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Chapter 1

Probability Spaces and Random

Variables

1.1 Introduction

In the first courses on probability given at most universities of technology, see, e.g., [12, 16, 101] for a few

excellent items in this educational genre, as well as in courses involving probability and random processes in

physics and statistical physics, see [17, 58, 62, 73, 78] or reliability of structures [32, 77] or civil engineering

[4], one seemingly considers all subsets, called events, of a space of outcomes. Then one treats a (in practice,

finitely additive) probability as a positive total mass = 1 distributed on these events. When the goal is to train

students in the use of explicit probability distributions and in statistical modelling for engineering, physics and

economics problems, the approach is necessary and has definite didactic advantages, and need not be questioned

(and the indicted authors are, of course, well aware of the simplifications imposed).

There is, however, a need to introduce the language1 and viewpoint of rigorous mathematical analysis, as

argued in [43]. The precise (and abstract) mathematical theory requires a more restricted set of events than

all the subsets. This leads us to introduce algebras of sets and sigma algebras of sets. The material below has

approximately the same level of mathematical completeness as [20, 43, 44, 95] and [103, chapter1].

1.2 Terminology and Notations in Elementary Set Theory

We collect first a list of bullet points recapitulating some definitions, notations and rules of elementary (or

näıve) set theory. The bulk of these are assumed to be familiar for the student, due to previous exposure via,

e.g., [16] or any other equivalent first course in probability. Therefore the presentation is kept at a concise level,

e.g., many of the rules of set theory stated below can be made evident by use of Venn diagrams, but these

illustrations are not provided in this summary.

We start by postulating an abstract space consisting of elements, denoted here by ω. The elements are the

smallest quantities we deal with. The abstract space is also called the universal set and (in probability calculus)

1On the other hand, one widely held opinion is expressed in [62, p.179] to the effect that ’the language favored by mathematicians

. . . adds little that is of value to (physicists)’. That notwithstanding, in [62, chapter 10] the merits of surveying ’the concepts and

jargon of modern probability theory’ (that is, what corresponds to chapters 1 and 2 in these notes) are recognized. The rationale

is that a natural scientist or an engineer will learn how to interpret the basic points of a mathematical discourse in a preferred

intuitive idiom.

11



12 CHAPTER 1. PROBABILITY SPACES AND RANDOM VARIABLES

denoted by Ω. Later on we shall refer to Ω as the outcome space or sample space and ω as an elementary

outcome.

Example 1.2.1 The examples of Ω first encountered in courses of probability theory are simple. The outcomes

ω of a toss of coin are heads and tails, and we write the universal set as

Ω = { heads , tails }.

Let now Ω be an abstract universal set and A, B e.t.c. denote sets, collections of elements in Ω.

• ω ∈ A means that an element ω belongs to a set A. ω /∈ A means that ω does not belong to a set A.

• ∅ denotes the empty set, which has no elements.

• Ac is the complement set of A. It consists of all elements ω that do not belong to A. It follows that

(Ac)c = A.

Since Ω is the universal set, we take

Ωc = ∅.

• {ω ∈ A | S(ω)} stands for the elements ω belonging to A that satisfy a property S.

• A ⊆ B denotes the inclusion of sets. It means that A is a subset of B. This means that if ω ∈ A, then

ω ∈ B. In addition, we have for any set A ⊆ Ω.

Note that A ⊆ B and B ⊆ A if and only if A = B.

We use also on occasion the notation of strict inclusion A ⊂ B, which means that A 6= B.

• If A ⊆ B, then Bc ⊆ Ac.

• P(A) denotes the family of all subsets of A and is known as the power set of A.

• A ∪ B is the union of the sets A and B. The union consists of all elements ω such that ω ∈ A or ω ∈ B

or both. We have thus

A ∪ Ω = Ω

A ∪ ∅ = A

A ∪ Ac = Ω

A ∪B = B ∪A

and

A ∪ A = A.

For a sequence of sets A1, A2, . . . the union

∪∞
i=1Ai = A1 ∪ A2 ∪ . . .

consists of the elements ω such that there is at least one Ai such that ω ∈ Ai.
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• A∩B is the intersection of the sets A and B. The intersection consists of all elements ω such that ω ∈ A

and ω ∈ B. It is seen that

A ∩Ω = A

A ∩ ∅ = ∅

A ∩ Ac = ∅

A ∩B = B ∩A

and

A ∩ A = A.

For a sequence of sets A1, A2, . . . the intersection

∩∞
i=1Ai = A1 ∩ A2 ∩ . . .

consists of the elements ω such that ω ∈ Ai for all i.

• The sets A and B are said to be disjoint if A ∩B = ∅. The sets A1, A2, . . . , An are pairwise disjoint if all

pairs Ai, Aj are disjoint for i 6= j.

• A \ B is the set difference of the sets A and B. It is the complement of B in A, and thus contains all

elements in A that are not in B, or, ω ∈ A and ω /∈ B. Therefore we get

A \B = A ∩Bc.

• De Morgan’s Rules

The following rules of computation are frequently useful in probability calculus and are easy to memorize.

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

These two formulas are known as De Morgan’s Rules.

One can prove the countably infinite versions of De Morgan’s Rules, too.

(∪∞
i=1Ai)

c = ∩∞
i=1A

c
i

and

(∩∞
i=1Ai)

c
= ∪∞

i=1A
c
i .

• It is also readily proved that we have the distributive rules

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

and

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .
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• A× B is the (Cartesian) product of the sets A and B. It consists of all pairs (ω1, ω2) such that ω1 ∈ A

and ω2 ∈ B.

The product A1 ×A2 × . . . × An consists of ordered n-tuples (ω1, ω2, . . . , ωn) such that ωi ∈ Ai for each

i = 1, . . . , n.

If Ai = A for all i, then we write

An = A×A× . . .×A

as a product of n copies of A.

• Intervals

If a and b are real numbers, a < b, then

(a, b), [a, b), (a, b], [a, b]

are intervals with endpoints a and b. These are subsets of the real line R, here taken as a universal set

with elements denoted by x (=a real number) such that (a, b) = {x ∈ R | a < x < b}, [a, b) = {x ∈ R |
a ≤ x < b}, (a, b] = {x ∈ R | a < x ≤ b} and [a, b] = {x ∈ R | a ≤ x ≤ b}. We take [a, a) = ∅. For

(a, b) and (a, b] we can let a = −∞ and for [a, b) and (a, b) we can allow b = +∞. Hence we can write

(−∞,∞) = {x ∈ R | −∞ < x <∞}. The set operations are, e.g., (a, b)c= (−∞, a] ∪ [b,∞).

1.3 Algebras of Sets

Definition 1.3.1 (Algebra) Let Ω denote a universal set. A collection A of subsets of Ω is called an algebra,

or field if

1. Ω ∈ A

2. If A ∈ A, then Ac ∈ A, where Ac denotes the complement of A.

3. If A ∈ A and B ∈ A, then A ∪B ∈ A.

Condition 1. above is known as non-emptiness, condition 2. above is known as closure under complement,

and condition 3. above is known as closure under union. Note that if A ∈ A and B ∈ A, then there is closure

under intersection, A ∩B ∈ A, too. This follows since Ac, Bc ∈ A, hence Ac ∪Bc ∈ A and A ∩B = (Ac ∪Bc)c

by De Morgan’s rule. Since ∅ = Ωc, ∅ ∈ A.

Example 1.3.1 A = {∅,Ω} is an algebra.

Example 1.3.2 If Ω is a finite set, then the power set P(Ω) is an algebra.

Definition 1.3.2 (Sigma - Algebra a.k.a. Sigma- Field a.k.a σ -field ) A collection A of subsets of Ω is

called a σ - algebra/field if it satisfies

1. Ω ∈ A
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2. If A ∈ A, then Ac ∈ A.

3. If An ∈ A for each n in a countable collection (An)
∞
n=1, then ∪∞

n=1An ∈ A.

Here the condition 3. is referred to as closure under countable union. If an algebra is finite, then it is also

a Sigma - Algebra. A σ - algebra A is usually constructed by first choosing an algebra, say C, of subsets of

Ω that generates A. By this we mean that we augment C by all possible countable unions of sets in C, their
complements, all possible countable unions of these complements ad infinitum. We shall describe this procedure

in some more detail in the sequel, when Ω = the real line, denoted by R.

Example 1.3.3 Let Ω = {heads, tails}. Then

F = {{heads}, {tails}, {heads, tails}, ∅}

is a sigma-field, and contains also all possible subsets of Ω.

Example 1.3.4 Let Ω = {ω1, ω2, ω3, ω4}. Then

Fmin = {∅, {ω1, ω2, ω3, ω4}},

F1 = {∅, {ω1, ω2}, {ω3, ω4}, {ω1, ω2, ω3, ω4}}

and

Fmax = {∅, {ω1}, {ω2}, {ω3}, {ω4},

{ω1, ω2}, {ω1, ω3}, {ω1, ω4}, {ω2, ω3}, {ω2, ω4}, {ω3, ω4},

{ω1, ω2, ω3}, {ω1, ω2, ω4}, {ω1, ω3, ω4}, {ω2, ω3, ω4},Ω}

are sigma-fields. Clearly

Fmin ⊂ F1 ⊂ Fmax,

in the sense that, e.g., any set found in F1 is found also in Fmax.

Example 1.3.5 Let Ω = {ω1, ω2, ω3}. Then

{∅, {ω1}, {ω2}, {ω3},Ω}

is NOT a sigma-field.

Let An ∈ A for each n in a countable collection (An)
∞
n=1. Suppose that for all n ≥ 1

An ⊂ An+1

and we say that (An)
∞
n=1 is increasing. Then we can define

lim
n→∞

An
def
= ∪∞

n=1An. (1.1)
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Then limn→∞An ∈ A. In words, ω is in the limit of a increasing sequence of events, if ω belongs to some An

and thereby to infinitely many sets in the collection.

Suppose that for all n ≥ 1

An+1 ⊂ An

and we say that (An)
∞
n=1 is decreasing. Then we can define

lim
n→∞

An
def
= ∩∞

n=1An, (1.2)

and limn→∞An ∈ A. In other words, ω is in the limit of a decreasing sequence of events, if ω belongs to all An.

Example 1.3.6 Let Ω = R and suppose that we have a sigma field A such that all intervals of the form
[
1, 2− 1

n

)
∈ A.

Then the sequence of events is increasing
[
1, 2− 1

n

)
⊂
[
1, 2− 1

n+ 1

)

and [1, 2) ∈ A, since

[1, 2) = lim
n→∞

[
1, 2− 1

n

)
.

Note that a σ algebra is clearly an algebra, but the converse is not always true, as the following example shows:

Example 1.3.7 Let Ω = R and let A denote the collection of subsets of the form:

∪k
i=1(ai, bi] −∞ ≤ ai < bi < +∞

for some 0 ≤ k < +∞.

This is clearly an algebra, but it is not a sigma algebra. Consider the collection

An =

(
0, 2− 1

n

]
n ≥ 1.

Then ∪∞
n=1An = (0, 2), which is not in A.

Example 1.3.8 Suppose that we have a sigma field A such that all intervals of the form

(a, b) ∈ A,

where a < b are real numbers. Then
(
a− 1

n+ 1
, a+

1

n+ 1

)
⊂
(
a− 1

n
, a+

1

n

)

and thus

{a} = lim
n→∞

(
a− 1

n
, a+

1

n

)
,

which shows that the singleton set {a} is an event, i.e., {a} ∈ A.
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Theorem 1.3.9 Given any collection C of subsets of a set Ω, there is a smallest algebra A containing C. That
is, there is an algebra A containing C such that if B is any algebra containing C then B contains A.

Proof Let F denote the family of all algebras of subsets of Ω which contain C. The axioms of set theory are

required to justify the existence of this family; it is a subset of P(P(Ω)) where P denotes taking the power set.

Let A = ∩{B|B ∈ F}. Then, for any A ∈ A and B ∈ A, A ∪ B ∈ B for all B ∈ F and hence A ∪ B ∈ A.

Similarly, if A ∈ A, then Ac ∈ A. It follows that A is an algebra and that C ⊆ A. Furthermore, A ⊆ B for any

algebra B containing C.

Lemma 1.3.10 Let C denote an indexing set. If (Ac)c∈C is a collection of σ algebras, then A = ∩cAc (that is

the collection of sets that are in Ac for all c ∈ C) is a σ algebra.

Proof This follows almost directly from the definition.

Corollary 1.3.11 Given a collection of sets C, there exists a smallest σ algebra B containing each set in C.
That is, there exists a sigma algebra B such that if A is any other sigma algebra containing each set in C, then
B ⊂ A.

Proof The proof follows in exactly the same way as the proof of the existence of a smallest algebra containing a

given collection of sets. The set of all possible sigma algebras containing S exists by the power set axiom2(applied

twice). Take the intersection. This exists by De Morgan’s laws. It is easy to check the hypotheses to see that

the resulting set is a σ-algebra; if A is in all the σ -algebras, then so is Ac. If (Aj)
∞
j=1 are in all the σ algebras,

then so is ∪∞
j=1Aj . The resulting collection is a σ algebra and is contained in any other σ algebra containing

each set in C. .

Referring to corollary 1.3.11 we say again that B is generated by C. In addition, we launch the notation

F ⊆ G,

which says that any set in the sigma field F lies also in the sigma field G.

Example 1.3.12 Let Ω = {ω1, ω2, ω3} and

F = {∅, {ω2, ω3}, {ω1}, {ω1, ω2, ω3}}

is a sigma-field generated by the collection of sets {{ω1}}, or, generated by the set {ω1},

Example 1.3.13 Let A ⊂ Ω. Then

F = {Ω, A,Ac, ∅}

is the sigma-field generated by the collection of sets {{A}} or, by the set A,

2The power set axiom is stated as follows: Given any set A, there is a set P(A) such that, given any set B, B is a member

of P(A) if and only if B is a subset of A. Or, every set has a power set. Here one is stepping outside the realm of näıve set theory

and considering axiomatic set theory with the Zermelo-Fraenkel axioms.
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Definition 1.3.3 (The Borel Sigma Algebra) The Borel σ algebra B over R is generated by intervals of

the form (a, b).

Thereby the Borel σ algebra B contains all sets of the form (−n, b), n is a positive integer, and

(−n, b) ⊂ (−(n+ 1), b)

and thus

(−∞, b) = lim
n→∞

(−n, b)

and since all sets (a, n) are in B,
(a,∞) = lim

n→∞
(a, n)

is in B. In addition

{a} = lim
n→∞

(
a− 1

n
, a+

1

n

)
,

and we see that all singleton sets belong to B. Furthermore,

(−∞, a] = (a,∞)c,

and thus in (−∞, a] ∈ B, since there is closure under complements. Furthermore

(a, b] = (a, b) ∪ {b} and [a, b) = (a, b) ∪ {a}

are events in the Borel σ algebra B, and

[a, b] = (a, b) ∪ {a} ∪ {b},

so that all closed intervals are in B.
In addition B must contain all finite or countable unions and complements of intervals of any of the preceding

forms. We may roughly say that B contains all subsets of the real line that can be obtained as an approximation

of countable combinations of intervals.

It is a deep and difficult mathematical result that there are in fact subsets of R that are not in the Borel

σ algebra. These ’unmeasurable’ sets have no importance in engineering practice, as they are very hard to

construct. Next we recapitulate some further basics about the Borel σ algebra.

Theorem 1.3.14 The Borel σ algebra B over R is generated by each and every of

1. open intervals of the form (a, b)

2. half-open intervals of the form [a, b)

3. half-open intervals of the form (a, b]

4. closed intervals of the form [a, b]

5. left intervals (−∞, b)

6. right intervals (a,∞)
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7. open sets of R

8. closed subsets of R

The proof is left to the diligent reader.

Definition 1.3.4 (Borel function) A function f : R 7→ R is called a Borel function, if for every set A in B,
the Borel σ algebra, we have that

f−1(A) = {x ∈ R | f(x) ∈ A}
belongs to the Borel σ algebra, i.e.,

f−1(A) ∈ B.

We call f−1(A) the inverse image of A.

Familiar examples of functions, like continuous functions, differentiable functions, sums of such functions

and products of such functions, and limits of sequences of Borel functions are all Borel functions. It is difficult

to construct a function that would not be a Borel function.

1.4 Probability Space

A probability space is given by a triple (Ω,F ,P), where Ω is a set of ‘outcomes’, F is a set of subsets of Ω, the

set of possible events and P : F → [0, 1] is a function assigning probabilities to events. F is taken to to be a σ

algebra.

Note that the word ’space’ has many different usages in mathematics, the triumvirate above is a space in a

different sense of the word than, say, when we talk about a Euclidean space or a Hilbert space, which are spaces

with a geometric structure. A Euclidean space or a Hilbert space does, of course, serve as Ω of a probability

space in many applications.

1.4.1 Probability Measures

Intuitive instances of measures are length on the real line, area in two dimensions, volume in three dimensions,

when properly defined. The general definition of measure is

Definition 1.4.1 (Measure) A measure over a σ- algebra is a non negative set function µ : F → R+ satisfying

1. µ(A) ≥ 0 for all A ∈ F and

2. if Ai ∈ F for all Ai in the collection (Ai)
∞
i=1 of pairwise disjoint sets, then

µ(∪∞
i=1Ai) =

∞∑

i=1

µ(Ai).

This is known as countable additivity.

If µ(Ω) = 1, then µ is said to be a probability measure and we use the notation P for the generic probability

measure.
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The definition above is postulated for further mathematical developments of probability calculus.

For real world applications of probability the main problem is the choice of the sample space Ω of

events and the assignment of probability on the events.

We quote the following fundamental theorem of probability [81, ch. 1.5]. It tells that it is possible to construct

a probability measure on a sigma algebra generated by an algebra by first giving the measure on the generating

algebra.

Theorem 1.4.1 Let A be a set algebra and let σ (A) be the (smallest) sigma algebra generated by A. If P is

a probability measure defined on A, then there exists one and only one probability measure P̃ defined on σ (A)

such that if A ∈ A, then P̃(A) = P(A).

We shall next find a few direct consequences of the axiomatic definition of a probability measure P.

Theorem 1.4.2 For any probability measure P we have

P(∅) = 0.

Proof Consider Ω = Ω ∪ (∪∞
i=1Ai), where Ai = ∅ for i = 1, 2, . . . ,. Then Ai ∩ Aj = ∅ and Ω ∩ Aj = ∅, i.e., the

sets in the union Ω ∪ (∪∞
i=1Ai) are disjoint. We set a = P(∅). Then countable additivity yields

1 = P(Ω) = P (Ω ∪ (∪∞
i=1Ai))

= P(Ω) +

∞∑

i=1

P(Ai) = 1 +

∞∑

i=1

P(Ai)

= 1 + a+ a+ a+ . . . ,

which is possible if and only if a = 0.

Theorem 1.4.3 (Finite Additivity) Any countably additive probability measure is finitely additive, i.e., for

all Ai in the collection (Ai)
n
i=1 of pairwise disjoint sets

P(∪n
i=1Ai) =

n∑

i=1

P(Ai).

Proof Take Ai = ∅ for i = n + 1, n + 2, . . . ,. Then Ai ∩ ∅ = ∅ and ∪n
i=1Ai = ∪∞

i=1Ai. Thus, by countable

additivity,

P(∪n
i=1Ai) = P(∪∞

i=1Ai) =
∞∑

i=1

P(Ai)

=

n∑

i=1

P(Ai) +P(∅) +P(∅) + . . .

=

n∑

i=1

P(Ai)

by virtue of Theorem 1.4.2 above.

Theorem 1.4.4 For any A ∈ F
P(Ac) = 1−P(A).
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Proof Ω = A ∪ Ac and A ∩Ac = ∅. Then finite additivity of Theorem 1.4.3 gives

1 = P(Ω) = P(A ∪Ac) = P(A) +P(Ac).

Theorem 1.4.5 (Monotonicity) For any A ∈ F and B ∈ F such that A ⊆ B, we have

P(A) ≤ P(B).

Proof B = A ∪ (B ∩ Ac). Then A ∩ (B ∩ Ac) = ∅, and finite additivity gives

P(B) = P(A ∪ (B ∩ Ac)) = P(A) +P(B ∩Ac) ≥ P(A),

as P is a non negative set function.

The identity in the proof above says also the following. If A ∈ F and B ∈ F and A ⊆ B, then we have

P(B \A) = P(B) −P(A).

In the same manner we can prove the next theorem.

Theorem 1.4.6 For any A ∈ F and B ∈ F we have

P(A ∪B) = P(A) +P(B) −P(A ∩B).

Example 1.4.7 (Probability measure on a countable outcome space) We consider the special case Ω =

{ω = (ωi)
n
i=1 | ωi ∈ {0, 1}}. In words, the elementary outcomes are finite sequences of digital bits. Ω is count-

able. The sigma field Fo is generated by the collection of sets Ak (a.k.a. cylinders) of the form

Ak = {ω = (ωi)
k
i=1 | ω1 = xl1 , ω2 = xl2 , . . . , ωn = xlk}

for any integer k ≤ n and arbitrary string of bits, xl1xl2 . . . xlk . We assign the weight p(ω) ≥ 0 to every

elementary outcome ω and require that
∑

ω p(ω) = 1. Then the probability of any set A in Fo is defined by

P(A)
def
=
∑

ω∈A

p(ω). (1.3)

It can be shown (an exercise to this section) that P is a countably additive probability measure, and therefore

(Ω,Fo,P) is a probability space. The measure P can be extended to the σ-field of measurable subsets F of the

uncountable {(ωi)
∞
i=1 | ωi ∈ {0, 1}}.

1.4.2 Continuity from below and Continuity from above

A probability measure has furthermore the following properties:

1. subadditivity If A ⊂ ∪iAi then P(A) ≤∑iP(Ai)

2. continuity from below If A1 ⊂ A2 ⊂ . . . and A = ∪iAi, then P(A) = limi→+∞ P(Ai).
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3. continuity from above If A1 ⊃ A2 ⊃ . . . and A = ∩iAi then P(A) = limi→+∞ P(Ai).

The proofs of the continuity properties are given below. One needs to recall (1.1) and (1.2).

Theorem 1.4.8 If Bn ↑ ∪∞
k=1Bk, then P(B) = limn→∞ P (Bn).

Proof: We use the notation for ’set difference’,

A \B = A ∩Bc,

and we can write ∪∞
k=1Bk = ∪∞

k=2(Bk \Bk−1) ∪B1, since Bk are increasing.

P(B) = P (∪∞
k=1Bk) = P (∪∞

k=2(Bk \Bk−1) ∪B1)

But the sets in the decomposition are seen to be pairwise disjoint, and hence the countable additivity yields

P (∪∞
k=2(Bk \Bk−1) ∪B1) =

∞∑

k=2

P (Bk \Bk−1) +P (B1)

= lim
n→∞

n∑

k=2

P (Bk \Bk−1) +P (B1)

Now we observe that since Bk−1 ⊂ Bk, we have

P (Bk \Bk−1) = P (Bk)− P (Bk−1) .

Therefore, we get a telescoping series

n∑

k=2

P (Bk \Bk−1) +P (B1) = P (Bn)−P (Bn−1) +P (Bn−1)−P (Bn−2) + . . .+

+P (B2)−P (B1) +P (B1) = P (Bn) .

In other words we have shown that

P(B) = lim
n→∞

P (Bn) .

Theorem 1.4.9 If Bn ↓ ∩∞
k=1Bk, then P (∩∞

k=1Bk) = limn→∞ P (Bn).

Proof: We use theorem 1.4.4 in the preceding

P (∩∞
k=1Bk) = 1−P ((∩∞

k=1Bk)
c
) . (1.4)

When we apply one of De Morgan’s rules we get

(∩∞
k=1Bk)

c
= ∪∞

k=1B
c
k.

Now we observe that if Bk ⊃ Bk+1, then B
c
k ⊂ Bc

k+1, i.e., the complement events of a decreasing sequence of

events are an increasing sequence of events. Thus the theorem 1.4.8 above implies

P (∪∞
k=1B

c
k) = lim

n→∞
P (Bc

n) .
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By one of the De Morgan’s rules we have that

P ((∩∞
k=1Bk)

c
) = P (∪∞

k=1B
c
k)

= lim
n→∞

P (Bc
n) .

This we shall insert in (1.4) and get

P (∩∞
k=1Bk) = 1− lim

n→∞
P (Bc

n)

= 1− lim
n→∞

(1−P (Bn))

= 1− 1 + lim
n→∞

P (Bn) = lim
n→∞

P (Bn) .

This completes the proof.

1.4.3 Why Do We Need Sigma-Fields?

This subsection is based on [43, 44, 50] and its contents will NOT be actively examined. There are several

statements below and in the next subsection that should be verified (as exercises) but we do not expect the

student to do this piece of work, whereas these can be recommended for the seriously interested.

In broad terms, if Ω is finite or countably infinite, we can consider all subsets of Ω to be the family of

events. When Ω is uncountably infinite, as in the case of Ω = the real line, one cannot build a useful theory

without confining the allowable subsets to which one will assign probability. Roughly said, all probabilities are

obtained by integrating over sets, and some sets are too nasty to be integrated over. It is, however, difficult

to show but for such Ω there does not exist a reasonable and consistent means of assigning probabilities to all

subsets without contradiction or without violating desirable properties. The student should be aware of

the problem so that the need for specifying F is understood.

Let us consider Ω = {ω | 0 ≤ ω ≤ 1}, i.e., the outcome space is the unit interval in the real line R. Suppose

we want the set of events F to include intervals [a, b] ⊆ [0, 1] and the probability of any interval to be given by

the length of the interval:

P ([a, b]) = b− a. (1.5)

If we take a = b, we need to have the singleton sets {a} in F , and their probability is zero. If F is to be a

sigma-field, then the open interval (a, b) = ∪∞
i=1[a+

1
i , b− 1

i ] must be in F , and the probability of such an open

interval is by continuity from below (see condition 2. in section 1.4.2 above)

P ((a, b)) = lim
i→∞

P

([
a+

1

i
, b− 1

i

])
= lim

i→∞

(
b− a− 2

i

)
= b− a.

Any open subset of Ω is the union of finite or countably infinite set of open intervals, so that F should contain

all open and closed subsets of Ω. Hence F must contain any set that is the intersection of countably many open

sets, and so on.

The specification (1.5) of probability must therefore be extended from all intervals to all of F . We cannot

figure out a priori how large F will be. One might think that F should be the set of all subsets of Ω. However,

this does not work:

Suppose that we wish to define a measure µ to called length, length(A), for all subsets A of R such

that

length ([a, b]) = b− a a < b,
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and such that the measure satisfies the additional condition of translation invariance

length (A+ y) = length (A)

where A+ y = {x+ y | x ∈ A}.
This is now shown to lead to a contradiction. Take Q = the set of rational numbers, i.e., Q = {p/q |
p ∈ Z, q ∈ Z}. For any real x ∈ R let Qx = Q + x. One can show that for any x ∈ R and y ∈ R

either Qx = Qy or Qx and Qy are disjoint. One can also show that Qx ∩ [0, 1] 6= ∅ for all x ∈ R, or

in plain words, each Qx contains at least one element from [0, 1].

Let V be a set obtained by choosing exactly one element from the interval [0, 1] from each Qx. (V

is well defined, if we accept the Axiom of Choice3.)

Thus V is a subset of [0, 1]. Suppose q1, q2, . . . is an enumeration of all the rational numbers in the

interval [−1, 1], with no number appearing twice in the list. Let for i ≥ 1

Vi = V + qi.

It can be verified that all the sets Vi are disjoint and

[0, 1] ⊂ ∪∞
i=1Vi ⊂ [−1, 2].

Since Vi are translations of V , they should have the same length as V . If the length of V is defined

to be zero, so [0, 1] would also have length zero by monotonicity. If the length of V were strictly

positive, then the length of ∪∞
i=1Vi would by countable additivity be infinite, and hence the interval

[−1, 2] would have infinite length. In either way we have a contradiction.

The difficulty will be resolved by taking F to be the Borel sigma algebra, c.f. definition 1.3.3 above, and by

construction of the Lebesgue measure.

For the construction of the Lebesgue measure we refer to [36, chapter 1.] or [91, chapter 11.].

We outline a rudiment of this theory. Lebesgue measure over the real line is defined as follows: The

length of an interval [a, b], (a, b), (a, b] or [a, b) is given by b − a (c.f. the measure length above).

The outer measure of a set A is given as the infimum over open intervals (In)
∞
n=1

m∗(A) = inf
(In)∞n=1:A⊂∪nIn

∞∑

n=1

|In|,

where |In| denotes the length of the interval In. A set B is said to be measurable, with measure

λ(B) = m∗(B) if for any set A ⊂ R it holds that

m∗(A) = m∗(A ∩B) +m∗(A ∩Bc).

The Heine Borel lemma states that every covering by open sets has a finite subcovering.

One then uses the Carathéodory Extension Theorem to show that Lebesgue measure is well defined

over the Borel σ algebra .

Finally, why not be content with probability measures only on set algebras ? The answer is that a good

theory of probability needs limits of random variables and infinite sums of random variables, which require

events outside a set algebra.

3http://en.wikipedia.org/wiki/Axiom of choice
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1.4.4 P - Negligible Events and P -Almost Sure Properties

An event A ∈ F such that P(A) = 0 is called a P - negligible event, or just negligible event, if there is no

possibility of confusion.

A property that holds everywhere except possible for ω in a P -negligible set is said to hold P -almost surely

or we say that the property holds almost surely, and abridge this often to a.s.. Examples of such properties

will be in the sequel encountered under the guise of ’X ≥ 0 a.s.’ or ’convergence almost surely’, or ’continuity

of sample paths almost surely’, to mention the main ones.

