def 1
*§H($1,ZE2) = *§Q($1,$2)+

- o 2
207 (1 — p1)”

Here we have

H(z1,22) =
o (x—ul)Q_2P($1—M1)($2—M2)+ o=\ (o m)?
(1—p32) o3 0109 o9 o1
2 2
P (@mom) 2p(m — ) (e —pe) | (w2 — po)
01— o =) 31— )
Evidently we have now shown
2
( ) (902*#2 —pZ(n *Ml))
H Tr1,T2) = .
21— )
Hence we have found that
Ty —p 7,;;*2(2 —K1) ?
fX11X2(:C17$2) _ 1 67%( 2 20%(1;321 ! )
fx(@1) V1= p2oaV27
This establishes the properties of bivariate normal random variables claimed in (8.16) above. =

As an additional exercise on the use of (8.16) (and conditional expectation) we make the following check of

correctness of our formulas.

Theorem 8.4.1 X = (Xl,Xg), eEN (( i ) ,C> = P = PX1,Xz-
2

Proof We compute by double expectation
E{(X1 = p)(Xz = p2)] = E(E([(X1 — p) (X2 — p2)] [ X1)
and by taking out what is known,
=E((X1 — ) E [Xa — po] [X1)) = E(Xy — 1) [E(X2]X1) — po
and by (8.16)
= E((X1 — ) |p2 + pz—j(Xl —p) = 2

= pZ—jE(Xl = p1) (X1 — 1))

092 02
= p—E(X1 — 11)* = p—07 = po201.
o1 01

In other words, we have established that

E(X1 — ) (X2 — p2)]

’

which says that p is the coefficient of correlation of (X7, Xa) . n
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8.5 Exercises

8.5.1 Bivariate Gaussian Variables

1. (From [42]) Let (X1, X2)" € N (u, C), where

and

~(, 1)

(a) Set Y = X; — Xo. Show that Y € N(0,2 — 2p).
(b) Show that for any e > 0
P(lY|<e)—1,

= (4)
-(, 1)

(a) We want to find the distribution of the random variable X; | X5 < a. Show that

P(Xi<a|X;<a)= % [ o(u)® (%) du, (8.26)

where ®(z) is the distribution function of N(0,1) and ¢(x) the p.d.f. of N(0,1), i.e., %CI)(:E) = ¢(x).
We sketch two different solutions.

Aid 1. We need to find

if p11.

2. (From [42]) Let (X, X5)" € N (i, C), where

and

P ({X; <2} n{X2<a})
P (X2 S a)

P(X1§x|X2§a)=

Then T a
P{X; <z}n{Xy<a})= / / fx1 x5 (u,v)dudv =

- /zoo I (v) /; Ix1 ) Xo=0 (0)dudv.

Now find fx,(v) and fx,|x,—.(u) and make a change of variable in ffoo Ix1 | x5=0(u)du.

Aid 2. Use (8.18), which shows how to write (X1, X5)', as a linear transformation of (Zl,ZQ)/ with

N(0,1I), or as
X1 B Zy .
Xo Zy

Then you can, since B is invertible, write the event
{Xl S ZL'} n {X2 S a}

as an event using (the innovations) Z; and Z; and then compute the desired probability using
the joint distribution of Z; and Zs.
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(b) Show using (8.26) that

ifz<a

ImP(X; <z|Xy<a)= @(a)
Pt 1 if x> a.

3. (From [42]) Determine the constant ¢ so that the function

. (From [42]) (X1, X») € N (0,C), where 0 = (0,0)

. e-@—ayty?)

becomes the p.d.f. of a bivariate normal distribution, and determine its parameters, that is, its mean

)

vector and covariance matrix.

0
Answer: ¢ = 2—\/3, N , (
T 0

o= Wl
W Wl

/

(a) Show that
Cov (X7, X3) =2(Cov (X1, X5))° (8.27)

’

(b) Find the mean vector and the covariance matrix of (X7, X3)

X cN ) ot /)3102 _
Y 113% po102 05

As in section 3.7.3 we have the estimator

[Estimation theory] Let

V=B |Fx]=EY|X]

and the estimation error

(a) Find F (}7), and show that

Aid: Recall theorem 3.7.3 and (8.16).
(b) What is the distribution of ¥ ?

. Rosenblatt Transformation for Bivariate Gaussian Variables Let

X\ me\ o} p<27102 _
Xo 2 poi10y 05
Find the Rosenblatt transform (3.43) from (X1, X2) to (Z1, Z2), i.e.

21 = Fx, (21)
(8.28)
22 = FXQ\Xlzacl (£E2) .

(8.29)

Note that Z; € U(0,1) and Z, € U(0,1), and must be independent.
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7. [Estimation theory and Tower Property] Let

X cN ) ot /)3102 _
Z Wz po102 05

In addition we have for an interval [a, b] and some ¢ € [a, b]

1 a<X<b
Y = X) = - -
Xa(X) { 0 X ¢/a,b].
Suppose now that we want to estimate Z by means of Y = 1 and take
E[ZlY =1]

as our chosen estimator.

(a) Show that
o
E[Z]Y =1]=pz+p- U_j(H1 — px),

where

1 b 1 _(m—ug()2
H, = T e 291 dux.
' q)(b_—&) ,@(a_—lﬂ) /a o1V 2w

Aid: Start by recalling section 3.32 and the formula (3.7.4).

(b) Find
Var[Z — E[Z|Y =1]].
8. In the mathematical theory of communication, see [23], (communication in the sense of transmission of
messages via systems designed by electrical and computer engineers, not in the sense of social competence

and human relations or human-computer interaction (HCI)) one introduces the mutual information

I(X,Y) between two continuous random variables X and Y by

fX,Y(SC,y) .
fX(ﬂU)fY(y)d . (8.30)

where fx y(z,y) is the joint p.d.f. of (X,Y), fx(x) and fy(y) are the marginal p.d.f.s of X and Y, respec-

I(X,Yy)%¥ /O; /Z Fxv(z,y)log

tively. I(X,Y) is in fact a measure of dependence between random variables, and is theoretically speaking
superior to correlation, as we measure with I(X,Y) more than the mere degree of linear dependence
between X and Y.

0 2 2
Assume now that (X,Y) € N (( ) , ( 7 ) pg )) Check that
0 poc o

I(X,)Y) = —% log (1 —p?). (8.31)

Aid: The following steps solution are in a sense instructive, as they rely on the explicit conditional
distribution of Y | X = z, and provide an interesting decomposition of I(X,Y") as an intermediate step.

Someone may prefer other ways. Use

fxy(@y)  frix=()

fx (@) fy(y) fr(y)

and then o o
I(XaY)Z/ / Ixy (2,y)10g fy|x=u(y)dedy
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10.

11.

12.
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[ revteatop friwdsdy
Then one inserts in the first term on the right hand side
fxy (@) = fyix=2(¥) - fx(z).
Observe that the conditional distribution of ¥ | X = z is here
N (pz,0*(1 —p?)) |

and take into account the marginal distributions of X and Y.

Interpret the result in (8.31) by considering p = 0, p = +1. Note also that I(X,Y") > 0.

[ cos(f) —sin(0)
Q= < sin(f) cos(0) ) (8:32)

(From [101]) The matrix

is known as the rotation matriz®. Let

and let

2 2
and o5 > o7.

(i) Find Cov(Y1,Ys) and show that Y; and Y» are independent for all 6 if and only if 03 = o7.

ii) Supppose o2 > ¢?. For which values of 6 are Y; and Y5 are independent ?
2 1
Y 0 1 0
")enN Pt .
Y> 0 0 1—0p

where Q is the rotation matrix (8.32) with § = %. Show that

()= ((5)( 1))

Hence we see that by rotating two independent Gaussian variables with variances 1+ p and 1 — p, p # 0,

(From [101]) Let

Set

with 45 degrees, we get a bivariate Gaussian vector, where covariance of the two variables is equal to p.

(X,Y) is a bivariate Gaussian r.v. with Var [X] = Var [Y]. Show that X +Y and X —Y are independent

r.v.’s.
X1 cN 0 , O’% pPO102 .
X2 0 pPoO102 O'%

Show that Var [X;X5] = o703 (14 p?).

Let

2y = Qx is a rotation of x by the angle 6, as explained in any text on linear algebra, see, e.g., [5, p.187 .
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13.

14.

15.

16.

17.

18.

X € N(0,1),Y € N(0,1), and are independent.

(a) Show that E[X | X > Y] = ﬁ

(b) Show that E[X +Y | X > Y] =0.
X € N(0,0%), Y € N(0,0?), and are independent. Show that
X-Y
X+Y

€ C(0,1).

Aid: Recall the exercise 2.6.3.4..

X1, Xo, X3 are independent and € N(1,1). We set
U=X1+Xo+ X3,V =X, +2X5+ 3X5.

Determine V' | U = 3. Answer: N(6,2).

X = (X1, X2, Xg)/ has the mean vector 1 = (0,0,0)" and the covariance matrix

3 -2 1
C=| -2 2 0
1 0 1

Find the distribution of X; + X3 given that

(a) X2 =0.
(b) X5 =2.

Answers: (a) N(0,4), (b) N(—2,4).

X = (Xy, Xg), has the mean vector p = (0,0)" and the covariance matrix

L op
p 1
Find the distribution of the random variable
X?—2pX1Xs + X3
1—p?

by computing its m.g.f.. Answer: x?(2).

X e N ey o} pgwg '
Xo M2 po102 04

E[Xy | X1] - E[Xs] le — E[Xl].

Return to the Mean

Check that

(8.33)

g9 01
This equality provides a strict mathematical expression for an important statistical phenomenon, namely

return to the mean, or regression, as discovered by Francis Galton?.

Assume that |p| < 1. Then (8.33) tells us that the standardized distance between E [X5 | X1]
and its mean F[X5] is smaller than than the standardized distance between X; and its mean
E[X;]. Here we think of X; and X» as a first and second measurement, respectively, of some
property, like the height of a parent and the height of an adult child of that parent.

3Sir Francis Galton, 1822 —1911, contributed to statistics, sociology, psychology, anthropology, geography, meteorology, genetics

and psychometry, was active as tropical explorer and inventor, and one of the first proponents of eugenics.
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8.5.2 Covariance Matrices & The Four Product Rule

1. Cis a positive definite covariance matrix. Show that C~! is a covariance matrix.
2. Cq and Cy are two n x n covariance matrices. Show that

(a) Cy + Cy is a covariance matrix.

(b) C; - Cs is a covariance matrix.

Aid: The symmetry of Cy-C; is immediate. The difficulty is to show that Cj - Cq is nonneg-
ative definite. We need a piece of linear algebra here, c.f. appendix 8.3. Any symmetric and

nonnegative definite matrix can written using the spectral decomposition, see (8.23),

n

’

C = E )\ieiei,
=1

where e; is a real (i.e., has no complex numbers as elements) n x 1 eigenvector, i.e., Ce; = \;e;
and A; > 0. The set {e;}  is a complete orthonormal basis in R”, which amongst other

things implies that every x € R™ can be written as

n

X = Z(Xlei)ei,

i=1

where the number x,ei is the coordinate of x w.r.t. the basis vector e;. In addition, or-

thonormality is recalled as the property

’ 1 =
eje; = Z ] (8.34)
0 i+#j.

We make initially the simplifying assumption that C; and Cs have the same eigenvectors,
so that Cye; = \je;, Coe; = pie;. Then we can diagonalize the quadratic form xlCQCpc as

Clx:zn:xel Cie; = Z)\ xeZ

i=1

follows.

z”: (x e;)e;. (8.35)

Also, since Cs is symmetric

n

X/02 = (CQX), = Z(X/ej)CQGj

j=1
or

X Co = (X ej)e;. (8.36)
j=1

Then for any x € R"™ we get from (8.35) and (8.36) that

x C2C1x = ZZMJ x ej)(x ei)e;ei

j=11:=1
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and because of (8.34)
n 2
S (<)

But since p1; > 0 and A\; > 0, we see that

Z,u'j (X 61) >0,
or, for any x € R",
x/CQC1x Z 0.

One may use the preceding approach to handle the general case, see, e.g., [8, p.8]. The

remaining work is left for the interested reader.

(c) C is a covariance matrix. Show that €€ is a covariance matrix.
Aid: Use a limiting procedure based on that for any square matrix A

[e’e}
BRI
k=0

(see, e.g., [8, p.9]). Do not forget to prove symmetry.

N|>—A

2. Four product rule Let (Xl,XQ,X37X4), € N (0,C). Show that
B X1 X2 X3X,] =
E[X1Xs] - E[XsXy] + E[X1X3] - B [X2Xy] + E[X1X4] - E'[X5X5] (8.37)

The result is a special case of Isserli’s theorem, which is in particle physics known as Wick’s theorem *.

Aid : Take the characteristic function of (X, Xa, X3, X4)/. Then use

84

F X1 X5X3X D 5—0-
(X1 X0 X3Xy] = 051055055051 B(x1, X2, X5,X4) (8) ls=0

As an additional aid one may say that this requires a lot of manual labour. Note also that we have

ok :
k¢x()|5 o=i"E[XF], i=1,2,....n (8.38)

8.5.3 Bussgang’s Theorem & Price’s Theorem

XN on ([ ), ot por0z ) ) |
Y Hy poi102 03

Let g(y) be a Borel function such that E [|g(Y)|] < co. We are interested in finding

In this section we assume that

1. Bussgang’s Theorem

Cov (X, g(Y)).

Establish now Bussgang’s theorem or Bussgang’s formula, which says that

Cov (X, g(Y)) = %;g(y)) -Cov (X,Y). (8.39)

03

4http://en.wikipedia.org/wiki/Isserlis’_theorem
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Aid: Use double expectation, so that You write
Cov (X, g(Y)) = E[(X — pux) (9(Y) = E[g(Y)])]

= E[E[(X —px)(g(Y) = E[g(Y)]) [ Y]]

. Bussgang’s Theorem and Stein’s Lemma Assume next that g(y) is such that

lm g(y) = goo < 00, lim ¢g(y) = g—co < 00,
Yy—00 Yy—>—00
and that g(y) is (almost everywhere) differentiable with the first derivative ¢'(y) such that E [g/ (Y)} < 0.

Show that
(Y)} = %’f(y)). (8.40)

03

Aid: Use an integration by parts in the integral expression for Cov (Y, g(Y)).

Remark 8.5.1 If we write from (8.39) and (8.40) we get
Cov (X,g(Y)) = E [g’ (Y)] - Cov (X,Y). (8.41)

In statistics (8.41) known as Stein’s lemma, whereas the (electrical) engineering literature refers to (8.39)
and/or (8.40) as Bussgang’s theorem?®, see, e.g., [85, p. 340]. In the same way one can also prove that if
X € N(u,0?),

E(g(X)(X = ) = 0*E(g'(X)),

which is known as Stein’s lemma, too. Stein’s lemma has a "Poissonian’ counterpart in Chen’s lemma

(2.123). A repeated application of Stein’s lemma on the function g(z) = 27 ~!

(4.50), too.

yields the moment identity

The formula (8.41) has been applied as a test of Gaussianity in time series and signal analysis.

Bussgang’s Theorem and Clipping

Let next px = py = 0 and let g(y) be

L L<y
9y)=9 v <L
—L y<-—L.

This represents ’clipping’ of y at the levels +L. Show that

Cov (X, g(Y)) = 2erf <0£2) -Cov (X,Y), (8.42)

where erf () is defined in (2.19). What happens, if L — oo ?

5J. Bussgang: Cross-correlation function of amplitude-distorted Gaussian signals. Res.Lab. Elec. MIT, Tech. Rep. 216, March

1952.
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4. Bussgang’s Theorem and Hard Limiting

Let next ux = py = 0, let ¢ > 0 and let g(y) be the sign function with scaling of levels, i.e.,

i 0<y
gly)=4 0 y=0 (8.43)
-2 y<O0.

This is called hard limiting. Show that

Cov (X, 9(¥)) = £, /%‘% - Cov (X,Y). (8.44)

Can Bussgang’s theorem-Stein’s lemma from (8.41) be used here, and if yes, how ? The formula in (8.44)

is known in circuit theory as the ’input/ouput moment equation for relay correlator’.

5. (From [85, p. 340]) Price’s Theorem

(V)00 )

(a) Show that if fx y(z,y) is the joint bivariate p.d.f., then

T Feren) = g (e
ap x,y\t,y) = anzony xy\%,Y)-

(b) Show that if Q(z,y) is a sufficiently differentiable function integrable with its derivatives w.r.t. xz,y,

then
on 2n

anE QRIX,Y)|=FE Fiadny

QX,Y)|. (8.45)
This is known as Price’s Theorem.
(c) Let Q(x,y) = xg(y), where g(y) is differentiable. Deduce (8.41) by means of (8.45).
Remark 8.5.2 In the applications of Bussgang’s and Price’s theorems the situation is mostly that X «+» X ()
and Y + X(t+ h) , where X (¢t) and X (¢ + h) are random variables in a Gaussian weakly stationary stochastic
process, which is the topic of the next chapter.
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Chapter 9

Stochastic Processes: Weakly

Stationary and (Gaussian

9.1 Stochastic Processes

9.1.1 Definition and Terminology, Consistency Theorem

In intuitive terms, a stochastic process is a probabilistic model for evolvement in time of some system that
is regarded as being subject to randomly varying influences. We can think that a stochastic process is an
ensemble of waveforms (sample functions or sample paths), a waveform chosen at random. A stochastic process is
mathematically speaking a family of (infinitely many) random random variables defined on the same probability

space.