Example 1.4.10 Let F to be the Borel sigma algebra, c.f. definition 1.3.3, restricted to [0, 1]. Let A =]a, b]

with 0 ≤ a ≤ b ≤ 1 and P(A) = b − a. By definition 1.3.3 we know that singleton sets {a} belong to F and

thus P({a}) = 0. Hence, e.g., the set of rational numbers in [0, 1], i.e., p
q with p and q positive integers p ≤ q,

is a countable disjoint union of measurable sets, is by countable additivity P - negligible.

1.5 Random Variables and Distribution Functions

1.5.1 Randomness?

As will become evident by scrutiny of this section, random variables of probability calculus are functions with

certain properties, and have as such nothing to do with randomness, regardless of how randomness is defined,

and regardless of whether such a definition possible at all. Randomness has been aptly described as a negative

property [53, p.20], as it is not possible to definitely prove its presence, but it is possible to prove the absence

of it.

One makes customarily the interpretation of a random variable as a real valued measurement of the outcomes

of a random phenomenon that is governed by a physical probability. One criticism of the notion of physical

probability decried as ’mind projection fallacy’ has been voiced by Ed Jaynes [65, p.500]:

. . . (statistics) has never produced any definition of the term ’random variable’ that could actually

be used in practice to decide whether some specific quantity, such as the number of beans in a can,

is or is not ’random’.

Random variables and later random processes are in a very useful manner seen as mathematical models of

physical noise. As examples an engineer might quote thermal noise (a.k.a. Nyquist-Johnson noise, produced by

the thermal motion of electrons inside an electrical conductor), quantum noise and shot noise, see [11, 33, 71, ?].

Does this provide grounds for claiming a physical countably additive probability measure? The foundational

question of how to define randomness is, certainly, not resolved by this manœuver, at any rate not, if one in a

circular manner describes the physical noise as the result of many random events happening at the microscopic

level.

Remark 1.5.1 Physical noise, in particular measurement error (mätfel), is described as follows in [52, p.13]:

. . . felens storlek och tecken (kan) inte individuellt p̊avisas n̊agon lag och de kan allts̊a inte i förväg

beräknas eller individuellt korrigeras. . . . Vanligen antas en viss relation föreligga emellan de oregel-

bundna felens storlek och deras frekvens.

As an interpretation in English, the quoted Swedish author describes random measurement errors as quantities,

whose magnitude and sign do not follow any known law and cannot be compensated for in advance as individual
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items. One assumes, however, that there is a statistical relation or regularity between the magnitudes and their

frequencies.

One foundational approach to discussing randomness is due to G. Chaitin [21]. Chaitin argues that randomness

has to do with complexity. Or, a random object cannot be compressed at all: since in randomness there is no

structure or pattern (’lag’, a known law in the Swedish quote above), you cannot give a more concise or less

complex description (by a computer program or a rule) other than the object itself. For a statistical modelling

theory with complexity as platform we refer to the lectures by J. Rissanen [86].

In the sequel we shall not pursue the foundational topics or the related critical discourses any further, but

continue by presenting probabilistic tools for modelling of noise and for modelling by means of noise.

1.5.2 Random Variables and Sigma Fields Generated by Random Variables

Definition 1.5.1 [Random Variable] A real valued random variable is a real valued function X : Ω → R

such that for every set A ∈ B, the Borel σ algebra over R,

X−1(A) = {ω : X(ω) ∈ A} ∈ F . (1.6)

The condition in (1.6) means in words that the pre-image of any A ∈ B is in F , and X is called measurable , or

a measurable function from Ω to R. We can also write

X : (Ω,F) 7→ (R,B).

Example 1.5.1 Let (Ω,F ,P) be a probability space. Take F ∈ F , and introduce the indicator function of

F , to be denoted by χF , as the real valued function defined by

χF (ω) =

{
1 if ω ∈ F

0 if ω /∈ F .
(1.7)

We show now that χF is a random variable. We take any A ∈ B and find that

χ−1
F (A) = {ω : χF (ω) ∈ A} =





∅ if 0 /∈ A, 1 /∈ A

F if 0 /∈ A, 1 ∈ A

F c if 0 ∈ A, 1 /∈ A

Ω if 0 ∈ A, 1 ∈ A.

Since F is a sigma field, we see that χ−1
F (A) ∈ F .

For the next result one needs to recall the definition of a Borel function in 1.3.4.

Theorem 1.5.2 Let f : R 7→ R be a Borel function, and X be a random variable. Then Y defined by

Y = f(X)

is a random variable.

Proof Let A be a Borel set, i.e., A ∈ B. We consider

Y −1 (A) = {ω ∈ Ω | Y (ω) ∈ A}.
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By construction we have Y (ω) = f(X(ω)), and thus

Y −1 (A) = {ω ∈ Ω | f(X(ω)) ∈ A} = {ω ∈ Ω | X(ω) ∈ f−1(A)},

where the inverse image is f−1(A) = {x ∈ R | f(x) ∈ A}. Since f is a Borel function, we have by definition

that f−1(A) ∈ B, since A ∈ B. But then

{ω ∈ Ω | X(ω) ∈ f−1(A)} ∈ F ,

since X is a random variable. But thereby we have established that Y −1 (A) ∈ F for any A in B, which by

definition means that Y is a random variable.

By this theorem we have, amongst other things, provided a slick mathematical explanation of one

basic tenet of statistics, namely that an estimator of a parameter in a probability distribution

is a random variable. Of course, for students of a first course in probability and statistics the

understanding of this fact may require much more effort and pedagogic ingenuity4.

Definition 1.5.2 A sigma field generated by a real valued random variable X , denoted by FX and/or

σ(X), consists of all events of the form {ω : X(ω) ∈ A} ∈ F , A ∈ B, where B is the Borel σ algebra over R.

Example 1.5.3 In example 1.5.1 it was verified that χF is a random variable for any F ∈ F . Then it follows

by the same example and the definition above that the sigma-field generated by χF is

FχF
= {Ω, F, F c, ∅}.

In view of example 1.3.13 FχF
is the sigma-field generated by the set F , as seems natural.

Definition 1.5.3 A sigma field generated by a family {Xi | i ∈ I} of real valued random variables Xi,

denoted by FXi,i∈I , is defined to be the smallest σ algebra containing all events of the form {ω : Xi(ω) ∈ A} ∈ F ,

A ∈ B, where B is the Borel σ algebra over R and i ∈ I.

If it holds for all events in A in a sigma-field H that A ∈ F , then we say that H is a subsigma-field of F and

write

H ⊆ F .

Example 1.5.4 Let Y = f(X), where X is a random variable and f is a Borel function. Then

FY ⊆ FX .

We shall now establish this inclusion. The sigma field generated by a real valued random variable Y , or FY ,

consists of all events of the form {ω : Y (ω) ∈ A} ∈ F , A ∈ B. Now

{ω : Y (ω) ∈ A} = {ω : f(X(ω)) ∈ A} = {ω : X(ω) ∈ f−1(A)}.
4c.f., K. Vännman: How to Convince a Student that an Estimator is a Random Variable. Teaching Statistics, vol. 5, n:o 2,

pp. 49−54, 1983.
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Since f−1(A) is a Borel set, we have by definition of FX that {ω : X(ω) ∈ f−1(A)} ∈ FX . Therefore we have

shown that every event in FY is also in FX , and this finishes the proof of the inclusion FY ⊆ FX .

The result is natural, as events involving Y are in fact events determined by X . If f(x) is invertible in whole

of its domain of definition, then clearly FY = FX .

Theorem 1.5.5 (Doob-Dynkin) Let X be a real valued random variable and let Y be another real valued

random variable such that Y is σ(X) -measurable, or,

Y −1(A) = {ω : Y (ω) ∈ A} ∈ σ(X)

for all A in the Borel σ algebra over R. Then there is a (Borel) function H(x) (definition 1.3.4) such that

Y = H(X).

Proof is omitted, and is not trivial. The interested student can find one proof in [63, thm 23.2].

1.5.3 Distribution Functions

The probability distribution of a random variable X may be described by its distribution function F (x) =

P ({X ≤ x}). This is a quick and convenient shorthand for the complete expression in the following sense

F (x) = P ({X ≤ x}) ≡ P ({ω ∈ Ω | X(ω) ∈ (−∞, x]}) .

Note that our preceding efforts pay here a dividend: (−∞, x] is a Borel event, and as X is a random variable,

{ω ∈ Ω | X(ω) ∈ (−∞, x]} is an event in F and therefore we may rest assured thatP ({ω ∈ Ω | X(ω) ∈ (−∞, x]})
is defined. In the chapters to follow it will contribute to clarity of thought to indicate the random variable

connected to the distribution function, so we shall be writing there

FX(x) = P ({X ≤ x}) . (1.8)

Remark 1.5.2 In statistical physics, see, e.g., [17], a distribution function pertains5 often to a different concept.

For example, the distribution function of the velocities v of molecules in a gas is the fraction, f(v)dv, of molecules

with velocities between v and v + dv, and is shown in [17, p. 48] or [18] to be

f(v)dv ∝ e−mv2/kBTdv, (1.9)

where m is the mass, kB is the Boltzmann constant, and T is temperature. In probability theory’s terms f(v)

is is obviously the probability density of the velocity. The density above will be re-derived in section 11.3 using

an explicit and well defined random process, known as the Ornstein-Uhlenbeck process.

Theorem 1.5.6 Any distribution function has the following properties:

1. F is non decreasing,

2. limx→+∞ F (x) = 1 and limx→−∞ F (x) = 0,

5[17] is the textbook in SI1161 statistisk fysik för F3 (statistical physics for students of CTFYS at KTH).
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3. F is right continuous; limy↓x F (y) = F (x)

4. If F (x−) = limy↑x F (y), then F (x−) = Pr{X < x} and

5. P{X = x} = F (x)− F (x−).

Proof Clear

Theorem 1.5.7 If F satisfies 1., 2. and 3. above, then it is the distribution function of a random variable.

Proof Consider Ω = (0, 1) and P the uniform distribution, which means that P((a, b]) = b−a, for 0 ≤ a < b ≤ 1.

Set

X(ω) = sup{y : F (y) < ω}.

Firstly, notice that if ω ≤ F (x), then X(ω) ≤ x, since x 6∈ {y : F (y) < ω}. Next: Suppose ω > F (x). Since F

is right continuous, there is an ǫ > 0 such that F (x+ ǫ) < ω. Therefore, X(ω) ≥ x+ ǫ > x.

Next we define lim infn→+∞Xn and lim supn→+∞Xn For the definitions of lim infn→+∞ xn and lim supn→+∞ xn

for sequences of real numbers (xn)
∞
n=1 we refer to Appendices 1.9 and 1.10. Here

lim inf
n→+∞

Xn = sup
n

(
inf
m≥n

Xm

)
(1.10)

and

lim sup
n→+∞

Xn = inf
n

(
sup
m≥n

Xm

)
. (1.11)

Theorem 1.5.8 If X1, X2, . . . are random variables, then so are

inf
n
Xn, sup

n
Xn, lim sup

n
Xn and lim inf

n
Xn.

Proof Provided F is a σ algebra, it follows that {infnXn < a} = ∪∞
n=1{Xn < a} ∈ F . Now, the sets (−∞, a) are

in the Borel sigma algebra, proving that infnXn is measurable. Similarly, {supnXn > a} = ∪∞
n=1{Xn > a} ∈ F .

For the last two statements, the conclusion is clear in view of (1.10) and (1.11) and by what was just found.

1.6 Independence of Random Variables and Sigma Fields, I.I.D.

r.v.’s

We know from any first course in probability and statistics that two events A and B are called independent if

P (A ∩B) = P (A) ·P (B) .

We shall now see that we can exploit this to define independence of random variables and of sigma fields.

Definition 1.6.1 Assume that we have a probability space (Ω,F ,P) and random variables X and Y on it.

• Two sigma fieldsH ⊆ F and G ⊆ F are independent if any two events A ∈ H and B ∈ G are independent,

i.e.,

P(A ∩B) = P(A)P(B).
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• Two random variables X and Y are independent, if the sigma-algebras generated by them, FX and

FY , respectively, are independent.

It follows that two random variables X and Y are independent, if and only if

P (X ∈ A, Y ∈ B) = P (X ∈ A) ·P (Y ∈ B)

for all Borel sets A and B. In particular, if we take A = (−∞, x] and B = (−∞, y], we obtain for all x ∈ R,

y ∈ R

FX,Y (x, y) = P (X ∈ (−∞, x], Y ∈ (−∞, y]) = FX(x) · FY (y), (1.12)

which is the familiar definition of independence for X and Y , see, e.g., [15], in terms of distribution functions.

Theorem 1.6.1 Let X and Y be independent random variables and f and g be two Borel functions. Then

f(X) and g(Y ) are independent.

Proof Set U = f(X) and V = g(Y ). These are random variables by theorem 1.5.2. Then

FU ⊆ FX , FV ⊆ FY ,

as shown in example 1.5.4. Thus, if we take any A ∈ FU and any B ∈ FV , it holds that A ∈ FX and B ∈ FY .

But FX and FY are independent sigma fields, since X and Y are independent. Therefore it holds for every set

A ∈ FU and every B ∈ FV , that P(A ∩ B) = P(A)P(A), and therefore FU and FV are independent, and this

means that U = f(X) and V = g(Y ) are independent, as was asserted.

If we have two independent random variablesX and Y that have the same distribution (i.e., FX(x) =

FY (x) for all x), we say thatX and Y are independent, identically distributed r.v.’s and abridge

this with I.I.D.. The same terminology can be extended to state X1, . . . , Xn as being I.I.D. r.v.’s.

Sequences of I.I.D. r.v.’s will be a main theme in the sequel.

1.7 The Borel-Cantelli Lemmas

Borel-Cantelli lemmas are indispensable, for example, for proving the law of large numbers in the strong form,

section 6.7.4 below, and for proving the almost sure continuity of sample paths of the Wiener process, see section

10.4.1.

We consider a sequence events A1, A2, A3, . . . and are interested in the question of whether infinitely many

events occur or if possibly only a finite number of them occur. We set

Fn =

∞⋃

k=n

Ak and Gn =

∞⋂

k=n

Ak. (1.13)

If Gn in (1.13) occurs, this means that all Ak for k ≥ n occur. If there is some such n, this means in other

words that from this n on all Ak occur for k ≥ n. With

H =

∞⋃

n=1

Gn =

∞⋃

n=1

∞⋂

k=n

Ak

we have that if H occurs, then there is an n such that all Ak with k ≥ n occur. Sometimes we denote H with

lim inf Ak.
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The fact that Fn occurs implies that there is some Ak for k ≥ n which occurs. If Fn in (1.13) occurs for all

n this implies that infinitely many of the Ak:s occur. We form therefore

E =

∞⋂

n=1

Fn =

∞⋂

n=1

∞⋃

k=n

Ak. (1.14)

If E occurs, then infinitely many of Ak:s occur. Sometimes we write this as E = {An i.o.} where i.o. is to be

read as ”infinitely often”, i.e., infinitely many times. E is sometimes denoted with lim supAk, c.f. Appendix

1.10.

Lemma 1.7.1 Borel-Cantelli lemma If
∑∞

n=1 P(An) < ∞ then it holds that P (E) = P (An i.o) = 0, i.e.,

that with probability 1 only finitely many An occur.

Proof One notes that Fn is a decreasing set of events. This is simply so because

Fn =

∞⋃

k=n

Ak = An

⋃
( ∞⋃

k=n+1

Ak

)
= An

⋃
Fn+1

and thus

Fn ⊃ Fn+1.

Thus the theorem 1.4.9 above gives

P(E) = P(

∞⋂

n=1

Fn) = lim
n→∞

P(Fn) = lim
n→∞

P(

∞⋃

k=n

Ak).

We have, however, by subadditivity that

P(

∞⋃

k=n

Ak) ≤
∞∑

k=n

P(Ak)

and this sum→ 0 as n→ ∞, if the sum
∑∞

1 P(Ak) converges. Thus we have shown the proposition, as claimed.

One can observe that no form of independence is required, but the proposition holds in general, i.e., for any

sequence of events.

A counterpart to the Borel-Cantelli lemma is obtained, if we assume that the events A1, A2, . . . are inde-

pendent.

Lemma 1.7.2 Converse Borel-Cantelli lemma If A1, A2, . . . are independent and

∞∑

n=1

P(An) = ∞,

then it holds that P(E) = P(An i.o) = 1, i.e., it holds with probability 1 that infinitely many An occur.

Proof We have by independence and probability of the complement

P(

∞⋂

k=n

Ac
k) =

∞∏

k=n

P(Ac
k) =

∞∏

k=n

(1−P(Ak)).

Since 1− x ≤ e−x we get 1−P(Ak) ≤ e−P(Ak) and

P(

∞⋂

k=n

Ac
k) ≤ exp(−

∞∑

k=n

P(Ak)).
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If now
∑∞

n=1 P(An) = ∞, then the sum in the exponent diverges and we obtain

P(

∞⋂

k=n

Ac
k) = 0.

Thus it holds also that

P(

∞⋃

n=1

∞⋂

k=n

Ac
k) = 0,

which implies by De Morgan,s rules that

P(
∞⋂

n=1

∞⋃

k=n

Ak) = 1−P(
∞⋃

n=1

∞⋂

k=n

Ac
k) = 1− 0 = 1

i.e., that infinitely many Ak:n occur with probability 1.

1.8 Expected Value of a Random Variable

1.8.1 A First Definition and Some Developments

Let X be a simple random variable. This is nothing but a special case of what will in the sequel be called

a discrete random variable. In detail, we think of a set of real numbers, {x1, . . . , xm}, such that X takes its

values in {x1, . . . , xm}. The expected value E [X ] (a.k.a mean or expectation) of a simple random variable is

defined to be

E [X ]
def
=

m∑

i=1

xiP (X = xi) . (1.15)

Again we write P (X = xi), when we mean

P (X = xi) ≡ P ({ω ∈ Ω | X(ω) = xi}) .

The numbers P (X = xi), i = 1, . . . ,m will be later called a probability mass function, p.m.f.

pX (xi) = P (X = xi) .

The definition in (1.15) clearly depends only on the probality measure P for given X .

Now, we want to interpret in E [X ] in (1.15) as an integral of X and use this inspirational recipe for non-simple

X . For this we must develop a more general or powerful concept of integration, than the one incorporated in

the Rieman integral treated in basic integral and differential calculus.

Here is an outline. We consider first an arbitrary nonnegative random variable X ≥ 0. Then we can find

(see below) a infinite sequence of simple random variables X1, X2, . . . , such that

• for all ω ∈ Ω

X1(ω) ≤ X2(ω) ≤ . . .

• and for all ω ∈ Ω

Xn(ω) ↑ X(ω),

as n→ ∞.
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Then E [Xn] is defined for each n and is non-decreasing, and has a limit E [Xn] ↑ C ∈ [0,∞], as n → ∞. The

limit C defines E [X ]. Thus

E [X ]
def
= lim

n→∞
E [Xn] . (1.16)

This is well defined, and it can happen that E [X ] = +∞. Let us take a look at the details of this procedure.

The discussion of these details in the rest of this section can be skipped as the issues inolved will NOT be

actively examined, but are recommended for the specially interested.

For an arbitrary nonnegative random variable X ≥ 0 we define the simple random variable Xn,

n ≥ 1, as (an electrical engineer might think of this as a digitalized signal)

Xn(ω) =

{
k
2n if k

2n ≤ X (ω) ≤ k+1
2n , k = 0, 1, 2, . . . , n2n − 1

n else.

This means that we partition for each n the range of X (not its domain !), R+ ∪ 0, the nonnegative

real line, so that [0, n[ is partitioned into n2n disjoint intervals of the form

En,k =

[
k

2n
,
k + 1

2n

]
,

and the rest of the range R+ ∪ 0 is in En = [n,∞]. Then we see that

| Xn(ω)−X(ω) |≤ 1

2n
if X(ω) < n (1.17)

and

Xn(ω) = n, if X(ω) ≥ n. (1.18)

When we next go over to n+1, [0, n+1[ is partitioned into intervals of the form En+1,k =
[

k
2n+1 ,

k+1
2n+1

]
.

This is smart, because each of the previous intervals is halved, i.e.,

En,k = En+1,2k ∪ En+1,2k+1. (1.19)

But then it is clear that Xn ≤ Xn+1. We show this for each ω. First, if Xn(ω) =
k
2n , then by (1.19

) either Xn+1(ω) = 2k
2n+1 = k

2n or Xn+1(ω) =
2k+1
2n+1 > 2k

2n+1 = k
2n , and thus Xn(ω) ≤ Xn+1(ω). If

Xn(ω) = n, then Xn(ω) ≤ Xn+1(ω). By this and by (1.17 )- (1.18) we see that for each ω

Xn(ω) ≤ Xn+1(ω) ↑ X(ω).

Then

E [Xn] =

n2n−1∑

k=0

k

2n
P (X ∈ En,k) + nP (X ≥ n)

=
n2n−1∑

k=0

k

2n − 1

(
FX

(
k + 1

2n

)
− FX

(
k

2n

))
+ nP (X ≥ n) .

We write this (for some omitted details see eq. (1.35) in an exercise of section 1.12.3) as

E [Xn] =

n2n−1∑

k=0

∫

{ω|Xn(ω)∈En,k}
Xn(ω)P(dω) +

∫

{ω|Xn(ω)∈En}
Xn(ω)P(dω)

and since Ω =
(
{ω | Xn(ω) ∈ En,k}n2

n

k=1, {ω | Xn(ω) ∈ En}
)
is a partition of Ω, we set

=

∫

Ω

Xn(ω)dP(ω).
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Then it is seen by Xn(ω) ≤ Xn+1(ω) for all ω and as En,k = En+1,2k ∪ En+1,2k+1 that

E [Xn] ≤ E [Xn+1] .

As E [Xn] is a non-decreasing sequence, it has the limit E [X ] ≤ +∞.

Example 1.8.1 For A ∈ B the function χA defined on R by

χA(x) =

{
1 if x ∈ A

0 if x /∈ A.
(1.20)

is a Borel function. Let X be a random variable. Then χA(X) is a random variable by theorem 1.5.2 and is

non negative and simple. We get

E [χA(X)] = 0 ·P (X ∈ Ac) + 1 ·P (X ∈ A) .

We write then using (1.8)

E [χA(X)] = P (X ∈ A) =

∫

A

dFX(x). (1.21)

We shall define E[X ] for an arbitrary random variable in the next section.

1.8.2 The General Definition

Let X ≥ 0 denote a random variable on (Ω,F ,P). Then its expectation was above defined as

E[X ] =

∫

Ω

X(ω)dP(ω).

Again, we often revert to a useful shorthand, or

E[X ] =

∫

Ω

XdP.

Let F = FX be the distribution function associated with X , then this may be rewritten as

E[X ] =

∫ ∞

0

xdF (x),

as follows by the considerations in the preceding example 1.8.1.

For a real valued random variable, its expectation exists if E[X+] :=
∫∞
0
xF (dx) < +∞ and E[X−] :=

−
∫ 0

−∞ xF (dx) < +∞. Then the expectation is given by

E[X ] = E[X+]− E[X−].

If we encounter a case where E[X+] = ∞ and E[X−] = ∞, the expected value is not defined.

1.8.3 The Law of the Unconscious Statistician

The following theorem, sometimes known as the law of the unconscious statistician, is extremely useful for

computation and will be frequently cited in the sequel.

Theorem 1.8.2 Let X be a random variable and g a Borel function such that E [g(X)] <∞.

E [g(X)] =

∫

Ω

g(X)dP =

∫ ∞

−∞
g(x)dF (x) (1.22)
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Proof We follow [103, p. 317]. We assume that g(x) ≥ 0, since otherwise we can use decomposition into the

negative and positive parts g+ and g− as shown above. We assume in addition that g is simple, i.e., there are

Borel sets G1, G2, . . . , Gm that are a partition of R such that

g(x) = gk, if x ∈ Gk k = 1, 2, . . . ,m.

and ∪m
k=1Gk = R. We can use the construction in (1.15) with Y = g(X)

E [Y ] =

m∑

k=1

gkP (Y = gk) . (1.23)

Here

{Y = gk} = {ω | g(X(ω)) = gk} = {ω | X(ω) ∈ Gk} = {X ∈ Gk}.

And thus

P (Y = gk) = P (X ∈ Gk) .

Hence in (1.23)

E [Y ] =
m∑

k=1

gkP (X ∈ Gk) =
m∑

k=1

∫

X∈Gk

g(X(ω))dP(ω) =

∫

Ω

g(X(ω))dP(ω),

where we used the result (1.35) in the exercises of this chapter, since ({X ∈ Gk})mk=1 is a partition of Ω, and

thus

E [Y ] =

∫

Ω

g(X(ω))dP(ω). (1.24)

On the other hand, the discussion in example 1.8.1 and the expression (1.21) tell us that

P (X ∈ Gk) =

∫

Gk

dFX(x),

and thus

E [Y ] =

m∑

k=1

gkP (X ∈ Gk) =

m∑

k=1

gk

∫

Gk

dFX(x) =

m∑

k=1

∫

Gk

g(x)dFX(x)

=

∫

R

g(x)dFX(x),

and thus

E [Y ] =

∫

R

g(x)dFX(x).

Hence we have established the law of the unconscious statistician for non negative and simple g. The general

statement follows by approximating a non negative g by simple functions (see the preceding) and then using

g+ and g−.

1.8.4 Three Inequalities for Expectations

Theorem 1.8.3 (Jensen’s Inequality) Suppose that φ is a convex function; namely, for any λ ∈ (0, 1)

λφ(x) + (1 − λ)φ(y) ≥ φ(λx + (1− λ)y).

Then

E[φ(X)] ≥ φ(E[X ]).
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Proof Let c = E[X ] and let l(x) = ax+ b, where a and b are such that l(c) = φ(c) and φ(x) ≥ l(x). Choose a

such that

lim
h↓0

φ(c)− φ(c − h)

h
≤ a ≤ lim

h↓0

φ(c+ h)− φ(c)

h
.

Then set

l(x) = a(x− c) + φ(c).

With this choice of function,

E[φ(X)] ≥ E[aX + b] = aE[X ] + b = l(E[X ]) = φ(E[X ]).

Theorem 1.8.4 (Hölder’s Inequality) If p, q ∈ [1,∞] with 1
p + 1

q = 1, then

E[| XY |] ≤ E[|X |p]1/pE[|Y |q]1/q. (1.25)

Proof By dividing through by E[|X |p]1/pE[|Y |q]1/q, one may consider the case of E[|X |p]1/p = E[|Y |q]1/q = 1.

Furthermore, we use the notation

E[|X |p]1/p def
= ‖X‖p.

In chapter 7 we shall be specially interested in E[|X |2]1/2.

For x ≥ 0 and y ≥ 0, set

φ(x, y) =
1

p
xp +

1

q
yq − xy

for x ≥ 0, so that taking derivative with respect to x gives

φx(x, y) = xp−1 − y

and

φxx(x, y) = (p− 1)xp−2.

For fixed y, it follows that φ(x, y) has a minimum (in x) at x0 = y1/(p−1). Note that xp0 = yp/(p−1) = yq, so

that

φ(x0) = (
1

p
+

1

q
)yp − y1/(p−1)y = 0.

Since x0 is a minimum, it follows that xy ≤ 1
px

p + 1
q y

q. Setting x = X , y = Y and taking expectations yields

E[|XY |] ≤ 1

p
+

1

q
= 1 = ‖X‖p‖Y ‖q.

Let χA denote the indicator function of a set A;

χA(x) =

{
1 if x ∈ A

0 if x /∈ A.
(1.26)

Theorem 1.8.5 (Chebychev’s Inequality) Suppose that φ : R → R+. Let iA = inf{φ(y) : y ∈ A}. Then

for any measurable set A,

iAP(X ∈ A) ≤ E[φ(X)χA(X)] ≤ E[φ(X)].
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Proof Exercise

One example of Chebychev’s inequality as stated above is

P (| X − E [X ] |> a) ≤ Var [X ]

a2
. (1.27)

1.8.5 Limits and Integrals

There are several results concerning interchange of limits and integrals, for Riemann integrals we refer to [69,

chapter 6.6.]. All of them rely crucially on the use of a σ algebra, which is closed under countable unions. The

proofs require the full machinery of integration theory, c.f. [36, 63], and are therefore beyond the scope of these

notes and of this course. For the definitions of lim sup and lim inf we refer to Appendix 1.9 and to (1.10) and

(1.11).

Theorem 1.8.6 (Fatou’s Lemma) Let (Xn)
∞
n=1 be a sequence of non negative random variables. It holds

that

lim inf
n→+∞

E[Xn] ≥ E[lim inf
n→+∞

Xn].

Theorem 1.8.7 (Monotone Convergence Theorem) If 0 ≤ Xn ↑ X , then E[Xn] ↑ E[X ].

We say that a property, described by an event A, for a random variable X holds almost surely, if

P (X ∈ A) = P ({ω | X(ω) ∈ A}) = 1.

Theorem 1.8.8 (Dominated Convergence Theorem) If Xn → X almost surely, and |Xn| < Y for all n

and E[| Y |] < +∞, then E[Xn] → E[X ].

1.9 Appendix: lim supxn and lim inf xn

1.9.1 Sequences of real numbers

(xn)
∞
n=1 is any sequence of real numbers. For example,

xn =

(
1 +

1

n

)n

.

We next define lim infn→∞ xn and lim supn→∞ xn.
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1.9.2 lim sup xn

Let b be a real number, −∞ ≤ b ≤ +∞. We say that

b = lim sup
n→∞

xn,

if 1) and 2) below hold.

• 1) For every c > b there is an integer N such that

n > N ⇒ xn < c.

• 2) For every c
′
< b and for every integer N there is an n > N such that

xn > c
′
.

In other words, for any ǫ > 0 only finitely many of xn can be larger than b+ ǫ. Also, there are infinitely

many xn larger than b− ǫ.

1.9.3 lim inf xn

Let a be a real number, −∞ ≤ a ≤ +∞. We say that

a = lim inf
n→∞

xn,

if 1) and 2) below hold.

• 1) For every c > a and for every integer N there is an n > N such that

xn < c.

• 2) For every c < a there is an integer N such that

n > N ⇒ xn > c.

In other words, for any ǫ > 0 there are infinitely many xn smaller than a+ ǫ. Only finitely many of xn

can be smaller than a− ǫ.

1.9.4 Properties, The Limit of a Sequence

lim infn→∞ xn and lim supn→∞ xn always exist, as they can be ±∞.

We have always that

lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

If

lim inf
n→∞

xn = lim sup
n→∞

xn,

then the limit

lim
n→∞

xn = x

exists and

lim
n→∞

xn = lim inf
n→∞

xn = lim sup
n→∞

xn.

This is easy to see, because the properties above imply that for all n > N we have infinitely many xn with

a− ǫ ≤ xn ≤ b+ ǫ

But if a = b, then this yields the definition of a limit x = (a = b) of (xn)
∞
n=1.
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Example 1.9.1

xn = (−1)n
(
1 +

1

n

)
, n = 1, 2, 3, . . . , .

Then

lim inf
n→∞

xn = −1, lim sup
n→∞

xn = 1.

We show the latter.

1) If c > 1, take an integer N ≥ 1
c−1 . Then if n > N

xn ≤
(
1 +

1

n

)
< c.

2) If c
′
< 1 and N is an integer, then if n = 2k and 2k > N , then

xn = x2k = (−1)2k
(
1 +

1

2k

)
= 1 +

1

2k
> c

′
.

Hence

lim sup
n→∞

xn = 1

1.10 Appendix: lim supAn and lim infAn

Let An ∈ A for each n in a countable collection (An)
∞
n=1, where A is a sigma field. Let us define

lim sup
n→∞

An
def
= ∩∞

n=1 ∪∞
m=n Am (1.28)

and

lim inf
n→∞

An
def
= ∪∞

n=1 ∩∞
m=n Am. (1.29)

Then lim supn→∞An ∈ A and lim infn→∞An ∈ A (you should convince yourself of this).

Clearly

lim inf
n→∞

An ⊂ lim sup
n→∞

An.

If lim infn→∞ An = lim supn→∞An, we say that

lim inf
n→∞

An = lim sup
n→∞

An = lim
n→∞

An.

Let χA denote the indicator function of an event A ∈ A;

χA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A.
(1.30)

Then one can verify that

{ω ∈ Ω |
∞∑

n=1

χAn
(ω) = ∞} = ∩∞

n=1 ∪∞
m=n Am,

and we say (clearly?) that An happens infinitely often. In addition,

{ω ∈ Ω |
∞∑

n=1

χAc
n
(ω) <∞} = ∪∞

n=1 ∩∞
m=n Am,

and we say (clearly?) that An happens ultimately (i.e, for all but finitely many n). Then (a quiz for self-studies)

χ∩∞
n=1∪∞

m=nAm
= lim sup

n→∞
χAn

and

χ∪∞
n=1∩∞

m=nAm
= lim inf

n→∞
χAn

.
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1.11 Appendix: Combinatorics of Counting and Statistics of Parti-

cles in Cells

Combinatorics is connected to probability in a great number of ways [15, 53]. Balls and urns are not idle toys, as

often portrayed by, e.g., certain former alumni, but important conceptual models, as shown below by statistics

of particles in cells. Here we recapitulate for ease of reference the customary rudiments.

Multiplication principle is a fundamental idea of counting. The principle says that if there are n1 ways of

doing operation 1 and n2 ways of doing operation 2, then there are n1 · n2 ways of performing both operations.

Therefore nk equals the number of ways for picking k elements (no restriction on k) with replacement and with

regard to order in a collection of n items.

By the multiplication principle the factorial (n is a non negative integer)

n! = n · (n− 1) · . . . · 3 · 2 · 1

with the convention 0! = 1, is the number of ways of ordering n items in a collection. Then we define the

expression (n)k for integers 0 ≤ k ≤ n by

(n)k
def
= n · (n− 1) · . . . · (n− k + 1).

It is seen that (n)k equals the number of ways to pick k items from the the collection n items without replacement

and with the order of the items in the subcollection taken into account.

Let P (n, k) be the number of ways to pick k items from the collection n items without replacement and

without the order of the items in the subcollection taken into account. Then by the multiplication principle

k!P (n, k) = (n)k

must hold, and we get

P (n, k) =
(n)k
k!

=
n!

(n− k)!k!
.

The established symbol for P (n, k) is

(
n

k

)
, the binomial coefficient (reads as ’n choose k’) for non negative

integers n and k, 0 ≤ k ≤ n, and thus (
n

k

)
=

n!

(n− k)!k!
.

Then we have found three of the cases in the following table.

With regard to order Without regard to order

With replacement nk

(
n+ k − 1

k

)

Without replacement, k ≤ n (n)k

(
n

k

)

The derivation of the expression

(
n+ k − 1

k

)
is a longer exercise, which we do by changing to an different

interpretation of the combinatorial coefficients above.

Sampling with regard to order parallels distributing (k) distinguishable objects into (n) cells and sampling

without regard to order parallels distributing indistinguishable objects into cells. Sampling with replacement

corresponds to allowing more than one object in a cell, and sampling without replacement corresponds to

allowing no more than one object in a cell, hence k ≤ n. Thus we have the following table:
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Distinguishable Objects Indistinguishable Objects

No restraints nk

(
n+ k − 1

k

)

Not more than one object per cell, k ≤ n (n)k

(
n

k

)

Consider k balls and n cells with ki ≥ 0 balls in cell i so that

k1 + k2 + . . .+ kn = k

We call ki’s occupation numbers. We define the occupancy distribution by the n -tuple (k1, k2, . . . , kn). Two

ways of distributing k indistinguishable objects into cells are called indistinguishable, if their occupancy dis-

tributions are identical. Let us now consider the following fundamental question: how many distinguishable

occupancy distributions can be formed by distributing k indistinguishable objects into n cells ? The answer is(
n+ k − 1

k

)
. To prove this, we use a device invented by William Feller. This consists of representing n cells

by the space between n+ 1 bars and the balls in the cells by stars between the bars. Thus

||| ∗ ∗||| ∗ ∗ ∗ || ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|

represents n = 11, k = 12 and the occupancy distribution (0, 0, 2, 0, 0, 3, 0, 1, 2, 0, 4).

Since the first and last symbols in a string of stars and bars must be bars, only n− 1 bars and k stars can

appear in any order. Thus we are back to counting the number of ways on how to pick k objects among n+k−1

objects without replacement and without regard to order. This equals by the preceding

(
n+ k − 1

k

)
, (1.31)

and we have established the last of the arrays in the tables above.

In statistical physics one thinks of a phase space subdivided into a large number, n, regions (cells) and k

indistinguishable particles each of which falls into one of the cells. One could guess that each of the possible

nk arrangements of the k particles is equally probable, this is called Maxwell -Boltzmann statistics. If on the

other hand, each of the possible occupancy distributions for the particles is considered equally probable, and

no restrictions are made on the number of particles in each cell, then probability of each distinct arrangement

is 1/

(
n+ k − 1

k

)
. This is called Bose-Einstein statistics [17, p.354, Exercise 29.6 (b)]. If the k particles are

indistinguishable particles and one imposes the restriction that no more than one particle can found in a cell,

and the arrangments are equally probable, then the probability of an arragement is 1/

(
n

k

)
, and one talks

about Fermi-Dirac statistics [17, p.354, Exercise 29.6 (a)]. The reference [17] loc.cit. shows how one derives

Fermi-Dirac and Bose-Einstein distribution functions (which are not distribution functions in the sense defined

above) from these expressions. One needs physical experiments to decide, which model of statistics holds for

a certain system of particles (e.g., hydrogen atoms, electrons, neutrons, protons). In other words, one cannot

argue solely from abstract mathematical principles as to what is to be regarded as equally likely events in reality

[53].
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1.12 Exercises

1.12.1 Easy Drills

1. (Ω,F ,P) is a probability space. A ∈ F and B ∈ F . P((A ∪B)c) = 0.5 and P(A ∩B) = 0.2. What is the

probability that either A or B but not both will occur. (Answer: 0.3).

2. (Ω,F ,P) is a probability space. A ∈ F and B ∈ F . If the probability that at least one of them occurs is

0.3 and the probability that A occurs but B does not occur is 0.1, what is P(B) ? (Answer: 0.2).

1.12.2 Measures, Algebras and Sigma Fields

1. A measure that is finitely additive but not countably additive (From [87]) Let Ω be countable.

We take

A = {A ⊂ Ω | A is finite or Ac is finite }.

(a) Show that A is an algebra.

(b) Set

P(A) =

{
0 if A is finite

1 if Ac is finite.

Show that P is finitely additive, but not countably additive measure on (Ω,A).

2. Let Ω = [0, 1). For each of the set functions µ defined below, determine whether µ satisfies the axioms of

probability. 0 ≤ a < b ≤ 1.

1. µ([a, b)) = b−a
b+a .

2. µ([a, b)) = b2 − a2.

3. µ([a, b)) = b2 − a2, µ((a, b]) = b− a.

3. Ω = the non negative integers = {0, 1, 2, . . .}. Since Ω is countable, we can take F = all subsets of Ω. Let

0 < θ < 1 be given. For which values of θ is it possible to give a probability measure P on (Ω,F) such

that P ({i}) = θi, i = 0, 1, 2 . . .?

4. (From [43]) Let Ω = [0,∞). let F the sigma field of subsets of Ω generated by sets of the form (n, n+ 1)

for n = 1, 2, . . ..

(a) Are the following subsets of Ω in F ?

(i) [0,∞)

(ii) Z+ = {0, 1, 2, . . .}
(iii) [0, k] ∪ [k + 1,∞) for any positive integer k

(iv) {k} for any positive integer k

(v) [0, k] for any positive integer k

(vi) (1/3, 2)

(b) Define the following set function P on subsets A of Ω

P(A) = c
∑

{k∈Z+|(k+1/2)∈A}
3−k.

If there is no k such that (k + 1/2) ∈ A, then the sum is taken as zero. Is P a probability measure

on (Ω,F), and if so, what is the value of c?
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(c) Repeat part (b) for F replaced by the Borel sigma field.

(d) Repeat part (b) for F replaced by the power set of Ω.

5. Show that P defined in (1.3) in example 1.4.7 is a countably additive probability measure.

6. Assume (Ω,F ,P) and let A ∈ F and B ∈ F , and A ⊆ B. Show that

P (B ∩ Ac) = P (B)−P (A) .

7. Show that the probability that one and only one of the events A and B occurs is

P(A) +P(B) − 2P(A ∩B).

8. Consider (Ω,F ,P) and let A ∈ F and B ∈ F . Define

A△B def
= (A ∩Bc) ∪ (B ∩Ac) . (1.32)

This is known as the symmetric difference of A and B. You should convince yourself of the fact that

A△B ∈ F .

(a) Show that

| P(A) −P(B) |≤ P (A△B) .

(b) Show that if A ∈ F , B ∈ F and C ∈ F , then

P (A△B) ≤ P (A△C) +P (C△B) .

The sharp-eyed reader will recognize this as a form of the triangle inequality. One can in fact regard

P (A△B) as a distance or metric on events.

9. Show that if A and B are any two events, then

min (P(A),P(B)) ≥ P(A ∩B) ≥ P(A) +P(B)− 1.

10. Show that if P (A) ≥ 1− δ and P (B) ≥ 1− δ, then also P (A ∩B) ≥ 1− 2δ. In words, if two events have

probability near to one, then their intersection has probability nearly one.

11. A1,A2, A3,. . ., and An are events. Show that

P
(
∩n
j=1Aj

)
≥

n∑

j=1

P(Aj)− (n− 1).

12. Boole,s inequalities

A1,A2, A3,. . ., and An are events. Prove that

(a)

P
(
∪n
j=1Aj

)
≤

n∑

j=1

P(Aj).

(b)

P
(
∩n
j=1Aj

)
≥ 1−

n∑

j=1

(1−P (Aj)) .
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13. A1,A2, A3,. . ., and An are independent events. Prove that their complements are Ac
1,A

c
2, A

c
3,. . ., and A

c
n

are independent events, too.

14. Suppose that A ∩B ⊆ C holds for the events A, B and C. Show that

P (Cc) ≤ P (Ac) +P (Bc) . (1.33)

15. [68] Suppose that P is a finitely additive probability measure defined on a field G of subsets of a space Ω.

Assume that P is continuous at ∅, i.e., if An ∈ G for all n and An ↓ ∅, then P (An) ↓ 0. Show that P is a

probability measure on G.
This result is useful, since in applications one often encounters a finitely additive measure on a field G
rather than a mesure on a σ-field F .

1.12.3 Random Variables and Expectation

1. Let X be a simple function with the range VX = {x1, . . . , xm}. Then the sets

Gi = {ω ∈ Ω | X(ω) = xi}

are a (measurable) partition of Ω in the sense that

Gi ∩Gj , i 6= j, Ω = ∪m
i=1Gi.

For any event A ⊂ Ω let χA be the indicator function of the event A,

χA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A.
(1.34)

Then χA ·X is a simple random variable with the range VχA ·X containing those xi for which Gi ∩A 6= ∅.
VχA·X is augmented with zero 0, if needed. Then we define

∫
A
XdP by

∫

A

XdP =

∫

Ω

χA ·XdP = E [χA ·X ] .

Show that if A ∩B = ∅, then ∫

A∪B

XdP =

∫

A

XdP+

∫

B

XdP

Hint: Think of how χA∪B can be expressed by means of χA and χB.

Thus, ∫

Ω

XdP =

m∑

i=1

∫

Gi

XdP. (1.35)

2. Let X be a positive random variable, P (X > 0) = 1, with E [X ] <∞. Show that

E

[
1

X

]
≥ 1

E [X ]
. (1.36)

Note that this inequality is trivially true if E
[
1
X

]
= +∞.

3. Let X and Y be independent random variables. Assume that E [|X |] < ∞, E [|Y |] < ∞, E [|XY |] < ∞.

Show that

E [X · Y ] = E [X ] · E [Y ] . (1.37)

We do this in steps, c.f. [13, p. 403]. Our tools for this are the small pieces of integration theory in section

1.8 and the definition 1.6.1.
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(a) Choose arbitrary A ∈ FX and B ∈ FY . Then show that

E [χA · χB] = E [χA] · E [χB] .

(b) By means of the item (a) check in detail that (1.37) holds for all simple random variables X and Y .

(c) Explain how you can obtain (1.37) for X ≥ 0 and Y ≥ 0.

4. Let F1 ∈ F and F2 ∈ F . Prove that χF1 + χF2 is a random variable.

5. Show with the aid of Appendix 1.9 that

χ∩∞
n=1∪∞

m=nAm
= lim sup

n→∞
χAn

and

χ∪∞
n=1∩∞

m=nAm
= lim inf

n→∞
χAn

.

6. Markov’s inequality Let X be such that P (X ≥ 0) = 1, i.e., X is almost surely nonnegative. Show

that for any c > 0

P (X ≥ c) ≤ E [X ]

c
. (1.38)

Aid: Let A = {ω ∈ Ω | X(ω) ≥ c}. Let χA be the corresponding indicator function, i.e.,

χA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A.

Then we have clearly X ≥ cχA.

7. [30] Let for n = 1, 2, . . .

An =

{
A if n is even

B if n is odd.

Show that

lim sup
n→+∞

An = A ∪B, lim inf
n→+∞

An = A ∩B.

8. [30] Let {An}n≥1 be as sequence of pairwise disjoint sets. Show that

lim sup
n→+∞

An = lim inf
n→+∞

An = ∅.

9. Monotone class A class M of subsets of Ω is called a monotone class, if

lim
n→∞

An ∈ M

for any increasing or decreasing sequence of sets {An}n≥1 in M. Show that an algebra M is a sigma

algebra if and only if it is a monotone class. Aid: In one direction the assertion is obvious. In the other

direction, consider Bn = ∪n
k=1Ak.

10. F1 and F2 are two sigma algebras of subsets of Ω. Show that

F1 ∩ F2

is a sigma algebra of subsets of Ω.
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Chapter 2

Probability Distributions

2.1 Introduction

In this chapter we summarize, for convenience of reference, items of probability calculus that are in the main

supposed to be already familiar. Therefore the discourse will partly be sketchy and akin in style to a chapter

in a handbook like [92].

We shall first introduce the distinction between continuous and discrete r.v.’s. This is done by specifying

the type of the distribution function. Appendix 2.5 provides a theoretical orientation to distribution functions

and can be skipped by first reading.

We start by defining the continuous random variables. Let first fX(x) be function such that

∞∫

−∞

fX(x) dx = 1, fX(x) ≥ 0, for all x in R.

Then the function

FX(x) =

x∫

−∞

fX(u) du (2.1)

is the distribution function of a random variable X , as can be checked by theorem 1.5.7, and as was in advance

suggested by the notation. We say that X is a continuous (univariate) random variable. The function

fX(x) is called the probability density function p.d.f. (p.d.f.) of X . In fact (c.f. appendix 2.5) we have

for any Borel set A that

P (X ∈ A) =

∫

A

fX(x)dx.

In this chapter an array of continuous random variables will be defined by means of families of probability

densities fX(x). By families of probability densities we mean explicit expressions of fX(x) that depend on a

finite set of parameters, which assume values in suitable (sub)sets of real numbers. Examples are normal

(Gaussian), exponential, Gamma e.t.c. distributions.

The parameters will be indicated in the symbolical codes for the distributions, e.g., Exp(a) stands for

the exponential distribution with the parameter a, a > 0. The usage is to write, e.g., X ∈ Exp(a),

when saying that the r.v. X has an exponential distribution with parameter a.

Next we say that X is a discrete (univariate) random variable, if there is a countable (finite or infinite) set

47
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of real numbers {xk}, one frequent example is the non negative integers, such that

FX(x) =
∑

xk≤x

pX(xk), (2.2)

where

pX(xk) = P (X = xk) .

The function pX(xk) is called the probability mass function (p.m.f.) of X . Then it must hold that

∞∑

k=−∞
pX(xk) = 1, pX(xk) ≥ 0.

Again we shall define discrete random variables by parametric families of distributions (Poisson, Binomial,

Geometric, Waring e.t.c).

It is found in appendix 2.5 that there are random variables that are neither continuous or discrete

or mixed cases of continuous and discrete. In other words, there are distribution functions that do

not have either a p.d.f. or a p.m.f. or a mixture of those. A well known standard instance is the

Cantor distribution, which is the topic in an exercise to this chapter.

In addition, since the calculus of integrals teaches us that P (X = x) =
∫
x fX(t)dt = 0, there is

a foundational difficulty with continuous random variables likely connected to the nature of real

numbers as a description of reality.

If the expectation (or mean) of X , as defined in section 1.8.2, exists, it can be computed by

E [X ] =





∞∑
k=−∞

xkpX(xk) discrete r.v.,

∞∫
−∞

xfX(x) dx continuous r.v.

(2.3)

The law of the unconscious statistician proved in theorem 1.8.2, see (1.22), can now be written as

E [H(X)] =





∞∑
k=−∞

H(xk)pX(xk) discrete r.v.,

∞∫
−∞

H(x)fX(x) dx continuous r.v..

(2.4)

Thereby we have, with H(x) = (x− E [X ])
2
, the variance, when it exists, expressed by

Var [X ] = E [H(X)] =





∞∑
k=−∞

(xk − E [X ])
2
pX(xk) discrete r.v.,

∞∫
−∞

(x− E [X ])
2
fX(x) dx continuous r.v.

(2.5)

It follows readily that we have Steiner,s formula

Var [X ] = E
[
X2
]
− (E [X ])2 . (2.6)

This formula facilitates computations, and is applicable in both discrete and continuous cases.
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Remark 2.1.1 In the sequel we shall frequently come across with Γ(z), which is, for z with positive real part,

the Euler gamma function, see [93, p. 302] for a quick reference, and [54, ch. 6] for a story,

Γ(z) =

∫ ∞

0

tz−1e−tdt. (2.7)

Some notable properties of Γ(z) are

Γ

(
1

2

)
=

√
π, (2.8)

and

Γ(n) = (n− 1)! n is a nonnegative integer. (2.9)

Here we recall the convention 0! = 1. The following integral is useful and inherent in several expressions in the

sequel. ∫ ∞

0

xte−λxdx =
Γ(t+ 1)

λt+1
, λ > 0, t > −1. (2.10)

2.2 Continuous Distributions

Many continuous and discrete distributions have one or more generative models. By a generative model one

means in probability theory a mathematical description of the way a particular probability distribution can

arise in a physical situation. For example, the logarithm of a product of many positive random variables is

a generative model for the log-normal distribution. We shall on occasion try to refer to such models, when

introducing a distribution.

2.2.1 Univariate Continuous Distributions

Example 2.2.1 (Uniform Distribution) X ∈ U(a, b), a < b is a random variable with the p.d.f.

fX(x) =





1
b−a a ≤ x ≤ b,

0 elsewhere.

(2.11)

We say that X has the uniform distribution on the interval (a, b). The parameters are a and b. We have

E [X ] =
a+ b

2
,Var [X ] =

(b− a)2

12
.

Frequently encountered special cases are U(0, 1) and U(−1, 1). The uniform distribution has been discussed in

terms of ’complete ignorance’.

Example 2.2.2 (Triangular Distribution) X ∈ Tri(−1, 1) means that the p.d.f. of X is

fX(x) =

{
1− |x| |x| < 1

0 elsewhere.
(2.12)

This can also be written as

fX(x) = max (0, 1− |x|) .
If one draws a function graph of max (0, 1− |x|), one realizes the rationale for the attribute triangular.

E [X ] = 0,Var [X ] =
1

6
.
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Example 2.2.3 (General Triangular Distribution) X ∈ Tri(a, b) means that the p.d.f. of X is

fX(x) =

{
2

b−a

(
1− 2

b−a | x−
(
a+b
2

)
|
)

a < x < b

0 elsewhere.
(2.13)

E [X ] =
a+ b

2
,Var [X ] =

(b− a)2

24
.

Example 2.2.4 (Normal Distribution a.k.a. Gaussian Distribution) X ∈ N(µ, σ2), µ ∈ R, σ > 0

means that the p.d.f. of X is

fX(x) =
1

σ
√
2π
e−(x−µ)2/2σ2

, −∞ < x < +∞. (2.14)

We say that X has a normal distribution or a Gaussian distribution with the parameters µ and σ2, where

E [X ] = µ,Var [X ] = σ2.

The univariate normal or Gaussian distribution will be the platform on which to construct the multivariate

Gaussian distribution in chapter 8 and then eventually Gaussian processes in section 9.

Example 2.2.5 (Standard Normal Distribution or Standard Gaussian Distribution ) The special case

X ∈ N(0, 1) of (2.14) is called the standard normal distribution or the standard Gaussian distribution and its

p.d.f. is important enough to have a special symbol reserved to it, namely

φ(x)
def
=

1√
2π
e−x2/2, −∞ < x < +∞. (2.15)

The corresponding distribution function is designated by Φ(x), i.e.,

Φ(x)
def
=

∫ x

−∞
φ(t)dt, −∞ < x < +∞. (2.16)

It follows readily that

Φ(−x) = 1− Φ(x), (2.17)

Φ (0) =
1

2
. (2.18)

In the engineering and scientific literature [3] as well as in MATLABR, one frequently meets the error function1

erf(x)
def
=

2√
π

∫ x

0

e−t2dt, −∞ < x <∞, (2.19)

and complementary error function General

erfc(x)
def
=

2√
π

∫ ∞

x

e−t2dt, −∞ < x <∞. (2.20)

1The definition of erf(x) varies in the literature, c.f., for example [32, p.78].
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Clearly,

erfc(x) = 1− erf(x).

By a change of variable in (2.19) we find that

Φ (x) =
1

2

(
1 + erf

(
x√
2

))
,

and

Φ (x) =
1

2
erfc

(
− x√

2

)
.

The distribution function of X ∈ N(0, 1), Φ(x), is often numerically calculated for x > 0 by means of the

’Q-function’ or the error function. or

Q(x)
def
=

∫ ∞

x

φ(t)dt, Φ(x) = 1−Q(x), (2.21)

where the following approximation 2 is known to be very accurate

Q(x) ≈
(

1(
1− 1

π

)
x+ 1

π

√
x2 + 2π

)
1√
2π
e−x2/2.

Example 2.2.6 (Skew-Normal Distribution) A random variable X is said to have a skew-normal distri-

bution, if it has the p.d.f.

fX(x) = 2φ(x)Φ(λx), −∞ < x <∞, (2.22)

where the parameter −∞ < λ < ∞ and φ(x) is the p.d.f. of N(0, 1), and Φ(x) is the distribution function of

N(0, 1). We write X ∈ SN (λ) and note by (2.18) that SN (0) = N(0, 1). We have two plots of fX(x) in figure

2.1.

If λ→ ∞, then fX(x) converges (pointwise) to

fX(x) =

{
2φ(x) if x ≥ 0

0 if x < 0,

which is a folded normal distribution. If λ→ −∞, then fX(x) converges (pointwise) to

fX(x) =

{
0 if x ≥ 0

2φ(x) if x < 0,

which is another folded normal distribution. The mean and variance as well as other properties of SN (λ) are

established in the exercises to this chapter and to a later chapter.

Example 2.2.7 (Exponential Distribution) X ∈ Exp (λ), λ > 0, and the p.d.f. is

fX(x) =





1
λe

−x/λ 0 ≤ x

0 x < 0.

(2.23)

E [X ] = λ,Var [X ] = λ2.
2P.O. Börjesson and C.E.W. Sundberg: Simple Approximations of the Error Function Q(x) for Communication Applications.

IEEE Transactions on Communications, March 1979, pp. 639−643.
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Figure 2.1: The p.d.f.’s of SN (−3) (the left hand function graph) and SN (3) (the right hand function graph).

Example 2.2.8 (Laplace Distribution) X ∈ L (a), a > 0, means that X is a continuous r.v., and that its

p.d.f. is

fX(x) =
1

2a
e−|x|/a, −∞ < x < +∞. (2.24)

We say that X is Laplace -distributed with parameter a.

E [X ] = 0,Var [X ] = 2a2.

The distribution in this example is for obvious reasons also known in the literature as the Double Exponential

distribution. We shall in the sequel provide exercises generating the Laplace distribution as the distribution of

difference between two independent exponential r.v.’s.

Example 2.2.9 (Gamma Distribution) Let X ∈ Γ (p, a), p > 0, a > 0. The p.d.f. is

fX(x) =





1
Γ(p)

xp−1

ap e−x/a 0 ≤ x

0 x < 0.

(2.25)

Note that Exp (a) = Γ (1, a).

E [X ] = pa,Var [X ] = pa2.

Sometimes p is called the shape parameter and a is called the scale parameter. Note that the scale is squared

in the expression for variance.
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Example 2.2.10 (Erlang Distribution) The special case Γ (k, a) of the Gamma distribution, where k is a

positive integer, is known as the Erlang distribution, say Erlang (k, a) 3.

Example 2.2.11 (Weibull Distribution) Let X ∈ Wei (α, β), α > 0, β > 0. The p.d.f. is

fX(x) =





α
βαx

α−1e−(x/β)α 0 ≤ x

0 x < 0.

(2.26)

Here α is the shape parameter, β > 0 is the scale parameter. Note that Exp (a) = Wei (1, a). The

exponential distribution is thus a special case of both the Gamma distribution and the Weibull distribution.

There are, however, Gamma distributions that are not Weibull distributions and vice versa. The distribution

was invented by Waloddi Weibull4.

E [X ] = βΓ

(
1 +

1

α

)
,Var [X ] = β2

[
Γ

(
1 +

2

α

)
−
(
Γ

(
1 +

1

α

))2
]
.

In fracture mechanics one finds the three parameter Weibull distribution Wei (α, β, θ) with the

p.d.f.

fX(x) =





α
β

(
x−θ
β

)α−1

e−(x−θ
β

)α x ≥ θ

0 x < θ.

α is, as above, the shape parameter, β > 0 the scale parameter and θ is the location parameter.

If θ = 0, then Wei (α, β, 0) = Wei (α, β).

Example 2.2.12 (χ2(f)- Distribution with f Degrees of Freedom) If the random variable X has the

p.d.f. for f = 1, 2, . . .

fX(x) =





x
f
2 −1e−x/2

Γ(f/2)2f/2
if x > 0

0 if x ≤ 0,

then X is said to be χ2(f)- distributed with f degrees of freedom. We write X ∈ χ2(f). Note that χ2(f) =

Γ (f/2, 2).

E [X ] = f,Var [X ] = 2f2.

The following theorem explains the genesis of χ2(f) and is included in section 4.7 as an exercise.

3This distribution has been named after A.K. Erlang (1878−1929), Danish mathematician and engineer, a pioneer in the

development of statistical models of telephone traffic, see, e.g., [84].
4(1887−1979), was an engineer, a commissioned officer of coastal artillery, and a mathematician. He was professor in machine

components at KTH. He studied strength of materials, fatigue, bearings, and introduced what we now call the Weibull distribution

based on case studies, i.e., not on generative models.
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Theorem 2.2.13 X1, . . . , Xn are independent and N(0, 1) distributed. Then

n∑

i=1

X2
i ∈ χ2(n). (2.27)

Example 2.2.14 (Student’s t-distribution) If the random variable X has the p.d.f. for n = 1, 2, . . .

fX(x) =
Γ
(
n+1
2

)
√
nπΓ

(
n
2

) 1
(
1 + x2

n

)(n+1)/2
,−∞ < x <∞,

then X is said to be t(n)- distributed with n degrees of freedom. We write X ∈ t(n).

E [X ] = 0,Var [X ] =
n

n+ 2
.