Definition 9.1.1 A stochastic process is a family of random variables X (¢),
X = {X(t)|teT},

where T is the index set of the process. All random variables X (¢) are defined on the same probability space
(Q,F,P).

In these lecture notes the set 7" is R or a subset of R, e.g., T = [0,00) or T' = (—00,00) or T = [a,b], a < b,

and is not countable. We shall thus talk about stochastic processes in continuous time.!

There are three ways to view a stochastic process;
e For each fixed t € T', X (t) is a random variable 2 — R.
e X is a measurable function from T x Q with value X (¢t,w) at (¢,w).

e For each fixed w € Q, T' >t — X (t,w) is a function of ¢ called the sample path (corresponding to w).

The mathematical theory deals with these questions as follows. Let now t1,...,t, be n points in T and
X(t1),...,X(tn) be the n corresponding random variables in X. Then for an arbitrary set of real numbers
1,3, ..., T, we have the joint distribution

Ft17t2;---7tn, (ZCl,ZEQ, e ,.I'n) = P (X(tl) S ,CCl,X(tg) S Lo,y ... ,X(fn) < ,CCn) .

LA discrete time stochastic process with T'C {0,£1,+£2...} is often called a time series.

227
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We denote a joint distribution function by

Suppose that we have a family F of joint distribution functions or finite dimensional distributions Fy, ., given
for all n and all ¢1,...,t, €T

F={F,  .t.}¢t, .tn)eTr nez, -

The question is, when we can claim that there exists a stochastic process with F as its family of finite dimensional

distributions.

Theorem 9.1.1 (Kolmogorov Consistency Theorem) Suppose that F is given and Fj, ., € F, and
Fy,. € F. If it holds that

cotic it

Foproticitigntn (T15 00 T, i1, - ) = Hm Fyy ) (21,00, 200) (9.1)

x;Too

then there exists a probability space (€2, F,P) and a stochastic process of random variables X (¢), t € T, on
(Q, F,P) such that F is its family of finite dimensional distributions.

Proof is omitted here. A concise and readable proof is found in [68, Chapter 1.1]. "
The condition (9.1) says in plain words that if one takes the joint distribution function for n variables from F,
it has to coincide with the marginal distribution for these n variables obtained by marginalization of a joint
distribution function from F for a set of n + 1 (or, any higher number of) variables that contains these n

variables.

Example 9.1.2 Let ¢ € U(0,27) and
X(t) = Asin(wt + ¢), —oo <t < oo,

where the amplitude A and the frequency w are fixed. This is a stochastic process, a sine wave with a random
phase. We can specify the joint distributions. Take X = (X (1), X (t2),..., X (tn)) , the characteristic function
is

ox (s) = E [eis'x} - E |:eiRsin(¢+0):| ,

where
<Z 81, cos(wty, ) + <Z Sk sin(wtk)>
k=1 k=1
= Z Z sksj cos(w(ty —t;)
k=1j=1
and

0 — tan—1 (22_1 Sk Sin(Wtk)) -

> hy Sk cos(wty)
The required details are left for the diligent reader. Hence, see [8, p. 38 -39],

S
_ i sm(d)JrO)d
ox (s) 27_‘_/0 e 10)

1

2w
_ iR sin(¢) dd =
o /0 € ¢ JO (R) )
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where Jy is the Bessel function of first kind of order zero, [3, pp. 248—249, eq. (6.30)] or in [96, sats
8.1 eq. (12), p. 327] or [92, p. 270]. Needless to say, the joint distribution is not a multivariate Gaussian
distribution.

The figures 9.1 and 9.2 illustrate the ways to view a stochastic process stated in the above. We have the
probability space (€2, F,P), where Q = [0, 27|, F = restriction of the Borel sigma field B (R) to [0, 27], and P
is the uniform distribution on Borel sets in [0,27]. Thus ¢ > w. For one ¢ drawn from U (0, 27), we have in
figure 9.1 one sample path (or, a random waveform) of X (t) = sin(0.5¢ + ¢) (w = 0.5 and A = 1). In figure
9.2 the graphs are plots of an ensemble of five sample paths of the process corresponding to five samples from
U(0,2m). If we focus on the random variable X (20), we see in figure 9.2 five outcomes of X (20). For the third
point of view, we see, e.g., X (20,ws) = 0.9866, the green path at ¢ = 20. In the figure 9.3 we see the histogram
for 1000 outcomes of X (20).

Remark 9.1.1 The histogram in figure 9.3 can be predicted analytically. We have for w = 0.5, A =1, t = 20,
X (20) =sin(20 + ¢), ¢ € U(0,2n), (9.2)

ie., X(20) = H(¢). Since we can by periodicity move to any interval of length 27, we can consider X (20) =
sin(¢). It is shown in the example 2.4.2 that the p.d.f. of X (20) is

1

S S “l<z<1
Ix(20)() { Tvi-a® !

0, elsewhere.

Alternatively, [8, p. 18]), the characteristic function of any random variable like X (20) in the random sine wave

is, since we can by periodicity move to any interval of length 27,

©x(20) (t) = F [eitsin(@} _ % /27r eitsin(d))d(b — Jo(t)
0
and by inverse Fouriertransformation, (4.2), we get
1 ik —itx
Fxeo) (@) = o /_F/Qe Jo(t)dt.

and this gives fx(20) by a change of variable.

Example 9.1.3 We generalize the example 9.1.2 above. Let ¢ € U(0,27) and A € Ra(20?), which means that
A has the p.d.f.

fa()=4 7

%e—z2/202 T Z 0
0 elsewhere.

Let ¢ and A be independent. We have a stochastic process, which is a sine wave with a random amplitude and
a random phase. Then we invoke the sine addition formulas
X (t) = Asin(wt 4+ ¢) = Asin(¢) cos(wt) + A cos(¢) sin(wt).

It follows that Asin(¢) and Acos(¢) are independent random variables

X, = Asin(¢) € N(0,0%), Xo = Acos(p) € N(0,0?).
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Figure 9.1: One sample path of X (¢) = sin(0.5¢ + ¢) for ¢ € [0,20], ¢ € U(0, 27).

To verify this, we make the change of variables
x1 = Asin(¢), a2 = Acos(¢),

solve

compute the Jacobian J, and evaluate fa(\/z7 + 23)5=|J|.
The characteristic function for X = (X (¢1), X (t2),..., X (tn)) is

d)x (S) - B |:ei(A sin(¢) Y27, sk cos(wtk):| B |:ei(A cos(p) Dy_q Sk sin(wtk):|

= B [e7i% Tin Dl costwltt))]

A second glance at the formula obtained reveals that this should be the characteristic function of a multivariate
normal distribution, where the covariance matrix depends on the time points {t; }}_, only through their mutual
differences ¢y —t;. As will be understood more fully below, this means that the random sine wave {X (t) | —oo <
t < oo} in this example is a weakly stationary Gaussian stochastic process with the autocorrelation
function Covx (¢, s) = cos(wh) for h =t —s. We shall now define in general terms the autocorrelation functions

and related quantities for stochastic processes.
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Figure 9.2: Five sample paths of X (t) = sin(0.5¢ 4+ ¢) for ¢ € [0,20], for five outcomes of ¢ € U(0,2m).
Of the random variable X (20) we see five outcomes, (w; = ¢;), X(20,w;) = 0.5554, X(20,ws) = 0.0167,
X (20,ws) = —0.9805, X (20,ws) = —0.0309, X (20,ws) = 0.9866.

9.1.2 Mean Function, Autocorrelation Function

We shall in the sequel be preoccupied with the moment functions, as soon as these these exist, of a stochastic
process { X (t) | t € T}. Let us assume? that X (t) € Ly (Q, F,P) forall t € T.

Here, and in the sequel the computational rules (2.47) and (2.48) find frequent and obvious appli-

cations without explicit reference.
The mean function of the stochastic process X = {X(¢) |t € T}, pux(t), is
px(t) = E[X(t)], teT. (9.3)

The variance function is
Varx (t) = E [X?(t)] — px(t), teT,

and the autocorrelation function Rx(t,s), is
Rx(t,s) = E[X(t)- X(s)], t,seT. (9.4)
The autocovariance function (a.c.f.) is

Covx(t,s) = Rx(t,s) — ux(t) - ux(s). (9.5)

2Tn [25, 46] such stochastic processes are called curves in La (22, F, P).
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Figure 9.3: The histogram for 1000 outcomes of X (20), X (t) = sin(0.5t + ¢), ¢ € U(0, 27).

These moment functions depend only on the bivariate joint distributions F} ;. We talk also about second order
distributions and about second order properties of a stochastic process.

The terminology advocated above is standard in the engineering literature, e.g., [38, 50, 56, 71, 80, 85, 97,
101], but for a statistician the autocorrelation function would rather have to be Covx (t,s)/+/Varx () - Varx (s).

Example 9.1.4 We revisit example 9.1.3 above. The process is
X (t) = Xy cos(wt) + Xo sin(wt),
where X; € N(0,02) and X5 € N(0,0?) are independent. Then the mean function is
px (t) = cos(wt)E [X1] + sin(wt) E [X3] = 0,

and the autocorrelation function is
Rx(t,s) = E[X(t)  X(s)] =
E[(X; cos(wt) + Xo sin(wt)) - (X1 cos(ws) + X sin(ws))] =

and since F [Xl . XQ] =F [Xl] -E [XQ] = 0,
= 02 (cos(wt) cos(ws) + sin(wt) sin(ws))

= o2 cos(w(t — s)),

as was already suggested via the characteristic function in example 9.1.3.
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u
The autocorrelation function has several distinct properties that are necessary for a function to be an autocor-
relation function. For example, if Rx(t,s) is an autocorrelation function, then the following Cauchy-Schwarz

inequality holds.

| Rx(t,s) |< \/Rx(t,t)\/Rx(s,s), forallt,secT. (9.6)

A characterization of autocorrelation functions is given in the next theorem.

Theorem 9.1.5 Rx(t,s) is the autocorrelation function of a process X = {X(¢) | t € T'}, if and only if it has

the following properties.

1. Symmetry
Rx(t,s) = Rx(s,t), forallt,seT. (9.7)

2. Nonnegative definiteness
ZZ ziz; Rx (ti, t;) > 0 (9.8)
i=1 j=1

for all x1,x5,...,x,, all t1,ts,...,t, and all n

Proof: We show the necessity of the property in (9.8).
n n 2
ZZ ziwi Rx (t,t;) (Zx ) > 0.

Clearly (9.8) means that every n x n - matrix (Rx(t;,t;));"} =1 is nonnegative definite as in (8.4).
The important question raised by theorem 9.1.5 above is, how to check that a given symmetric function
R(t,s) of (t,s) € T x T is nonnegative definite.

Example 9.1.6 Consider the function of (¢, s) given by

2H
% (E) (eau_s) 4ot _ o0 (1 6_@)”)
Q

for « > 0 and 0 < H < 1. Is this an autocorrelation function?3

[ ]
One way to decide the question in example above and elsewhere is to find a random process that has R(¢, s)
as its autocorrelation function. This can, on occasion, require a lot of ingenuity and effort and is prone to
errors. We shall give several examples of autocorrelation functions and corresponding underlying processes. It
should be kept in mind right from the start that there can be many different stochastic processes with the same
autocovariance function.

There is a class of processes with random variables X (¢) € Lo (2, F,P) called weakly stationary pro-
cesses, that has been extensively evoked in the textbook and engineering literature and practice, c.f., [1, 38,
50, 56, 71, 80, 85, 89, 97, 101, 103]. Weakly stationary processes can be constructed by means of linear analog
filtering of (white) noise, as is found in the exercises of section 9.7.5. The weakly stationary processes are defined
as having a constant mean and an autocorrelation function which is a function of the difference between ¢ and
s, c.f., example 9.1.4. The weakly stationary processes will be defined and treated in section 9.3.

We begin with a few examples of families of autocorrelation functions.

3The answer may be found in http://arxiv.org/abs/0710.5024
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Example 9.1.7 (Bilinear forms of autocorrelation functions) Take any real function f(t), t € T. Then
R(t,s) = f(t)- f(s) (9.9)

is an autocorrelation function of a stochastic process. In fact, take X € N(0,1), and set X (¢) = f(¢t)X. Then
R(t, s) is the autocorrelation of the process {X(t) | t € T'}. The mean function is the constant = 0. Thus

R(t,s) = 3 £ilt) - fils)
i=0
and even .
R(t,s) =Y fi(t) - fils) (9.10)
i=0
are autocorrelation functions.

u
The next example is a construction of a stochastic process that leads to the bilinear R(t,s) as given in (9.10),
see [7, pp. 6—10] or [103, pp. 82—88].

Example 9.1.8 Let X; € N(0,1) be L.ID. for ¢ = 0,1,.... Take for i = 0,1,... the real numbers A\; > 0 such
that 70 A; < 0o. Let e;(t) for i =0,1,... be a sequence of functions of ¢ € [0,7] such that

/O ei(t)ej(t)dt:{(l) 23&; (9.11)

and that (e;);—, is an orthonormal basis in Ly([0,77), [96, pp. 279—286]. We set
&
Xn(t) > VAiXie(t).
i=0
Then one can show using the methods in section 7.4.2 that for every ¢ € [0, 7]
Xn(t) 3 X (1) =3 VAiXie(t), (9.12)
i=0

as N — oo. Clearly, by theorem 7.4.2 X (¢) is a Gaussian random variable. The limit is in addition a stochastic

process such that

EIXH)X(s)] =Y VAiei(t)Vei(s),
1=0

where we used theorem 7.3.1. But this is (9.10) with f;(t) = v/Aei(t). This example will be continued in
example 9.2.3 in the sequel and will eventually yield a construction of the Wiener process, see section 10.3

below.

Example 9.1.9 A further bilinear form of autocorrelation functions By some further extensions of

horizons, [46, chapter 2.3], we can show that integrals of the form

R(t,s) = / FILA) - F(s, M)A

are autocorrelation functions.
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Example 9.1.10 [Separable autocorrelation functions/ We have here a family of autocorrelation functions

that turn out to correspond to certain important processes.

1.

Let T = [0,00) and ¢ > 0. Then
R(t,s) = o min(t, s) (9.13)

is an autocorrelation function of a stochastic process. How can one claim this ? The answer is deferred

till later, when it will be shown that this is the autocorrelation function of a Wiener process.
T =10,1] and

) s(1—t) s<t
Rit,s) = { (1—s)t s>t (0.14)

This is the autocorrelation function of a process known as the Brownian bridge or the tied down Wiener

process.
Let T'= (—o00,00) and a > 0

easefat s <t

R(t,s) = e °lt=sl = { P ; . (9.15)

This is the autocorrelation function of a weakly stationary process, as it is a function of |t — s|. One
process having this autocorrelation function is a stationary Ornstein- Uhlenbeck process in the chapter 11,

another is the random telegraph signal in chapter 12.5.
Let T = (—o00, 00).

) uls)u(t) s<t
R(t,s) = { w(tyols) s>t (9.16)

Here u(s) > 0 for all s € T. We can write (9.16) more compactly as
R(t,s) = u (min(¢, s)) v (max(t, s)) .

By this we see that all the preceding examples (9.13) - (9.15) are special cases of (9.16) for appropriate
choices of u(-) and v(-). Processes with this kind of autocorrelation functions are the so called Gauss-
Markov processes.

Let T = (—o0,00) and
k

R(t,s) = > u; (min(t, s)) v; (max(t, s)) (9.17)

i=1
These autocovariance functions constitute the class of separable autocorrelation functions. We
shall say more of the processes corresponding to separable autocorrelation functions (i.e. Gauss-Markov

processes) in the in section 9.5.

Example 9.1.11 (Periodic Autocorrelation) [97, pp. 272—273] Let {B;};>1 be a sequence of independent
random variables with B; € Be(1/2) for all i. Define

o _ if B =1
"l -% ifB;=0.

ol
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Take for T > 0 and for any integer k
O(t) =0, for kT <t< (k+1)T.

Note that in this example T is the length of a time interval, actually the time for transmission of one bit, not
the overall index set, as elsewhere in this text. Set

X(t) =cos (2nfet +O(t)), —oo<t< 0.

This process is known as Phase-Shift Keying (PSK) , which is a basic method of modulation in transmission
of binary data.
We determine the mean function and the autocorrelation function of PSK. It is helpful to introduce two auxiliary

functions

cos(2rft) HO<t<T
si(t) =
0 else

and

sin(2rf.t) H0<t<T
sqlt) = { 0 else

Then we get by the cosine addition formula that

cos (2mfot + ©(t)) = cos (O(t)) cos (27 ft) — sin (O(t)) sin (27 f.t)

oo

= Y [cos (k) si(t — kT) —sin (k) sq(t — kT)].

k=—oc0
This looks like an infinite sum, but actually there is no need to prove any convergence.

The mean function follows easily, since cos (0) = 0 and sin (©) = +1 with equal probabilities. Hence
E[X()])=0 forallt.
The autocorrelation function is thus

Rx(t,s) = Z E [sin (O) sin (0;)] sq(t — kT)sq(s — IT).
k,l

Here we have, if k # [,

E [sin (6)sin (0,)] = 1- 1P (@k = g) P (@k - _) +1-(-1)P (@k - g) P (@k - _g)
H-117 (0= ) P (0n=7) + (-1 (0P (6r = -F) P (00 =-])
_1_ 1. 1,
=13 3+t1="
If k=1, then £ [sin2 (@k)} = % + % =1.
Therefore we have -
Rx(t,s) = Z so(t —kT)sq(s —1IT).
k=—o0

Since the support? of sg(t) is [0, T, there is no overlap, i.e., for any fixed pair (¢, s) only one of the product

terms in the sum can be nonzero. Also, if ¢ and s are not in the same period, then this term is not zero.

4by the support of a function f(t) we mean the set of points ¢, where f(t) # 0.
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If we put
(t)=t/T — [t/T|, |t/T| = integer part of t/T,

then we can write
sqQ((t)sq((s)) for [t/T] = |s/T|

0 else

Rx(t, S) = {

Thus the autocorrelation function Rx(t,s) of PSK is a periodic function in the sense that Rx(t,s) = Rx(t +
T,s+T) (i.e., periodic with the same period in both variables). The textbook [38, chapter 12] and the mono-
graph [60] contain specialized treatments of the theory and applications of stochastic processes with periodic

autocorrelation functions.

u
One way of constructing stochastic processes that have a given autocorrelation function is by mean square

integrals of stochastic processes in continuous time, as defined next.

9.2 Mean Square Calculus: The Mean Square Integral

There is a mean square calculus of stochastic processes, see [1, 46, 56, 66, 71, 89, 97|, that is nicely applicable

to weakly stationary processes.

9.2.1 Definition and Existence of the Mean Square Integral

Definition 9.2.1 Let {X (¢)|t € T} be a stochastic process in continuous time with X (¢t) € Ly (92, F,P) for
every t € T. The mean square integral fab X (t)dt of {X(t)|t € T} over [a,b] C T is defined as the mean square

limit (when it exists)
n

SOX ()~ i) S /bX(t)dt, (9.18)

i=1

where a = tg <t; <...<tn_1 <tp, =>band max;|t; —t;—1| = 0, as n — <.

u
The sample paths of a process {X (¢)|t € T'} need not be integrable in Riemann’s sense®. Since a mean square

integral does not involve sample paths of {X (¢)|t € T'}, we are elaborating an easier notion of integration.

Theorem 9.2.1 The mean square integral f;X(t)dt of {X(t)|t € T} exists over [a,b] C T if and only if the
double integral

/ab /a E: [X () X (w)] dtdu

exists as an integral in Riemann’s sense. We have also

E

/ b X(t)dt] _ / " ()t (9.19)

/abwt] _ [ /ab Covx (t, u)dtd. (0.20)

5The Riemann integral is the integral handed down by the first courses in calculus, see, e.g., (69, chapter 6].

and

Var
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Proof Let Y, = > | X(¢;)(t; — t;i—1). Evoking Loéve’s criterion in theorem 7.3.3 we study

where the right hand side is an ordinary Riemann’s sum. Hence

n m

SOST B IX ()X ()] (b — tie1)(uy — w1 a/ / B X(8)X (u)] didu = C,

i=1 j=1

in case the double integral exists, when a =ty <t; < ... < t,—1 < t, =b and max; |[t; — t;—1| = 0 as n — .
So the assertion follows, as claimed.
The expectation £ [ fab X (t)dt} is obtained as

E /bX(t)dt =F hiniX(tz)(tz ti1)‘| ,

where the auxiliary notion lima refers to mean square convergence as a = tg < t; < ... < ty,—1 <t, = b and

max; |t; — t;—1| — 0 as n — oo, and by theorem 7.3.1 (a)

= lim FY, _nh—{goZE (t; —tiz1)

n— o0

and then . ,
i=1 a

The variance is computed by

Var

[ xoa (ZfX@mQQ (Lim@MQQ

E (/abX(t)dt>2 (/abX(t)dt-/le(u)du>]
E bXtdt~ qudu
| xtae- [ xw

= lim  E[Y, Y],

min(m,n)—o0

Here

and from theorem 7.3.1 (c)

=F [lim Y, - Ym}
A

where F [Yn . Ym] = Z?:l Z;nzl E [X(tZ)X(u])] (ti — ﬁz 1)(u — Uj— 1) Thus

/X4 [ [ e MM{KMMY
-/ b / " (BIXOX (W)  px(®p ) dido

which is the assertion as claimed. n

One can manipulate mean square stochastic integrals much in the same way as ordinary integrals.
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Theorem 9.2.2 (a)

/b (aX(t)+ﬂY(t))dta/bX(t)dtJrﬂ/bY(t)dt

/abX(t)dt+/ch(t)dt:/:X(t)dt

(b) a<b<e

Hence we may define new stochastic process Y = {Y(¢) | t € T} by a stochastic integral. For each ¢t € T we set

t
Y(t) = / X (s)ds.
The mean function of the process Y is
t
pr () = [ nx(s)ds, te .
and its autocovariance is
t s
Covy (t,s) :/ / Covx (u,v)dudv, (t,s) €T xT.
o Jo

Example 9.2.3 We continue with example 9.1.8, where we constructed the random variables
X(t) =Y VAXei(t), telo,T] (9.21)
i=0

and found their autocorrelation R(¢,s) function as a bilinear form. The expression (9.21) is known as the

Karhunen-Loéve expansion of X (¢). When we consider the mean square integral

/ " X,

we obtain by the results on this category of integrals above and by the results on convergence in mean square
underlying (9.21) that

T 00 T
/ X(te;(t)dt = > VAX; / ej(t)e;(t)dt = VA X;, (9.22)
0 i—0 0

where we used (9.11). Then

T T
/ R(t,s)e;(s)ds = / E[X(t)X(s)|ej(s)ds=FE
0 0

T
X(t)/o X(s)ej(s)ds‘|

and from (9.22)
= B [X()VNX;]
and from (9.21)
= S VAVNE XX es(t) = Ajes (8),
=0

since X; € N(0,1) and I.I.D.. In summary, we have ascertained that

/OT R(t,s)e;(s)ds = Aje;(t). (9.23)
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This is an integral equation, which is to be solved w.r.t. e; and A;. It holds in fact that we can regard
e;’s as eigenfunctions and \;s as the corresponding eigenvalues of the autocorrelation function R(t,s). If
R(t, s) is continuous in [0,7] x [0,T], we can always first solve (9.23) w.r.t. \; and e; and then construct
X(t) = Y272, VAiXie;(t). For the rigorous mathematical details we refer to [46, pp. 62—69]. The insights in
this example will be made use of in section 10.3.

9.3 Weakly Stationary Processes
Definition 9.3.1 A process X = {X(¢) | t € T =] — 00, 00[} is called (weakly) stationary if
1. The mean function px(t) is a constant function of ¢, ux (t) = u.

2. The autocorrelation function Rx (¢, s) is a function of (¢t — s), so that

Rx(t,s) = Rx(h) = Rx(—h), h=(t—s).

u
It follows that for a weakly stationary process even the variance functions is a constant, say 0%, as a function

of ¢, since

Varx(t) = B [X2(t)] — pk(t) = Rx(0) — i = 0%

In addition, the autocovariance is
Covx (h) = Rx(h) — 1%,

and then

Covx(0) = o%.

By (9.6) we get here
| Rx(h) |< Rx(0). (9.24)

This is another necessary condition for a function Rx (h) to be an autocorrelation function of a weakly stationary
process.

We have already encountered an example of a weakly stationary process in example 9.1.4.

9.3.1 Bochner’s Theorem, Spectral Density and Examples of Autocorrelation
Functions for Weakly Stationary Processes

The following theorem gives an effective criterion for deciding, when a function R(h) is nonnegative definite. A

simpler version of it is sometimes referred to as the Einstein-Wiener-Khinchin theorem .

Theorem 9.3.1 /Bochner’s Theorem] A function R(h) is nonnegative definite if and only if it can be

represented in the form
1

R(h) = o /jo e ds(f), (9.25)

where S(f) is real, nondecreasing and bounded.
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Proof of <, or we assume that we have a function R(h) that is given by (9.25). Then we show that R(h) is
nonnegative definite. Assume that

JS(f):s(f)

exists, thus s(f) > 0. Then take any 1, ...z, and t1,...t,,

>3 wR( / SO e s )

=1 j=1 =1 j=1

/ er”fz,re”J df——/

= z - Z is the squared modulus of a complex number so that Z is the complex conjugate of z.

ztf df>0

Here |z|?
One elegant and pedagogical proof of the converse statement, namely that if R(h) is nonnegative definite
function, then we can express it as in (9.25), is due to H. Cramér and can be found in [25, pp. 126—128]. "

The function S(f) is called the spectral distribution function. If S(f) has a derivative,

—5(f) = s(f),

then s(f) is called the spectral density. Clearly s(f) > 0, as S(f) is nondecreasing. Since R(h) = R(—h), we
get also that s(f) = s(—f) is to be included in the set of necessary conditions for R(h) to be an autocorrelation
function.

Another term used for s(f) is power spectral density, as

1 o0
B[] = Ax0) = 5= [ sx(nar
The electrical engineering® statement is that sx(f) is the density of power at the frequency f.

Operationally, if one can find a Fourier transform s(f) of a function R(h) with the properties

e s(f) =0, and s(—f) = s(f),

then R(h) is the autocorrelation of a weakly stationary process.
Some examples of pairs of autocorrelation functions and (power) spectral densities are given in the table below

quoted from [42]. When reading certain details of this table one should remember that % = 1 in view of
sin(h) __ 1
= L.

limp, 0

Autocorrelation functions R(h) | Spectral densities s(f)

—alh| 2a
€ a2+ f2

e~ M cos(bh)

s VRSO

a sin(ah) { 1 |f| <a

T ah 0 |f|>a
2
1-— a|h| |h| < 1/(1 1 (sin(zfa)>
0 |h]| > 1/a a 3

e—alhl cos(bh) sin(bh)
4(a2+b2)( b T )

1
(a®+(f=0)*)(a*+(f+b)%)

6Tf X (t) is a voltage or current developed across a 1-ohm resistor, then (X(t))2 is the instantaneous power absorbed by the
resistor.
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9.3.2 Mean Square Continuity of Weakly Stationary Processes
In the category of second order properties we note the following.

Definition 9.3.2 Let X = {X (¢)|t € T'} be a stochastic process in continuous time. Then the process is mean
square continuous if, when t +7 € T,

EB|(X(t+7) - X(1)*] >0

as 7 — 0.

In order to see what the definition implies let us expand
E|(X(t+7) - X®)?| =EX(t+7)X(t+7) - E[X({t+7)X()
—E[X®)X{t+71)]+E[X()X(¢))
= Covx (t+ 7,t+ 1) — Covx (t,t + 7) — Covx (t,t + 7) + Covx (¢, t) +
+ (x (¢ +7) = px (1)
We get a neat result from this, if we assume that X is weakly stationary, as then from the above
E [(X(t +7) — X(1))*| = Covx(0) — 2Covx () + Covx (0).

Theorem 9.3.2 A weakly stationary process is mean square continuous, if and only if Covx(7) is continuous

in the origin.
Continuity in mean square does not without further requirements imply continuity of sample paths.

9.4 Gaussian Processes

94.1 Definition and Existence

The chapter on Gaussian processes in [67, ch. 13] is an up-to-date and powerful presentation of the topic as a

part of modern probability theory.

Definition 9.4.1 A stochastic process X = {X(t) | t € T} is called Gaussian, if every stochastic n-vector
(X (t1), X (t2),- -+, X(t,)) is a multivariate normal vector for all n and all t1,to, - - - , t,.

In more detail, this definition says that all stochastic n x 1-vectors

(X(0), X (t2), -+, X (tn))
have a multivariate normal distribution

Ftl-,t27'”-,t’n. « N (H(t17t27 e 7tn)7 C(t17t27 e atn)) )

where pu(t1,t2,--- ,t,) is an n x 1 expectation vector, with elements given by
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n,n

-~ ._. has the entries
1=1,7=1

and the n x n covariance matrix C(t1,t2,--- ,tn) = (cij)
Cij = COVx(ti,tj) = Rx (ti,tj) — [Lx(ti),ux(tj),i = 1, I ,n;j = 1, ey,

i.e., the entries in the covariance matrix are the appropriate values of the autocovariance function.
We show next a theorem of existence for Gaussian processes. This sounds perhaps like a difficult thing to

do, but by the Kolmogorov consistency theorem, or (9.1), all we need to show in this case is effectively that

e All marginal distributions of a multivariate normal distribution are normal distributions.
Remark 9.4.1 Evidently, if uz(t) = E(Z(t)) = 0 for all t € T, then
X(t) = f(t)+2(t)

has mean function ux(t) = E(X(t)) = f(t). Hence we may without loss of generality prove the existence of

Gaussian processes by assuming zero as mean function.

Theorem 9.4.1 Let R(t,s) be a symmetric and nonnegative definite function. Then there exists a Gaussian

stochastic process X with R(¢, s) as its autocorrelation function and the constant zero as mean function.

Proof Since the mean function is zero, and since R(t, s) is a symmetric and nonnegative definite function, we
find that

+1,n41
C(t17t27 e atn+1) = (R(tivtj))?:11j21

is the covariance matrix of a random vector (X (t1), X (t2), -+ , X (tnt1)) . We set for ease of writing

+1,n+1
Ctn+1 = (R(tiatj))?:1,j11 :

We know by [49, p. 123] that we can take the vector (X (t1), X (t2),- -+ , X (tny1)) as multivariate normal. We

set for simplicity of writing

th+1 = (X(tl)aX(tQ)a"' aX(thrl)) )

and let
Fyoiy <+ N(0,Cy,.,)

denote its distribution function. Then the characteristic function for Xy, is with s,11 = (s1,...,8,41) given
by

Oy Gnt) 1= Bl oo ] = [ iR, (). (9.20
Let us now take

s/(i) = (81, Sim1,Sit1y -+ Snt1) -
The proof has two steps.
1. We show that qutnﬂ (($1y-++,8i-1,0,8i41,...8n+1)) gives us the characteristic function of

’

Xt = (X(t1), X(t2), ., X(tiz1), X (tit1), -, X(tnt1)) -
We denote by Ft, its distribution function.

2. We show that gi)xtn+1 (($15--+,8i-1,0,8:41,...Snt1)) is the characteristic function of a normal distribution

for the n — 1 variables in X, .

The details of the steps outlined are as follows.
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1. Set
X(z) = (.1‘1, ey Li—1, T4 1y - $n+1) .
We get that
Oxe,, ((51,--0,8i-1,0, 8541, .. Spt1))
%) %) ;=00
— / / ei(slzl“l’""‘l’sifl17571+Si+lxi+1+“'+5n+11n+l)/ dF; (X)
-
oo —oo Li=—00 '
— i(s121tFsi—1Ti—1+Sit1Tit1+ o+ Sn41Tn
= / / e'ls1r 1817 Si+1Ti+1 FEndFy (x(i)) (9.27)
o0 — 00
is the characteristic function of X, .
2. On the other hand, we have the quadratic form
(51,-++,5i-1,0, 8141, - - Sng1) Cey (515-+0585i-1,0, i1, -+ Spg1)
n+1 n+1
= Z Z siseR(t, tr)
1=1,1#i k=1,k#i
= 8(i) Ct S(i)-
In this Cg,, = (R(tl,tk));:rlljlﬂc:l rsi 18 Tecognized as the covariance matrix of Xy, . By
(8.10) we have here, since X¢, , is a Gaussian random variable,
Oxe,, ((51,--0,8i-1,0, 8541, .. Snt1))
— e*%S(i)ct(i)s(i). (928)

But in view of (9.27) this is the characteristic function of X, and by (8.10) the expression in
(9.28) defines a multivariate normal distribution, with the covariance matrix of X, inserted
in the quadratic form.

This establishes the consistency condition in (9.1). .

The message from the above in a nutshell is that
e There exists a Gaussian process for every symmetric nonnegative definite function R(¢,s).

e A Gaussian process is uniquely determined by its mean function and its autocorrelation
function.

9.4.2 Weakly Stationary Gaussian Processes

When the property
(X(tr 4+ h), X(ta+h), ., Xty + 1)) L (X (t1), X (t2), ..., X (tn))

holds for all n, all h € R and all ¢4, ¢, ..., t, points in T for a stochastic process (not necessarily only Gaussian),
we call the process strictly stationary. In general, weak stationarity does not imply strict stationarity. But if
the required moment functions exist, strict stationarity obviously implies weak stationarity. Since the required
moment functions exist and uniquely determine the finite dimensional distributions for a Gaussian process,
it turns out that a Gaussian process is weakly stationary if and only if it is strictly stationary, as will be
demonstrated next.
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Theorem 9.4.2 A Gaussian process X = {X; | t € T =] — 00, 00[} is weakly stationary if and only if the

property
(X(t1+ 1), X(ta+ 1), ..., X(tn + 1) 2 (X (1), X (t2), ..., X (tn)) (9.29)

holds for all n, all A and all ¢1,ts,...,t, points in 7.

Proof =: The process is weakly stationary, (ux(t1),- - ,ux(tn)l is a vector with all entries equal to the same

constant value, say p. The entries in C(tq,to,- - ,t,) are of the form
Rx (|ti — t;]) — p*.