The following theorem about Student’s t-distribution is recognized from courses in statistics. It is in the sequel

an exercise on computing the p.d.f. of a ratio of two continuous r.v.’s

Theorem 2.2.15 X ∈ N(0, 1), Y ∈ χ2(n), where X and Y are independent. Then

X√
Y
n

∈ t(n). (2.28)

Example 2.2.16 (Cauchy Distribution) X ∈ C (m, a) has the p.d.f.

fX(x) =
1

π

a

a+ (x−m)2
, −∞ < x < +∞. (2.29)

In particle physics, the Cauchy distribution C (m, a) is known as the (non-relativistic) Wigner distribution [37]

or the Breit-Wigner distribution [64, p.85]. An important special case is the standard Caychy distribution

X ∈ C (0, 1), which has the p.d.f.

fX(x) =
1

π

1

1 + x2
, −∞ < x < +∞. (2.30)

If we try to find the expectation of X ∈ C (0, 1), we start by

∫ b

a

x

1 + x2
dx =

1

2

(
ln
(
1 + b2

)
− ln

(
1 + a2

))
.

When b → ∞ and a → −∞, we see by the above that the integral
∫∞
−∞

x
1+x2 dx has no definite meaning5 .

Moments of higher order do not exist for X ∈ C (0, 1).

5Unless we define the integral by the Cauchy principal value.
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Example 2.2.17 (Rayleigh Distribution) We say thatX is Rayleigh distributed, if it has the density, a > 0,

fX(x) =

{
2x
a e

−x2/a x ≥ 0

0 elsewhere.

We write X ∈ Ra (a).

E [X ] =
1

2

√
πa, Var [X ] = a

(
1− 1

4
π

)
.

The parameter in the Rayleigh p.d.f. as recapitulated in [92] is defined in a slightly different manner. The

Rayleigh distribution is a special case of the Rice distribution presented an exercise, which therefore is a

generative model for Ra (a).

Example 2.2.18 (Beta Distribution) The Beta function B (x, y) (see, e.g., [3, pp. 82−86]) is defined for

real r > 0 and s > 0 as

B (r, s) =

∫ 1

0

xr−1 · (1 − x)s−1dx =
Γ(r)Γ(s)

Γ(r + s)
. (2.31)

Taking this for granted we have
Γ(r + s)

Γ(r)Γ(s)

∫ 1

0

xr−1 · (1 − x)s−1dx = 1. (2.32)

Since Γ(r+s)
Γ(r)Γ(s)x

r−1 · (1− x)s−1 ≥ 0 for 0 ≤ x ≤ 1, we have found that

fX (x) =

{
Γ(r+s)
Γ(r)Γ(s)x

r−1 · (1− x)s−1 0 ≤ x ≤ 1

0 elsewhere,
(2.33)

is a p.d.f. to be called the Beta density. We write X ∈ β (r, s), if X is a random variable that has a Beta

density. This p.d.f. plays an important role in Bayesian statistics.

E [X ] =
r

r + s
,Var [X ] =

rs

(r + s)2(r + s+ 1)
.

The function

Bx(r, s) =

∫ x

0

ur−1 · (1− u)s−1du, (2.34)

is known as the incomplete Beta function.

Example 2.2.19 (Gumbel Distribution) Let us consider the function

F (x) = e−e−x

, −∞ < x <∞. (2.35)

One should check the sufficient conditions of theorem 1.5.7 ensuring that F (x) is the distribution function

of some random variable X . The probability distribution corresponding to (2.35) is known as the Gumbel

distribution, and the compact notation is X ∈ Gumbel. The Gumbel distribution belongs to the family of

extreme value distributions. This indicates that it emerges as a model for the distribution of the maximum

(or the minimum) of a number of samples of various distributions. This will be demonstrated for sequences of

independent and identically exponentially distributed X in chapter 6 below.

E [X ] = γ,
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where γ is Euler’s constant = 0.577 . . .6 , and

Var [X ] =
π2

6
.

The stated expectation and variance of Gumbel distribution will be derived by means of moment generating

functions (section 5.7) in an exercise to section 5.8.2 below. The Gumbel distribution and other extreme value

distributions are important, e.g., in structural safety analysis [77].

Example 2.2.20 (Continuous Pareto Distribution) A continuous random variable X has the p.d.f.

fX(x) =

{
αkα

xα+1 x > k,

0 x ≤ k,
(2.36)

where k > 0, α > 0, which is called a Pareto density with parameters k and α. We write X ∈ Pa(k, α).

E [X ] =
αk

α− 1
,Var [X ] =

αk2

(α− 2)(α− 1)2
, α > 2.

This distribution was found by and named after the economist and sociologist Vilfredo Pareto (1848-1923)7,

as a frequency of wealth as a function of income category (above a certain bottom level). In plain words this

means: most success seems to migrate to those people or companies, who are already popular.

Example 2.2.21 (Inverse Gaussian Distribution) A continuous random variable X with the p.d.f.

fX(x) =

(
λ

2πx3

)1/2

e
−λ(x−µ)2

2µ2x , x > 0, (2.37)

is said to have the inverse Gaussian distribution a.k.a. Wald distribution. We write X ∈ IG(µ, λ), where

E [X ] = µ > 0,Var [X ] =
µ3

λ
.

The inverse Gaussian distribution is the distribution of the time a Wiener process with positive drift takes to

reach a fixed positive level.

Example 2.2.22 (K-Distribution) A continuous random variable X with the p.d.f.

fX(x) =
2

x

(
Lνx

µ

)L+ν
2 1

Γ(L)Γ(ν)
Iν−L

(
2

√
Lνx

µ

)
, x > 0 (2.38)

6A review of Euler’s constant and related issues is recapitulated very readably in [54].
7We quote from the entry on V. Pareto in a classic Swedish Encyclopedia, Nordisk familjbok, Tjugoförsta bandet, Uggleuppla-

gan, 1915: ”Pareto [-t̊a] Vilfredo, italiensk-schweizisk nationalekonom, född 1848 i Paris, utbildades till ingenjör, men öfvergick s̊a

småningom till nationalekonomien, . . . , P. har tilldragit sig mycken uppmärksamhet genom sin med matematiska formler demon-

strerade och af rikhaltiga statistiska uppgifter belysta teori om inkomstfördelningen mellan de olika samhällsmedlemmarna i skilda

länder, en fördelning som mindre motsvara en egentlig pyramid än en s̊adan med konkava sidor och konvex bas, en toppsnäcka

enligt P:s egen beskrivning.”
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is said to have the K-distribution. Here Iν−µ(z) is the modified Bessel function of the second kind. We write

X ∈ K(L, µ, ν). It holds that

E [X ] = µ, Var [X ] = µ2 ν + L+ 1

Lν
.

X ∈ K(L, µ, ν) is the distribution of the product of two independent random variabels

X = X1 ·X2,

where X1 ∈ Γ (1/L, L), and X2 ∈ Γ (µ/ν, ν). K-distribution is used as a probabilistic model in Synthetic

Aperture Radar (SAR) imagery.

Example 2.2.23 (Logistic Distribution) We say that X has a logistic distribution, X ∈ logistic(0, 1) , if its

p.d.f. is

fX(x) =
ex

(1 + ex)
2 ,−∞ < x < +∞. (2.39)

The corresponding distribution function is

Fx =

∫ x

−∞
fX(t)dt = σ(x).

The function σ(x) = 1
1+e−x is known as the logistic function, hence the name of the probability distribution.

The function σ(x) appears also, e.g., in mathematical biology and artificial neural networks.

E [X ] = 0, Var [X ] =
π2

3
.

2.2.2 Continuous Bivariate Distributions

(X,Y ) is a bivariate random variable. Let

FX,Y (x, y) = P (X ≤ x, Y ≤ y) ,−∞ < x <∞,−∞ < y <∞.

If

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv,

where ∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1, fX,Y (x, y) ≥ 0,

then (X,Y ) is a continuous bivariate random variable. fX,Y (x, y) is called the joint probability density for

(X,Y ). The main explicit case of a continuous bivariate (X,Y ) to be treated in the sequel is the bivariate

Gaussian in chapter 8. The marginal distribution function for Y is

FY (y) = FX,Y (∞, y) =

∫ y

−∞

∫ ∞

−∞
fX,Y (x, v)dxdv

and

fY (y) =
d

dy
FY (y) =

∫ ∞

−∞
fX,Y (x, y)dx
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is the marginal probability density for Y . Then, of course, the marginal distribution function for X is

FX(x) = FX,Y (x,∞) =

∫ x

−∞

∫ ∞

−∞
fX,Y (u, y)dydu.

and

fX(x) =
d

dx
FX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

is the marginal probability density for X . It follows in view of (1.12) that X and Y are independent random

variables, if and only if

fX,Y (x, y) = fX(x)fY (y), for all (x, y). (2.40)

We have even the bivariate version of the law of the unconscious statistician for an integrable Borel function

H(x, y) as

E [H(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
H(x, y)fX,Y (x, y)dydy. (2.41)

This is in the first place applied to H(x, y) = x · y, i.e., to computing covariances, which are defined or recalled

next. The covariance Cov(X,Y ) of the r.v.’s X and Y is

Cov(X,Y )
def
= E [(X − E [X ]) (Y − E [Y ])] (2.42)

Here E [X ] and E [Y ] are computed as in (2.3) using the respective marginal p.d.f.’s. It follows by properties

of integrals that

Cov(X,Y ) = E [(X · Y )]− E [X ] · E [Y ] . (2.43)

In view of (1.37) it follows that

X and Y are independent ⇒ Cov(X,Y ) = 0. (2.44)

The converse implication is not true in general, as shown in the next example.

Example 2.2.24 Let X ∈ N(0, 1) and set Y = X2. Then Y is clearly functionally dependent on X . But we

have

Cov(X,Y ) = E [(X · Y )]− E [X ] ·E [Y ] = E
[
X3
]
− 0 ·E [Y ] = E

[
X3
]
= 0.

The last equality holds, since with (2.15) one has g(x) = x3φ(x), so that g(−x) = −g(x). Hence E
[
X3
]
=∫ +∞

−∞ g(x)dx = 0, c.f., (4.50) in the sequel, too.

It will be shown in chapter 8 that the converse implication holds for bivariate Gaussian (X,Y ).

We standardize covariance8 to get the coefficient of correlation between X and Y

ρX,Y
def
=

Cov(X,Y )√
Var [X ] ·

√
Var [Y ]

. (2.45)

It is shown in an exercise to this chapter that

|ρX,Y | ≤ 1. (2.46)

The cases ρX,Y = ±1 correspond to Y and X being affine functions (e.g., Y = aX + b) of each other, the topic

of another exercise.

8in order to measure dependence in the common unit of the variables.
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2.2.3 Mean, Variance and Covariance of Linear Combinations of R.V.s

The following are important tools of computation, especially in the chapters on stochastic processes. The proofs

are omitted or left for self study.

E[

n∑

i=1

aiXi] =

n∑

i=1

aiE[Xi] (2.47)

Var[

n∑

i=1

aiXi] =

n∑

i=1

a2iVar(Xi) + 2

n−1∑

i=1

n∑

j=i+1

aiajCov(Xi, Xj),

(2.48)

Cov




n∑

i=1

aiXi,

m∑

j=1

bjXj


 =

n∑

i=1

m∑

j=1

aibjCov(Xi, Xj).

These expressions are valid for both continuous and discrete distributions.

2.3 Discrete Distributions

2.3.1 Univariate

Example 2.3.1 (Bernoulli Distribution) Let X ∈ Be (p). X has two values, usually numerically coded as

0 and 1. The p.m.f. is

pX(x) =





p x = 1

q = 1− p x = 0.

(2.49)

E [X ] = p,Var [X ] = p(1− p).

Example 2.3.2 (Symmetric Bernoulli Distribution) We say that X ∈ SymBe, if the p.m.f. is

pX(x) =





1
2 x = −1

1
2 x = 1.

(2.50)

Then

E [X ] = 0,Var [X ] = 1.

Example 2.3.3 (Discrete Uniform Distribution) X ∈ U (1, 2, . . . , n), where n > 1. The p.m.f. is

pX(x) =





1
n x = 1, 2, . . . , n

0 else.

(2.51)

I.e., we pick an integer in 1, 2, . . . , n at random.

E [X ] =
n+ 1

2
,Var [X ] =

n2 − 1

12
.
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Example 2.3.4 (Geometric Distribution) 0 < p < 1, q = 1− p. The p.m.f. of X ∈ Ge(p) is

pX(k) = qkp, k = 0, 1, 2, . . .

Suppose p is the probability of an event occurring in a trial. Consider the trial of tossing a coin. Let us say

that the event of interest is ’heads’. We are interested in the probability of the number of independent trials

we perform, before we see the event ’heads’ occuring for the first time NOT INCLUDING the successful trial.

Let X be this random number. Then we write X ∈ Ge(p).

E [X ] =
q

p
,Var [X ] =

q

p2
.

Example 2.3.5 (First Success Distribution) X ∈ Fs(p), 0 < p < 1, q = 1− p. The p.m.f. is

pX(k) = qk−1p, k = 1, 2, . . . .

Suppose again p is the probability of an event occurring in a trial. Consider the trial of tossing a coin (modelled

as an outcome of a r.v. ∈ Be(p)). Let us say again that the event of interest is ’heads’. We are interested in

the probability of the number of independent trials we perform, before we see the event ’heads’ occuring for the

first time INCLUDING the successful trial. Let X be this random number. Then we write X ∈ Fs(p).

E [X ] =
1

p
,Var [X ] =

q

p2
.

Condsider the measurable space (Ω = {(ωi)
∞
i=1 |ωi ∈ {0, 1}},F), c.f., example 1.4.7 above, Fo ⊂ F .

Then X above is defined as a map on Ω as

X(ω) = ’the first trial at which success occurs in ω’.

However, if ω0 = (ωi = 0)
∞
i=1, i.e. ω0 is an infinite sequence of digital zeros (all failures, no successes),

we have

X(ω0) = +∞.

The difficulty is that we have defined r.v.’s as measurable maps from (Ω,F) to the real numbers,

and +∞ is not a real number. Hence X is in principle an extended random variable with values

in {+∞} ∪R. However, if we are computing with the probability model of an infinite sequence of

independent Be(p) trials, we have X ∈ Fs(p). Then we must have

P (X = +∞) = 0,

since
∑∞

k=1 q
k−1p = 1 and {X = +∞} = (∪∞

k=1{X = k})c. Therefore we can define X(ω0) in any

preferred way, since this choice has no impact whatsoever on the computations of probabilities.

The literature in probability calculus is not unanimous about the terminology regarding the geometric distri-

bution. It occurs frequently (mostly?) that Fs(p) in our sense above is called the geometric distribution, see,

e.g., [48, p. 61], [55, p. 62].
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Example 2.3.6 (Binomial Distribution) X ∈ Bin (n, p), 0 ≤ p ≤ 1, q = 1− p, and the p.m.f. is

pX(k) =

(
n

k

)
pkqn−k, k = 0, 1, . . . , n.

This is the probability of an event occurring k times in n independent trials.

E [X ] = np,Var [X ] = nqp.

The distribution function of X ∈ Bin (n, p) has been expressed9 as

FX(x) =

x∑

k=0

pX(k) =
Bq(n− x, x + 1)

B (n− x, x+ 1)
,

where we used the beta function and the incomplete beta function in (2.31) and (2.34), respectively.

Example 2.3.7 (Poisson binomial Distribution) X ∈ Pobin (p1, p2, . . . , pn), 0 ≤ pi ≤ 1, i = 1, 2, . . . , n,

and the p.m.f. is

pX(k) =
∑

A∈Fk

∏

i∈A

pi
∏

j∈Ac

(1− pj), (2.52)

where Fk is the collection of all subsets of k integers that can be selected from {1, 2, 3, ..., n}. Fk has

(
n

k

)

elements. Hence it is not feasible to use (2.52) for computation for large n.

Example 2.3.8 (Poisson Distribution) X ∈ Po(λ), λ > 0, then its p.m.f. is

pX(k) = e−λλ
k

k!
, k = 0, 1, 2, . . . (2.53)

E [X ] = λ,Var [X ] = λ.

We shall in example 6.6.2 below derive the Poisson distribution as an approximation of Bin (n, p) for large n

and small p.

Example 2.3.9 (Compound Poisson Distribution) X ∈ ComPo(λ, µ), λ > 0, µ > 0, then its p.m.f. is

pX(k) =

∞∑

r=0

(rµ)k

k!
e−rµλ

r

r!
e−λ, k = 0, 1, 2, . . . (2.54)

This expression is somewhat unwieldy, and the Compound Poisson distribution is more naturally treated by

the methods of probability generating functions developed in chapter 5.

E [X ] = λµ,Var [X ] = λµ(1 + µ).

The Compound Poisson distribution has many applications, e.g., in particle physics [37, 64] and queuing theory.

9p. xv in H.G. Romig: 50−100 Binomial Tables, John Wiley & Sons, Inc., New York, 1947.
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Example 2.3.10 (Pascal Distribution) Suppose p is the probability of an event occurring in a trial. Con-

sider the trial of tossing a coin. Let us say that the event is ’heads’. We are interested in the probability of the

number of independent trials we perform, before we see the event ’heads’ occuring n times INCLUDING the

nth success.

Texts in engineering statistics suggest the Pascal Distribution as a model of, e.g., the number of

days a certain machine works before it breaks down for the nth time. Or, a text can insist upon

that ’the number of days a certain machine works before it breaks down for the nth time’ is Pascal

distributed. One can remark that ’ applications of probability calculus are based on analogies, which

are to a certain degree halting’ (J.W. Lindeberg, [75, p.120]). One could once again repeat the words

’mind projection fallacy’, too.

Let nowX be the number of independent trials we perform, before we have seen the event occurring n times. The

random variable X has then said to have the Pascal Distribution, X ∈ Pascal(n, p), n = 1, 2, 3, . . ., 0 < p < 1

and q = 1−p. Its p.m.f. can be found, using the same kind of reasoning that underlies the Binomial distribution,

[101, p.58], as

pX(k) = P (X = k) =

(
k − 1

n− 1

)
pnqk−n, k = n, n+ 1, n+ 2, . . . (2.55)

Note that we must understand

(
k − 1

n− 1

)
as = 0 for k = 0, 1, 2, . . . , n− 1. Note also that Pascal(1, p) = Fs(p).

E [X ] =
n

p
,Var [X ] = n

(1− p)

p2
.

Example 2.3.11 (Negative Binomial Distribution) X is said to follow the Negative Binomial distribu-

tion, X ∈ NBin(n, p), 0 < p < 1, q = 1− p, if its p.m.f. is

pX(k) =

(
n+ k − 1

k

)
pnqk, k = 0, 1, 2, . . . (2.56)

E [X ] = n
q

p
,Var [X ] = n

q

p2
.

Observe that Ge(p) = NBin(1, p). The p.m.f. in (2.56) can be established using the same kind of reasoning

that underlies the Binomial distribution, where one needs the interpretation of the coefficient (1.31) as given in

appendix 1.11.

There is a fair deal of confusing variation in the literature w.r.t. the terminology in the two examples above.

Sometimes the Pascal distribution defined as above and, e.g., in [101], is called the negative binomial distribution.

In some textbooks, e.g., in [49], the negative binomial distribution is as above, but in others it is known as the

Pascal distibution. The handbook [92] compromises with (2.55) as ’Negative Binomial or Pascal’ (!).

A p.m.f. pX(k) has a power-law tail, or is a power law, if it holds that

pX(k) = P (X = k) ∼ k−γ , as k → ∞. (2.57)

A p.d.f. can also have a power-law tail defined in an analogous manner.
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Remark 2.3.1 The notation f(x) ∼ g(x) (at x = a) has the following meaning.

lim
x→a

f(x)

g(x)
= 1. (2.58)

This means that the functions grow at the same rate at a. For example, if

f(x) = x2, g(x) = x2 + x,

then

lim
x→∞

f(x)

g(x)
= lim

x→∞
1

1 + 1
x

= 1,

but at the same time g(x)− f(x) = x.

Example 2.3.12 (Benford’s Law) We say that a random variable X follows Benford’s Law if it has the

p.m.f.

pX(k) = P (X = k) = log10

(
1 +

1

k

)
, k = 1, . . . , 9. (2.59)

This law is, by empirical experience, found as the distribution of the first digit in a large material of numbers.

Note that this is not the uniform distribution p(k) = 1
9 , for k = 1, 2 . . .9 that might have been expected.

Benford’s Law is known to be valid for many sources of numerical data.

Example 2.3.13 (Zipf’s Law (rank-frequency form)) We count the frequencies of occurrencies of some

N events (e.g., Swedish words in today’s issue of some Stockholm daily, digital or paper edition). Then we

determine the rank k of each event by the frequency of occurrence (the most frequent is number one and so

on). Then, if we consider pX(k) as the frequency of a word of rank k, this is very likely found to be

pX(k) = c · k−γ , (2.60)

where γ is close to one, and where c is the normalizing constant

c = 1/

N∑

k=1

k−γ .

The probability mass function in (2.60) is known as Zipf’s law, and is an empirical or experimental assertion,

which seems to arise in many situations, and is not based on any theoretical generative model. The case with

γ = 2 is known as Zipf-Lotka’s Law, and was discovered as a bibliometric law on the number of authors

making k contributions.

Example 2.3.14 (Waring distribution) We write X ∈ War(ρ, α) and say that X is Waring distributed

with parameters α > 0 and ρ > 0 , if X has the p.m.f.

pX(k) = ρ
α(k)

(α + ρ)(k+1)
, k = 0, 1, 2, . . . (2.61)

Here we invoke the ascending factorials

α(k) = α · (α + 1) · . . . · (α+ k − 1) =
Γ(α+ k)

Γ(α)
,
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and analogously for (α + ρ)(k+1). If ρ > 1, then E [X ] exists, and if ρ > 2, then Var [X ] exists, too. It can be

shown that there is the power-law tail

pX(k) ∼ 1

k1+ρ
.

We shall in an exercise to chapter 3 derive War(ρ, α) under the name Negative-Binomial Beta distribution.

E [X ] = n
α

ρ− 1
,Var [X ] =

α

ρ− 1

[
ρ+ α

ρ− 2
+

α

(ρ− 1)(ρ− 2)

]
.

This distribution was invented and named by J.O. Irwin in 196310. It has applications, e.g., in accident theory

and in the measurement of scientific productivity.

Example 2.3.15 (Skellam distribution) We write X ∈ Ske(µ1, µ2) and say that X is Skellam distributed

with parameters µ1 > 0 and µ2 > 0 , if X has the p.m.f. for any integer k

pX(k) = e−(µ1+µ2)

(
µ1

µ2

)k/2

I|k|(2
√
µ1µ2), (2.62)

where Ik(z) is the modified Bessel function of the first kind of order k.

E [X ] = µ1 − µ2,Var [X ] = µ1 + µ2.

It can be shown that if X1 ∈ Po(µ1) and X2 ∈ Po(µ2) and X1 and X2 are independent, then X1 − X2 ∈
Ske(µ1, µ2).

Skellam distribution is applied to the difference of two images with photon noise. It is also been found useful

as a model for the point spread distribution in baseball, hockey and soccer, where all scored points are equal.

2.3.2 Bivariate Discrete Distributions

(X,Y ) is a bivariate random variable and as earlier

FX,Y (x, y) = P (X ≤ x, Y ≤ y) ,−∞ < x <∞,−∞ < y <∞.

If

FX,Y (x, y) =
∑

−∞<xj≤x

∑

−∞<yk≤y

pX,Y (xj , yk),

where ∑

−∞<xj<∞

∑

−∞<yk<∞
pX,Y (xj , yk) = 1, pX,Y (xj , yk) ≥ 0,

then (X,Y ) is a discrete bivariate random variable. The function pX,Y (xj , yk) is called the joint probability

mass function for (X,Y ). Marginal distributions are defined by

pX(xj) =
∑

−∞<yk<∞
pX,Y (xj , yk), pY (yk) =

∑

−∞<xj<∞
pX,Y (xj , yk).

10J.O. Irwin: The Place of Mathematics in Medical and Biological Sciences. Journal of the Royal Statistical Society, Ser. A,

126, 1963, p. 1−14.
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The covariance of (X,Y ) is again

Cov(X,Y ) = E [(X · Y )]− E [X ] · E [Y ] , (2.63)

where we know how to compute with the joint p.m.f. and with the marginal p.m.f.’s and the law of the

unconscious statistician.

Example 2.3.16 Bivariate Bernoulli distribution Let (X,Y ) be a bivariate random variable, where both

X and Y are binary, i.e., their values are 0 or 1. Then we say that (X,Y ) has a bivariate Bernoulli distribution,

if the p.m.f is

pX,Y (x, y) = θx (1− θ)1−x λy (1− λ)1−y , x ∈ {0, 1}, y ∈ {0, 1}. (2.64)

Here 0 ≤ θ ≤ 1, 0 ≤ λ ≤ 1.

2.4 Transformations of Continuous Distributions

2.4.1 The Probability Density of a Function of Random Variable

Let X be a continuous random variable with the p.d.f. fX(x). Assume that H(x) is strictly monotonous (=

either strictly increasing or strictly decreasing). The p.d.f. of Y = H(X) is ascertained as

fY (y) = fX
(
H−1(y)

)
· | d

dy
H−1(y) | . (2.65)

Here H−1(y) is the inverse of H(x). In case the domain of definition of the function H(x) can be decomposed

into disjoint intervals, where H(x) is strictly monotonous, we have

fY (y) =
∑

i

fX
(
H−1

i (y)
)
· | d

dy
H−1

i (y) | χIi(y), (2.66)

where Hi indicates the function H restricted to the respective domain Ii of strict monotonicity, and χIi is the

corresponding indicator function.

Example 2.4.1 Let X ∈ U
(
−π

2 ,
π
2

)
. Set Y = sin(X). We want to find the p.d.f. fY (y). When we recall the

graph of sin(x), we observe that sin(x) is strictly increasing on
(
−π

2 ,
π
2

)
. Then for −1 ≤ y ≤ 1 we have

FY (y) = P (Y ≤ y) = P (X ≤ arcsin(y)) ,

since arcsin(y) is the inverse of sin(x) for x ∈]− π/2, π/2[. As X ∈ U
(
−π

2 ,
π
2

)
we have

FY (y) =
arcsin(y)− (−π/2)

π
, −1 ≤ y ≤ 1. (2.67)

Then

fY (y) =
1

π
√

1− y2
,−1 < y < 1. (2.68)

Example 2.4.2 Let X ∈ U (0, 2π) and Y = sin(X). We want again to determine the p.d.f. fY (y). The

function H(x) = sin(x) is not strictly monotonous in (0, 2π), hence we shall find the the p.d.f. fY (y) by means

of (2.66).
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We make the decomposition (0, 2π) = I1∪I2∪I3, where I1 = (0, π/2), I2 = (π/2, 3π/2) and I3 = (3π/2, 2π).

Then for i = 1, 2, 3, Hi(x) = sin(x) | Ii, i.e., the function sin(x) restricted to Hi, is strictly monotonous. In fact,

H1(x) = sin(x) 0 ≤ x ≤ π

2
,

H2(x) = H2(x − π/2),
π

2
≤ x ≤ 3π

2
⇔ H2(t) = cos(t), 0 ≤ t ≤ π

H3(x) = H3(x− 2π),
π

2
≤ x ≤ 3π

2
⇔ H3(t) = sin(t), −π

2
≤ t ≤ 0.

Then we have two cases (i)-(ii) to consider:

(i) 0 ≤ y < 1. Then (draw a picture)

FY (y) = P (Y ≤ y) = P
(
0 ≤ X ≤ H−1

1 (y)
)
+P

(
H−1

2 (y) ≤ X ≤ 3π/2
)
+P (3π/2 ≤ X ≤ 2π)

= P (0 ≤ X ≤ arcsin(y)) +P (arccos(y) ≤ X ≤ 3π/2) +
1

4

=
arcsin(y)

2π
+

3π/2− arccos(y)

2π
+

1

4
.

Then

fY (y) =
d

dy
FY (y) =

1

2π
√
1− y2

−
(

−1

2π
√
1− y2

)

=
1

π
√

1− y2
, 0 ≤ y < 1.

(ii) −1 < y < 0. Then (draw a picture)

FY (y) = P (Y ≤ y) = P
(
H−1

2 (y) ≤ X ≤ 3π/2
)
+P

(
3π/2 ≤ X ≤ H−1

3 (y)
)

= P (arccos(y) ≤ X ≤ 3π/2) +P (3π/2 ≤ X ≤ arcsin(y)) .

=
3π/2− arccos(y)

2π
+

arcsin(y)− 3π/2

2π
.

Thus we get again

fY (y) =
1

π
√
1− y2

, −1 < y < 0.

In summary, it was found that

fY (y) =
1

π
√
1− y2

, −1 < y < 1.

The p.d.f. derived above appears in the introduction to stochastic processess in chapter 9.

The p.d.f.s fY (y) derived in examples 2.4.1 and 2.4.2 are identical. Hence, if we were given a sample

set of I.I.D. outcomes of Y = sin(X) for X ∈ U
(
−π

2 ,
π
2

)
or of Y = sin(X) for X ∈ U (0, 2π),

we would have no statistical way of telling from which of the mentioned sources the observations

emanate.
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2.4.2 Change of Variable in a Joint Probability Density

This section consists, for practical purposes, of one single formula, (2.69), and applications of it. The formula

follows by the rule for change of variable in multiple integrals. A very elaborate and detailed proof is constructed

in [82, pp. 148−168].

Let X = (X1, X2, . . . , Xm) have the joint p.d.f. fX (x1, x2, . . . , xm). Define a new random vector Y =

(Y1, Y2, . . . , Ym) by

Yi = gi (X1, . . . , Xm) , i = 1, 2, . . . ,m,

where gi are continuously differentiable and (g1, g2, . . . , gm) is invertible (in a domain) with the inverse

Xi = hi (Y1, . . . , Ym) , i = 1, 2, . . . ,m,

where hi are continuously differentiable. Then the joint p.d.f. of Y is (in the domain of invertibility)

fY (y1, . . . , ym) = fX (h1 (y1, y2, . . . , ym) , . . . , hm (y1, y2, . . . , ym)) | J |, (2.69)

where J is the Jacobian determinant

J =

∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2
. . . ∂x1

∂ym

∂x2

∂y1

∂x2

∂y2
. . . ∂x2

∂ym

...
... . . .