For the same reasons the entries of the mean vector for (X (¢t1 + h),..., X (¢, + h)) are = u for all h. Hence the
covariance matrix for (X (¢1 + h),..., X (¢, + h)) has the entries

Rx (|(ti + 1) = (t; + B)) — p* = Rx (|t — t;]) — p°.

That is, (X (t1 +h), X (t2+h),..., X(t, + h)) and (X(t1), X (t2),..., X (t,)) have the same mean vector and
same covariance matrix. Since these are vectors with multivariate normal distribution, they have the same
distribution.

<: If the process is Gaussian, and (9.29) holds, then the desired conclusion follows as above. "
The computational apparatus mobilized by Gaussian weakly stationary processes is illustrated by the next two

examples.

Example 9.4.3 The Gaussian weakly stationary process X = {X(t)| — co < t < oo} has expectation function
=0 and a.c.f.

Rx(h) =c% MM X >o0.
What is the distribution of (X (¢), X (t — 1))/? Since X is Gaussian and weakly stationary, (X (t), X (t — 1))/ has
a bivariate normal distribution, we need to find the mean vector and the covariance matrix.

The mean vector is found by FE [X ()] = E[X (¢t — 1)] = 0. Furthermore we can read the covariance matrix
from the autocorrelation function Rx (h). Thereby E [X ()X (t —1)] = E[X(t — 1)X(t)] = Rx(1) = 0?e™*, as
t—(t—1)=1,and E [X?(t)] = E[X?(t —1)] = Rx(0) = 0%~ = ¢2. This says also that X (t) € N (0,0?)
and X (t) 4 X (t—1). Thus, the coefficient of correlation is

_RBx(1) _
PX(t),X(t—1) = Rx (0) =c .

Therefore we have established

: 0 of 1 e
woxenex((9)( L)

X(t)| X(t—1)=z €N (e z,0%(1 —e ).

In view of (8.16), we get

Then for any real numbers a < b
Pla<Xt)<b|X(t—-1)==2x)
< a—e X(t)—ex b—e Pz
—p < <
ov1—e2X V1 —e2X ov1—e 22

|X(t1)z>

—@( b—e ) <I)( a—e g )
B oV1—e 22 oVl —e2x)’
e R | X(t—1)=2¢€ N(0,1).

x
oy/1—e—2X
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Example 9.4.4 The Gaussian weakly stationary process X = {X(t)| — co < t < oo} has expectation function

=0 and a.c.f.

We want to find the probability
P(3X(1)>1-X(2).

The standard trick is to write this as
PBX(1)+X(2)>1).

Let us first set

Y ©3X(1) + X(2).

We can use the matrix formulas in the preceding and write Y as

o (xm) x()
YB(X@))(?’ ”(X@))

’

Since the mean vector of (X (1), X (2)) is the zero vector, we get by (8.6)

E[Y]:BMX:B< 8 ) _o.

Next, the formula in (8.7) entails
Cy = BCx B, (9.30)

or, since Y is a scalar random variable, its variance is Var(Y) = Cy = BCxB', (9.30) yields

, 1 L
BOXE = (3 n( Lo )(3)
= 1 1

When we perform the requested matrix multiplications, we obtain
Var(Y) = 13.
Hence Y € N(0,13). Then the probability sought for is

P(SX(1)>1—X(2)):P(Y>1):P(

Y
because —= € N(0,1).

9.4.3 Distribution of Mean Square Integrals of Gaussian Processes

Let {X (¢)|t € T'} be a Gaussian stochastic process. It follows that the Riemann sum > | X (¢;)(t; — t;—1) is a
Gaussian random variable. If the mean square integral exists, then it has to have a normal distribution in view
of Theorem 7.4.2 above.
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Theorem 9.4.5 If the mean square integral f; X (t)dt exists for a Gaussian process {X (¢)|t € T'} for [a,b] C T,

[ st ([P [ [ cosepas) .

To state an obvious fact, let us note that (9.31) implies that

[PX(t)dt — [ px(t)dt
\/f; f; Covx (t,u)dtdu

€ N(0,1).

9.5 The Gauss-Markov Processes and Separable Autocorrelation

Functions

9.5.1 The Markov Property Defined and Characterized

Let us assume that X = {X (¢) | t € T'} is a Gaussian stochastic process with zero as mean function and with
autocorrelation Rx (t,s). We are not restricting ourselves to weakly stationary processes.
We define now the Markov property for X as follows. For any t; < ... < t,_1 < t, in T and any
TlyeeeyTpo1,Tn
P(X(tn) <ap | X(t1) =21,..., X(tn-1) = Tp-1)

=P (X(ty) < 2 | X(tn_1) = Tn_1). (9.32)

The Markov property is saying in other words that the conditional distribution of X (¢,) depends only on
X (tn—1), not on any chosen history X (¢1)..., X (t,—2) prior to t,—1. The Markov property provides an envi-
ronment for numerous effective algorithms of prediction and Kalman filtering, [90]. We say that a Gaussian
process that satisfies (9.32) is a Gauss-Markov process .

Another way of writing (9.32) is in view of (3.23) that

P (X(t) < @0 | 0 (X (1), X(t0e1))) = P (X () < 20 | X(tar)

where o (X (t1),..., X (tn—1)) is the sigma field generated by X (t1),..., X (tn—1).
The process X has a family of transition densities fx ) x(t,)=z,(), Which are conditional densities so
that for ty < t and for any Borel set A

P (X(t) € A| X(to) = x0) = /AfX(t)|X(tg)::no (z)dz. (9.33)

We shall now characterize the Gauss-Markov processes by a simple and natural property [48, p. 382].

Theorem 9.5.1 The Gaussian process X = {X(t) | t € T'} is a Markov process if and only if
EX(t,) | X(t1) =21,..., X({tn-1) = xpn_1] = E[X(tn) | X(tn-1) = Tpn-1] - (9.34)

Proof If (9.32) holds, then (9.34) obtains per definition of conditional expectation.
Let us assume conversely that (9.34) holds for a Gaussian process X. By properties of Gaussian vectors we
know that both

P(X(tn) <ap | X(t1) =21,..., X(tn-1) = Tp-1)

and
P (X(tn) < xp | X(tnfl) = $n,1)
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are Gaussian distribution functions, and are thus determined by their respective means and variances. We shall
now show that these are equal to each other. The statement about means is trivial, as this is nothing but (9.34),
which is the assumption.

We introduce some auxiliary notation.

Y X (1) = B[X(ta) | X(t1) = 21, ..., X (tn-1) = Tn_1]
= X(tn) — E[X(tn) | X(tn-1) = 2n_1].

But then Y is the estimation error, when estimating the random variable X (t,) by E [X (tn) | X (tn—1) = Zn_1],
or, which is the same thing here, estimating by F [X (t,) | X(t1) = 1,..., X (tn-1) = Tn_1], as expounded in
section 3.7.3. We know that for Gaussian random variables we can find E[X (¢,) | X (tn—1) = Zn—1] by the
projection of X(t,) to the closed subspace spanned by X(t,—1) (and X(t1),...,X(t,—2)), as explained after
theorem 8.1.9. Then we get by the orthogonality property of projections, see theorem 7.5.3, that for 1 < k < n—1

E [?X(tk)} =0.

But Y and X(f;) are Gaussian random variables, and E [}7} = 0 by (3.29). Therefore Y and X (t;) are
independent, for 1 < k < n —1 and Y is independent of (the sigma field spanned by) X (t1),..., X (t,_1) by

properties of Gaussian vectors.
Set next Gy, = {X (tx) = xx} and
G=GiNGaN...NGp1.

Then, by the independence just proved
E [}72 | G} —F [}72 | Gn—l} ,
and this is
Var {17 | G} = Var {57 | Gn_l} .
This says that the distributions in the right and left hand sides of (9.32) have the same variance, and we have

consequently proved our assertion as claimed. "

9.5.2 The Chapman-Kolmogorov (or Smoluchowski) Equation for Transition Den-
sities

Let us take another look at (9.33) with ¢y < ¢, A =] — o0, y]. For any s such that ty < s < ¢, marginalization or

the law of total probability (3.35) gives

oo

P (X(t) <y | X(t) =) = / P (X(s) = u, X(t) < 9| X(to) = ) du

— 00

oo Yy Yy oo
:/ / IX (), X (#)|X (to)=2 (Us V) dvdu:/ / IX(s),X(0)|X (t0) = (U, V) dudv,

and by definition of conditional p.d.f.

dudv.

/ thU)Xs)Xt)(ﬂﬁuv)
fX(to)( )

Now we invoke twice the definition of conditional p.d.f. (chain rule)

Ix(to),x(s),x (1) (T, U, V) = fx ()X (s)=u, X (t0)=2 (V) * X (s)|X (to)=2 (W) - [x(to) () -
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By the Markov property (9.32) this equals

Ix(to),x(s),x (1) (T,4,0) = Fx (1) x(s)=u (V) - Fx ()X (t0)=2 (W) - Fx(t0) () -

If we insert this in the integral above we get

y o
P(X(t)<yl|X(tr) =x) = [ [ Ix)1x(s)=u (V) * [x(5)|X (t0) = (0) dudv.

When we differentiate in both sides of this equality w.r.t. y, we get the following equation for the transition

densities o
Ix @)X (t0)==(Y) :/ Ix@)1x(s)=u (¥) - Fx(5)|X (t0) == () du. (9.35)

It is hoped that a student familiar with finite Markov chains recognizes in (9.35) a certain similarity with the
Chapman-Kolmogorov equation’, now valid for probability densities. In statistical physics this equation is
called the Smoluchowski equation, see [58, p.200]. Regardless of the favoured name, the equation (9.35) can

be regarded as a consistency condition.

9.5.3 Gauss-Markov Processes and Separable Autocorrelation Functions

Since X is a Gaussian process with mean zero, we know that (see, e.g.,(8.16))

EX(t) | X(s) =u] = px(s),x(1) Zizt)u —
_ Rx(t,s) Rx(t,t) .
\/Rx(t,t)\/Rx(s, s) \/Rx(s,s)
i.e,
BIX(0]X(5) =) = 25 (9.36)
Thus by (9.36) we get for tg <t

=2 Fx (o) x(tg)=xo (W) Fx(#)) X (5)=u (%) du

and, as indicated, from (9.35)

:/ $/ Ix ()X (to) =20 (W) * Fx(#)| X (s)=u(T)dudx

:/ fX(S)\X(to):mo(“)'/ Tfx () x (s)=u(T)dx du

— 00

=E[X(1)| X (s)=u]

= / Fx (91X (to)=ao (W E [X (1) | X(s) = u] du
and by two applications of (9.36) in the above

Rx(t,s) [~
= Tix(5,5) /_OO WX (5)X (to)=ao (W) du

7This Chapman-Kolmogorov equation for densities was probably first discovered by Louis Bachelier in his theory of speculation,
[27].
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_ Rx(t,s) Rx(s,to) o
Rx(s,s) Rx(to,to)

or, equivalently
Rx(t,s)Rx(s,to)
RX(Sa 5) .

Rx(t,to0) = (9.37)

Therefore we have found a necessary condition for an autocorrelation function to be the autocorrelation function

of a Gaussian Markov process.

Example 9.5.2 Consider a Gaussian process with the autocorrelation function is R(t,s) = min(¢, s). It is
shown in an exercise of this chapter that min(¢, s) is an autocorrelation function. Then, if ¢y < s < ¢ we check
(9.37) by

R(t,s)R(s,tp) min(t,s)min(s,tp) $-to

= = =1
R(s,s) min(s, s) s 0

which equals R(t,to) = min(¢,t9) = tg. We shall show in the next chapter that min(t, s) corresponds, e.g., to

the Wiener process, and that the indicated process is a Gaussian Markov process.

u
The equation (9.37) is an example of a functional equation, i.e., an equation that in our case specifies the
function Rx (¢, s) in implicit form by relating the value of Rx(t,s) at a pair of points with its values at other
pairs of points. It can be shown [103, p. 72] that if Rx(¢,¢) > 0, then there are functions v(¢) and wu(t) such
that

Rx(t,s) = v (max(t, s)) u (min(t, s)) . (9.38)

We demonstrate next that (9.38) is sufficient for a Gaussian random process X to be a Markov process. Let us

_ u(d)

Because it must hold by Cauchy-Schwartz inequality (7.5) that Rx(t,s) < \/Rx(t,t)- Rx(s,s), we ge that

7(s) < 7(t), if s < t. Hence, as soon as X is a Gaussian random process with zero mean and autocovariance

set

function given by (9.38), we can represent it as a Lamperti transform
X(t)=v(t )W (7(t)), (9.39)

where W (t) is a variable in a Gaussian Markov process with autocorrelation function Rw (¢, s) = min(t, s), as

in example 9.5.2. To see this we compute for s < ¢

= v(t)v(s) min(7(t), 7(s)) = v(t)v(s) = v(t)u(s) = v (max(t, s)) u (min(t, s)) .

Thus, since W is a Gaussian Markov process (as will be proved in the next chapter) and since v(t) is a
deterministic (= non-random) function, the process with variables X () = v(t)W (7(t)) is a Gaussian Markov
process.

In the preceding, see example 9.1.10, autocorrelation functions of the form Rx (¢, s) = v (max(¢, s)) u (min(t, s))
were called separable. We have now shown that Gaussian Markov processes lead to separable autocorrelation

functions.
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Example 9.5.3 Assume next that the Gaussian Markov process is also weakly stationary and mean square

continuous. Then Rx is in fact continuous and (9.37) becomes

Rx(t — s)Rx (s — to)
Rx(0)

Rx(t —to) = (9.40)

We standardize without loss of generality by Rx(0) = 1. But then we have
Rx(t —tg) = Rx(t — s)Rx(s — o),
which is with x =t — s, y = s — t of the form
Gz +y)=G(z) G(y).

This is one of Cauchy’s classical functional equations (to be solved w.r.t. G(+)). The requirements of autocorre-
lation functions for weakly stationary processes impose the additional condition | G(z) |< G(0). The continuous

autocovariance function that satisfies the functional equation under the extra condition is
Rx(h) = e~Ihl, (9.41)

In chapter 11 below we shall construct a Gaussian Markov process (the ’Ornstein-Uhlenbeck process’) that,

up to a scaling factor, possesses this autocorrelation function.

9.6 What Can Not Be Computed by the Methods Introduced Above
?

In the preceding, and later in the exercises, one finds certain straightforward means of computation of proba-
bilities of events that depend on a finite number (most often two) of stochastic variables in a Gaussian process.
This is hardly the only kind of situation, where one in practice needs to compute a probability using a random
process. We take a cursory look at two reasonable problems, where we are concerned with events that do not
depend on a finite or even countable number of random variables. Thus the methods discussed above and in
the exercises below do not suffice and development of further mathematical tools is desired.

Let {X(t) | —oo <t < oo} be a Gaussian stationary stochastic process. There are often reasons to be

interested in the sojourn time
Ly % Length ({t | X (t) > b}), (9.42)

that is, the time spent at or above a high level b. Or, we might want to find the extreme value distribution

P (max X(s) < b) .

0<s<t

To hint at what can be achieved, it can be shown, see, e.g., [2, 76], that if
Lo
Rx(h)~1—§9t, ast — 0,

then the sojourn times L; in (9.42) have approximately the distribution

d 2V
Ly ~ — 4
bR G (9.43)
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where

vV < \Vy,
where Y € Ra(2) (= Rayleigh distribution with parameter 2). One can also show that
P (max X(s) < b) ~ e
0<s<t
where there is some explicit expression for Ay, [2]. But to pursue this topic any further is beyond the scope and

possibilities of this text.

9.7 Exercises

The bulk of the exercises below consists of specimen of golden oldies from courses related to sf2940 run at KTH

once upon time.

9.7.1 Autocovariances and Autocorrelations

1. (From [8, p. 58]) Let R(t,s) = min(¢,s) for t,s € T = [0,00). Show that R(t,s) is a covariance function.

Aid: The difficulty is to show that the function is nonnegative definite. Use induction. If ¢; < to, then

. 2,2 t1
(mln(ti;tj))i:17j:1 = (

t1 to

the matrix

is symmetric and has the determinant tot; — t% > 0.
n,n

11" Then we prove it for t; for

Assume that the assertion is true for all n x n matrices (min(¢;,;))

i=1,2,...,n 4 1. Arrange or renumber ¢;’s in increasing order

minti = tl S ti S ti+1.

Hence
n+ln+1
Z Z €Z; min(ti, tj)l'j =
i=1 j=1
n+1ln+1 n+1
= Z Z x; min(ti, tj)l'j + tle +ti1xq Z ;.
=2 j=2 7j=2
For i, > 2
min(ti, tj) — tl = IIllIl(lfZ — tl, tj — tl),
and thus
n+1n+1 n+1n+1
Z Z ZT; min(ti, tj)acj - Z Z witle
=2 j=2 =2 j=2
n+1ln+1
= Z Z €Ty mm(tz - tl,t]‘ - tl)l'j Z 0
=2 j=2

by the induction hypothesis. Now draw the desired conclusion.
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2. Toeplitz Matrices, Toeplitz Forms, Centrosymmetric Matrices
A Toeplitz matrix is defined by the property, a.k.a the Toeplitz property, that the entries on each de-

n,n

scending diagonal from left to right are the same ("constant on all diagonals’) [47]. Or, if A = (4; ;)] =1

is a Toeplitz matrix, then
apg aG-1 Q-2 ce ce a,(n,l)
al an a_1

as ay an a_1

ay an a_1

Ap—1 e N ag al an
The Toeplitz property means that

Aij = Aiy1jt1 = ij.

(a) Let R(h) be the autocovariance function of a weakly stationary process and (R(t; — ¢;));2} ;_, be the
covariance matrix (assume zero means) corresponding to equidistant times, i.e., t; —t;—; = h > 0.
Convince yourself of the fact that (R(t; —t;));} ;_, is a Toeplitz matrix. E.g., take one of the
autocovariance functions for a weakly stationary process in the text above, and write down the the

corresponding covariance matrix for n = 4.

(b) Ann x n matrix A = (a;;);”) ;_, is called centrosymmetric 8 when its entries a;; satisfy
@ij = Onyi—int1—j, for1<i,j<mn. (9.44)

An equivalent way of saying this is that A = RAR, where R is the permutation matrix with ones on
the cross diagonal (from bottom left to top right) and zero elsewhere, or

0O 0 ... 0 01
O 0 ... 010
o0 ... 1 00
R =

o1 ... 0 0O

0O ...0 0 0 O

Show that a centrosymmetric matrix is symmetric.
c¢) Show that the Toeplitz matrix (R(t; —t;)).2"} ._, in (a) above is centrosymmetric. To get a picture
3))i=1,j=1 g

of this, take one of the autocovariance functions for a weakly stationary process in the text above,
and write down the the corresponding covariance matrix for n = 4 and check what (9.44) means.

Therefore we may generalize the class of weakly stationary Gaussian processes by defining a class of

Gaussian processes with centrosymmetric covariance matrices.

9.7.2 Examples of Stochastic Processes

1. (From [42]) Let
X(t) = 2 for all t €] — 00, co[ with probability
] 1 forall t € — 00, 0| with probability

N|—= N[

8J.R. Weaver: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. American
Mathematical Monthly, pp. 711—-717, 1985.
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Show that {X(t) | —oo < t < oo} is strictly stationary.

The Lognormal Process (From [8]) {X (¢)| — co < t < oo} is a weakly stationary Gaussian stochastic
process. The process Y = {Y(t)] — co < t < oo} is defined by

V(t)=eX®  —oo<t< o0

Find the mean function and the autocovariance function of the lognormal process Y.
Aid: Recall the moment generating function of a Gaussian random variable.

The Suzuki Process Let X; = {X;(t)| — 00 < t < oo}, be three (i = 1,2,3) independent weakly sta-
tionary Gaussian processes with mean function zero. Xs and X3 have the same autocovariance functions.

Let
V(t) =X @\ JX2(t) + X2(t).

The stochastic process thus defined is known as the Suzuki process® and is fundamental in wireless com-
munication (fading distribution for mobile radio) and widely used in dozens of other fields of engineering
and science.

Aid: A mnemonic for the Suzuki process is that it is a product of a lognormal process and a Rayleigh

process.

(a) Compute E [Y (¢)].
(b) Find the p.d.f. of Y(¢) (i.e, the Suzuki p.d.f.). Your answer will contain a mixture of densities, of
the type eq. (3.7) in [49, p. 41].

X ={X(t) | —o0 <t < oo} is a strictly stationary process. Let g(x) be a Borel function. Define a new

process Y = {Y(t) | —oo < t < o0} via

Show that Y is a strictly stationary process, too.

9.7.3 Autocorrelation Functions

1. [Periodic Autocorrelation [60]] Let {X(t) | —oo < t < oo} is a weakly stationary process, with

E[X(t)] = 0 for all ¢t and autocorrelation Rx (h).

(a) Let f(t) be a function, which is periodic with period T, i.e, f(t) = f(t + T) for all t. Set

Show that the process Y = {Y(t) | —oo < t < oo} is periodically correlated in the sense that
Ry(t,s)=Ry(t+T,s+1T).

One can say that the process Y is produced by amplitude modulation.

(b) Let f(t) be a function, which is periodic with period T, i.e., f(t) = f(t +T) for all ¢. Set
Y() =X+ f(¢)).

Show that the time modulated process {Y(t) | —oo < t < oo} is periodically correlated. Show also

that the variance function is a constant function of time.

9H. Suzuki: A statistical model for urban radio propagation, IEEE Transactions on Communications, 25, pp. 673680, 1977.
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2. Band-limited Noise Show that

R(h)

N 1 Sin(WQh) _ sin(Wlh)
O We — W, h h

is an autocorrelation function.

9.7.4 Weakly Stationary Processes

1. [Prediction] X = {X ()| — o0 < t < oo} is a weakly stationary Gaussian stochastic process with the
mean function ux (t) = m and the autocovariance function Covy (h). We want to predict X (¢4 7), 7 > 0,

by means of a predictor of the form a - X (¢). Find a so that
E[(X(t+7)—a-X(1)]

is minimized. Note that the situation is the same as in example 7.5.5 above. Thus check that the optimal

parameter a is given by (7.22), or
~ Covx(T)

“= Covx(0)°
What is the optimal value of £ [(X(t +7)—a- X(t))ﬂ ?

2. [An Ergodic Property in Mean Square | Ergodicity in general means that certain time averages are

asymptotically equal to certain statistical averages.

Let X = {X(t)] — 0o < t < oo} be weakly stationary with the mean function pux(t) = m. The process X

is mean square continuous. We are interested in the mean square convergence of

%/OtX(u)du

as t — oo.

(a) (From [50, p.206],[89]) Show that

Var (% /OtX(u)du) - %/Ot (t - T) Covx (r)dr.

(b) Show that if the autocovariance function Covx(h) is such that

Covx(h) — 0, as h — oo,

(3 [ xtwrn-m) | -0

3. (From [57]) Let X = {X ()] — 00 < t < 0o} be weakly stationary with the mean function px () = m and

then we have

lim F

t—o00

Hint: The result in (a) should be useful.

autocovariance function Covx (h) such that
Covx(h) = 0, as h — cc.

Define a new process Y = {Y ()]0 <t < oo} by
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Find the autocovariance function Covy (¢, s) and show that

lim Covy (t,t+ h) = Covx(h) + Covx(0).

t—o0

In this sense Y becomes asymptotically weakly stationary.

. (From [57] Let X = {X ()| — 0o <t < oo} be a Gaussian random process such that

, o efAhfﬂ
(X(t)’X(S)) €N<< aigz ) ’02 ( e—/\}t—sl 1 ))

This is obviously not a weakly stationary process, as there is a linear trend in the mean function px(t).

Let us define a new process Y by differencing, by which we mean the operation
Y(t)=X(#)— X(t—1).
Show that the process Y is strictly stationary.
Aid: One of the intermediate results you should obtain here is that
Covy (t,s) = o2 |2 e~ At=s| _ o=Al(t—s)+1] _ e*/\|(tfs)71\:| '
Comment: Differencing removes here a linear trend and produces a stationary process. This recipe, called

de-trending, is often used in time series analysis.

(From [42]) Let s(f) be a real valued function variable that satisfies

s(f) >0, s(—f)=s(f), (9.45)
and N
/ s(f)df = K < oo. (9.46)
Let X1, X5, Y7 and Y5 be independent stochastic variables such that
K
B[Xi]|=E[X] =0, E[X{]=E[X}]=_,

and Y} and Y, have the p.d.f. fy(y) = %2

Show that the process { X (t)| — oo < t < 0o} defined by
X (t) = X cos (Y1t) 4+ X cos (Yat)

is weakly stationary and has the spectral density s(f).

We have in this manner shown that if a function s(f) satisfies (9.45) and (9.46), then there exists at least

one stochastic process that has s(f) as spectral density.

(From [42]) X = {X (t)| — 0o < t < oo} is a weakly stationary process and Z € U(0, 2) is independent of
{X}. Set
Y(t) = ﬁX(t)COS (fot+Z) —o0<t< 0.

Show that Y = {Y(t)| — co < t < oo} has mean function py = 0, and
Ry (h) = (Rx(h) + pk) cos (foh) -

Comment This is a mathematical model for amplitude modulation, c.f., [71, kap.7].
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9.7.5 Gaussian Stationary Processes

1. (From [42]) {X ()| — 0o <t < oo} is a weakly stationary Gaussian stochastic process with

1

=0, Rx(h)=-——.
Hx ) x (h) T2
(a) The probability

P(BX(1)>1-X(2)=0Q (\/%_3) ,

where Q(x) is the error function in (2.21), was found in the example 9.4.4. Re-verify this without

applying any matrix formula like (8.7). You should, of course, use Y = 3X (1) + X (2).

(b) Check that
(i (B39 1) s ).

where Q(z) is the error function in (2.21).

(¢) Check that

1—-1
P(X(2)X(1)>1|X(3)X(O)1)Q< 3>.
2. (From [42]) X = {X ()| — o0 <t < o0} is a weakly stationary Gaussian stochastic process with
px =m,

which is an unknown statistical parameter, and

1- L i p <2
C h) = 2
ovx(h) { 0 it |n] > 2.
We try to estimate the mean m by time discrete samples of X via
Y= L3 xm
k=1
Show that
(a)
EY,]=m
(b) N
n—
Var [Y,] = poa
(c) fore >0

9 9

Is it true that Y,, > m, as n — oo ?

3. [Bandlimited Gaussian White Noise] A weakly stationary stationary Gaussian process Z = {Z(t) |
—00 < t < oo} with mean zero that has the power spectral density

N,

No W < f < W

2 = = )
sz(f) { 0  elsewhere,

is called bandlimited white noise. W is referred to as the bandwidth (in radians).
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(a) Show that the a.c.f. of Z is
sin(Wh)
h) = N,W . ———.
Ba(h) = NoW - =7

. . k; _
(b) Sample the process Z at time points ¥ for k = 0,£1,£2,..., so that

wk
nm(2).

TkJ = l?[é?k -Zﬁ].

Find the autocorrelations

(¢) Show that for any ¢

k=n . T
> - % 2 Z(t),

k=—n
as n — oo. This is a stochastic version, [85, pp. 332— 336], of the celebrated sampling theorem!?,
[100, pp. 187]. Tt predicts that we can reconstruct completely the band-limited process Z from its
time samples {Z}72 _, also known as Nyquist samples.
Aid: (C.f. [103, p. 106]). The following result (Shannon’s sampling theorem’) on covariance

interpolation is true (and holds in fact for all bandlimited functions)

s 7k\ sin(W(t — T
Ra(h) = Y Ry (W)'—w(wé_W)))’

k=—o00

and can be shown by an application of some Fourier transforms.

As for proving the stochastic version, the complex periodic function e*/* is first expanded as a Fourier
series
eft = i eikft—sm(w( — ) , (9.47)
et W (t — W)

which is uniformly convergent in the interval | f |< W.

Wt — =)\
( Z Zy - —S Sg— W)))>

k=—n

Then we study

and obtain (check this)

_ _ k) sin(W (- §7))
Qk;nRz (t W) AW~ 35

= 7N sin(W(t — ) sin(W(t — =)
+ Z Z RZ(]* W)' wW(t—WW‘;“V) wW(tf”VJV) '

k=—nj=—n

We represent this by power spectral densities and get (verify)

W n : ok
:/ |eift7 Z eikftsul(W(t W)) |2 SZ(f)df

-W [ 7TW(t k)

Then the conclusion follows by (9.47).

Ohttp://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
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9.7.6 Mean Square Integrals of Processes

1. (From [42]) X = {X(t)| — 00 < t < 0} is a weakly stationary stochastic process with

Set

px =2, Covx(h)=e M,

Y = /OlX(t)dt.

Check that

E[Y] =2, Var(Y) = Z

2. [Linear Time Invariant Filters] Let X = {X(t)] — oo < ¢t < oo} be a stochastic process with zero as

mean function and with the autocorrelation function Rx (¢, s). Let

Y(t) = /OO G(t—$)X(s)ds = /OO G(s)X (t — s)ds,

— 00 — 00

assuming existence. One can in fact show that the two mean square integrals above are equal (almost

surely).
(a) Check that
Ry (t,s) = / / G(t — u)G(s — v)Rx (u,v)dudv. (9.48)
(b) Show that if X is (weakly) stationary with zero as mean function and

Y(t) = /OO G(t — )X (s)ds,

then Y = {Y(t)| — oo <t < oo} is (weakly) stationary.

Assume that X = {X(t)] — oo < t < oo} is a Gaussian weakly stationary stochastic process and with

the autocorrelation function Rx(h) and

Y(t) = / Glt — 5)X (s)ds.
Show that {Y(t)| — oo < t < oo} is a Gaussian process and find the distribution of Y (¢) for any ¢.

Remark 9.7.1 The findings in this exercise provide a key, viz. the mathematical representations of
analog filters, for understanding of the pre-eminence of weakly stationary processes in [50, 56, 71, 80,
85, 97, 101]. One thinks of G(t) as the impulse response of a linear time-invariant filter with
the process as {X (t)| — 0o < t < oo} input and the process {Y(t)] — oo < t < oo} as output. An
instance of applications is described in IFEFE standard specification format guide and test procedure
for single- axis interferometric fiber optic gyros, IEEE Std 952-1997(R2008), c.f. Annexes B & C,
1998.

3. [The Superformulal(From [71, 101] and many other texts) Let X = {X (t)| — 0o < t < 0o} be a weakly
stationary stochastic process with zero as mean function and with the autocorrelation function Rx(h).

Let

Y(t) = /jo G(t—8)X(s)ds = /jo G(s)X (t — s)ds,
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assuming existence. Suppose that the spectral density of X is sx(f). Show that the spectral density of

Y = {Y ()] — 00 <t < oo} (recall the preceding exercise showing that Y is weakly stationary) is
—o0 < f < o0, (9.49)

sy(f) =l g(f) I sx(f),

where g(f) is the transfer function

g(f) =

/ e hG(h)dh.
Note the connection of (9.49) to (9.48). In certain quarters at KTH the formula in (9.49) used to be

— 00

referred to in Swedish as the superformel.
(From [42]) X = {X(t)| — oo < t < o0} is a weakly stationary process with mean function = px and with

4.
the autocorrelation function Rx (h) = o?e~!"I. Let
e 0<t

G(t){o t<o0.

Set
Show that if Y = {Y(t)| — co < t < oo}, then
_ X
Hy 92 )
o? Al Al
Ry(h)=7(2€ —e ),
and that the spectral density is
() 0
s =
TP

(From [71]) X = {X(t)] — 00 < t < oo} is a weakly stationary process with zero as mean function and

5.
with the autocorrelation function Rx (h) = eI, Let
1
{ Loo<t<T

G(t) = .
0 otherwise.

Y(t) = /_OO G(t — 5)X (s)ds.

Set
Show that
Rty = § 7 [C = [1D) = e =T cosheh)] ] < T
—2=e "l (cosh(ch) — 1) |h| > T.

(From [42]) X = {X(t)] — 00 < t < oo} is a Gaussian stationary process with ux = 1 as mean function

6.
and with the autocorrelation function Rx (h) = e~""/2. Show that
27 )

X(@)e 2dt e N <\/27r,
[ xo Ve
(From [105]) Let W = {W(¢) | t > 0} be a Gaussian process with mean function zero and the autocorre-

lation (i.e., autocovariance)
Rw (t,s) = min(t, s).
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(a) Show that the mean square integral
t
Y (t) = / W (s)ds
0
exists for all ¢ > 0.

(b) Show that the autocovariance function of the process Y = {Y(t) | ¢t > 0} is

s%(3t—s) £> s

Ry (t,s) = 6
(%) { —t2(3g_t) t < s.

9.7.7 Mean Square Continuity

1. Show that if the autocovariance function of a weakly stationary process is continuous at the origin, then
it is continuous everywhere.
Aid: Apply in a suitable manner the Cauchy-Schwarz inequality, eq. (7.5), in the preceding.

2. A stochastic process {X (t) | t € T'} is said to be continuous in probability, if it for every ¢ > 0 and
all ¢ € T holds that
P(|X(t+h)—X(t)|>e)—0,

as h — 0. Let {X(t) | t € T} be a weakly stationary process. Suppose that the autocovariance function
is continuous at the origin. Show that then the process is continuous in probability.
Aid: Recall Markov’s inequality (1.38).

9.7.8 Memoryless Nonlinear Transformations of Gaussian Processes
Introduction

By a memoryless nonlinear transformation of a stochastic process { X (¢)|t € T'}, we mean a stochastic process
{Y(t)|t € T} defined by

where @ is a Borel function.
In order to give a specific example, in lightwave technology!! a lot of attention is paid to clipping, c.f.,
section 8.5.3, where
x if|z|<x
Q(z) = { ’

To - sign(x) if |z |> .

For this to be of interest, it is argued, c.f. [33, p.212—217], that a stationary Gaussian process can represent a
broadband analog signal containing many channels of audio and video information (e.g., cabletelevision signals
over optical fiber).

Let us incidentally note that in the context of clipping (e.g., of laser) it is obviously important for the

engineer to know the distribution of the sojourn time in (9.42) or
Lo, ® Length ({t | X(t) > z0}). (9.50)

The approximation in (9.43) is well known to be the practical man’s tool for this analysis.