...
∂xm

∂y1

∂xm

∂y2
. . . ∂xm

∂ym

∣∣∣∣∣∣∣∣∣∣

. (2.70)

The main point of the proof in loc.cit. may perhaps be said to be the approximation of the domain of

invertibility of (g1, g2, . . . , gm) by intervals Ik in Rm with volume V (Ik), and then to show that these

intervals are mapped by (g1, g2, . . . , gm) to parallelepipeds Pk with volume V (Pk). The volume

change incurred by this mapping is then shown to be

V (Pk) =| J | V (Ik) .

Example 2.4.3 X has the probability density fX (x), Y = AX + b, and A is m ×m and invertible. In this

case one finds that the Jacobian is J = det(A−1) and by general properties of determinants det(A−1) = 1
detA .

Then Y has in view of (2.69) the p.d.f.

fY (y) =
1

| detA |fX
(
A−1 (y − b)

)
. (2.71)

Example 2.4.4 (Ratio of two random variables) Let X and Y be two independent continuous r.v.’s with

p.d.f.’s fX(x) and fY (y), respectively. We are interested in the distribution of X
Y . We shall apply (2.69) by the

following transformation

U =
X

Y
, V = Y.

This is one typical example of the application of the change of variable formula. We are in fact

interested in a single r.v., here U , but in to order find its distribution we need an auxiliary variable,

here V , to use the terminology of [34, p. 68]. Then we determine the joint p.d.f., here fU,V (u, v),

and marginalize to U to find the desired p.d.f..
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The inverse map is found as

X = h1(U, V ) = UV, Y = h2(U, V ) = V.

Then the Jacobian is by (2.70)

J =

∣∣∣∣∣
v u

0 1

∣∣∣∣∣ = v.

By (2.69) and our assumption we get

fU,V (u, v) = fX (uv) fY (v) |v|. (2.72)

Hence the distribution of the ratio U = X
Y is given by the marginal density

fU (u) =

∫ ∞

−∞
fU,V (u, v) dv.

In [64, p. 237] this is written as

fU (u) =

∫ ∞

0

fX (uv) fY (v) vdv −
∫ 0

−∞
fX (uv) fY (v) vdv. (2.73)

Example 2.4.5 (Bivariate Logistic Normal Distribution) (From the exam in sf2940 2010-01-12) X1,X2

are two independent standard normal random variables. We introduce two new random variables by




Y1

Y2


 =




eX1

1+eX1+eX2

eX2

1+eX1+eX2


 .

We wish to find the probability density of (Y1, Y2). We write first, for clarity of thought,




Y1

Y2


 =




g1 (X1, X2)

g2 (X1, X2)


 =




eX1

1+eX1+eX2

eX2

1+eX1+eX2


 .

Then we solve to get

X1 = h1 (Y1, Y2) = lnY1 + ln
(
1 + eX1 + eX2

)
= lnY1 − ln (1− (Y1 + Y2))

and similarly

X2 = h2 (Y1, Y2) = lnY2 − ln (1− (Y1 + Y2)) .

Then we find the Jacobian, or

J =

∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣ .

Entry by entry we get
∂x1
∂y1

=
1

y1
+

1

1− (y1 + y2)

∂x1
∂y2

=
1

1− (y1 + y2)

∂x2
∂y1

=
1

1− (y1 + y2)
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∂x2
∂y2

=
1

y2
+

1

1− (y1 + y2)
.

Thus, the Jacobian determinant is

J =
∂x1
∂y1

· ∂x2
∂y2

− ∂x1
∂y2

· ∂x2
∂y1

=
1

Y1

(
1

y2
+

1

1− (y1 + y2)

)
+

1

1− (y1 + y2)

(
1

y2
+

1

1− (y1 + y2)

)

−
(

1

1− (y1 + y2)

)2

=
1

y1

1

y2
+

1

y1

1

1− (y1 + y2)
+

1

y2

1

1− (y1 + y2)
+

(
1

1− (y1 + y2)

)2

−
(

1

1− (y1 + y2)

)2

=
1

y1

1

y2
+

1

y1

1

1− (y1 + y2)
+

1

y2

1

1− (y1 + y2)

=
1

y1

1

y2
+

1

1− (y1 + y2)

(
1

y1
+

1

y2

)

=
1

y1

1

y2
+

1

1− (y1 + y2)

(
y1 + y2
y1y2

)

=
1− (y1 + y2) + y1 + y2
y1y2 (1− (y1 + y2))

=
1

y1y2 (1− (y1 + y2))
.

Let us note that by construction J > 0. Thus we get by (2.69) that

fY (y1, y2) = fX1 (h1 (y1, y2)) fX2 (h2 (y1, y2)) | J |

=
1

y1y2 (1− (y1 + y2))
φ (ln y1 − ln (1− (y1 + y2)))φ (ln y2 − ln (1− (y1 + y2))) .

This is a case of the bivariate logistic normal distribution. Since 0 < y1 < 1 and 0 < y2 < 1, 0 < y1 + y2 < 1

and with y3 = 1− (y1 + y2), the bivariate logistic normal distribution can be taken, e.g., as a prior density on

the probability simplex {(y1, y2, y3) | 0 < yi < 1, i = 1, 2, 3; 1 = y1 + y2 + y3}.

Example 2.4.6 Exponential Order Statistics Let X1, . . . , Xn be I.I.D. random variables with a continuous

distribution. The order statistic of X1, . . . , Xn is the ordered sample:

X(1) < X(2) < . . . < X(n),

Here

X(1) = min (X1, . . . , Xn)

X(n) = max (X1, . . . , Xn)

and

X(k) = kth smallest of X1, . . . , Xn .

The variable X(k) is called the kth order variable. The following theorem has been proved in, e.g., [49, section

4.3., theorem 3.1.].
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Theorem 2.4.7 Assume that X1, . . . , Xn are I.I.D. random variables with the p.d.f. f(x). The joint p.d.f. of

the order statistic is

fX(1),X(2),...,X(n)
(y1, . . . , yn) =

{
n!
∏n

k=1 f (yk) if y1 < y2 < . . . < yn,

0 elsewhere.
(2.74)

Let X1, . . . , Xn be I.I.D. random variables with the distribution Exp(1). We are interested in the differences of

the order variables

X(1), X(i) −X(i−1), i = 2, . . . , n.

Note that we may consider X(1) = X(1)−X(0), if X(0) = 0. The result of interest in this section is the following

theorem.

Theorem 2.4.8 Assume that X1, . . . , Xn are I.I.D. random variables Xi ∈ Exp(1), i = 1, 2, . . . , n. Then

(a)

X(1) ∈ Exp

(
1

n

)
, X(i) −X(i−1) ∈ Exp

(
1

n+ 1− i

)
,

(b) X(1), X(i) −X(i−1) for i = 2, . . . , n, are n independent random variables.

Proof: We define Yi for i = 1, . . . , n by

Y1 = X(1), Yi = X(i) −X(i−1).

Then we introduce

A =




1 0 0 . . . 0 0

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . −1 1



. (2.75)

so that if

Y =




Y1

Y2

Y3
...

Yn



,X =




X(1)

X(2)

X(3)

...

X(n)



,

we have

Y = AX.

It is clear that the inverse matrix A−1 exists, because we can uniquely find X from Y by

X(1) = Y1, X(i) = Yi + Yi−1 + . . .+ Y1.

We write these last mentioned equalities in matrix form by

X = A−1Y.

Then we have by (2.71)

fY (y) = fX
(
A−1y

) 1

| detA| . (2.76)
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But now we evoke (2.74) to get

fX
(
A−1y

)
= n!f (y1) f (y1 + y2) · · · f (y1 + y2 + . . .+ yn) , (2.77)

since y1 < y1 + y2 < . . . < y1 + y2 + . . .+ yn. As f(x) = e−x, we get

f (y1) f (y1 + y2) · · · f (y1 + y2 + . . .+ yn) = e−y1e−(y1+y2) · · · e−(y1+y2+...+yn)

and rearrange and use y1 = x(1) and yi = x(i) − x(i−1),

= e−ny1e−(n−1)y2 · · · e−2yn−1e−yn

= e−nx(1)e−(n−1)(x(2)−x(1)) · · · e−(x(n)−x(n−1)).

Hence, if we insert the last result in (2.76) and distribute the factors in n! = n(n− 1) · · ·3 · 2 · 1 into the product

of exponentials we get

fY (y) = ne−nx(1)(n− 1)e−(n−1)(x(2)−x(1)) · · · e−(x(n)−x(n−1))
1

| detA| . (2.78)

Since A in (2.75) is a triangular matrix, its determinant equals the product of its diagonal terms, c.f. [92, p. 93].

Hence from (2.75) we get detA = 1. In other words, we have obtained

fX(1),X(2)−X(1),...,X(n)−X(n−1)

(
x(1), x(2) − x(1), . . . , x(n) − x(n)

)

= ne−nx(1)(n− 1)e−(n−1)(x(2)−x(1)) · · · 2e−2(x(n−1)−x(n−2))e−(x(n)−x(n−1)). (2.79)

But, when we check against (2.23), (n − 1)e−(n−1)(x(2)−x(1)) is nothing but the p.d.f. of Exp
(

1
n−1

)
, and so

on, the generic factor in the product in (2.79) being (n + 1 − i)e−(n+1−i)(x(i)−x(i−1)), which is the p.d.f. of

Exp
(

1
n+1−i

)
.

Hence we have that the product in (2.79) is a product of the respective p.d.f.’s for the variables X(1) ∈
Exp

(
1
n

)
and for X(i) −X(i−1) ∈ Exp

(
1

n+1−i

)
. Thus we have established the cases (a) and (b) in the theorem

as claimed.

There exists a more intuitively appealing way of realizing the fact above. First one shows that

X(1) = min (X1, . . . , Xn) ∈ Exp

(
1

n

)

(which is also seen above), if X1, . . . , Xn are I.I.D. random variables under Exp(1). Then one can argue by

independence and the lack of memory of the exponential distribution that X(i) −X(i−1) is the minimum of

lifetimes of n+ 1− i independent Exp(1) -distributed random variables.

2.5 Appendix: Decompositions of Probability Measures on the Real

Line

2.5.1 Introduction

In this appendix we shall make a specialized investigation of probability measures on the real line and the Borel

σ field, (R,B). The goal is to give a brief account of that these measures can be additively decomposed into a
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sum of an absolutely continuous part, a discrete part and a singular part, in the sense to be made clear in the

sequel. Then we check how such dispositions are related to continuous and discrete r.v.’s. We mention here the

lecture notes [87], not because these are the authentic source with priority on the results to be discussed, but

because we shall follow the good detail of presentation as loc.cit..

We start by a theorem that shows that a probability measure on the real line and its Borel sets can be

’induced’ (in the sense given in the proof below) by a random variable.

Theorem 2.5.1 If F satisfies 1., 2. and 3. in theorem 1.5.6, then there is a unique probability measure µ on

(R,B) such that µ((a, b]) = F (b)− F (a) for all a, b.

Proof: The sets (a, b] lie in the Borel σ field. The theorem 1.5.7 gives the existence of a random variable X

with distribution F . Consider the measure this X induces on (R,B), which means that for any A ∈ B we define

µX (A)
def
= P (X ∈ A) . (2.80)

Then, of course, µ((a, b])
def
= µX((a, b]) = F (b) − F (a). The uniqueness follows because the sets (a, b) generate

the σ field and we can hence apply theorem 1.4.1.

We shall return the result in the theorem above. But we continue first by considering a generic probability

measure µ on (R,B).

2.5.2 Decompositions of µ on (R,B)
We have found in example 1.4.10 that the singleton sets {x} ∈ B. Then we can define the probability mass

function of µ as

p(x)
def
= µ ({x}) , −∞ < x <∞. (2.81)

It is clear that p(x) ≥ 0.

Lemma 2.5.2 p(x) > 0 only for countably many x.

Proof: Set Bn = {x|p(x) ≥ 1
n}. Let an= number of points in Bn (=cardinality of Bn). Then

1 ≥ µ (Bn) ≥ an
1

n
,

or, an ≤ n. Thus Bn is a set with a finite number of elements. Next we observe that

{x|p(x) > 0} = B1 ∪B2 ∪B3 ∪ . . .

This shows that {x|p(x) > 0} is a countable union of finite sets, and such a union is a countable set.

The singletons {x} such that p(x) > 0 are also called atoms of µ. In view of this lemma we may define a

discrete part or pure point mass part of µ as measure on (R,B) by the countable sum

µD(A) =
∑

x∈A|p(x)>0

p(x), A ∈ B.

We say that a probability measure µ on (R,B, ) is continuous, if its pure point mass measure is identically

zero, or

p(x) = µ ({x}) = 0, for all x ∈ R

Then we define for any A ∈ B the measure

µC(A)
def
= µ(A)− µD(A).

Note that it must hold µC(A) ≥ 0 for a measure, so we must and can check that µC(A) is a measure. Clearly,

µC is a continuous measure.
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Theorem 2.5.3 Every measure µ on (R,B) can be expressed uniquely with an additive deomposition to its

continuous part and its discrete part by

µ = µC + µD. (2.82)

By (2.82) we mean µ(A) = µC(A) + µD(A) for any A ∈ B.
We shall next proceed by decomposing additively the continuous part. We need a new definition. A measure

on µ on (R,B) is called absolutely continuous with the density f(x), if it holds for every interval I ⊂ R

that

µ(I) =

∫

I

f(x)dx, f(x) ≥ 0. (2.83)

Then it follows that an absolutely continuous measure is a continuous measure. This is plausible, since

µ ({x}) ≤ µ ([x− h, x+ h]) =

∫ x+h

x−h

f(x)dx→ 0,

as h→ 0.

Theorem 2.5.4 For every probability measure µ on (R,B) with density f(x) it holds for almost all x that

lim
h→0

1

2h
µ ({x− h, x+ h}) = f(x). (2.84)

It can be shown that f(x) ≥ 0 and
∫∞
−∞ f(x)dx = 1. Conversely, any function with the last two properties

defines an absolutely continuous measure with density f(x).

Theorem 2.5.5 For every probability measure µ on (R,B) it holds for almost all x that

lim
h→0

1

2h
µ ({x− h, x+ h}) = g(x). (2.85)

Proof: is omitted.

Let µ be a probability measure on (R,B) and the corresponding g(x) be defined as in (2.85). By the absolutely

continuous part of µ we mean the absolutely continuous measure µA with density the g(x). It can be shown

that g(x) ≥ 0 and
∫ +∞
−∞ g(x)dx = 1.

Theorem 2.5.6 Let µ be a continuous measure on (R,B). Let

µS = µ− µA. (2.86)

Then µS is a continuous measure that satisfies for almost all x

lim
h→0

1

2h
µS ({x− h, x+ h}) = 0.

The proof is omitted. The measure µS is called the singular part of µ. There are trivial examples of singular

measures, like the one that assigns measure zero to every Borel set. One can describe a purely singular

measure µ as follows:

• µS is a continuous measure.

• The whole mass of µS is on a set with zero (Lebesgue) measure.
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By theorem 2.5.3 we have for any probability measure on (R,B) that µ = µC + µD. By theorem 2.5.6 we have

µC = µA + µS for any continuous measure µC on (R,B). This we summarise in the theorem below.

Theorem 2.5.7 Every probability measure µ on (R,B) can be expressed uniquely with an additive deompo-

sition to its absolutely continuous part, its singular part and its discrete part

µ = µA + µS + µD. (2.87)

Now we start a journey backwards to the familiar notions in the bulk of this chapter.

2.5.3 Continuous, Discrete and Singular Random Variables

Let µ be probability measure on (R,B). The distribution function of µ is Fµ(x) defined by

Fµ(x) = µ (]−∞, x]) , −∞ < x <∞. (2.88)

The measure µ is uniquely determined by Fµ(x). It follows that Fµ(x) satisfies theorem 1.5.6 and in 5. of

theorem 1.5.6 and we find

p(x) = Fµ(x)− Fµ(x−),

where p(x) is the point mass function of µ as defined in (2.81). Indeed, by continuity from above of the

probability measure µ we get

Fµ(x−) = lim
h→0

Fµ(x − h) = lim
h→0

µ (]−∞, x+ h]) = µ (]−∞, x))

= µ (]−∞, x] \ {x}) = µ (]−∞, x]) − µ ({x}) = Fµ(x) − p(x).

Let µ be an absolutely continuous measure with the density fµ(x). Then in view of (2.83)

Fµ(x) =

∫ x

−∞
fµ(u)du, −∞ < x <∞.

Then it can be shown for almost all x that

d

dx
Fµ(x) = fµ(x).

In fact we have also the following theorem with a difficult proof, duely omitted.

Theorem 2.5.8 Let µ be a probability measure on (R,B) and let Fµ(x) be its distribution function. Then
d
dxFµ(x) exists for almost all x and

d

dx
Fµ(x) = g(x), (2.89)

where g(x) is given in (2.85). In addition, the absolutely continuous part µA of µ is the probability measure

given by the density g(x).

As a consequence of the theorem above we can describe the distribution function Fµ(x) of a singular measure

µ by

(a) Fµ(x) is continuous.

(b) d
dxFµ(x) = 0 for almost all x.
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Finally,

Theorem 2.5.9 Let µ be a probability measure on (R,B) and let Fµ(x) be its distribution function. Then µ

lacks a purely singular part µS , if Fµ(x) =
∫ x

−∞
d
dxFµ(u)du except for a countable number of points.

This preceding narrative has amounted to the following. Let as in the proof of theorem 2.5.1 X be a random

variable. The probability measure µX , which X induces on (R,B) is

µX (A)
def
= P (X ∈ A) .

Then by (2.87),

µX = µX
A + µX

S + µX
D , (2.90)

where for any B ∈ B
µX
A (B) =

∫

B

d

dx
FµX (x)dx, µX

D (B) =
∑

x∈B|p(x)>0

p(x).

If the parts µX
S and µX

D are missing in (2.90), we have what has been in the preceding called X a continuous

r.v.. If µX
C and µX

S are missing in (2.90), we have what has been in the preceding called X a discrete r.v.. In

addition, if µX
S is missing in (2.90), we could call X a mixed r.v., and such r.v.’s are not much in evidence in

these notes and other texts at the same level 11. If µX
C and µX

D are missing in (2.90), the random variable X is

called singular. The most famous example of a singular r.v. is the r.v. with a Cantor distribution.

2.6 Exercises

2.6.1 Distribution Functions

1. A stochastic variable X is said to follow the two-parameter Birnbaum-Saunders distribution, we

write X ∈ BS (α, β), if its distribution function is

FX(x) =





Φ

(
1
α

(√
x
β −

√
β
x

))
if 0 < x <∞

0 elsewhere,

where Φ is the cumulative distribution function of N(0, 1), α > 0, β > 0.

(a) Verify by means of theorem 1.5.7 that FX is in fact a distribution function.

(b) Show that 1
X ∈ BS

(
α, β−1

)
. This is known as the reciprocal property of the two-parameter Birnbaum-

Saunders distribution.

The two-parameter Birnbaum-Saunders distribution is a life time distribution and has been derived from

basic assumptions as a probabilistic generative model of failure times of material specimen.

2. Let X ∈ BS (α, β) (c.f. the exercise above). Let Y = ln(X). Show that the distribution function of Y is

FY (y) = Φ

(
2

α
sinh

(
y − µ

2

))
, −∞ < y <∞,

where Φ is the cumulative distribution function of N(0, 1) and where µ = ln(β). This is known as the

distribution function of the sinh-normal distribution with parameters α, µ and 2.

11We would need the Lebesgue-Stieltjes theory of integration to compute, e.g., the expectations and variances of such X.
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3. Justify for yourself that

P (a ≤ X ≤ b) = FX(b)− FX(a) +P(X = a). (2.91)

How is this related to (2.90) ?

4. A distribution function F (x) with the properties

(a) F (x) is continuous,

(b) d
dxF (x) = 0 for almost all x,

i.e, there is neither p.d.f. nor p.m.f., is the distribution function of a singular probability measure on

the real line. One example of such a distribution function is the Cantor function. We require first the

construction of the Cantor set or more precisely the Cantor ternary set.

One starts by deleting the open middle third E1 = (1/3, 2/3) from the interval [0, 1]. This leaves the union

of two intervals: [0, 1/3] ∪ [2/3, 1]. Next, the open middle third of each of these two remaining intervals

is deleted. The deleted open intervals are E2 = (1/9, 2/9)∪ (7/9, 8/9) and the remaining closed ones are:

[0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]. This construction is continued: En is the union of the middle

intervals after E1, E2, . . . , En−1 have been removed. The Cantor set C contains all points in the interval

[0, 1] that are not deleted at any step in this infinite construction, or

C
def
= [0, 1] \ ∪∞

i=1Ei.

It follows that C is uncountable and it has length (=Lebesgue measure) zero, see [91, pp. 41, 81, 138, 168,

309]. Let now A1, A2, . . . , A2n−1 be the subintervals of ∪n
i=1Ei. For example

E1 ∪ E2 = (1/9, 2/9)∪ (1/3, 2/3)∪ (7/9, 8/9) = A1 ∪ A2 ∪ A3.

Then we define

Fn(x) =





0 x ≤ 0,
k
2n x ∈ Ak k = 1, 2, . . . , 2n − 1,

1 1 ≤ x,

with linear interpolation in between. Draw graphs of Fn(x) for n = 2 and for n = 3 in the same picture.

Show that Fn(x) → F (x) for every x. The limiting function F (x) is the Cantor function. Then

F (x) is continuous and increasing and F (x) is a distribution function of some random variable according

to theorem 1.5.7. d
dxF (x) = 0 for almost every x, and F (x) has no p.d.f.. Discuss this challenge for

understanding continuity and distribution functions with your fellow student12.

2.6.2 Univariate Probability Density Functions

1. X ∈ Exp (λ). Show that for a > 0,
√

aX
λ ∈ Ra(a).

2. Y ∈ Exp (1). What is the distribution of X in

Y =

(
X

β

)α

,

where α > 0 and β > 0. Answer: Wei(α, β).

3. Let X ∈ U
(
−π

2 ,
π
2

)
. Set Y = tan(X). Show that Y ∈ C(0, 1).

12in Swedish: diskutera cantorfördelning med din bänkkamrat.
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4. We say that ’the r.v.’s X and Y are equal in distribution, if FX(z) = FY (z) for all z ∈ R, and write

this as

X
d
= Y.

Note that this is a very special sort of equality, since for the individual outcomes ω, the numbers X(ω)

and Y (ω) need not ever be equal.

Let X ∈ N (0, 1). Show that

X
d
= −X. (2.92)

In this case X(ω) 6= −X(ω), except when X(ω) = −X(ω) = 0, which has probability zero. In addition

X
d
= −X means that the distribution of X is symmetric (w.r.t. the origin).

5. Let Z ∈ N
(
µ, σ2

)
. Let X = eZ . Show that the p.d.f. of X is

fX(x) =
1

xσ
√
2π

e−
(ln x−µ)2

2σ2 , x > 0. (2.93)

This distribution is called the Log-Normal distribution.

6. X is a continuous r.v. and has the p.d.f.

fX(x) =
1

2 cosh
(
π
2x
) , −∞ < x <∞. (2.94)

We say that X has the hyperbolic secant distribution, X ∈ HypSech.

(a) Verify the claim that fX(x) in (2.94) is a p.d.f..

(b) Show that E [X ] = 0, and Var [X ] = 1.

(c) The p.d.f. fX(x) in (2.94) is plotted in figure 2.2. Explain in words the features that make this p.d.f.

different from the p.d.f. of N(0, 1). Aid: Consider figure 2.3 and read next about skewness and

kurtosis.

Skewness of a random variable X is a measure of symmetry, or more precisely, the lack of

symmetry of its distribution. A continuous distribution is intuitively stated symmetric with

respect to a center point, if its p.d.f. looks the same to the left and right of the center point.

The symmetry of N(0, 1) w.r.t. origin has been stated in (2.92) above. Clearly, N(µ, σ2) is

symmetric w.r.t. µ. Skewness κ1 is formally defined as

κ1
def
= E

[
(X − E [X ])3

σ3

]
=
E
[
X3
]
− 3E [X ]σ2 − (E [X ])3

σ3
. (2.95)

The reader should check the second equality. If X ∈ N
(
µ, σ2

)
, then the skewness is com-

puted to be = 0, see (4.50).

Kurtosis is a measure of whether the distribution of X is peaked or flat relative to a nor-

mal distribution. High kurtosis (a.k.a. leptokurtosis) tends to have a distinct peak near the

mean, decline rather rapidly, and have heavy tails. Distributions with low kurtosis (a.k.a.

platykurtosis) tend to have a flat top near the mean rather than a sharp peak. A uniform

distribution would be the extreme case. Kurtosis κ2 is formally defined as

κ2
def
= E

[
(X − E [X ])4

σ4

]
. (2.96)

If X ∈ N
(
µ, σ2

)
, then the kurtosis is computed to be = 3, see (4.50). Kurtosis is used to

measure how much a distribution differs from the normal distribution.
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Figure 2.2: The p.d.f. of X ∈ HypSech.

7. Hermite Polynomials, Gram-Charlier Expansions, Skewness and Kurtosis In this exercise we

are going to study expansions of ’nearly Gaussian’ p.d.f.’s in terms of Hermite polynomials. The resulting

expansion of a p.d.f. is known as a Gram-Charlier13 Expansion [22]. The expansion has recently been in

frequent use for financial analysis. We need a short summary of the definition and properties of Hermite

polynomials.

The Hermite polynomials Hen(x), n = 0, 1, 2, . . . , are in [96, p.273], [3, pp.204−209] or [92,

pp. 266−267] defined by the Rodrigues formula

Hen(x) = (−1)nex
2 dn

dxn
e−x2

.

This gives He0(x) = 1, He1(x) = 2x, He2(x) = 4x2 − 2, He3(x) = 8x3 − 12x, ldots e.t.c.. These

polynomials are known as the physicist’s Hermite polynomials14. We shall use another

definition to be given next.

In probability theory [24, p. 133], however, one prefers to work with probabilist’s Hermite

polynomials by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2. (2.97)

13Carl Vilhelm Ludwig Charlier (1862−1934) was Professor of Astronomy at Lund University. He is also known for the Charlier-

Poisson polynomials.
14Indeed, see p. 10 of Formelsamling i Fysik, Institutionen för teoretisk fysik, KTH, 2006

http://courses.theophys.kth.se/SI1161/formelsamling.pdf
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Figure 2.3: The p.d.f. of X ∈ HypSech and the p.d.f. of X ∈ N(0, 1) (the thicker function plot).

The first seven are then given by

H0(x) = 1, H1(x) = x,H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x,H6(x) = x6 − 15x4 + 45x2 − 15.

One can in addition define a system of multivariate Hermite polynomials, see [95, p.87]. The

Hermite polynomials, as given by (2.97), have the orthogonality property

∫ ∞

−∞
e−x2/2Hn(x)Hm(x)dx = 0, n 6= m, (2.98)

and for n = m, ∫ ∞

−∞
e−x2/2 (Hn(x))

2
dx = n!

√
2π. (2.99)

We can now explain the rationale behind the probabilist’s definition of Hermite polynomials.

Let now X ∈ N(0, 1). Then, by (2.98), if n 6= m, and the law of the unconscious statistician

(2.4) we have

E [Hn (X)Hm (X)] =
1√
2π

∫ ∞

−∞
e−x2/2Hn(x)Hm(x)dx = 0, (2.100)

and by (2.99)

E
[
H2

n (X)
]
=

1√
2π

∫ ∞

−∞
e−x2/2 (Hn(x))

2
dx = n!. (2.101)
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The technical idea of a Gram-Charlier expansion is as follows, [24, pp. 222−223]. Let fX(x) be a p.d.f..

We consider a symbolic expansion of the form

fX(x) ↔ c0φ(x) +
c1
1!
φ(1)(x) +

c2
2!
φ(2)(x) + . . . , (2.102)

where φ(x) is the p.d.f. of N(0, 1) in (2.15) and φ(n)(x) = dn

dxnφ(x). The expansion has the attribute

’symbolic’, as we are not assured of convergence.

In view of (2.97) we have

φ(n)(x) = (−1)nφ(x)Hn(x). (2.103)

Thus the right hand side of (2.102) is an expansion in terms of orthogonal polynomials of the type (2.98)

and (2.99)15. Then we can determine the coefficients cn by multiplying both sides of (2.102) with Hn(x)

and then integrating. The expressions (2.98), (2.99) and (2.103) give

cn = (−1)n
∫ ∞

−∞
fX(x)Hn(x)dx. (2.104)

We set

f̂n(x) =

n∑

k=0

ck
k!
φ(k)(x) (2.105)

Let next X be a standardized r.v., i.e., E [X ] = 0 and Var [X ] = 1.

(a) Show that [22, pp 67−72]

f̂4(x) = φ(x) +
c3
6
φ(3)(x) +

c4
24
φ(4)(x). (2.106)

Comment: Use the fact that X is standardized, so that, e.g.,
∫∞
−∞ xfXdx = 0.

(b) Show that in (2.106)

c3 = −κ1,

where κ1 is the skewness in (2.95).

(c) Show that in (2.106)

c4 = κ2 − 3,

where κ2 is the kurtosis in (2.96).

As stated above, we do not claim in general the convergence of f̂n(x) to fX(x) (or to anything), as n→ ∞.

In case convergence is there, the speed of convergence can be very slow. But this does not matter for us

here. We are interested in an expression like f̂4(x) giving us information about the ’near Gaussianness’ of

fX(x).

8. X ∈ SN (λ). Show that

X2 ∈ χ2(1).