Hsee, e.g., A.J. Rainal: Laser Intensity Modulation as a Clipped Gaussian Process. IEEE Transactions on Communications,

Vol. 43, 1995, pp. 490—494.
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By a nonlinear transformation of a stochastic process X = {X (¢)|t € T} with memory we mean, for one
example, a stochastic process Y = {Y(¢)|t € T} defined by

Y(t) = / Q(X(s)ds, [0,]]CT,

where @ is an integrable Borel function. In this case the value of Y (¢) depends on the process X between 0 and
t, i.e., has at time ¢ a memory of the 'past’ of the process. One can also say that Y (¢) is a nonlinear functional

of the process X over [0, t].

Exercises, Hermite Expansions

1. X ={X(t)] — oo <t < oo} is a weakly stationary Gaussian stochastic process with ux = 0, variance o%

and autocorrelation Rx (h). Let for every ¢
Y (t) = X2(¢).
Let the cofficient of correlation between X (s) and X (¢t), h =t — s, be

_ Rx(h)
- Rx(0)

px (h)
Show that the autocorrelation function of Y = {Y ()| — 0o < t < o0} is
Ry(h) = 0% - |1+2(px(h))* (9.51)
Hint: The four product rule in (8.37) of section 8.5 can turn out to be useful.

2. X ={X(t)] — oo < t < 0o} is a weakly stationary Gaussian stochastic process with ux = 0, variance o%

and autocorrelation Rx (h) such that Rx (0) = 1. We observe a binarization of the process, c.f., (8.43),

1 X(t) >
Y(t) = ()20, 9.52)
-1 X() <0.
Show that
™
Rx(h) = sin (§Ry(h)) .
Aid: (From [89]). You may use the fact that (c.f., (8.24))

1 arcsin(p)

[ee] o] 1 7#(1272pmy+y2)
 — e 20107 drdy = — +
/0 /o 2my/1 — p? Y=y 2w

3. Hermite Expansions of Nonlinearities We shall next present a general technique for dealing with
a large class of memoryless nonlinear transformations of Gaussian processes. This involves the first
properties of Hermite polynomials, as discussed in section 2.6.2. The next theorem forms the basis of

analysis of non-linearities in section 9.7.8.

Theorem 9.7.1 Suppose h(z) is a function such that
/ h2(x)e_:”2/2dac < 0. (9.53)

Then

(oo}

hz) =" %Hn(:c), (9.54)

n=0
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where

1 i 2
Cp = — h(z)e * /?H, (z)dz, n=0,1,2,..., 9.55
= [ @ @) (9.55)

and the series converges with respect to the Hilbert space norm

I171- \/ | p@er.

We have the following result.

Theorem 9.7.2 Let X = {X ()| — 00 < t < oo} be a weakly stationary process with the mean value
function = 0. Let Q(z) satisfy (9.53) and define

Y(t) = Q(X(t), —oco<t<cc. (9.56)

Then Y = {Y ()| — o0 <t < oo} has the autocorrelation function

Ry(h) = ;) % (g’;igi) , (9.57)

where

C, = \/% /0:0 Q (zox) e_IQ/QHn(x)dx.

Proof is outlined. These assertions are derived by Mehler’s Formula [24, p.133], which says the

(Xl,Xg)/eN<<8>,<; f))

Then the joint p.d.f. of (Xl,Xg)/ is by (8.24)

following. Let

1 11 [y2 9, 2
[x1.x, (01, 72) = P er oy [l -2 aimatal]

and can be written as

—z2/2 ,—x2/2 X n
(& 1 e 2

fxx (w1, m2) = N n! "
n=0

Hence, from (9.56), with h = ¢ — s,

Ry(h) = E[Y()Y (s)] = E[Q(X(1)Q(X(s))] =

— [ ] @@)Qa) frx. (o1,22) dordes, (959)
Now we use in (9.59) the expansions (9.54), (9.58), (2.100) and (2.101) to obtain (9.57) in the special case
ox — 1. u

(a) Verify by symbol manipulation (i.e., do not worry about the exchange of order between integration
and the infinite sums) that (9.59) leads to (9.57), as indicated in the last lines of the proof outlined
above.
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(b) Let now
Q(z) = ax®.
(i) Show that (9.53) is satisfied.

(i) If X and Y are as above with Q(z) = ax® in (9.56), then show that

Rx(h)
Rx(0)

Ry (h) = 3a*0% |3

(c) Let now
Qz) = 2.
Verify that You get the result in (9.51) using (9.57).

9.7.9 Separable Autocovariances

Let us consider T = [0, 1] and

= {2070 5t

1. Check, whether (9.37) holds for R(¢,s) in (9.60).

g

Rx(h)
Rx(0)

)]

(9.60)

2. Let W(t) be a random variable in a Gaussian process (i.e., Wiener process, see next chapter) with the

autocorrelation function Rw (¢, s) = min(¢, s). Find a function 7(¢) = u(t)/v(t) so that the process defined

by
B(t) =v(t)W (7(t)),

has the autocorrelation function R(¢, s) in (9.60).

3. Find functions s(¢) and h(t) such that for 0 < ¢ < o0

where W (¢t) and B(t) are as in (9.61).

(9.61)

(9.62)



Chapter 10

The Wiener Process

10.1 Introduction

10.1.1 Background: The Brownian Movement, A. Einstein

The British botanist Robert Brown examined! in the year 1827 pollen grains and the spores of mosses suspended
in water under a microscope, see figure 77, and observed minute particles within vacuoles in the pollen grains
executing a continuous jittery motion. Although he was not the first to make this observation, the phenomenon
or the movement became known as the Brownian movement.

A note on terminology is at place here. Here we shall refer to the physical phenomenon as the Brownian
movement, and to the mathematical model, as derived below, as Brownian motion/Wiener process thus minding
of the accusations about 'mind projection fallacies’.

In one of his three great papers published in 1905 Albert Einstein carried a probabilistic analysis of molecular
motion and its effect on particles suspended in a liquid. Einstein admits to begin with [31, p.1] that he does not
know much of Brown’s movement. His purpose was not, as pointed out by L. Cohen?, to explain the Brownian
movement but to prove that atoms existed. In 1905, many scientists did not believe in atomic theory. Einstein’s
approach was to derive a formula from the atomic theory, and to expect that someone performs the experiments
that verify the formula.

In the 1905 paper, see [31], Einstein derives the governing equation for the p.d.f. f(x,t) of the particles,
which are influenced by the invisible atoms. The equation of evolution of f(z,t) is found as

82
5 (x,t) = D@f(:r,t).
Two brief and readable and non-overlapping recapitulations of Einstein’s argument for this are [58, pp. 231—234]
and [78, chapter 4.4]. Then Einstein goes on to show that the square root of the expected squared displacement

of the particle is proportional to the square root of time as
ox = VE[X(t)?] =V2Dt. (10.1)
It is generally overlooked that Einstein’s ’coarse time’ approach to thermodynamics implies that his finding in

(10.1) is valid only for very large ¢. Then Einstein derives the formula for the diffusion coefficient D as

_RT 1
" N 67kP’

LA clarification of the intents of Brown’s work and a demonstration that Brown’s microscope was powerful enough for observing

(10.2)

movements so small is found in http://www.brianjford.com/wbbrowna.htm
2The History of Noise. IEEE Signal Processing Magazine, vol. 1053, 2005.

265



266 CHAPTER 10. THE WIENER PROCESS

where R is the gas constant, T is the temperature, k is the coefficient of viscosity (Einstein’s notation) and P is
the radius of the particle. The constant N had in 1905 no name, but was later named Avogadro’s number?,

see [58, p. 236]. Next Einstein explains how to estimate N from statistical measurements. We have

RT 1
ox = Vi N 37kP

so that
1 RT

= 0% 3nkP’

where 0% is measured 'per minute’.

Besides the formulas and ideas stated, Einstein invoked the Maxwell & Boltzmann statistics, see, e.g., [17,
p- 39, p. 211], [58, chapter 6], and saw that the heavy particle is just a big atom pushed around by smaller
atoms, and according to energy equipartition, c.f., [17, chapter 19], the statistical properties of the big particle
are the same as of the real invisible atoms. More precisely, the mean kinetic energy of the pollen is the same
as the mean kinetic energy of the atoms. Therefore we can use the heavy particle as a probe of the ones we
cannot see. If we measure the statistical properties of the heavy particle, we know the statistical properties of
the small particles. Hence the atoms exist by the erratic movements of the heavy particle?.
J.B. Perrin® was an experimentalist, who used (amongst other experimental techniques) direct measurements
of the mean square displacement and Einstein’s formula to determine Avogadro’s number, and was awarded
Nobel Prize in Physics in 1926 in large part, it is said, due to this. Actually, Perrin proceeded to determine

Boltzmann’s constant and the electronic charge by his measurement of Avogadro’s number, [58, p. 239].

10.1.2 Diffusion, Theory of Speculation & the Wiener Process

Another physical description of the background to the mathematical model to be introduced and analysed in
this chapter is diffusion of microscopic particles. There are two aspects in a diffusion: very rough particle
trajectories, c.f., figure 10.2, at the microscopic level giving rise to a very smooth behaviour of the density of
an entire cloud of particles.

The Wiener process® W = {W(t) | t > 0} to be defined below is a mathematical device designed as a
model of the motion of individual particles in a diffusion. The paths of the Wiener process exhibit an erratic

behaviour, while the density fy ;) of the random variable W (t) is for ¢t > 0 given by

22
1 J—
x) = e 2t.
22
We set p(t,x) = \/2;?6 2t . Then p(t, x) is the solution of the partial differential equation known as the diffusion
(or the heat) equation [96, pp.130—134]
0 1 0?
—pt,x) = —=—=p(t 10.3
2op(t,) = 5200, ), (103)

3The Avogadro constant expresses the number of elementary entities per mole of substance, c.f. [17, p.3].
4More on this and the history of stochastic processes is found in L. Cohen: The History of Noise. IEEE Signal Processing

Magazine, vol. 1053, 2005.
5Jean Baptiste Perrin 1870-1942, Perrin’s Nobel lecture with a discussion of Einstein’s work and Brownian movement is found

on

http://nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html
6is named after Norbert Wiener, 1894—1964, who constructed it as a stochastic process in mathematical terms, as given here,

and proved that the process has continuous sample paths that are nowhere differentiable.
http://wwwu-groups.dcs.st-and.ac.uk/~history/Biographies/Wiener_Norbert.html
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Figure 10.1: A Path of a Brownian Movement Particle

and can be interpreted as the density (in fact p.d.f.) at time ¢ of a cloud issuing from a single point source at
time O.

We shall study the one-dimensional Wiener process starting from the mathematical definition in 10.2.1
below and derive further properties from it. The Wiener process can be thought of as modelling the projection
of the position of the Brownian particle onto one of the axes of a coordinate system. A sample path of the
one-dimensional Wiener process is given in figure 10.3. In the literature, especially that emanating from British

universities, see, e.g., [26], this stochastic process is also known as the Brownian motion.

Apart from describing the motion of diffusing particles, the Wiener process is widely applied in mathematical

models involving various noisy systems, for example asset pricing at financial markets, c.f. [13, chapter 4].

Actually, Louis Bachelier (1870—1946)7 is nowadays acknowledged as the first person to define the stochas-
tic process called the Wiener process. This was included in his doctoral thesis with the title Théorie de la
spéculation, 19008 reprinted, translated and commented in [27]. This thesis, which treated Wiener process to
evaluate stock options, is historically the first contribution to use advanced mathematics in the study of fi-
nance. Hence, Bachelier is appreciated as a pioneer in the study of both financial mathematics and of stochastic

processes.

"http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Bachelier.html
8R. Mazo, an expert in statistical mechanics, chooses to write in [78, p. 4]:

The subject of the thesis (by Bachelier) was a stochastic theory of speculation on the stock market, hardly a topic

likely to excite interest among physical scientists (or among mathematicians either).
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Figure 10.2: A Brownian Movement Particle

10.2 The Wiener Process: Definition and First Properties

We need an auxiliary notation:

p(t,y,z) = e 2t ) t>0,-0c0<x < 00,—00 <y < 00. (10.4)

V27t

Clearly p(t,x,y) is the p.d.f. of a random variable with the distribution N(z,t¢). This p(¢,z,y) is in fact the
transition p.d.f. of a Wiener process , as will be explained below.

Remark 10.2.1 If we with o > 0 set

. oo
N 2 = 2 2t — —
p(t,y,x;0°) me o , t>0,—00<x<o00,—00<y< 00, (10.5)

we shall get a process that is also called the Wiener process. In fact, scaling of time, i.e., the definition in
(10.4), which has o0 = 1, is known as the standard Wiener process, but we shall not add the qualifier to our

statements.

Definition 10.2.1 The Wiener process a.k.a. Brownian motion is a stochastic process W = {W(¢) |
t > 0} such that
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Figure 10.3: A Sample Path of A Wiener Process

i) W(0) = 0 almost surely.

ii) for any n and any finite suite of times 0 < ¢ < to < ... < t, and any x1,xa, ..., z, the joint p.d.f. of
W(fl), W(fg), ey W(tn) is

JW @), W (ta)sW(tn) (T1, T2, -, Tn)

=p(t1,21,0)p(t2 — t1, w2, 21) - p(tn — th—1, Tn, Tn—1)- (10.6)

Let us next record a few of the immediate consequences of this definition.

1. We should perhaps first verify that (10.6) is in fact a joint p.d.f.. It is clear that fy(¢,),w(t,),...w(t,) = 0-
Next from (10.6)

n—1

[e ] Ne'e)
/ / p(tl’m’o)Hp(t”l7ti’mi+1;l’i)dl’1~-~d$n
oo e

i=1
[e'S) [e'S)
:/ p(tlamlao)"'/ p(tn_tn—lamnamn—l)dmn"'dxl-
—00 — 00

We integrate first with respect to x,, and get
oo
/ p(tn*tnflamn;mnfl)dzn - 17
— 00
since we have seen that p(t, — tn—1,%n, Tn—1) is the p.d.f. of N(z,—1,t, — t,—1). An important thing is

that the integral is not a function of x,_;. Hence we can next integrate the factor containing x,,—; w.r.t
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Ty —1, whereby the second of the two factors containing z,, o will disappear, and continue successively in
this way, and get that

oo oo
/ p(tlaxlao)"'/ p(tn_tn—lawnawn—l)dxn"'dxl =1.
—o0 —o0

The preceding computation indicates also how to prove that the Wiener process exists by the
Kolmogorov Consistency Theorem 9.1.1.

. Take n = 1 and t; = ¢, then (10.6) and (10.4) give

W(t) € N(0,t), t>0. (10.7)
n=2,t; =s <ty =t. Then the joint p.d.f. of (W(s), W(t)) is by (10.6)

fW(s),W(t)(zay) - p(S,IE,O) p(t - S,y,l')

x? (y — x)Q
2(t = s) | (10.8)

1 -5 1
= e 25 e
V27s \2m(t — s)

In view of (10.7) p(s,z,0) is the marginal p.d.f. fyy (s () of W(s). Hence it holds for all z,y that

(y—=)°
Jws)we (@, y) _ 1 e 2(t—s)
fws (@) 27(t — s) ’
which tells us that
' (y—a)?
_ 2(t —s)
=z (y) = ——e , t>s, 10.9
or, equivalently,
W(t) | W(s) =z € N(z,t—s), t>s. (10.10)

Inherent in the preceding is evidently that for ¢ > s
W(t) = Z +W(s),

where Z € N (0,¢t — s) and Z is independent of W (s). We shall, however, in the sequel obtain this finding
as a by-product of a general result.

. Hence we have the interpretation of p(t — s, x,y) as a transition p.d.f., since for any Borel set A and

t>s
(y —x)?
Q(t — S) dy

P(W(t)e A|W(s)=ux) :/Ap(t—s,y,x

1
= |

This gives the probability of transition of the Wiener process from x at time s to the set A at time t.

The preceding should bring into mind the properties of a Gaussian process.

Theorem 10.2.1 The Wiener process W is a Gaussian process.
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Proof: We make a change of variables in (10.6). We recall (2.71): if X has the p.d.f. fx (x), Y = AX + b,
and A is invertible, then Y has the p.d.f.

fx(y)= mfx (A" (y—b)). (10.11)

We are going to define a one-to-one linear transformation (with Jacobian = 1) between the n variables of the
Wiener process and its increments. We take any n and any finite suite of times 0 < t; < to < ... < t,. We

recall first
Zoy=Wi(tg) =W(0)=0

so that
71 =W(t1) — Wi(te) = W(t1)

and then

Zi déf W(tl) - W(ti_l), 1= 2, .oon.

The increments {Z;}._, are a linear transformation of (W (¢;))%,, or in matrix form

Al 1 0 ... 0 0 O W (t1)
Z -1 1 ... 0 0 O W (ta)
; -1 1 ;
= 0 00 : (10.12)
Zn1 0 0 ... -1 1 0 W (tn_1)
Zn, o 0o ... 0 —-11 W (ty)
We write this as
A W (ty)
Zs W(ts)
: =Al
Zn—l W(tn—l)
Zn, W(tn)
The matrix A is lower triangular, and therefore its determinant is the product of the entries on the main
diagonal, see [92, p. 93]. Thus in the above det A = 1, and the inverse A~! exists and det A™' = -1¢ = 1.

Hence the Jacobian determinant J is = 1.

It looks now, in view of (10.11), as if we are compelled to invert A~! and insert in Jw(t),...w(t,)- However,

.....

due to the special structure of fyy (), .w,) in (10.6), we have a kind of stepwise procedure for this. By (10.6)

»»»»»
n

fW(t1)7W(t2)7~-,W(tn) (z1,22, ..., 2n) = p(t1,21,0) Hp(ti —ti—1,Ti, Ti1)-
1=2

Here, by (10.9),

(%‘*%‘4)2

1 T2t —tig)

i — i1, T, Ti—1) = W)Wt )—w,_, (T;) = ——¢ (ti —tiz1) |
( 1 1) = fwe)\Wti_1) =i, (T4) ST

Hence, if we know that W(t;—1) = x;-1, then Z; = W(t;) — x;—1 or W(t;) = Z; + x;—1 and since we are
evaluating the p.d.f. at the point Z; = z; and W (¢;) = x;, we get

2}
1

. ) e — _2(15' —tio1) — )
ti —ti—1,Ti, Tie e i i=1) = fz.(2).
P( 1 1) S fz( )
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Thus
Z; € N(O,ti — ti—l)

and

fZ11221---1Zn (Zla 22y - azn) = H fZi (ZZ)

This shows that the increments are independent, and that

1 7Z/A71Z/2

fZl,Z2 ..... Zn (21,22a cee ,Zn) = W—d\/ﬂe

t 0 0 0 0
0 ta—t 0
0 0 ts —ty 0 0

A= o . (10.13)
0 0 0 tpo1—tho O
0 0 0 0 tn — tn_1

This matrix A is clearly symmetric. In addition, for any x € R™ we have

xle:fo-(ti—ti_l) > 0, (tOZO).
=1

Hence the matrix A is a covariance matrix. In other words, Z1, Zs, ..., Z, has a joint Gaussian distribution
N (0, A) and since

W(tl) Zl

W(tg) Z2

=A"!

W(tn—l) Zn—l

W(ty,) Zn,
then (W (t1), W(t2),...,W(tn—1), W(t,)) has a joint Gaussian distribution

N (Q, A—lA(A—l)’) . (10.14)

Since n and tq,...,t, were arbitrary, we have now shown that the Wiener process is a Gaussian process. =

Remark 10.2.2 The proof above is perhaps overly arduous, as the main idea is simple. The increments {Z;};_;
and W (t1),..., W (t,), correspond to each other

{Zi}ioy o AWty

by an invertible linear transformation, since the inverse is given by
i
W(t) = Z, (10.15)
k=1

which yields uniquely the Wiener process variables from the increments, remembering that Wy = W(0) = 0.
Thus, when we know that W (t;—1) = wz;—1, then Z; = W(t;) — 2;-1 and in the conditional p.d.f. p(t; —

ti—1,%;, x;—1) the change of variable is simple.



10.2. THE WIENER PROCESS: DEFINITION AND FIRST PROPERTIES

273

A Gaussian process is uniquely determined by its mean function and its autocovariance function. We can

readily find the mean function pw () and the autocorrelation function Ry (¢, s). This will give us the matrices

A"'A(A™Y) in (10.14), too, but without any matrix operations. The mean function is from (10.7) and i) in

the definition
puw(t) =E[W({t)] =0 t>0.

Lemma 10.2.2 The Rw (t, s) of the Wiener process is
Rw (t,s) = min(t, )
for any t,s > 0.

Proof Let us assume that ¢ > s. Then by double expectation

and by taking out what is known
=E[W(s)E[W(t) | W(s)].

We invoke here (10.10), i.e., E [W(t) | W(s)] = W(s), and obtain
=E[W?(s)] =s,

where we used (10.7).

Exactly in the same manner we can show that if s > ¢
E[W(t)W(s)] =t.

Thus we have established (10.17), as claimed.

Remark 10.2.3 The definition (10.5) gives instead

Rw(t,s) = 0% min(t, s).

(10.16)

(10.17)

(10.18)

The equation (10.17) implies that the covariance matrix Cw of (W (t1), ..., W(tn))/, 0<t <ty <...<ty,is

ti1 t1 ... t1 tq tq

t1 to ... to to to

t oty ... 13tz t
Cw =

ti to ... tp2 tho1 tha

t1 to ... th_o th_1 tn

(10.19)

One could check that Cyw = A~'A(A™")", as it should by (10.14). We have encountered the matrix Cy in an
exercise on autocovariance in section 9.7.1 of chapter 9 and shown without recourse to the Wiener process that

Cw 1is indeed a covariance matrix.
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Lemma 10.2.3
E [(W(t) - W(s))ﬂ = |t — (10.20)
for any t,s > 0.
Proof
E[(W(t) = W(s))’| = B [W2(@) - 2W ()W (s) + W(s)]
=E [W2(t)] —2E[W(t)W (s)] + E [W?(s)]
={—2min(t,s) + s
by (10.17) and (10.7). Then we have
_Jt=2s+s=t—s ift>s
S| t-2+s=s—t ifs>t
By definition of absolute value,
[t-sl=4 ' 7° b2 (10.21)
—(t—s)=s—t s>t

Thus
E [(W(t) - W(s))ﬂ = |t —s|.

Lemma 10.2.4 For a Wiener process and for ¢ > s
W(t) —W(s) € N(0,t — s). (10.22)

Proof Because the Wiener process is a Gaussian process, W (t) — W (s) is a Gaussian random variable. The
rest of the proof follows by (10.16) and (10.20). .
The result in the following lemma is already found in the proof of theorem 10.2.1, but we state and prove it

anew for ease of reference and benefit of learning.

Lemma 10.2.5 For a Wiener process and for 0 <u <ov <s<t

W (t) — W(s) is independent of W (v) — W (u) (10.23)
Proof We can write
W(v)
Ww)—W() \ (1 -1 0 0 W (u)
W) -ws) ) Lo o 1 -1 W(t)

Therefore W(t) — W(s) and W(v) — W (u) are, by theorem 8.1.6, jointly Gaussian random variables with zero
means. It is enough to show that they are uncorrelated.

E[W(@) = W(s)) (W(v) = W(w)] =
=EW@OW ()] - EW@OW(u)] - E[W(s)W(v)] + E[W(s)W (u)]
= min(¢,v) — min(¢, u) — min(s,v) + min(s, u)

=v—u—v+u=0.

In fact we have by this last lemma shown that
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Theorem 10.2.6 For a Wiener process and any finite suite of times 0 < t; < t3 < ... < t,, the increments
W(t1) = W(to), W(t2) = W(t1),...., W(tn) = W(tn-1)
are independent and Gaussian.

u
It follows also by the above that the increments of the Wiener process are strictly stationary, since for
all n and h
W(t1) = Wi(to), W(tz2) = W(t1),. .., W(tn) = W(tn-1)

LWty +h) = W(to+h), W(ta+h) = W(ts +h), ..., W(tn + h) = W(ta_1 + h),

by (10.20).

10.3 A Construction of the Wiener Process

Let us recall example 9.2.3, which was based on example 9.1.8. There we obtained the integral equation (9.23)

or
T
/ R(t, s)e;(s)ds = Aiei(t). (10.24)
0
Let us solve this with R(¢,s) = min(¢, s) in [0, T], we follow [103, p. 87]. We insert to get
T
/ min(t, s)e;(s)ds = \e;(t), (10.25)
0
or
¢ T
/ se;(s)ds +t/ ei(s)ds = Nie;i(t). (10.26)
0 t

This is a case, where we can solve an integral equation by reducing it to an ordinary differential equation. We
differentiate thus once w.r.t. ¢ in (10.26) and get

/T ei(s)ds = e, (1). (10.27)

We differentiate once more, which yields
—ei(t) = N (). (10.28)

We have also the obvious boundary conditions e;(0) = 0 from (10.26) and €;(T) = 0 from (10.27). Equation

(10.28) with €;(0) = 0 gives
1
ei(t) = Asin (\/)\_lt) .

When we check e;(T) = 0 we obtain

In other words
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and we have by the computations in example 9.2.3

" Qi ,+1 t\ . .+1 s

mm — n — — 1mn — —

s) T z—|— ) ? 5 7TT S ? 5 7TT )
:0

which is an interesting expression for min(¢, s) in [0,7] x [0,7] in its own right. In addition, by example 9.2.3

we can construct the Wiener process as

-3 g (2 ) et) eeon

=0

where X; are LI.D. and N(0,1). We are omitting further details that would enable us to prove almost sure

convergence of the series [7, pp. 7—9].

10.4 The Sample Paths of the Wiener Process

The Wiener process shares with the Poisson process the status of being the most important process in probability
theory. Its sample paths display an astonishing range of behaviour, see, e.g., [19]. Here we are concentrating on
the mean square properties, which are straightforward by comparison. We shall, however, next indicate some
of the basic sample path properties of the Wiener process, as one needs to be sufficiently well-informed about
these in order to decide intelligently in what ways the Wiener process can, and in what ways it cannot, be
expected to reflect realistically the properties of some physical processes.
In view of (10.20) we see that

E [(W(t +h) - W) =nl (10.29)

and hence the Wiener process is continuous in quadratic mean in the sense of the definition 9.3.2. As is known,
convergence in quadratic mean does not imply convergence almost surely. Hence the result in the following
section requires a full proof, which is of a higher degree of sophistication than (10.29). As we shall see below,

the actual proof does exploit (10.29), too.

10.4.1 The Sample Paths of the Wiener Process are Almost Surely Continuous

We need an additional elementary fact.
Z e N(0,0%) = E[Z'] = 30" (10.30)

This can be found by the fourth derivative of either the moment generating or the characteristic function and
evaluation of this fourth derivative at zero®.
We shall now start the proof of the statement in the title of this section following [103, p.57—58] and [7,

chap.1]. The next proof can be omitted at first reading.

The Markov inequality (1.38) gives for every e > 0 and h > 0

E[|W(t+h)—W(t) ]

P(IW(E+h) W |20 < .

9By (4.50) the general rule is given as follows. If Z € N(0,02), then

0 n is odd
BETT= @i —op k—0,1,2
S O n , , 1,2,
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The reason for selecting above the exponent = 4 becomes clear eventually. By (10.29) and (10.30)
we get
E [(W(t +h) - W) = 3n2.
Therefore
P(|W(t+h)—W(t)|>h) <3h*4.

Let now 0 <y < 1/4 and set 6 =1 — 4y > 0. We get
P (| W(t+h)—W(t)|>hY) < 3nT°. (10.31)

These are preparations for an application of the Borel-Cantelli lemma. With that strategy in

mind we consider for nonnegative integers v the random variables

Zo % sup [ W((k+1)/27) — W(k/27) ] .
0<k<2v—1

R (2.2 (%) ) <p (Gt w2 - w2 (3) ).

since if Z, > (5 )", then there is at least one increment such that | W((k + 1)/27) — W(k/27) |>
(2%)7 Then by subadditivity, or A C U;A; then P(A) < )", P(A;), see chapter 1,

1

< 2}:2__;)1P (| W ((k +1)/27) = W (k/27) |> (2—)7)

1+0
v 1 —dov
<3.2 (5) =3.27%

where we used (10.31). Since Y o7 ;279 < oo we have

iP(ZvZQ%) < 0.

occurs with probability one only a finite number of times. In other words, it holds that there is
almost surely an N(w) such that for all v > N(w),

Z, < L
S 50y

and therefore
o0
nhﬂn;o Z Z, =10, as.
v=n-+1
This entails that
sup | W(t) = W(s)|=5 0,
t,se€T;|t—s|<2— ™
as n — oo, where T is any finite interval C [0, 00). This assertion is intuitively plausible, but requires
a detailed analysis omitted here, see [103, p. 86] for details.
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u
By the preceding we have in bits and pieces more or less established the following theorem, which is frequently

evoked as the very definition of the Wiener process, see [13, chapter 2].

Theorem 10.4.1 A stochastic process {W(t) | t > 0} is a Wiener process if and only if the following four

conditions are true:
1) W(0) = 0.
2) The sample paths ¢t — W (t) are almost surely continuous.
3) {W(t) |t > 0} has stationary and independent increments.

4) W(t) —W(s) € N(0,t —s) for t > s.

10.4.2 The Sample Paths of the Wiener Process are Almost Surely Nowhere
Differentiable; Quadratic Variation of the Sample Paths

We are not going to prove the following theorem.
Theorem 10.4.2 The Wiener process {W (t) | t > 0} is almost surely non-differentiable at any ¢ > 0.

We shall next present two results, namely lemma 10.4.3 and theorem 10.4.4, that contribute to the understanding

of the statement about differentiation of the Wiener process. Let for ¢ = 0,1,2,...,n
iT
1 ==
n

Clearly 0 = tén) < tg") <..<t=Tisa partition of [0, 7] into n equal parts. We denote by
arw S () - w (#7) (10.32)

the corresponding increment of the Wiener process. For future reference we say that the random quadratic

variation of the Wiener process is the random variable

|
—

n

(AW

Il
o

i

Lemma 10.4.3 The random quadratic variation converges in mean square to 7', or

n—1
(ATW)? ST, (10.33)

-
Il
=)

as n — oQ.

Proof By the definition in chapter 7.1 we need to show that

E (S (APW)? — T) -0

i=0
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as n — o0o. First we do a simple manipulation of sums

7.1_1 (ATW)? =T = nf ((A?W)Q - Z) :

Thus

S (w2
+2) " F K(A?W)Q - %) ((A;Wf - %)} . (10.34)

By Theorem 10.2.6 the increments of the Wiener process are independent, when considered over non-overlapping
intervals. Thus

w|erwr = 2) (e =) = (cmmr=T)] = (e -2))

By (10.20) we get

)

T
E {(A?W)Q} -5 [(A;Wﬂ ==
and the cross products in (10.34)vanish.

Thus we have obtained

(erwy-TY

E <nz (APW)? — T) = ni: E
=0

=0

We square the term in the sum in the right hand side

T\* T T2
awyt = =) | = B(amw)!] 2= E[(arw)’] + .
(@rwr=2) | =Bl -2 plamw?]+
In view of (10.20)
[(A”Wﬂ _T
K3 n)
and thus (10.30) entails
L4 3T?
Bl =5
Thus
— | oare o
n 2 o
@(MV) T) -2 <FF+¥>
Z 272 2T2
Hence the assertion follows as claimed, when n — oc. "

In the theory of stochastic calculus, see e.g., [70, p.62], one introduces the notation

(W, W)([0 z_: ATW)?
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or in [29, p.86],

n—1
< W >rE1im Y (AFW)?
i=0
and refers to [W, W1([0, T]) as quadratic variation, too, but for our purposes we need not load the presentation
with these brackets.

We need to recall a definition from mathematical analysis [36, p.54].

Definition 10.4.1 The total variation of a function f from [0, 7] to R, is defined by

n—1
limsupz | f(tig1) — f(ti) |,

A—0 i—0

where 0 =ty < t; < ... <t, =T is a partition of [0,7T] and

.

The following theorem 10.4.4 implies that the length of a sample path of the Wiener process in any finite interval

is infinite. Hence we understand that a simulated sample path like the one depicted in figure 10.3 cannot be
but a computer approximation.

At this point we should pay attention to Brownian Scaling. If {W(¢)|t > 0} is the Wiener process, we

define for ¢ > 0 a new process by
def 1

V(t) = -W(ct).
c
An exercise below shows that {V(¢) | ¢ > 0} is a Wiener process. In words, if one magnifies the process
{W(t)|t > 0}, i.e., chooses a small ¢, while at the same time looking at the process in a small neighborhood
of origin, then one sees again a process, which is statistically identical with the original Wiener process. In
another of the exercises we study Time Reversal
1

V() ¥ ew (2) ,
in which we, for small values of ¢, we look at the Wiener process at infinity, and scale it back to small amplitudes,
and again we are looking at the Wiener process.
These phenomenona are known as self-similarity and explain intuitively that the length of a sample path of

the Wiener process in any finite interval must be infinite.
Theorem 10.4.4 The total variation of the sample paths of the Wiener process on any interval [0, T'] is infinite.

Proof As in lemma 10.4.3 we consider the sequence of partitions (té"), tg"), . ,t%")) of [0, T into n equal parts.
Then with the notation of (10.32) we get

n—1 n—1
n 2 n n
; | AFW | sizglgg_,nmim; | AW . (10.35)

Since the sample paths of the Wiener process are almost surely continuous on [0, 7], we must have

lim max |AW |=0, (10.36)

n—o00 =0,1

[

almost surely, as the partitions of [0, 7] become successively refined. as n increases.
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On the other hand, by lemma 10.4.3

—_

n—

=

(APW)* 3T >0,
0

as n — 0o, which implies (this is a general fact about the relationship between almost sure and mean square

convergence) that there is a subsequence ny such that

nkfl
> (AW T, (10.37)
i=0
as k — oo.
Next, from (10.35)
Yo [ATW P

_ < AW .
maXi:Ql,...,n | A;lW |_ ; | ' |

But then (10.36) and (10.37) entail

n—1

Jim | z; | ATW |— oo,
=

as the subsequences of partitions of [0, 7] become more and more refined as k increases. "

A Motivational Argument Concerning Quadratic Variation

We make a summary and an interpretation of the preceding. Take the partition of thetime axis used in lemma
10.4.3 and set

|
—

Sy =3 (AMW)?,

i

Il
o

The important fact that emerged above is that the variance of S,, is negligible compared to its expectation, or

E[S,] =T,
while the proof of lemma 10.4.3 shows that
272
Var [S,] = —.
n

Thus, the expectation of S, is constant, whereas the variance of S,, converges to zero, as n grows to infinity.