9. Exponential Growth Observed at a Random Time or a Generative Model for the Pareto

Distribution Let us consider the deterministic (i.e., no random variables involved) exponential growth,

or

x(t) = eµt, t ≥ 0, µ > 0.

We stop, or kill, the growth at an exponentially distributed time T ∈ Exp(1/ν). Then we observe the

state of the growth at the random time of stopping, or at random age, which is X = x(T ) = eµT . Show

15The proper expansion in terms of Hermite polynomials is stated in theorem 9.7.1, but this is not Charlier’s concept.
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that X ∈ Pa
(
1, νµ

)
.

We have here a simple generative model for one of the continuous Pareto distributions in (2.36). Aid:

Note that since µ > 0 and T ∈ Exp(1/ν), we have P (X ≤ 1) = 0.

10. Prove the law of the unconscious statistician (2.4), when H(x) is strictly monotonous, by means of (2.65).

2.6.3 Multivariate P.d.f.’s

1. Cov(X,Y ) = 0 but X and Y are dependent. The continuous bivariate random variable (X,Y ) has

the p.d.f.

fX,Y (x, y) =

{
1 −y < x < y, 0 < y < 1

0 elsewhere.
(2.107)

Show that Cov(X,Y ) = 0, but X and Y are not independent.

2. Prove that

P (a < X ≤ b, c < Y ≤ d) = FX,Y (b, d)− FX,Y (a, d)− FX,Y (b, c) + FX,Y (a, c).

Technical Drill

2.1 The four r.v.’s W,X, Y and Z have the joint p.d.f

fW,X,Y,Z(w, x, y, z) = 16wxyz, 0 < w < 1, 0 < x < 1, 0 < y < 1, 0 < z < 1.

Find P
(
0 < W ≤ 1

2 ,
1
2 < X ≤ 1

)
. Answer: 3

16 .

3. (From [28]) The continuous bivariate random variable (X,Y ) has the p.d.f.

fX,Y (x, y) =





xe−x(1+y) x ≥ 0, y ≥ 0,

0 elsewhere.

(a) Find the marginal p.d.f.’s of X and Y . Are X and Y independent ? Answers: fX(x) = e−x, x ≥ 0,

fY (y) =
1

(1+y)2 , y ≥ 0. No.

(b) What is the probability that at least one ofX and Y exceeds a > 0 ? Aid: ConsiderP ({X ≥ a} ∪ {Y ≥ a})
and switch over to the complementary probability using De Morgan’s rules.

Answer: e−a + 1
1+a − 1

1+ae
−a(1+a).

4. Let X ∈ N(0, 1) and Y ∈ N(0, 1) be independent. Set

U =
X

Y
.

Show that U ∈ C(0, 1). Aid: The result (2.73) should be useful here.

5. X ≥ 0 and Y ≥ 0 are independent continuous random variables with probability densities fX(x) and

fY (y), respectively. Show that the p.d.f. of their product XY is

fXY (x) =

∫ ∞

0

1

y
fX

(
x

y

)
fY (y)dy =

∫ ∞

0

1

y
fX (y) fY

(
x

y

)
dy. (2.108)

Technical Drills
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5 X ∈ U(0, 1), and Y ∈ U(0, 1) are independent. Let W = XY . Show that

fW (w) = − lnw, 0 < w ≤ 1. (2.109)

6. X and Y are independent random variables with p.d.f.’s fX(x) and fY (y), respectively. Show that their

sum Z = X + Y has the p.d.f.

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx =

∫ ∞

−∞
fY (y)fX(z − y)dy. (2.110)

The integrals in the right hand side are known as convolutions of fX and fY . A convolution sum is valid

for the probability mass function of a sum of two indepedendent discrete random variables.

7. X ∈ Exp(1/λ) and Y ∈ Exp(1/µ) are independent, λ > 0, µ > 0. Let Z
def
= X − Y .

(a) Show that E [Z] = 1
λ − 1

µ , and Var [Z] = 1
λ2 + 1

µ2 .

(b) Show that Z has the p.d.f.

fZ(z) =

{
λµ
λ+µe

−λz z ≥ 0
λµ
λ+µe

µz z < 0.
(2.111)

(c) In probabilistic reliability theory of structures, [32], X would denote the random stress re-

sulting in a bar of constant cross section subjected to an axial random force. Y would denote the

resistance, the allowable stress, which is also random. Then R, the reliability of the structure, is

R
def
= P (X ≤ Y ) .

Show that

R =
λ

λ+ µ
.

(d) If λ = µ, which known distribution is obtained for Z?

8. (From [6]) (X,Y ) is a continuous bivariate r.v., and its joint p.d.f is

fX,Y (x, y) =
6

7
x, 0 ≤ x, 0 ≤ y, 1 ≤ x+ y ≤ 2.

Find the marginal p.d.f.’s fX(x) and fY (y). Answer:

fX(x) =

{
6
7x 0 ≤ x ≤ 1
12
7 x− 6

7x
2 1 ≤ x ≤ 2.

fY (y) =

{
9
7 − 6

7y 0 ≤ y ≤ 1
3
7 (2− y)2 1 ≤ y ≤ 2.

9. (X,Y ) is a continuous bivariate r.v., and its joint p.d.f is

fX,Y (x, y) =
c

x
e−x2y, x ≥ 1, y ≥ 0.

Show that c = 2.

10. (X,Y ) is a continuous bivariate r.v., and its joint p.d.f is

fX,Y (x, y) =

{
1

1+c(xy + c)e−(x+y) 0 ≤ x, 0 ≤ y

0 elsewhere.
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(a) Find the marginal p.d.f.’s fX(x) and fY (y). Answer:

fX(x) =

{
0 x ≤ 0
x+c
1+c e

−x x ≥ 0.

(b) Show that if c = 0, then X and Y are independent, and that if c > 0, X and Y are not independent.

11. (X,Y ) is a continuous bivariate r.v., and its joint p.d.f is for

fX,Y (x, y) =
1

π2(1 + x2)(1 + y2)
, −∞ < x <∞,−∞ < y <∞.

(a) Find the distribution function FX,Y (x, y). Aid: Plain to see.

(b) Find the marginal p.d.f.’s fX(x) and fY (y).

12. The continuous bivariate random variable (X,Y ) has the p.d.f.

fX,Y (x, y) =





e−y 0 ≤ x ≤ y

0 elsewhere.

(2.112)

(a) Find the marginal p.d.f.’s of X and Y . Are X and Y independent ? Answers: fX(x) = e−x, x > 0

and = 0 elsewhere, fY (y) = ye−y, y > 0, and = 0 elsewhere.

(b) Show that X and X
Y are independent.

(c) Give a generative model for (X,Y ). Aid: Note that Y ∈ Γ(2, 1).

13. The t -distribution X ∈ N(0, 1), Y ∈ χ2(n). X and Y are independent. Show that

X√
Y
n

∈ t(n). (2.113)

14. The F-distribution Let X1 ∈ χ2(f1), X2 ∈ χ2(f2). X1 and X2 are independent. Consider the ratio

U
def
=

X1

f1
X2

f2

.

Show that the p.d.f. of U is

fU (u) =
Γ
(

f1+f2
2

)(
f1
f2

)f1/2

Γ
(

f1
2

)
Γ
(

f2
2

) u
f1
2 −1

(
1 + f1u

f2

)(f1+f2)/2
, 0 < u <∞.

This is the p.d.f. of what is known as F -distribution or Fisher -Snedecor -distribution. The distri-

bution is important in the analysis of variance and econometrics (F-test). Aid: You need the technique

of an auxiliary variable, take V = X2. Then consider (U, V ) as a transformation of (X1, X2). The

Jacobian of the transformation is J = f2V
f1

. Find the joint p.d.f. f(U,V )(u, v), and marginalize to get

fU (u).

15. (From [49]) (X,Y ) has the p.d.f.

fX,Y (x, y) =

{
1 0 ≤ x ≤ 2,max(0, x− 1) ≤ y ≤ min(1, x)

0 elsewhere.

Show that X ∈ Tri(0, 2), Y ∈ U(0, 1).
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16. (From [49]) X1 and X2 are independent and have the common the p.d.f.

fX(x) =

{
4x3 0 ≤ x ≤ 1

0 elsewhere.

Set Y1 = X1

√
X2, Y2 = X2

√
X1. Find the joint p.d.f. of (Y1, Y2). Are Y1, and Y2 independent? Answer:

fY1,Y2(y1, y2) =

{
64
3 (y1y2)

5/3 0 < y21 < y2 <
√
y1 < 1

0 elsewhere.

Y1 and Y2 are not independent.

17. (From [49]) (X,Y ) has the p.d.f.

fX,Y (x, y) =

{
2

(1+x+y)3 0 < x, 0 < y

0 elsewhere.

Show that

(a) fX+Y (u) =
2u

(1+u)3 , 0 < u.

(b) fX−Y (v) =
1

2(1+|v|)2 , −∞ < v <∞.

18. In this exercise we study the bivariate Bernoulli distribution in example 2.3.16.

(a) Show that the function pX,Y (x, y) in (2.64) is a p.m.f..

(b) Find the marginal p.m.f.s pX(x) and pY (y).

(c) Are X and Y independent ? (Yes)

(d) What is the distribution of X? What is the distribution of Y ?

19. (X,Y ) is a discrete bivariate r.v., such that their joint p.m.f. is

pX,Y (j, k) = c
(j + k)aj+k

j!k!
,

where a > 0.

(a) Determine c. Answer: c = e−2a

2a

(b) Find the marginal p.m.f. pX(j). Answer: pX(0) = e−a

2 , pX(j) = ca
j

j! e
a(j + a) for j ≥ 1.

(c) Find P(X + Y = r). Answer: P(X + Y = r) = c (2a)r

(r−1)! , r ≥ 1,P(X + Y = 0) = 0.

(d) Find E [X ]. Answer:12 (e
−a + a+ 1).

20. Let X1 ∈ Γ(a1, b) and X2 ∈ Γ(a2, b) be independent. Show that X1

X2
and X1 +X2 are independent.

21. Let X1 ∈ Γ(r, 1) and X2 ∈ Γ(s, 1) be independent.

(a) Show that X1

X1+X2
and X1 +X2 are independent.

(b) Show that X1

X1+X2
∈ β(r, s).

22. (See [56, pp.170−171] or [97, pp. 94−95].) X ∈ N
(
v cos(φ), σ2

)
, Y ∈ N

(
v sin(φ), σ2

)
, where X and Y

are independent. Set

R =
√
X2 + Y 2.
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(a) Show that the probability density fR(r) of R is

fR(r) =
r

σ2
e−

(r2+v2)
2σ2 I0

( rv
σ2

)
, (2.114)

where I0(x) is a modified Bessel function of the first kind with order 0. The distribution in this

exercise is known as the Rice distribution. We write

R ∈ Rice (v, σ) .

The Rice distribution of R is the distibution of the envelope of the narrowband Gaussian noise [3,

section 8.3.1.]. The ratio v2

2σ2 is known as the signal-to-noise ratio (SNR).

(b) Which distribution is obtained for v = 0 ?

23. The Marcum Q-function16 is a special function important in communications engineering and radar

detection and is defined as

Qm(v, b)
def
=

1

vm−1

∫ ∞

b

rme−
(r2+v2)

2 Im−1(rv)dr, (2.115)

where Im−1(z) is a modified Bessel function of the first kind with order m− 1.

(a) Show that the Marcum Q-function can be written as

Qm(v, b) = e−
(b2+v2)

2

∞∑

k=1−m

(v
b

)k
Ik (vb) . (2.116)

(b) Let FR(r) be the distribution function of R ∈ Rice (v, σ),

FR(r) =

∫ r

0

fR(u)du.

Show that

FR(r) = 1−Q1

( v
σ
,
r

σ

)
.

This is a useful statement, since there are effective algorithms for numerical computation of the

Marcum Q-function.

(c) Let Ri ∈ Rice (vi, σi) for i = 1, 2, be independent. Show that

P (R2 > R1) = Q1

(√
α,
√
β
)
− ν2

1 + ν2
e−

α+β
2 I0

(√
αβ
)
,

where α =
v2
2

σ2
1+σ2

2
and β =

v2
1

σ2
1+σ2

2
and ν = σ1

σ2
.

24. Marcum Q-function and the Poisson distribution This exercise is found in the technical report in

the footnote above. The results are instrumental for computation ofQ1

(
v
σ ,

r
σ

)
. LetX ∈ Po(λ), Y ∈ Po(λ),

where X and Y are independent.

(a) Show that

P (X = Y ) = e−2λI0(2λ),

where I0(z) is a modified Bessel function of the first kind with order 0.

16For this topic and the definitions used, see , e.g., G.V. Weinberg: Stochastic representations of the Marcum Q-function

and associated radar detection probabilities. Australian Goverment. Department of Defence. Defence Science and Technology

Organisation. DSTO-RR-0304 (approved for public release), 2005.
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(b) Show that

P (X ≤ Y ) =
1

2

[
1 + e−2λI0(2λ)

]
.

We can perhaps make the surprising link between the Poisson distribution and Marcum Q-function

more explicit by the following observation.

By [3, Problem 21 (b). p. 297] we have

ex = I0 (x) + 2

∞∑

n=1

In (x) , (2.117)

which can be established be means of the appropriate generating function of modified Bessel functions

of the first kind.

Then in view of (2.117) and (2.116) we obtain that

Q1

(√
2λ,

√
2λ
)
=

1

2

[
1 + e−2λI0(2λ)

]
.

25. (From [14]) X1, X2, . . . , Xn are independent and identically distributed random variables with the distri-

bution function F (x) and p.d.f. f(x). We consider the range R = R (X1, X2, . . . , Xn) defined by

R
def
= max

1≤i≤n
Xi − min

1≤i≤n
Xi.

This is a function of the n r.v.’s that equals the distance between the largest and the smallest. The text

[51, ch. 12] discusses the range as applied in control charts of statistical quality engineering.

The task here is to show that the probability distribution function of R is

FR(x) = n

∫ ∞

−∞
[F (t+ x)− F (t)]

n−1
f(t)dt. (2.118)

In general, FR(x) cannot be evaluated in a closed form and is computed by numerical quadratures. Next

we find the formula in (2.118) by the sequence of steps (a)-(d).

(a) Set Z
def
= max1≤i≤nXi and Y

def
= min1≤i≤nXi. Let

F (y, z) = P (Y ≤ y, Z ≤ z) ,
∂2

∂y∂z
F (y, z) = f (y, z) .

Now show that

FR(x) =

∫ ∞

−∞

∂

∂y
F (y, z)|z=y+x

z=y dy. (2.119)

(b) Show next that

P (Y ≥ y, Z ≤ z) = [F (z)− F (y)]
n

(2.120)

(c) Show next using (2.120) that

F (y, z) = P (Y ≤ y, Z ≤ z) = P (Z ≤ z)− [F (z)− F (y)]
n

(2.121)

(d) Next use (2.121) to finally establish (2.118).

26. X1 ∈ Exp(1/λ) and X2 ∈ Exp(1/µ) are independent r.v.’s. We let

Y
def
= min(X1, X2), Z

def
= max(X1, X2), R = Z − Y.

(a) Show that

P (R ≥ a) =
λe−µa + µe−λa

λ+ µ
.

Aid: Draw a picture for R ≥ a.

(b) Find the distribution of R, when λ = µ. Hint: E.g., (2.118). Answer: R ∈ Exp(1/λ).
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2.6.4 Expectations and Variances

1. Let X ∈ Ge(p), see example 2.3.4. Show that

E [X ] =
q

p
,Var [X ] =

q

p2
.

Aid: Let f(p) = 1
1−p =

∑∞
k=0 p

k, |p| < 1. Then f
′
(p) =

∑∞
k=1 kp

k−1 and f
′′
(p) =

∑∞
k=2 k(k − 1)pk−2.

2. Let X ∈ Fs(p), see example 2.3.5. Show that

E [X ] =
1

p
,Var [X ] =

q

p2
.

Aid: As above for exercise 1. in this section.

3. Expectation and Variance of SN (λ)

Recall example 2.2.6.

(a) It needs first to be checked that the p.d.f. of X ∈ SN (λ) as given in (2.22) is in fact a p.d.f.. The

serious challenge is to show that

∫ ∞

−∞
fX(x)dx = 1 for all λ.

Note that the chosen notation hides the fact that fX(x) is also a function of λ. Aid: Define Ψ (λ)
def
=∫∞

−∞ fX(x)dx. Then we have Ψ (0) = 1 and d
dλΨ(λ) = 0 for all λ (check this) and thus the claim is

proved.

(b) Show that

E [X ] =

√
2

π

λ√
1 + λ2

.

Aid: Introduce the auxiliary function Ψ (λ)
def
=
∫∞
−∞ xfX(x)dx and find that

d

dλ
Ψ(λ) =

√
2

π

1

(1 + λ2)3/2
.

Then

E [X ] =

∫ √
2

π

1

(1 + λ2)3/2
dλ+ C.

and the constant of integration C can be determined from Ψ (0).

(c) Show that

Var [X ] = 1− 2

π

λ2

1 + λ2
.

Aid: Use Steiner
′
s formula (2.6) and the fact that X2 ∈ χ2(1).

4. Skewness and Kurtosis SN (λ)

(a) Check that the skewness (2.95) of X ∈ SN (λ) is

κ1 =

(
4− π

2

)
· (E [X ])

3

(Var [X ])
3/2

.

Hence λ = 0 implies κ1 = 0, as should be.
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(b) Check that the kurtosis (2.96) of X ∈ SN (λ) is

κ2 = 2 (π − 3) · (E [X ])
4

(Var [X ])
2 .

5. Chebychev’s inequality Let X1, X2, . . . , Xn be independent r.v.’s, and identically Xi ∈ U(−1, 1). Set

X = 1
n

∑n
i=1Xi. Use the Chebychev inequality (1.27) to estimate how large n should be so that we have

P
(
| X |> 0.05

)
≤ 0.05.

Answer: n ≥ 2667.

6. |Coefficient of Correlation| ≤ 1 The coefficient of correlation is defined in (2.45). The topic of this

exercise is to show that (2.46), i.e., |ρX,Y | ≤ 1 holds true.

(a) Let now X and Y be two r.v.’s, dependent or not. Assume that E [X ] = E [Y ] = 0 and Var [X ] =

Var [Y ] = 1. Show that E [XY ] ≤ 1. Aid: Since (X − Y )
2 ≥ 0, we get that E

[
(X − Y )

2
]
≥ 0.

Expand (X − Y )
2
to show the claim.

(b) The r.v.’s are as in (a). Show that E [XY ] ≥ −1. Aid: Consider (X + Y )
2
, and apply steps of

argument similar to the one in case (a).

(c) We conclude by (a) and (b) that |E [XY ] | ≤ 1 under the conditions there. Let now X and Y be

two r.v.’s, independent or dependent. Assume that E [X ] = µX and E [Y ] = µY and Var [X ] = σ2
X ,

Var [Y ] = σ2
Y . Set Z1 = X−µX

σX
, and Z2 = Y−µY

σY
. Now prove that |ρX,Y | ≤ 1 by applying the

conclusion above to Z1 and Z2.

7. When is the Coefficient of Correlation = ±1 ? Show for the coefficient of correlation ρX,Y as

defined in (2.45) that

ρX,Y = ±1 ⇔ Y = aX + b.

8. X ∈ Γ(p, 1/λ). Show that

E [Xm] =
(m+ p− 1)!

(r − 1)!λ
.

2.6.5 Additional Exercises

1. X ∈ Ge(p), 0 < p < 1. Let m be an integer ≥ 2. The floor function or the integer part of a real

number x is

⌊x⌋ def
= the largest integer smaller than x. (2.122)

We set

Lm =

⌊
X

m

⌋
.

and

Rm = X −m · Lm.

(a) Show that the marginal p.m.f. of Lm is

P (Lm = l) = (1− (1− p)
m
) (1− p)

ml
, l = 0, 1, . . . ,

i.e., Lm ∈ Ge ((1− p)m) and that the marginal p.m.f. of Rm is

P (Rm = r) =
(1 − p)rp

1− (1− p)m
, r = 0, 1, . . . ,m− 1.
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(b) Show that Lm and Rm are independent r.v.’s.

2. Let X ∈ Exp (1/λ). Invoking again the integer part (2.122) we set

Lm =

⌊
X

m

⌋

and

Rm = X −m · Lm.

Show that Lm and Rm are independent r.v.’s. Determine even the marginal distributions of Lm and Rm.

3. X ∈ Exp(1/λ), and

D = X − ⌊X⌋.

D is the fractional part of X , as ⌊X⌋ is the integer part of X . Show that the p.d.f of D is

fD(d) =

{
λe−λd

1−e−λ 0 < d < 1

0 elsewhere.

4. Let X1, X2, . . . , Xn be I.I.D. random variables under a continuous probability distribution with the dis-

tribution function FX(x). Let θ be the median of the distribution, i.e., a number such that

1

2
= FX(θ).

Find the probability distribution of the number of the variables X1, X2, . . . , Xn that are less than θ.

5. Chen’s Lemma X ∈ Po(λ). H(x) is a locally bounded Borel function. Show that

E [XH(X)] = λE [H(X + 1)] . (2.123)

Chen’s lemma is found, e.g., in [9]. The cited reference develops a whole theory of Poisson approximation

as a consequence of (2.123).

6. X ∈ Po(λ). Show that

E [Xn] = λ

n−1∑

k=0

(
n− 1

k

)
E
[
Xk
]
. (2.124)

Aid: Use Chen’s Lemma with a suitable H(x).

7. Skewness and Kurtosis of Poisson r.v.’s Recall again (2.95) and (2.96). Show that if X ∈ Po(λ),

λ > 0, then

(a)

κ1 =
1√
λ
,

(b)

κ2 = 3 +
1

λ
.

8. X ∈ Po(λ), λ > 0. Find

E

[
1

1 +X

]
.

Answer: 1
1+λ

(
1− e−λ

)
. Why can we not compute E

[
1
X

]
?
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9. Let X1, X2, . . . , Xn are I.I.D. and positive r.v.’s. Show that for any k ≤ n

E

[
X1 +X2 + . . .+Xk

X1 +X2 + . . .+Xn

]
=
k

n
.

Aid: Deal first with the case n = 2.

10. (From [88]) X ∈ Po(λ), λ > 0. Show that

P (X ≤ k) =
1

k!

∫ ∞

λ

e−ttkdt, k = 0, 1, 2, . . . .

11. Mill’s inequality X ∈ N(0, 1). Show that

P (| X |> t) ≤
√

2

π

e−
t2

2

t
. (2.125)

Aid: Show first that P (| X |> t) = 2P (X > t). Then find P (X > t) and provide the desired upper bound

by observing that if x > t, then x
t > 1.

12. Mill’s inequality and Chebychev’s Inequality Let X1, . . . , Xn are I.I.D. and ∈ N(0, 1). Set X =
1
n

∑n
i=1Xi. Use Mill’s inequality (2.125) to find and upper bound for P (| X |> t) and make a comparison

with the bound by Chebychev’s Inequality. Aid: The reader is assumed to know that X ∈ N
(
0, 1

n

)
.



Chapter 3

Conditional Probability and

Expectation w.r.t. a Sigma Field

3.1 Introduction

Conditional probability and conditional expectation are fundamental in probability and random processes in

the sense that all probabilities referring to the real world are necessarily conditional on the information at hand.

The notion of conditioning does not seem to play any significant role in general measure and integration theory,

as developed by pure mathematicians, who need not necessarily regard applied processing of information as a

concern of their theoretical work.

The conditional probability is in a standard fashion introduced as

P (A | B)
def
=

P (A ∩B)

P(B)
, (3.1)

which is called the conditional probability of the event A given the event B, if P(B) > 0. P (B | A) is defined
analogously. We shall in this chapter expand the mathematical understanding of the concepts inherent in the

definition of conditional probability of an event in (3.1).

3.2 Conditional Probability Densities and Conditional Expectations

We are operating with the notations for bivariate random variables in section 2.2.2 above. The conditional

density for Y given X = x is for fX(x) > 0 defined by

fY |X=x(y)
def
=

fX,Y (x, y)

fX(x)
. (3.2)

We have that

fY |X=x(y) =
fX,Y (x, y)∫∞

−∞ fX,Y (x, t) dt
. (3.3)

Clearly ∫ ∞

−∞
fY |X=x(y)dy = 1 for all x.

In this setting P (Y ≤ y | X = x)= FY |X=x(y) =
∫ y

−∞ fY |X=x(u)du is the conditional distribution function of Y

under the condition X = x. The conditional density fY |X=x(y) is thus the derivative of FY |X=x(y) with respect

to y.

91
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In the sequel we shall use a special symbolic notation for conditional distributions P (Y ≤ y | X = x)

using the earlier distribution codes. For example, suppose that for any x > 0

fY |X=x(y) =





1
xe

−y/x 0 ≤ y

0 elsewhere.

Then we write this in view of (2.23) as Y | X = x ∈ Exp(x).

Our calculus should be compatible with (3.1). One difficulty is that the event {X = x} has the probability = 0,

since X is a continuous random variable. We can think heuristically that the conditioning event {X = x} is

more or less {x ≤ X ≤ x+ dx} for an infinitesimal dx. We obtain (c.f., (3.1))

FY |X=x(y) = P (Y ≤ y | X = x) ≈ P (Y ≤ y | x ≤ X ≤ x+ dx)

=
P (x ≤ X ≤ x+ dx, Y ≤ y)

P (x ≤ X ≤ x+ dx)
=
FX,Y (x+ dx, y)− FX,Y (x, y)

P (x ≤ X ≤ x+ dx)

≈
∂
∂xFX,Y (x, y)dx

fX(x)dx
=

∂
∂xFX,Y (x, y)

fX(x)
,

and thus

fY |X=x(y) =
∂

∂y
FY |X=x(x, y) =

∂2

∂x∂yFX,Y (x, y)

fX(x)
=
fX,Y (x, y)

fX(x)
.

In the same way as in (3.2) we can write

fX,Y (x, y) = fX(x)fY |X=x(y),

and this yields

fY (y) =

∫ ∞

−∞
fX(x)fY |X=x(y) dx. (3.4)

For a bivariate discrete variable (X,Y ) we have

pY |X=xk
(yj) =

pX,Y (xk, yj)

pX(xk)
for j = 0, 1, 2, . . . , .

Example 3.2.1 The operation in (3.4) is used in Bayesian statistics and elsewhere in the following way. Let

fY |Θ=θ(y) be a probability density with the parameter θ, which is regarded as an outcome of the r.v. Θ. Then

fΘ(θ) is the prior p.d.f. of Θ.

To illustrate the idea precisely, think here of, e.g., the r.v. Y | Θ = θ ∈ Exp(θ), with the p.d.f.

fY |Θ=θ(y) =
1
θe

−y/θ, where θ is an outcome Θ, which is a positive r.v. with, e.g., Θ ∈ Exp(λ).

Then the Bayesian integral or the mixing integral

fY (y) =

∫ ∞

−∞
fY |Θ=θ(y)fΘ(θ) dθ (3.5)

defines a new p.d.f. fY (y) (sometimes known as a predictive p.d.f.), which may depend on the so called

hyperparameters (like λ in the preceding discussion) from fΘ(θ). Following the rules for conditional densities

we obtain also

fΘ|Y=y(θ) =
fΘ,Y (θ, y)

fY (y)
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and furthermore

fΘ|Y=y(θ) =
fY |Θ=θ(y)fΘ(θ)∫∞

−∞ fY |Θ=θ(y)fΘ(θ) dθ
. (3.6)

This is Bayes’ rule (with p.d.f.’s), and constitutes an expression for the posterior p.d.f of Θ given Y = y.

In view of the preceding we define quite naturally the conditional expectation for Y given X = xk by

E(Y | X = xk)
def
=

∞∑

j=−∞
yj · pY |X=xk

(yj).

The conditional expectation for Y given X = x is given by

E(Y | X = x)
def
=

∫ ∞

−∞
yfY |X=x(y) dy. (3.7)

Theorem 3.2.2 Double Expectation

E(Y ) =





∞∑
k=−∞

E(Y | X = xk)pX(xk) discrete r.v.

∞∫
−∞

E(Y | X = x)fX(x) dx continuous r.v..

(3.8)

Proof We deal with the continuous case. The conditional expectation E(Y | X = x) is a function of x, which

we denote by H(x). Then we have the random variable H(X) = E(Y | X) for some (what has to be a Borel)

function H . We have by the law of unconscious statistician (2.4) that

E [H(X)] =

∫ ∞

−∞
H(x)fX(x) dx

=

∫ ∞

−∞
E(Y | X = x)fX(x) dx,

and by the definition in (3.7)

=

∫ ∞

−∞

(∫ ∞

−∞
yfY |X=x(y) dy

)
fX(x) dx =

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y) dx dy

and from the definition of marginal density

=

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y) dx

︸ ︷︷ ︸
=fY (y)

dy =

∫ ∞

−∞
yfY (y) dy = E(Y ).

The proof for the discrete case is now obvious.

We write the result (3.7) above as the rule of double expectation

E(Y ) = E(E(Y | X)). (3.9)

The conditional variance of Y given X = x is defined by

Var (Y | X = x)
def
= E((Y − µY |X=x)

2 | X = x),

where µY |X=x = E(Y | X = x). In addition Var(Y | X = x) = H(x) for some Borel function H(x). There is

no rule equally simple as (3.9) for variances, but we have the following theorem.
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Theorem 3.2.3 (Law of Total Variance)

Var(Y ) = E(Var(Y | X)) + Var(E(Y | X)). (3.10)

The law of total variance above will be proved by means of (3.46) in the exercises to this chapter. We shall next

develop a deeper and more abstract (and at the same time more expedient) theory of conditional expectation

(and probability) that relieves us from heuristics of the type ’{x ≤ X ≤ x + dx} for an infinitesimal dx’, and

yields the results above as special cases. We start with the simplest case, where we condition w.r.t. an event.