Hence S,, must converge to a non-random quantity. We write this as

/Ot[dW]Qt

[dW]? = dt. (10.38)

or

The formula (10.38) is a starting point for the intuitive handling of the differentials behind Ito’s formula in
stochastic calculus, see [13, pp. 50—55], [62, pp. 32—36], [68, chapter 5] and [29, 70].
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10.4.3 The Wiener Process is a Markov Process

Next we show that the Wiener process has the Markov property.

Theorem 10.4.5 For any t1 < ... <t,_1 <t, and any =1,...,Tn_1,%n
P (W(tn) < In | W(tl) = T1,.- .,W(ﬁn_l) = acn_l)
=P W(tyn) <ap | W(tn-1) = xn_1) .

Proof
P (W(tn) S In | W(tl) = T1y-- .,W(tnfl) = ZL'n,l)

_ W) W (b 1), W (E0) (zlv"'vxnflvv)dv

—00 fW(tl),...,W(tn,l) ($17---7$n71)

and we use (10.6) to get

THE WIENER PROCESS

(10.39)

dv

/I" p(ti,z1,0)p(te — t1, 22, 21) - - p(tn — tn—1,0, Tpn_1)

—oo P(t1,21,0)p(t2 — t1, 22, 21) -+ p(tn—1 — tn—2,Tn_1,Tn_2)

= / p(tn - tn,17’07$n,1)d’0 =P (W(tn) S Tn | W(tnfl) = $n,1) .

— 00

The Wiener process is a Gaussian Markov process and its autocorrelation function is Rw(t,s) = min(t, s).

Then, if ¢y < s < t we check (9.37) by

Rw(t,s)Rw(s,to) min(t,s)min(s,t9) s-to
= , = = to,
Rw (s, s) min(s, s) s

which equals Ry (¢,t0) = min(¢,tg) = to, as it should.

10.5 The Wiener Integral

This section draws mainly upon [26, chapter 3.4].

10.5.1 Definition

Definition 10.5.1 Let {W(¢)|t > 0} be a Wiener process and f(¢) be a function such that f; f2(t)dt < oo,

where 0 < a < b < +00. The mean square integral with respect to the Wiener process or the Wiener integral

t t) 1s defined as the mean square limit
[? F(t)dW (1) is defined as th quare limi

n

b
> ) W(e) - Wit S [ raw o),

i=1

where a = tg <t; < ...<tn_1 <tp, =band max;[t; —t;—1]| = 0 as n — oo.

(10.40)

In general, we know that the sample paths of the Wiener process have unbounded total variation, but have by

lemma 10.4.3 finite quadratic variation. Hence we must define f; f(t)dW (t) using mean square convergence,

which means that we are looking at all sample paths simultaneously.
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The reader should note the similarities and differences between the left hand side of (10.40) and the
the discrete stochastic integral in (3.56) above.

In physics the Wiener integral is a name for a different mathematical concept, namely that of a path integral.
By this we refer to an integral of a functional of the Wiener process with respect to the Wiener measure, which

is a probability measure on the set of continuous functions over [0, 7], see [78, chapter 6].

Remark 10.5.1 As pointed out in [105, p. 88], Wiener himself introduced the integral later named after him
by the formula of integration by parts

b b
/ f(t)dW(t):[f(t)W(t)]Z*/ W (t)df (), (10.41)

where the function f(t) is assumed have bounded total variation in the sense of definition 10.4.1. As the sample
functions of a Wiener process are continuous, the right hand side is well-defined, inasmuch the integral is a
Stieltjes integral [69, chapter 6.8].

Example 10.5.1 We consider

g (o (2) - (52). e

That is, we have t; = % in definition, see eq. (10.40), and 0 =tp < t1 < ... < tp—1 < t, = 1. We expect this to

converge to

1
Xn3>/ e AW (u),
0

as n — oo. This implies convergence in distribution. We shall find the limiting distribution.

We set for convenience of writing for all 1 <i <mn

s () v (52)
K—eN(O,%)

for all 1 <7 < n. Thus, as a linear combination of normal random variables,

n
)izl
X, = g e n Y;
i=1

is a normal random variable. Its expectation and variance are as follows.

and then

and since the increments (i.e., here Y;) of a Wiener process are independent for non overlapping intervals

n n

i—1 1 i—1
Var (X,,) = z:e_2A w Var (Y;) = — Ze_QAT.

: n-
=1 1=1
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Therefore the characteristic function of X, is

2 oyl
t2 1 n 22X —

ox, (t) =e Tn =1
We can check the convergence in distribution by means of this without invoking Riemann sums. In fact we have

-1
1 Z" opizt 1 "Z Copi 11—
—_ e n = — e n — ——Q1 1
n n n 1 _ G_QAW

i=1 =0

We write this as
11— 1-—e2

- 1 1
nl—e 2 n 1—e 2w
1

n

Then we set f(t) = e~2* and recognize the difference ratio

e (@A) -10) |

1 1 — _f (0) = 2],
n n
as n — oo. Hence .
. 1 _oNk—1 1-— 6_2)\
nh_}n;OEZe n =
=1
We note that fol e MUy, = 1_§;m. Thus we have shown that

1 1
X, Y / e AW (u) € N (0,/ eQA“du) ,
0 0

as n — oQ.

10.5.2 Properties

Since (10.40) defines the Wiener integral in terms of convergence in mean square, we can easily adapt the

techniques in section 9.2 to this case and derive some of the basic properties of the Wiener integral defined in
(10.40).

1. The following property is readily verified:
b b b
[ @+ g@yawie = [ smawo+ [ owawe.

if f: f2(t)dt < oo and f: g2 (t)dt < .

E

/bf(t)dW(t)] —0. (10.42)

This follows in the same way as the proof of the analogous statement in theorem 9.2.1, since

n

E Y fltioa) (W(t) - W(til))] = Z fti-)E[(W(t:) — W(ti-1))] =0,

i=1

by (10.22) of lemma 10.2.4 above.
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Var

b b
/ f(t)dW(t)] = / f2(t)at (10.43)

This follows again as in the proof of the analogous statement in theorem 9.2.1, since by theorem 10.2.6

the increments of the Wiener process over non-overlapping intervals are independent,

Var

D i) (W) — W(ti—l))] =Y (i) Var [(W(t:) = W (tio1))],

i=1 i=1

—_ Z fQ(tifl)(ti - tifl)v

by (10.22) of lemma 10.2.4 above. Then

n b
ZfQ(ti—l)(ti—ti—l)%/ fA(t)dt,

asa=ty <ty <...<tp_1 <ty,=>band max;|t; —t;—1] = 0 as n — oo.

4. Evidently Y% | f(t;—1) (W (t;) — W(t;—1)) is a Gaussian random variable. By properties of convergence
in mean square of sequences of Gaussian random variables, see theorem 7.4.2 in section 7.4.3, and by
(10.42) and (10.43) we obtain

b b
/ f®)dw () e N (o/ f2(t)dt>. (10.44)
5. If [ f2(t)dt < oo and [ g2(t)dt < oo,

E

b b b
/ f(t)dW(t)/ g(t)dW(t)] = / F(t)g(t)dt. (10.45)
Here we see a case of the heuristics in (10.38) in operation, too. To prove this, we fix a =ty <t; < ... <
tn—1 < t, = b and start with the approximating sums, or,
E Y f(tio) (W) = W(tima)) - D gltj1) (W(t;) = W(tj-1)
i=1 j=1

= Z Z f@im1)g(ti—1)E[(W(ti) — W(ti-1)) - (W(t;) = W(tj-1))]

and as by theorem 10.2.6 the increments of the Wiener process over non-overlapping intervals are inde-

pendent,
n b
=Yttt —tiea) [ 50 g(0
i=1 a
asa =ty <ty <...<tp_1 <ty,=>band max;|t; —t;—1] = 0 as n — oo.

6. By the preceding we can define a new process with variables Y (¢) by

Y(t) = /0 h(s)dW (s).
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Then (10.45) can be manipulated to deliver
min(t,s)
EIY() Y(s) = / B2 (u)du. (10.46)
0
To establish this claim, let Tjg4(u) =1, if 0 < u <t and Ijg4(u) = 0 otherwise, and

fu) =Tpn(u) - hu),  g(u) =T g (u) - h(w), (10.47)

take a = 0,b = 400, and then

YO = [ swdv, v = [ gwarw.
0 0
By insertion we see that (10.46) is a special case of (10.45).

Example 10.5.2 The Wiener integral satisfies

W(t) < /Ot AW (s). (10.48)

This is natural, but cannot be argued by differentiation. To establish (10.48) we write using (10.47)

v [awe) = [ 1peave)

0

Clearly {Y'(t) | t > 0} is a Gaussian process. Then (10.46) entails
min(t,s)
E[Y(t)-Y(s)] = / du = min(t, s), (10.49)
0

which shows that {fot dW (s) | t > 0} is a Wiener process, and (10.48) is verified (as an equality in distribution).

Example 10.5.3 By (10.48) and the first property of the Wiener integral we can write for any 7 > 0

d t+71

W(t+7)— W) < / AW (s). (10.50)
t
We note in this regard, e.g., that by (10.43)
t+7 t+7
Var [W(t + 1) — W(t)] = Var [/ dW(s)] = / ds =T,
t t

as it should, c.f., (10.20). The integral in (10.50) is sometimes called a gliding window smoother, see [97].

10.5.3 The Wiener Integral is a Scrambled Wiener Process
Suppose now that [ f?(t)dt < oo and

Y(t) = / F(w)dW (u).
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We assume for the sake of simplicity that f(u) > 0 for all u. We let

7(t) = inf {s | /OS 2 (u)du = t} :

or, 7(t) is the time, when [ f*(u)du as an increasing function of s first reaches the level ¢ > 0. Evidently

t — 7(t) is one-to-one, or, invertible, and the inverse is

71(8)==J€SJQ(U)dU-

Let us look at Y (7(t)). Then from (10.43)

7(t)
FE [Y2(T(t))} = / fQ(u)du =71 (r(t)) =t.

a

Hence, if we define

then {V(t) | t > 0} is a Wiener process. Furthermore,

4

Y(t)=V (r7'@t) =W (1)), (10.51)

which shows that a Wiener integral is a Wiener process on a distorted or scrambled time scale.

10.5.4 White Noise

In the engineering literature, see, e.g., [8, 32, 56, 71, 80, 85, 97] as well as in physics [58, p.255], [62, pp. 66—69],

one encounters the 'random process’ with variables I/IO/ such that
E|W @t W (s)} —5(t — s), (10.52)

where §(t — s) is the Dirac delta, see [96, p. 354]. As stated in [96, loc.cit], §(¢ — s) is not a function in
the ordinary sense, but has to be regarded as a distribution, not in the sense of probability theory, but in the
sense of the theory of generalized functions (which is a class of functionals on the set of infinitely differentiable
functions with support in a bounded set).

Let us, as a piece of formal treatment, c.f., (10.48), set

W(t) = /Ot W (u)du. (10.53)

Then we get by a formal manipulation with the rules for integrals above that

E[W®HW(s)] = /Ot /OE [m”/ (u) W (v)} dudv

_ /Ot /O 5(u — v)dudy,

The ’delta function’ 6(u — v) is zero if u # v and acts (inside an integral) according to

[%f@ﬁw—vwv=fWX

Then with f(v) = Ijg 4 (v) we get

/ O(u —v)dv = / I, (v)d(u — v)dv = { 0 ifu>s
0 —00

1 ifu<s.
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t ps min(t,s)
/ / 0(u — v)dudv = / dv = min(t, s).
o Jo 0

Hence, if we think of the process with variables V([)/ (u) as being Gaussian, then the process introduced by the
variables W (t) in (10.53) is like a Wiener process | Of course, by (10.53) one should get then

Thus

d o

which is not possible, as the Wiener process has almost surely non-differentiable sample paths. Hence, the white
noise makes little, or perhaps, should make no sense. One can, nevertheless, introduce linear time invariant

filters, c.f. the exercises in section 9.7.6, with white noise as input, or
Yt) = / Glt — 5) T (s)ds,

and compute the autocovariances and spectral densities of the output process in a very convenient way. Thus,
despite of the fact that the white noise does not exist as a stochastic process in our sense, it can be formally
manipulated to yield useful results, at least as long as one does not try to do any non-linear operations. A

consequence of (10.52) is that the spectral density of the white noise is a constant for all frequencies,

Svf/(f) =1, —oco< f<oo. (10.54)

(To ’check’ this, insert Sv?/(f) =1 in the right hand side of (9.25).) In engineering, see, e.g., [77, 105], the white
noise is thought of as an approximation of a weakly stationary process that has a power spectral density which
is constant over very wide band of frequencies and then equals to, or decreases rapidly to, zero. An instance of
this argument will be demonstrated later in section 11.4 on thermal noise.

10.6 Martingales and the Wiener Process

This section on martingales in continuous time is, for one more time, just a scratch on the surface of an extensive
theory, [29], [70, chapter 7], [67, chapter 7]. We extend here the concepts in section 3.8.5. We shall first need

to define the notion of a filtration.

Definition 10.6.1 Let F be a sigma field of subsets of 2. Let T be an index set, so that for every t € T', F;
is a sigma field C F and that
Fs CFr s<t. (10.55)

Then we call the family of sigma fields (F;),., a filtration.

This leads immediately to the next definition, that of a martingale.

Definition 10.6.2 Let X = {X(¢) | t € T'} is a stochastic process on (€2, 7, P). Then we call X a martingale
with respect to the filtration (F}),.,, if

1. E[| X(t) || <ooforallteT.
2. X (t) is measurable with respect to F; for each t € T.

3. For s <t the martingale property holds:

E[X(t) | F)] = X(s). (10.56)
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Let now W = {W(¢) | 0 < ¢} be a Wiener process. We define the filtration

FV 2 the sigma field generated by W(s) for 0 < s <.

We write this as

FV =0 (W(s);0<s<t).

We should read this according to the relevant definition 1.5.3 in chapter 1. We take any number of indices
t1,...,tn, all t; < s. The sigma field ft‘?{---7tn,7s generated by the random variables W (t;) i = 1,...,n, is defined
to be the smallest o field containing all events of the form {w : W (t;)(w) € A} € F, A € B, where B is the Borel
o field over R.

By independent increments, theorem 10.2.6, and lemma 10.2.4, eq. (10.22), we get that
E[W(t)=W(s) | FY . =E[W({)—W(s)] =0. (10.57)
Clearly sigma fields like fz}i\,’...,tn,s generate F YV, so that ]-'t‘ﬁ’___’tms C FW entails by double expectation
E[W@) =W | FY] = E[E[WE) -W(s) | FV] RN ..l
and by the tower property and (10.57)
=E[W(t) - W(s) | FY 4.6 =0,

s EWE) | F¥] = E[W(s) | FV],

but since W (s) is by construction F¥ -measurable, the rule of taking out what is known gives the martingale
property
E[W@®) | FN] =W(s). (10.58)

Since E [| W (t) |] < oo, we have the following theorem.

Theorem 10.6.1 W = {W(t) | t > 0} is a Wiener process and the sigma field is FWV = o (W (s);0 < s < 1),

then W is a martingale with respect to the filtration (f,fw ) 50"

u
This has to be regarded as a very significant finding, because there is a host of inequalities and convergence
theorems e.t.c., that hold for martingales in general, and thus for the Wiener process. In addition, the martingale
property is of crucial importance for stochastic calculus.
While we are at it, we may note the following re-statement of the Markov property (10.39) in theorem 10.4.5.
Theorem 10.6.2 W is a Wiener process and the filtration is (FWV) where FW = o (W(s);0 < s <1t).
Then, if s < t and y € R, it holds almost surely that

t>0°

PWt)<y| FY)=PW(t) <y|W(s)). (10.59)
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10.7 Exercises

10.7.1 Random Walks

Random walk is a mathematical statement about a trajectory of an object that takes successive random steps.
Random walk is one of the most important and most studied topics in probability theory. The exercises on
random walks in this section are adapted from [10, 48] and [78, chapter 9.1]. We start with the first properities
of the (unrestricted) random walk, and then continue to find the connection to the Wiener process, whereby we
can interpret a random walk as the path traced by a molecule as it travels in a liquid or a gas and collides with
other particles [10, 78].

1. Let {X;}22, be LL.D. random variables with two values so that X; = +1 with probability p and X; = —1
with probability ¢ =1 — p. We let

S,=X1+Xo+...+X,,5% =0 (10.60)

The sequence of random variables {S,,}72, is called a random walk. We can visualize the random walk
as a particle jumping on a lattice of sites j = 0,41, 42, ... starting at time zero in the site 0. At any n
the random walk currently at j jumps to the right to the site j + 1 with probability p or to the left to
the site j — 1 with probability ¢. A random walk is thus constructed also a time- and space-homogeneous

finite Markov chain, see [95, lecture 6] for a treatment from this point of view.
(a) Show that

P(Sn:j):<m>p2q2. (10.61)
2

Aid: We hint at a combinatorial argument. Consider the random variable R(n) defined by
R(n) 4 the number of steps to the right in n steps.
Then it clearly (c.f., figure ??) holds that
Sp = R(n) — (n = R(n)),

and hence, if S,, = j, then R(n) = %l Next, find the number of paths of the random walk such

that R(n) = "—‘2” and S, = j. Find the probability o