3.3 Conditioning w.r.t. an Event

We have a random variable X on (Ω,F ,P) and take A ∈ F . We assume that P(A) > 0. We recall the definition

of
∫
A
XdP in an exercise in chapter 1, or,

∫

A

XdP =

∫

Ω

χA ·XdP = E [χA ·X ] .

Definition 3.3.1 For any random variable E [|X |] < ∞ and any A ∈ F such that P(A) > 0. The conditional

expectation of X given A is defined by

E [X | A] = 1

P(A)

∫

A

XdP. (3.11)

Example 3.3.1 (Conditional Probability) Let χA be the indicator function of A ∈ F

χA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A.
(3.12)

Then χA is a random variable on (Ω,F ,P). We take B ∈ F with P(B) > 0. Then we have

E [χA | B] =
1

P(B)

∫

B

χAdP

and by an exercise in chapter 1,

=
1

P(B)

∫

Ω

χA · χBdP.

It holds that

χA · χB = χA∩B

(check this !). Then ∫

Ω

χA · χBdP =

∫

Ω

χA∩BdP

= 0 ·P ((A ∩B)c) + 1 ·P (A ∩B) = P (A ∩B) .

Thus

E [χA | B] =
P (A ∩B)

P(B)
. (3.13)

The alert reader cannot but recognize the expression in the right hand side of (3.13) as the conditional probability

of A given B, for which the symbol P (A | B) has been assigned in (3.1).
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3.4 Conditioning w.r.t. a Partition

Let P = {A1, A2, . . . , Ak} be a partition of Ω, i.e., Ai ∈ F , i = 1, 2, . . . , k, Ai ∩ Aj = ∅, j 6= i and ∪k
i=1Ai = Ω.

We can call any set Ai a cell of P . We assume that P (Ai) > 0. The sigma-field σ (P) generated by P is such

that there are no subsets of any of Ai in σ (P). We say that any Ai is an atom of σ (P).

Consider the following schedule. Somebody chooses randomly (whatever this means in an operational sense)

an ω ∈ Ω and informs you about in which cell of P , say Ai, ω lies. For example, the information might be the

index of the cell. Thus our information is an outcome of the random variable

Y (ω) =

k∑

i=1

iχAi
(ω).

We can thus say that having access to a partition means having access to a piece of information. The partitions

are ordered by inclusion (are a lattice), in the sense that

P1 ⊂ P2

means that all cells in P2 have been obtained by partitioning of cells in P1. P1 is coarser than P2, and P2 is

finer than P1, and P2 contains more information than P1.

Then we can compute the conditional expectation of X given Ai using (3.11) or

E [X | Ai] =
1

P(Ai)

∫

Ai

XdP. (3.14)

But hereby we have defined a random variable, by the assignment

Ω ∋ ω 7→ E [X | Ai] , if ω ∈ Ai.

Then we can define, see [13, p. 495], the conditional expectation w.r.t. to a partition. We remind once more

about the definition of the indicator function in (3.12).

Definition 3.4.1 The conditional expectation given the information in partition P is denoted by

E [X | P ], and is defined by

E [X | P ] (ω)
def
=

k∑

i=1

χAi
(ω)E [X | Ai] . (3.15)

The point to be harnessed from this is that E [X | P ] is not a real number, but a random variable. In fact it

is a simple random variable in the sense of section 1.8.1. We shall next pay attention to a few properties of

E [X | P ], which foreshadow more general conditional expectations.

(a) E [X | P ] is measurable w.r.t. the sigma-field σ (P) generated by P , as E [X | P ] is a constant on each

partioning set.

(b) Take one of the partitioning sets Aj in σ (P). Then

∫

Aj

E [X | P ] dP =

k∑

i=1

E [X | Ai]

∫

Aj

χAi
(ω)dP(ω)

=

k∑

i=1

E [X | Ai]

∫

Ω

χAj
(ω) · χAi

(ω)dP(ω) = E [X | Aj ]

∫

Ω

χAj
dP(ω),
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since χAi
(ω) · χAj

(ω) = 0 for all ω, unless i = j, and
(
χAj

(ω)
)2

= χAj
(ω) for all ω, and thus we get

= E [X | Aj ]

∫

Aj

dP(ω) = E [X | Aj ]P (Aj) .

By (3.14) this equals

=

∫

Aj

XdP.

We summarize; the desired result is
∫

Aj

E [X | P ] dP =

∫

Aj

XdP. (3.16)

Our strategy is now to define conditional expectation in more general cases by extending the findings (a) and

(b) (i.e., (3.16)) about E [X | P ]. The way of proceeding in the next section is necessary, because the restriction

to P(Ai) > 0 will make it impossible to construct conditional expectation by an approach, where the mesh of

cells of the partition gets successively smaller (and the partition becomes finer and finer).

3.5 Conditioning w.r.t. a Random Variable

Definition 3.5.1 Let Y be a r.v. such that E [| Y |] < ∞, and let X be an arbitrary random variable. Then

the conditional expectation Y given X , E [Y | X ], is a random variable such that

1. E [Y | X ] is FX -measurable.

2. for any event A ∈ FX we have ∫

A

E [Y | X ] dP =

∫

A

Y dP.

We shall say later a few words about the existence of E [Y | X ] as defined here.

We can define conditional probability of an event A given X by

P(A | X)
def
= E [χA | X ] ,

where χA is the indicator function (see eq. (3.12)) of the event A in Ω.

We shall need the following lemma that helps us in accepting that E [Y | X ] is unique almost surely.

Lemma 3.5.1 Let (Ω,F ,P) be a probability space and let G be a sigma field contained in F . If X is a G
-measurable random variable and for any B ∈ G

∫

B

XdP = 0, (3.17)

then X = 0 almost surely (i.e., P (X = 0) = 1).

Proof Take any ε > 0. Then P (X ≥ ε) = 0. This is seen as follows.

0 ≤ εP (X ≥ ε) =

∫

{X≥ε}
εdP ≤

∫

{X≥ε}
XdP = 0.

The last equality is true by assumption, since {X ≥ ε} ∈ G. In the same way we have that P (X ≤ −ε) = 0.

Therefore

P (−ε ≤ X ≤ ε) = 1
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for any ε > 0. Let us set

An =

{
− 1

n
< X <

1

n

}
.

Then P (An) = 1, and since An is a decreasing sequence of events, {X = 0} = ∩∞
n=1An and by continuity of

probability from above (see theorem 1.4.9 in chapter 1)

P ({X = 0}) = lim
n→∞

P (An) = 1,

as was to be proved.

Note that the Doob-Dynkin theorem 1.5.5 in Chapter 1 implies that there is a Borel function H such that

E [Y | X ] = H(X).

We can every now and then give more or less explicit formulas for H . One such case is investigated in section

3.6 that comes next.

3.6 A Case with an Explicit Rule for Conditional Expectation

The question of existence and uniqueness of E [Y | X ] may require deep theorems to be proved, but in many

practical cases we can find an explicit formula, so that we can verify the conditions 1. and 2. in definition 3.5.1

above directly. We shall next present such a case.

Let us suppose that (X,Y ) is a continuous bivariate random variable

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv.

We assume that E [Y | X ] exists. We shall show that the preceding definition 3.5.1 checks with the formula

(3.7).

Theorem 3.6.1 Let Y be a r.v. such that E [| Y |] <∞, and let X be a random variable such that (X,Y ) has

the joint density fX,Y on all R×R. Then

E [Y | X = x] =

∫ +∞
−∞ yfX,Y (x, y)dy
∫ +∞
−∞ fX,Y (x, y)dy

. (3.18)

Proof By virtue of definition 3.5.1 we need to find a Borel function, say H(x), such that for any Borel event A

we have ∫

X∈A

H(X)dP =

∫

X∈A

Y dP. (3.19)

Note that {X ∈ A} is an event in FX . Let us start with the right hand side of (3.19). Since A ∈ B,
∫

X∈A

Y dP =

∫

Ω

χA(X(ω))Y (ω)dP (ω) ,

where χA(x) is the indicator of A ∈ B, see (1.26), and one may compare with the idea in an exercise in Chapter

1. But we can write this in the usual notation

=

∫ +∞

−∞

∫ +∞

−∞
χA(x)ydFX,Y (x, y)

=

∫

A

(∫ +∞

−∞
yfX,Y (x, y)dy

)
dx. (3.20)
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Furthermore, in the left hand side of (3.19)

∫

X∈A

H(X)dP =

∫

Ω

χA(X(ω))H(X(ω))dP (ω)

=

∫ +∞

−∞
χA(x)H(x)dFX (x)

and as dFX(x) = fX(x)dx =
∫ +∞
−∞ fX,Y (x, y)dydx

=

∫ +∞

−∞
χA(x)H(x)

(∫ ∞

−∞
fX,Y (x, y)dy

)
dx

=

∫

A

H(x)

(∫ +∞

−∞
fX,Y (x, y)dy

)
dx. (3.21)

Now, (3.19) requires that we can choose a Borel function H(x) so that the expressions in (3.20) and (3.21) are

equal, i.e., ∫

A

(∫ +∞

−∞
yfX,Y (x, y)dy

)
dx =

∫

A

H(x)

(∫ +∞

−∞
fX,Y (x, y)dy

)
dx.

If these integrals are to coincide for each Borel set A, then we must take

H(x) =

∫ +∞
−∞ yfX,Y (x, y)dy
∫ +∞
−∞ fX,Y (x, y)dy

,

which is the assertion in (3.18), as was to be proved.

3.7 Conditioning w.r.t. a σ -Field

Definition 3.7.1 Let Y be a r.v. such that E [| Y |] < ∞. Let G be a sub σ field of F , i.e., G ⊆ F . Then the

conditional expectation Y given G , E [Y | G], is a random variable such that

1. E [Y | G] is G-measurable.

2. for any event A ∈ G we have ∫

A

E [Y | G] dP =

∫

A

Y dP. (3.22)

We do not prove that the random variable E [Y | G] exists, as the proof is beyond the scope of these notes/this

course. The interested student can check, e.g., [103, p. 27] or [63, p. 200].

We have, when FX is the σ field generated by X ,

E [Y | FX ] = E [Y | X ] ,

hence this definition extends the definition 3.5.1.

In addition we can define the conditional probability

P(A | G) def
= E [χA | G] . (3.23)
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3.7.1 Properties of Conditional Expectation

The statements in the following theorem are the ranking tools for computing with conditional expectations.

When a sigma field is generated by a random variable X , and thus E [Y | FX ] = E [Y | X ], the properties below

reduce back to the properties of E [Y | X ] in section 3.2 above. Thus, for example, (3.9) above is the rule of

double expectation below.

In [20] the following basic properties of and useful rules for manipulation with the conditional expectation

are given the nice descriptive names recapitulated below.

Theorem 3.7.1 a and b are real numbers, E [| Y |] <∞, E [| Z |] <∞, E [| X |] <∞ and H ⊂ F , G ⊂ F ,

1. Linearity:

E [aX + bY | G] = aE [X | G] + bE [Y | G]

2. Double expectation :

E [E [Y | G]] = E [Y ]

3. Taking out what is known: If Z is G -measurable, and E [| ZY |] <∞

E [ZY | G] = ZE [Y | G]

4. An independent condition drops out: If Y is independent of G,

E [Y | G] = E [Y ]

5. Tower Property : If H ⊂ G,
E [E [Y | G] | H] = E [Y | H]

6. Positivity: If Y ≥ 0,

E [Y | G] ≥ 0.

All equalities and inequalities hold almost surely.

Proof See, e.g., [103, pp. 29-30].

1. The proof of linearity is more or less straightforward and is left as an exercise.

2. To prove the rule of double expectation we observe that by assumption the condition in (3.22) is to hold

for all A in G, hence it must hold for Ω. This means that

∫

Ω

E [Y | G] dP =

∫

Ω

Y dP = E [Y ] ,

as claimed.

3. We start by verifying the result for Z = χB (see (3.12)), where B ∈ G. In this special case we get

∫

A

ZE [Y | G] dP =

∫

A

χBE [Y | G] dP =

∫

A∩B

E [Y | G] dP =

∫

A∩B

Y dP,

where we used (3.22), since A ∩B ∈ G, and

=

∫

A

χBY dP.
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On the other hand, by (3.22), the conditional expectation of E [ZY | G] satisfies
∫

A

E [ZY | G] dP =

∫

A

E [χBY | G] dP =

∫

A

χBY dP

Hence we have shown that ∫

A

ZE [Y | G] dP =

∫

A

E [ZY | G] dP

for all A ∈ G, and hence the lemma 3.5.1 about uniqueness says that

∫

A

(ZE [Y | G]− E [ZY | G]) dP = 0

implies

ZE [Y | G] = E [ZY | G]

almost surely.

We can proceed in the same manner to prove that the result holds for step functions

Z =

n∑

j=1

ajχAj
,

where Aj ∈ G for j = 1, 2, . . . ,m. Finally, we approximate a general Z by a sequence of step functions

(recall the operations in section 1.8.1 in Chapter 1).

4. Since we assume that Y is independent of G, Y is independent of the random variable χA for all A ∈ G.
Due to (2.44) Y and χA have zero covariance, and this means by (2.42)

E [Y χA] = E [Y ]E [χA] .

Therefore ∫

A

Y dP =

∫

Ω

χAY dP = E [Y χA] = E [Y ]E [χA]

= E [Y ]

∫

Ω

χAdP = E [Y ]

∫

A

dP =

∫

A

E [Y ] dP,

since E [Y ] is a number, whereby, if we read this chain of inequalities from right to left

∫

A

E [Y ] dP =

∫

A

Y dP,

for all A in G. Comparison with (3.22) shows that this means

E [Y ] = E [Y | G] .

5. We shall play a game with the definition. By the condition (3.22) we have again for all A ∈ G that

∫

A

E [Y | G] dP =

∫

A

Y dP. (3.24)

With respect to H, we get for all A ∈ H
∫

A

E [Y | H] dP =

∫

A

Y dP. (3.25)
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But since H ⊂ F , A ∈ H, we have thus in from (3.24) and (3.25)
∫

A

E [Y | H] dP =

∫

A

E [Y | G] dP,

which holds for all A ∈ H. But when we check and apply the definition (3.22) once again, we get from

this the conclusion that

E [E [Y | G] | H] = E [Y | H] ,

as was to be proved.

6. We omit this.

Example 3.7.2 Taking out what is known This example is encountered in many situations. Let H(x) be

a Borel function. X and Y are random variables. Then the rule of taking out what is known gives

E [H(X) · Y | FX ] = H(X) ·E [Y | FX ] .

To get a better intuitive feeling for the tower property, which is an enormously versatile tool of computation, we

recall example 1.5.4. There X is random variable and for a Borel function Y = f(X). It was shown in loc.cit.

that

FY ⊆ FX .

Then the tower property tells us that for a random variable Z

E [E [Z | FX ] | FY ] = E [Z | FY ] .

How do we interpret this? We provide an answer to this question in section 3.7.4 below by using the interpre-

tation of a conditional expectation E [Y | X ] as an estimator of Y by means of X .

3.7.2 An Application of the Properties of Conditional Expectation w.r.t. a σ-

Field

Lemma 3.7.3 Le Y be a random variable that has the variance Var(Y ) <∞ and let X be an another random

variable (in the same probability space as Y ). Set

Ŷ = E [Y | FX ]

and

Ỹ
def
= Y − Ŷ .

Then it holds that

Var(Y ) = Var(Ŷ ) + Var(Ỹ ).

Proof We recall the well known formula, see, e.g. [15, p. 125],

Var(Y ) = Var(Ŷ + Ỹ ) = Var(Ŷ ) + Var(Ỹ ) + 2Cov(Ŷ , Ỹ ).

We must investigate the covariance, which obviously must be equal to zero, if the our statement is to be true.

We have

Cov(Ŷ , Ỹ ) = E
[
Ŷ · Ỹ

]
− E

[
Ŷ
]
· E
[
Ỹ
]
. (3.26)
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Here we have, since Ỹ = Y − Ŷ , that

E
[
Ŷ · Ỹ

]
= E

[
Ŷ Y

]
− E

[
Ŷ 2
]
.

We use first the rule of double expectation (property 2.)

E
[
Ŷ Y

]
= E

[
E
[
Ŷ Y | FX

]]
=

and take out what is known (in FX) (property 3.)

= E
[
Ŷ E [Y | FX ]

]
= E

[
Ŷ 2
]
.

Therefore in (3.26)

E
[
Ŷ · Ỹ

]
= 0.

Furthermore

E
[
Ỹ
]
= E

[
Y − Ŷ

]
= E [Y ]− E

[
Ŷ
]
=

and the rule of double expectation (property 2.)

= E [Y ]− E [E [Y | FX ]] = E [Y ]− E [Y ] = 0.

Thus even the second term in the right hand side of (3.26) is equal to zero. Thereby we have verified the claim

as asserted.

3.7.3 Estimation Theory

There is an important interpretation of the quantities treated in lemma 3.7.3. We regard

Ŷ = E [Y | FX ] = E [Y | X ]

as an estimator of Y based on X . Then Ỹ is the estimation error

Ỹ = Y − Ŷ .

In fact we should pay attention to the result in (3.46) in the exercises. This says that if E
[
Y 2
]
< ∞ and

E
[
(g(X))

2
]
<∞, where H(x) is a Borel function, then

E
[
(Y −H(X))

2
]
= E [Var(Y | X)] + E

(
(E [Y | X ]−H(X))

2
)
. (3.27)

This implies, since both terms in the right hand side are ≥ 0 that for all H(x)

E
[
(Y − E [Y | X ])

2
]
≤ E

[
(Y −H(X))

2
]

(3.28)

In other words, H∗(X) = Ŷ = E [Y | X ] is the optimal estimator of Y based on X , in the sense of minimizing

the mean square error. The proof of lemma 3.7.3 above contains the following facts about optimal mean square

estimation:

•
E
[
Ỹ
]
= 0. (3.29)
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• the estimation error Ỹ is uncorrelated with the estimator Ŷ

Cov(Ŷ , Ỹ ) = 0. (3.30)

• The variance of Y can be decomposed as

Var(Y ) = Var(Ŷ ) + E [Var(Y | X)] , (3.31)

since by (3.27), (3.28) and by (3.29)

Var(Ỹ ) = E [Var(Y | X)] .

This framework yields a particularly effective theory of estimation (prediction, filtering, e.t.c. [90]), when later

combined with the properties of Gaussian vectors and Gaussian stochastic processes.

3.7.4 Tower Property and Estimation Theory

Suppose now that X is random variable that we are planning to (or should) use in order to estimate Z, which

is not observable to us. Unfortunately, we do not have direct data or observations of X either, but we have

merely access to Y = f(X), where f is not invertible. We could think of observing X via an A/D -converter

(e.g, a hard limiter) or a clipping or both. The tower property tells us, as stated above, that

E [E [Z | FX ] | FY ] = E [Z | FY ] . (3.32)

Now we recall from the preceding section that E [Z | FY ] is our best mean square estimate of Z based on Y .

By the same account Ẑ = E [Z | FX ] is the best mean square estimate of Z based on X . But then, of course,

we have in the left hand side of (3.32),

̂̂
Z = E

[
Ẑ | FY

]

i.e.,
̂̂
Z is our best mean square estimate of Ẑ based on Y . Then we understand that the tower property (3.32)

tells us simply that

̂̂
Z = E [Z | FY ] ,

or, in other words, that our best mean square estimate of Z based on Y is in fact an estimate of Ẑ ! This is

what is lost, when being forced to estimate Z using Y rather than X . The loss of information is also manifest

in the inclusion FY ⊂ FX .

3.7.5 Jensen’s Inequality for Conditional Expectation

Theorem 3.7.4 Let ϕ : R 7→ R be convex function. Let X be a random variable such that E [|X |] < ∞ and

that E [|ϕ(X)|] <∞. Let G ⊂ F . Then

ϕ (E [X | G]) ≤ E [ϕ (X) | G] . (3.33)

Proof: is omitted, since it can be done as the proof of theorem 1.8.3 in chapter 1..
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3.8 Exercises

3.8.1 Easy Drills

1. A and B are two events with P(A) > 0 and P(B) > 0. A ∩B = ∅. Are A and B independent?

2. P(A ∩B) = 0.2, P(A) = 0.6 and P(B) = 0.5.

(a) Is A ∩B = ∅?
(b) Are A and B independent?

(c) Find P(Ac ∪Bc).

3. Given P(A ∩Bc) = 0.3, P((A ∪B)c) = 0.2 and P(A ∩B) = 0.1, find P(A | B).

4. If P(A | B) ≤ P(A), show that P(B | A) ≤ P(B).

5. A and B are two events with P((A ∪ B)c) = 0.6 and P(A ∩ B) = 0.1. Let E be the event that either A

or B but not both will occur. Find P(E | A ∪B).

6. A and B are two disjoint events. Show that

P(A | A ∪B) =
P(A)

P(A) +P(B)
.

3.8.2 Conditional Probability

1. Let (Ω,F ,P) be probability space. Let B ∈ F and P(B) > 0. Then we define for any A ∈ F

P† (A)
def
=

P (A ∩B)

P(B)
,

or, P† (A) = P (A | B) in (3.1). Show that
(
Ω,F ,P†) is a probability space.

2. The Chain Rule of Probability Let A1, A2, . . . , An, n ≥ 2 be a events such that P
(
∩n−1
i=1 Ai

)
> 0.

Show that

P (∩n
i=1Ai) = P

(
An | ∩n−1

i=1 Ai

)
· · ·P (A3 | A2 ∩A1)P (A2 | A1)P (A1) . (3.34)

This rule is easy to prove and often omitted from courses in probability, but has its merits, as will be seen.

3. Law of Total Probability P = {A1, A2, . . . , Ak} is a partition of Ω. Thus Ai ∈ F , i = 1, 2, . . . , k,

Ai ∩ Aj = ∅, j 6= i and ∪k
i=1Ai = Ω. Show that for any event B ∈ F

P (B) =

k∑

i=1

P (B | Ai)P (Ai) . (3.35)

The expression is known as the law of total probability . How is this related to the expression in (3.15) ?

4. Inverse Probability or Bayes’ Formula P = {A1, A2, . . . , Ak} is a partition of Ω, i.e., Ai ∈ F ,

i = 1, 2, . . . , k, Ai ∩ Aj = ∅, j 6= i and ∪k
i=1Ai = Ω. Show that for any event B ∈ F and any Al

P (Al | B) =
P (B | Al)P (Al)∑k
i=1 P (B | Ai)P (Ai)

, l = 1, 2, . . . , k. (3.36)

The expression is nowadays known as Bayes’ Formula or Rule, c.f. (3.6), but was in the past centuries

called the rule of inverse probability.
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5. X ∈ Exp (λ), λ > 0. Show that

P (X > t+ s | X > s) = P (X > t) . (3.37)

This is known as the lack of memory property of the exponential distribution.

6. X ∈ Fs (p), 0 < p < 1. Show that for every pair (k,m), k = 0, 1, . . . ,m = 0, 1, 0, 1, . . . ,

P (X > m+ k | X > m) = P (X ≥ k) . (3.38)

This is known as the lack of memory property of the first success distribution.

7. LetX1 and X2 be two independent r.v.’s with the same p.m.f. pX(k) on the positive integers, k = 1, 2, . . . ,.

We know that pX(k) ≤ c(< 1) for every k. Show that P (X1 +X2 = n) ≤ c.

8. X1, X2, . . . , Xn, . . . is a sequence of independent and identically distributed r.v.’s ∈ Po (2). N is indepen-

dent of the Xn, and N ∈ Po(1). We consider the following sum of a random number of random

variables SN = X1 +X2 + . . .+XN , S0 = 0. Find that

P (SN = 0) = ee
−2−1. (3.39)

The same formula will be derived using generating functions in an exercise of chapter 5.

9. The following is an idea in molecular biotechnology about a p.d.f. of p-values, when testing hypotheses of

gene expressions in microarrays:

f(p) =

{
λ+ (1− λ) · apa−1 0 < p < 1

0 elsewhere.
(3.40)

Here 0 < λ < 1, and 0 < a < 1. This distribution has been called the BUM distribution. The acronym

BUM stands for Beta-Uniform Mixture. Find a generative model for the the BUM distribution.

10. X ∈ U(0, 1). Find P
(
X ≤ x | X2 = y

)
.

11. Poisson Plus Gauss Distribution [33, p.327] LetN ∈ Po (λ), X ∈ N
(
0, σ2

)
, N andX are independent.

Set

U = N +X.

Show that the p.d.f. of U is

fU (u) =

∞∑

k=0

e−λ

σ
√
2π

λk

k!
e−

(u−k)2

2σ2 . (3.41)

12. This exercise is excerpted from [84, p. 145−146]1, and is in loc.cit. a small step in developing methods for

treating measurements of real telephone traffic.

Let N ∈ Po(λt). Let T | N = n ∈ Erlang
(
n, 1s

)
, see example 2.2.10. Show that

E [T ] = λst.

The model discussed in loc.cit. is the following. N is the number of phone calls coming to a telephone

exchange during (0, t]. If N = n , then the total length of the n calls is T . Hence E [T ] is the expected

size of the telephone traffic started during (0, t].

1[84] is the Ph.D.-thesis (teknologie doktorsavhandling) from 1943 at KTH by Conrad ’Conny’ Palm (1907−1951). Palm was an

electrical engineer and statistician, recognized for several pioneering contributions to teletraffic engineering and queueing theory.
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13. X ∈ Exp(1), Y ∈ Exp(1) are independent. Find the distribution of X | X + Y = c, where c > 0 is a

constant.

14. X1, X2, . . . , Xn, . . . is a sequence of independent and identically distributed r.v.’s ∈ Be (1/2). N is inde-

pendent of the Xi’s, and N ∈ Po(λ). We consider the r.v.’s

Y1 = X1 +X2 + . . .+XN ;Y1 = 0, N = 0, Y2 = N −X1.

Show that Y1 ∈ Po
(
λ
2

)
and Y2 ∈ Po

(
λ
2

)
and that they are independent.

15. (From [49]) Let N ∈ Ge(p) and set X = (−1)N . Compute

(a) E [X ] and Var [X ]. Answer: p
2−p ,

4(1−p)
(2−p)2 .

(b) the p.m.f. of X . Answer: pX(1) = 1
2−p , pX(−1) = 1−p

2−p .

16. (From [30]) Given P(A) = a and P(B) = b, show that a+b−1
b ≤ P(A | B) ≤ a

b .

3.8.3 Joint Distributions & Conditional Expectations

1. (From [97]) Let (X,Y ) is a bivariate random variable, where X is discrete and Y is continuous. (X,Y )

has a joint probability mass - and density function given by

fX,Y (k, y) =

{
∂P (X=k,Y ≤y)

∂y = λ (λy)k

k! e−2λy for k = 0, 1, 2, . . . , and y ∈ [0,∞)

0 elsewhere.

(a) Check that
∞∑

k=0

∫ ∞

0

fX,Y (k, y)dy =

∫ ∞

0

∞∑

k=0

fX,Y (k, y)dy = 1.

(b) Compute the mixed moment E [XY ] defined as

E [XY ] =

∞∑

k=0

∫ ∞

0

kyfX,Y (k, y)dy.

Answer: 2
λ .

(c) Find the marginal p.m.f. of X . Answer: X ∈ Ge(1/2).

(d) Compute the marginal density of Y here defined as

fY (y) =

{ ∑∞
k=0 fX,Y (k, y) y ∈ [0,∞)

0 elsewhere.

Answer: Y ∈ Exp(1/λ).

(e) Find

pX|Y (k|y) = P (X = k|Y = y) , k = 0, 1, 2, . . . , .

Answer: X |Y = y ∈ Po(λy).

(f) Compute E [X |Y = y] and then E [XY ] using double expectation. Compare your result with (b).

2. (From [35]) Let X ∈ Po (λ) and Y ∈ Po (µ). X and Y are independent. Set Z = X + Y .

(a) Find the conditional distribution X | Z = z. Answer: X | Z = z ∈ Bin
(
z, λ

λ+µ

)
.
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(b) Find E [X | Z = z], E [X | Z], Var [X | Z = z] , Var [X | Z]. Answer: z λ
λ+µ , E [X | Z] = Z λ

λ+µ ,

Var [X | Z = z] = z λ
λ+µ

(
1− λ

λ+µ

)
, Var [X | Z] = Z λ

λ+µ

(
1− λ

λ+µ

)
.

(c) Find the coefficient of correlation ρX,Z ,

ρX,Z =
Cov(X,Z)√

Var [X ]
√
Var [Z]

.

Answer:
√

λ
λ+µ .

3. (From [35]) X ∈ Exp (λ) and Y ∈ U(0, θ). X and Y are independent. Find P (X > Y ). Answer:
λ
θ

(
1− e−

θ
λ

)
.

4. (From [35]) The joint distribution of (X,Y ) is for β > −1 and α > −1.

fX,Y (x, y) =

{
c (α, β) yβ(1− x)α 0 ≤ x ≤ 1, 0 ≤ y ≤ x,

0 elsewhere.

(a) Determine c (α, β). Aid: Consider a suitable beta function, c.f., (2.31).

(b) Find the marginal distributions and compute E [X ], Var [X ].

(c) Determine E [X | Y = y], Var [X | Y = y], E [Y | X = x], Var [Y | X = x].

Answers

(a) c (α, β) = (β+1)Γ(α+β+3)
Γ(α+1)Γ(β+2) .

(b)

fX(x) =
c (α, β)

β + 1
xβ+1(1− x)α, 0 ≤ x ≤ 1,

fY (y) =
c (α, β)

α+ 1
yβ(1 − y)α+1 0 ≤ y ≤ 1,

E [X ] =
β + 2

α+ β + 3
,

Var [X ] =
(α+ 1)(β + 2)

(α+ β + 4)((α+ β + 3)2
.

(c)

E [X | Y = y] = 1− α+ 1

α+ 2
(1− y),

Var [X | Y = y] =
(α + 1)(1− y)2

(α+ 3)(α+ 2)2
.

You obtain E [Y | X = x], Var [Y | X = x] from this by replacing y with 1 − x and α with β and β

with α.

5. (From [35]) Let X1, X2, . . . , Xn be independent and Po(λi) -distributed random variables, respectively.

Let the r.v. I ∈ U (1, 2, . . . , n), c.f., Example 2.3.3. Find E [XI ] and Var [XI ]. Answer: Let λ = 1
n

∑n
i=1 λi.

Then

E [XI ] = λ,

and

Var [XI ] = λ− λ
2
+

1

n

n∑

i=1

λ2i .
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6. (From [35]) Let X1, X2, . . . , Xn be independent and identically Exp(1/λ) -distributed random variables.

Let in addition S0 = 0 and Sn = X1 +X2 + . . .+Xn. Set

N = max{n | Sn ≤ x}.

N is a random time, equal to the number of that random sample, when Sn for the last time stays under

x. Then show that N ∈ Po (λx).

7. Show using the properties of conditional expectation, that ifX and Y are independent and the expectations

exist, then

E [X · Y ] = E [X ] · E [Y ] . (3.42)

8. Let (X,Y ) be a continuous bivariate r.v. with the joint p.d.f.

fX,Y (x, y) =

{
c(x+ y) 0 < x < y < 1

0 elsewhere.

(a) Find c.

(b) Find fX(x) and fY (y).

(c) Find E [X ].

(d) Find E [X | Y = y].

Answers: (a) c = 2, (b) fX(x) = 1 + 2x − 3x2, 0 < x < 1, fY (y) = 3y2, 0 < y < 1. (c) E [X ] = 5
12 , (d)

E [X | Y = y] = 5
9y.

9. Let (X,Y ) be a continuous bivariate r.v. with the joint p.d.f. in (2.112). Find fY |X=x(y). Answer:

fY |X=x(y) =

{
e(x−y) x < y

0 elsewhere.

10. Let X ∈ Exp (1/a), Y ∈ Exp (1/a) are independent. Show that X | X + Y = z ∈ U(0, z).

11. Let X ∈ Exp (1), Y ∈ Exp (1) are independent. Show that X
X+Y ∈ U(0, 1).

12. Rosenblatt Transformation, PIT2 Let X = (X1, . . . , Xn) be a continuous random vector with the

joint distribution FX (x1, . . . , xn). We transform (X1, . . . , Xn) to (Y1, . . . , Yn) by

Yi = gi (Xi) ,

where the transformations yi = gi (xi) are given by

y1 = g1 (x1) = FX1 (x1)

y2 = g2 (x2) = FX2|X1=x1
(x2)

... (3.43)

yn = gn (xn) = FXn|X1=x1,...,Xn−1=xn−1
(xn) .

Note that we are using here an application of the chain rule (3.34).

Show that (Y1, . . . , Yn) are independent and that Yi ∈ U(0, 1), i = 1, 2, . . . , n.

2The author thanks Dr. Thomas Dersjö from Scania, Södertälje for pointing out this.
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In structural safety and solid mechanics this transformation is an instance of the isoprobabilis-

tic transformations . In econometrics and risk management3 this transformation is known

as PIT = probability integral transform. PIT is applied for evaluating density forecasts4

and assessing a model,s validity. Thus the PIT is used for transforming joint probabilities for

stochastic processes in discrete time. Here the arbitrariness of the ordering in X1, . . . , Xn, that

is regarded as a difficulty of the Rosenblatt transformation, is automatically absent.

13. Let (X,Y ) be a bivariate random variable, where both X and Y are binary, i.e., their values are 0 or 1.

The p.m.f of (X,Y ) is

pX,Y (x, y) = τx (1− τ)
1−x

(
θy (1− θ)

(1−y)
)x (

λy (1− λ)
(1−y)

)1−x

, x ∈ {0, 1}, y ∈ {0, 1}. (3.44)

Here 0 ≤ τ ≤ 1, 0 ≤ θ ≤ 1, and 0 ≤ λ ≤ 1.

(a) Check that pX,Y (x, y) is a p.m.f..

(b) Find the marginal p.m.f. pX(x).

(c) Find the p.m.f. pY |X=x(y) for all x ∈ {0, 1}, y ∈ {0, 1}.
(d) What is the meaning of θ? What is the meaning of λ?

(e) Find E [Y | X = x] for x = 0 and x = 1.

14. (From [49]) Let (X,Y ) be a bivariate r.v. such that

Y | X = x ∈ Fs(x), fX(x) = 3x2, 0 ≤ x ≤ 1.

Compute E [Y ], Var [Y ], Cov(X,Y ) and the p.m.f. of Y . Answers: E [Y ] = 3
2 ,Var [Y ] = 9

4 , Cov(X,Y ) =

− 1
8 , and pY (k) =

18
(k+3)(k+2)(k+1)k , k ≥ 1.

3.8.4 Miscellaneous

1. (From [20]) Let A and B be sets in F and let χA and χB be the respective indicator functions, see equation

(3.12). Assume that 0 < P(B) < 1. Show that

E [χA | χB] (ω) =

{
P(A | B) if ω ∈ B

P(A | Bc) if ω /∈ B.
(3.45)

2. (From [20]) Let B ∈ G, P (B) > 0 and let X be such that E [|X |] <∞. Show that

E [E [X | G] | B] = E [X | B] .

3. (From the Exam in sf2940, 23rd of October 2007)X ∈ Po (λ). Show that E
[
etX | X > 0

]
= e−λ

1−e−λ

(
eλe

t − 1
)
.

4. Mean Square Error Let H(x) be a Borel function and X random variable such that E
[
(H(X))

2
]
<∞.

Then show that

E
[
(Y −H(X))

2
]
= E [Var(Y | X)] + E

(
(E [Y | X ]−H(X))

2
)
. (3.46)

3Hampus Engsner, when writing his M.Sc-thesis, pointed out PIT for the author.
4Diebold F.X., Gunther T.A & Tay A.S.: Evaluating density forecasts, 1997, National Bureau of Economic Research Cambridge,

Mass., USA



110 CHAPTER 3. CONDITIONAL PROBABILITY AND EXPECTATION W.R.T. A SIGMA FIELD

Aid: We start with the identity

E
[
(Y −H(X))

2
]
= E

[
(Y − E [Y | X ] + E [Y | X ]−H(X))

2
]
.

When we square this and compute the expectation we get

E
[
(Y −H(X))

2
]
= A+ 2B + C, (3.47)

where

A = E
[
(Y − E [Y | X ])2

]
,

B = E [(Y − E [Y | X ]) · (E [Y | X ]−H(X))] ,

and

C = E
[
(E [Y | X ]−H(X))

2
]
.

Now use double expectation for the three terms in the right hand side of (3.47). For A we get

E
[
E
[
(Y − E [Y | X ])

2
]
| X
]
,

for B

E [E [(Y − E [Y | X ] ·E [Y | X ]−H(X))] | X ] ,

and for C,

E
[
E
[
(E [Y | X ]−H(X))2 | X

]]
= E

[
(E [Y | X ]−H(X))2

]
,

where the known condition dropped out. Now show that the term B is = 0, and then draw the desired

conclusion.

When one takes H(X) = E [Y ], a constant function of X , (3.46) yields the law of total variance in

(3.10)

Var [Y ] = E
[
(Y − E [Y ])

2
]
= E [Var(Y | X)] + Var [E [Y | X ]] . (3.48)

5. (From [12]) Let X and Y be independent random variables and assume that E
[
(XY )2

]
<∞. Show that

Var [XY ] = (E [X ])
2
Var(Y ) + (E [Y ])

2
Var [X ] + Var [Y ] Var [X ] .

Aid: Set Z = XY , and then use the law of total variance, equation (3.48) above, via

Var [Z] = E [Var [Z | X ]] + Var (E [Z | X ]) ,

and continue using the properties of variance and conditional expectation.

6. The linear estimator ŶL, of Y by means of X , optimal in the mean square sense is given (as will be shown

in section 7.5) by

ŶL = µY + ρ
σY
σX

(X − µY ) ,

where µY = E [Y ], µX = E [X ], σ2
Y = Var [Y ], σ2

X = Var [X ], ρ = Cov(Y,X)
σY ·σX

.

(a) Show that

E
[(
Y − ŶL

)
X
]
= 0. (3.49)

This says that the optimal linear estimation error is orthogonal to X .

(b) Show that Y − ŶL is uncorrelated with X .
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(c) Show that if Ŷ = E [Y | X ], then

E
[(
Y − Ŷ

)
h(X)

]
= 0 (3.50)

for any Borel function h such that E
[
(h(X))2

]
<∞.

7. (From [12])

(a) Let X1, X2, . . . , Xn be independent and identically distributed (I.I.D.) random variables and let

S = X1 +X2 + . . .+Xn.

Show that

E [X1 | S] = S

n
. (3.51)

(b) Let X ∈ N (0, k) , W ∈ N (0,m) and be independent, where k and m are positive integers. Show

that

E [X | X +W ] =
k

k +m
(X +W ).

Aid: The result in (a) can turn out to be helpful.

8. Let X ∈ Pa(k, α) as in example 2.2.20. Show for b > a > k that

P (X > b | X > a) =
(a
b

)α
.

The term scale-free is used of any distribution (discrete or continuous or mixed) that looks essentially

the same when looked at any scale, or such that

P (X > b | X > a)

depends only on the ratio a/b and not on the individual scales a and b. Zipf’s law is also scale-free in this

sense.

Recently the scale-free property has been observed for the degree distribution of many networks, where

it is associated with the so-called small world phenomenon5. Examples are the World Wide Web, and

human web of sexual contacts and many networks of interaction in molecular biology.

9. Let N ∈ Po
(

v2

2σ2

)
. Let

X | N = n ∈ χ2(2n+ 2).

Set R = σ
√
X. Compute directly the density of R and show that you obtain (2.114), i.e., R ∈ Rice (v, σ).

Aid: You will eventually need a series expansion of a modified Bessel function of the first kind with order

0, as a real function see, e.g., [92, section 12.4]6 or [3, p. 288].

10. Assume that X | P = p ∈ Ge(p) (= NBin(1, p)) and P ∈ β (α, ρ). Show that X ∈ War(ρ, α), as defined in

example 2.3.14. We apply here the Bayesian integral of (3.5). This fact should explain why the Waring

distribution is known under the name Negative-Binomial Beta distribution.

5A small world network is a graph in which the distribution of connectivity is not confined to any scale and where every node

can be reached from each other by a small number of steps.
6Or, see p.9 of Formelsamling i Fysik, Institutionen för teoretisk fysik, KTH, 2006

http://courses.theophys.kth.se/SI1161/formelsamling.pdf.
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11. let X ∈ N(0, 1) and Y ∈ N(0, 1) and X and Y be independent. Take a real number λ. Set

Z =

{
Y, if λY ≥ X

−Y, if λY < X .

Show that Z ∈ SN (λ). Hence we have here a generative model of SN (λ).

12. X ∈ N(0, σ2
x) and f(x) is the p.d.f. of N(0, σ2

c ). U ∈ U(0, f(0)) and is independent of X .

Show that X | U ≤ f(X) ∈ N
(
0, s2)

)
, where 1

s2 = 1
σ2
x
+ 1

σ2
c
.

13. X ∈ SymBe. Let X = x and ρ ∈ [−1, 1]. Then set

Y =

{
x with probability 1/2 + ρ/2

−x with probability 1/2− ρ/2.

Show that Cov(X,Y ) = ρ.

3.8.5 Martingales

The exercises below are straightforward applications of the rules of computation in theorem 3.7.1 on a sequence

of random variables with an assorted sequence of sigma fields, to be called martingales, and defined next.

Definition 3.8.1 Let F be a sigma field of subsets of Ω. Let for each integer n > 0 Fn be a sigma field ⊂ F
and such that

Fn ⊂ Fn+1. (3.52)

Then we call the family of sigma fields (Fn)n≥1 a filtration.

A important example of a filtration is given by

Fn = σ (X1, . . . , Xn) ,

i.e., the sigma field generated by X1, . . . , Xn. This means intuitively that if A ∈ F , then we are able to decide

whether A ∈ Fn or A /∈ Fn by observing X1, . . . , Xn.

Definition 3.8.2 Let X = (Xn)
∞
n=1 be a sequence of random variables on (Ω,F ,P). Then we call X a

martingale with respect to the filtration (Fn)n≥1, if

1. E [| Xn |] <∞ for all n.

2. Xn is measurable with respect to Fn for each n.

3. For n ≥ 1 the martingale property holds:

E [Xn+1 | Fn] = Xn. (3.53)

The word martingale can designate several different things, besides the definition above. Martingale is, see

figure 3.17, a piece of equipment that keeps a horse from raising its head too high, or, keeps the head in a

constant position, a special collar for dogs and other animals and a betting system.

It is likely that the preceding nomenclature of probability theory is influenced by the betting system (which

may have received its name from the martingale for horses . . .).

7http://commons.wikimedia.org/wiki/User:Malene
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Figure 3.1: Shannon Mejnert riding on Sandy in Baltic Cup Show on 28th of May 2006 at Kallehavegaard

Rideklub, Randers in Denmark. The horse, Sandy, is wearing a martingale, which, quoting the experts,

consists of: ..’ a strap attached to the girth and passes between the horse’s front legs before dividing into two

pieces. At the end of each of these straps is a small metal ring through which the reins pass.’

1. Let (Fn)n≥1 be a filtration and E [|X |] <∞. Set

Xn = E [X | Fn] .

Show that (Xn)n≥1 is a martingale with respect to the filtration (Fn)n≥1.

2. Let (Xn)
∞
n=1 be a sequence of independent, nonnegative random variables with E [Xn] = 1 for every n.

Let

M0 = 1,F0 = (Ω, ∅) ,
Mn = X1 ·X2 · . . . ·Xn,

and

Fn = σ (X1, . . . , Xn) .

Show that (Mn)n≥0 is a martingale with respect to the filtration (Fn)n≥0.

3. Let X be a martingale with respect to the filtration (Fn)n≥1. Show that then for every n

E [Xn+1] = E [Xn] = . . . = E [X1] .

(Recall that a martingale in the sense of figure 3.1 keeps the horse’s head in a constant position.)

4. Let X be a martingale with respect to the filtration (Fn)n≥1. Show that then for every n ≥ m ≥ 1

E [Xn | Fm] = Xm.
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5. {Xn}∞n=1 are independent and identically distributed with E [Xn] = µ and Var [Xn] = σ2. Define

W0 = 0,Wn =

n∑

i=1

Xi,

Fn = σ (X1, . . . , Xn) ,

and

Sn = (Wn − nµ)2 − nσ2.

Show that {Sn}∞n=0 is a martingale w.r.t. {Fn}∞n=0.

6. Let {Xn}∞n=0 be a sequence of independent random variables. In many questions of statistical inference,

signal detection e.t.c. there are two different probability distributions for {Xn}∞n=0. Let now f and g be

two distinct probability densities on the real line. The likelihood ratio Ln is defined as

Ln
def
=

f (X0) · f (X1) · . . . · f (Xn)

g (X0) · g (X1) · . . . · g (Xn)
, (3.54)

where we assume that g (x) > 0 for all x.

(a) Show that Ln is a martingale with respect to Fn = σ (X1, . . . , Xn), if we think that g is the p.d.f.

of the true probability distribution for {Xn}∞n=0. That g is the the p.d.f. of the true probability

distribution is here simply to be interpreted as the instruction to compute the required expectations

using g. For example, for any Borel function H of X

E [H (X)] =

∫ ∞

−∞
H(x)g(x)dx.

(b) Let

ln = − lnLn.

The function l(n) is known as the (- 1 ×) loglikelihood ratio. Show that (w.r.t. the p.d.f. of the

true distribution g)

E [ln+1 | Fn] ≥ ln.

Aid: Consider Jensen’s inequality for conditional expectation in theorem 3.7.4.

7. Stochastic Integrals We say that (Xn)n≥0 is predictable, if Xn is Fn−1 measurable, where (Fn)n≥0

is a filtration. Let us define the increment process △X as

(△X)n
def
= Xn −Xn−1,

with the convention X−1 = 0.

(a) Show that a sequence of random variables (Xn)n≥0 is a martingale if and only if

E [(△X)n | Fn−1] = 0, (3.55)

for n = 0, 1, . . ..

(b) For any two random sequences X = (Xn)n≥0 and M = (Mn)n≥1 the discrete stochastic integral

is a sequence defined by

(X ⋆M)n
def
=

n∑

k=0

Xk (△M)k (3.56)

Assume thatX is predictable, M is a martingale and that E [| Xk (△M)k |] <∞. Show that (X ⋆M)

is a martingale.

Aid: Set Zn =
∑n

k=0Xk (△M)k and find the expression for (△Z)n and use (3.55).
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8. Why Martingales? We have above worked on some examples of martingales with the verification of

the martingale property as the main activity. Apart from the potential charm of applying the rules of

conditional expectation, why are martingales worthy of this degree of attention? The answer is that there

are several general results (the stopping theorem, maximal inequalities, convergence theorems e.t.c.) that

hold for martingales. Thus, it follows by martingale convergence, e.g., that in (3.54) the likelihood ratio

Ln → 0 almost surely, as n→ ∞.

What is the ’practical’ benefit of knowing the the convergence Ln → 0? Aid: Think of how you would use

Ln to decide between H0 : Xi ∈ g, H1 : Xi ∈ f .

More about martingales and their applications in statistics can be studied, e.g., in [102, ch. 9.2.]. Appli-

cations of martingales in computer science are presented in [79].



116 CHAPTER 3. CONDITIONAL PROBABILITY AND EXPECTATION W.R.T. A SIGMA FIELD



Chapter 4

Characteristic Functions

4.1 On Transforms of Functions

Several of the readers are presumably informed about the multifarious advances in science and engineering

obtained by Fourier, Laplace, Mellin transforms and other transforms. Clumped together the aforementioned

techniques constitute a branch of mathematics broadly referred to as transform theory. It would be very

surprising, were transforms of some kind not to turn out to be important in probability theory, too.

Many of the transforms are integrals of an exponential function multiplied by a function f(x) to be trans-

formed. The key to success is that the exponential function converts sums into products. We set i =
√
−1 (so

that i2 = −1). In electrical engineering one writes j =
√
−1, but we do not follow this practice here.

1. The Fourier transform f̂(t) of f(x) is defined as

f̂(t) =

∫ ∞

−∞
e−itxf(x)dx. (4.1)

This requires that f is integrable, or, that
∫∞
−∞ | f(x) | dx < +∞, [100, p.166].

The operation of Fourier transform in (4.1) can be understood as

f
F7→ f̂ ,

which means that a function of x is transformed to a (transform) function of t (=the transform variable).

Remark 4.1.1 The literature in mathematical physics and mathematical analysis uses often the definition

f̂(t) =
1

2π

∫ ∞

−∞
e−itxf(x)dx.

There is also

f̂(t) =

∫ ∞

−∞
e−2πitxf(x)dx

widely used, with j in place of i, in electrical engineering. This state of affairs is without doubt a bit

confusing. Of course, any variant of the definition can be converted to another by multiplying by the

appropriate power of 2π, or by replacing t with 2πt. When encountered with any document or activity

involving the Fourier transform one should immediately identify, which particular definition is being used.

We are, moreover, going to add to confusion by modifying (4.1) to define the characteristic function of a

random variable.

117
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2. The Laplace transform f̂L(t) of f(x) is

f̂L(t) =

∫ ∞

0

e−txf(x)dx.

This is a simplified formal expression, we are neglecting considerations of existence and the region of

convergence, c.f., [100, p. 39].

3. The Mellin transform f̂M(t) of f(x) is

f̂M(t) =

∫ ∞

0

xt−1f(x)dx.

Here t is a complex variable.

An important desideratum is that we should be able to uniquely recover f from f̂ , or, that there should be

an inverse transform. There is, under some conditions, see [100, p.171], the Fourier inversion formula given

by

f(x) =
1

2π

∫ ∞

−∞
eitxf̂(t)dt. (4.2)

This is the operation

f̂
F−1

7→ f. (4.3)

Therefore we can talk in about unique Fourier transform pairs

(
f, f̂
)
,

which have in the past been collected in printed volumes of tables of Fourier transforms.

Since the distribution function

FX(x) = P ({X ≤ x}) .

completely determines the probabilistic behaviour and properties of a random variable X , we are obviously lead

to work with transforms of FX(x), or more precisely, we deal with the transform of its p.d.f. fX(x), when it

exists, or with the transforms of the probability mass function pX(xk).

The Fourier transform exercises its impact by the fact that, e.g., differentiation and integration of f corre-

spond to simple algebraic operations on f̂ , see [100, Appendix C 4.]. Hence we can in many cases easily solve,

e.g., differential equations in f by algebraic equations in the transform f̂ and then invert back to obtain the

desired solution f . We shall meet with several applications of this interplay between the transformed function

and its original function in probability theory, as soon as a suitable transform has been agreed upon.

For another illustration of the same point, the Mellin transform is important in probability theory for the

fact that if X and Y are two independent non negative random variables, then the Mellin transform of the

density of the product XY is equal to the product of the Mellin transforms of the probability densities of X and

of Y . Or, if the Mellin transform of a probability density fX(x) of a r.v. X ≥ 0 is f̂MX
(t) =

∫∞
0
xt−1fX(x)dx,

then

f̂MXY
(t) = f̂MX

(t)f̂MY
(t).
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4.2 Characteristic Functions: Definition and Examples

4.2.1 Definition and Necessary Properties of Characteristic Functions

We begin with the formal definition.

Definition 4.2.1 (Characteristic Function) The characteristic function ϕX(t) of the random variable X is

for t ∈ R given by

ϕX(t) = E
[
eitX

]
=





∞∑
k=−∞

eitxkpX(xk) discrete r.v.

∞∫
−∞

eitxfX(x) dx continuous r.v..

(4.4)

This is the complex conjugate of the Fourier transform, needless to say. Let us recall that eitx = cos(tx) +

i sin(tx). Then we have

E
[
eitX

]
= E [cos(tX)] + iE [sin(tX)] .

We can regard the right hand side of the last expression as giving meaning to the expectation of the complex

random variable eitX in terms of expectations of two real random variables. By definition of the modulus of a

complex number | eitx | =
√
cos2(tx) + sin2(tx) =

√
1. Therefore

E
[
| eitX |

]
= 1, E

[
| eitX |2

]
= 1.

Hence the function eitx is integrable (w.r.t. to dFX), and ϕX(t) exists for all t. In other words, every

distribution function/random variable has a characteristic function.

We are thus dealing with an operation that transforms, e.g., a probability density fX (or probability mass

function) to a complex function ϕX(t),

fX
Ch7→ ϕX .

The following theorem deals with the inverse of a characteristic function.

Theorem 4.2.1 If the random variable X has the characteristic function ϕX(t), then for any interval (a, b]

P (a < X < b) +
P (X = a) + P (X = b)

2
= lim

T→+∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt.

Proof: The interested reader can prove this by a modification of the proof of the Fourier inversion theorem

found in [100, p.172-173].

Here we have in other words established that there is the operation

ϕX
Ch−1

7→ fX .

The following theorem is nothing but a simple consequence of the preceding explicit construction of the inverse.

Theorem 4.2.2 (Uniqueness) If two random variables X1 and X2 have the same characteristic functions,

i.e.,

ϕX1 (t) = ϕX2(t) for all t ∈ R,

then they have the same distribution functions

FX1(x) = FX2(x) for all x ∈ R,

which we write as

X1
d
= X2.
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There are several additional properties that follow immediately from the definition of the characteristic function.

Theorem 4.2.3 (a) ϕX(t) exists for any random variable.

(b) ϕX(0) = 1.

(c) | ϕX(t) |≤ 1.

(d) ϕX(t) is uniformly continuous.

(e) The characteristic function of a+ bX , where a and b are real numbers, is

ϕa+bX(t) = eiatϕX(bt).

(f) The characteristic function of −X is the complex conjugate ϕX(t).

(g) The characteristic function is real valued if and only if X
d
= −X (the distribution of X is symmetric about

zero).

(h) For any n, any complex numbers zl, l = 1, 2, . . . , n, and any real tl, l = 1, 2, . . . , n we have

n∑

l=1

n∑

k=1

zlzkϕX (tl − tk) ≥ 0. (4.5)

Proof:

(a) This was proved above.

(b) eitX |t=0= e0 = 1. We have ϕX(0) = E
[
e0
]
= 1.

(c) This is a part of the proof of (a).

(d) Let us pause to think what we are supposed to prove. A function ϕX(t) is by definition uniformly

continuous in R [69, p. 68], if it holds that for all ǫ > 0, there exists a δ > 0 such that |ϕX(t+h)−ϕX(t)| ≤
ǫ for all |h| ≤ δ and all t ∈ R. The point is that δ is independent of t, i.e., that δ depends only on ǫ. In

order to prove this let us assume, without restriction of generality that h > 0. Then we have

|ϕX(t+ h)− ϕX(t)| =| E
[
eitX

(
eihX − 1

)]
|≤ E

[
| eitX

(
eihX − 1

)
|
]

≤ E


| eitX |︸ ︷︷ ︸

=1

|
(
eihX − 1

)
|


 = E

[
|
(
eihX − 1

)
|
]
.

From the expression in the right hand side the claim about uniform continuity is obvious, if E
[
|
(
eihX − 1

)
|
]
→

0, as h → 0, since we can then make E
[
|
(
eihX − 1

)
|
]
arbitrarily small by choosing h sufficiently small

independently of t.

It is clear that eihX − 1 → 0 (almost surely), as h→ 0 . Since |
(
eihX − 1

)
| ≤ 2, we can apply dominated

convergence theorem 1.8.7 to establish E
[
|
(
eihX − 1

)
|
]
→ 0. Hence we have proved the assertion in part

(d).
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(e) The characteristic function of a+ bX is by definition

ϕa+bX(t) = E
[
eit(a+bX)

]
= E

[
eitaeitbX

]

= eitaE
[
eitbX

]
= eiatϕX(bt).

(f) The characteristic function of −X is by (e) with a = 0 and b = −1 equal to

ϕ−X(t) = ϕX(−t) = E
[
e−itX

]

= E [cos(−tX)] + iE [sin(−tX)] = E [cos(tX)]− iE [sin(tX)] ,

where we used cos(−x) = cos(x) and sin(−x) = − sin(x),

= E [cos(tX)] + iE [sin(tX)],

where z stands for the conjugate of the complex number z, and then

= E [eitX ] = ϕX(t).

(g) Let us first suppose that the characteristic function of X is real valued, which implies that ϕX(t) = ϕX(t).

But we have found in the proof of (f) that ϕX(t) is the characteristic function of −X . By uniqueness of

the characteristic functions, theorem 4.2.2 above, this means that X
d
= −X , as was to be shown.

Let us next suppose that X
d
= −X . Then ϕX(t) = ϕ−X(t) and by (f) ϕ−X(t) = ϕX(t), and therefore

ϕX(t) = ϕX(t), and the characteristic function of X is real valued.

(h) Take any n and complex numbers zl and real tl, l = 1, 2, . . . , n. Then we write using the properties of

complex numbers and the definition of ϕX

n∑

l=1

n∑

k=1

zlzkϕX (tl − tk) =

n∑

l=1

n∑

k=1

zlzkE
[
ei(tl−tk)X

]

=

n∑

l=1

n∑

k=1

E
[
zle

itlXzke
−itkX

]
= E

[
n∑

l=1

n∑

k=1

zle
itlXzke

−itkX

]

= E

[
n∑

l=1

n∑

k=1

zle
itlXzkeitkX

]
= E

[
n∑

l=1

zle
itlX

n∑

k=1

zkeitkX

]

and as | w |2= w · w ≥ 0 for any complex number w,

= E

[
|

n∑

l=1

zle
itlX |2

]
≥ 0,

which proves (4.5).

The properties (a)-(h) in the preceding theorem are necessary conditions, i.e., they will be fulfilled, if a

function is a characteristic function of a random variable. The condition (h), i.e., (4.5) says that a characteristic

function is non negative definite.

There are several sets of necessary and sufficient conditions for a complex valued function to be a

characteristic function of some random variable. One of these is known as Bochner’s theorem. This theorem

states that an arbitrary complex valued function ϕ is the characteristic function of some random variable if

and only if (i) -(iii) hold, where (i) ϕ is non-negative definite, (ii) ϕ is continuous at the origin, (iii) ϕ(0) = 1.

Unfortunately the condition (i),i.e., (4.5) is in practice rather difficult to verify.
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4.2.2 Examples of Characteristic Functions

Example 4.2.4 (Standard Normal Distribution) X ∈ N(0, 1). The p.d.f. of X is, as stated,

φ(x) =
1√
2π
e−x2/2, −∞ < x < +∞. (4.6)

Then by (4.4)

ϕX(t) =

∞∫

−∞

eitx
1√
2π
e−x2/2 dx

and if we are allowed to move differentiation w.r.t. t inside the integral sign, we get

ϕ
(1)
X (t) =

d

dt
ϕX(t) =

∞∫

−∞

d

dt
eitx

1√
2π
e−x2/2 dx

=

∞∫

−∞

ixeitx
1√
2π
e−x2/2 dx =

∞∫

−∞

−ieitx 1√
2π

(
−xe−x2/2

)
dx =

and by integration by parts we obtain

= −ieitx 1√
2π
e−x2/2 |+∞

−∞ −
∞∫

−∞

(
−ti2eitx 1√

2π
e−x2/2

)
dx

= 0− tϕX(t).

In other words we have encountered the differential equation ϕ
(1)
X (t) + tϕX(t) = 0. This equation has the

integrating factor et
2/2, or, in other words we have the equation

d

dt

(
et

2/2ϕX(t)
)
= 0.

We solve this with ϕX(t) = Ce−t2/2. Since ϕX(0) = 1 by (b) in theorem 4.2.3 above, we get C = 1. Thus we

have obtained the result

X ∈ N(0, 1) ⇔ ϕX(t) = e−t2/2. (4.7)

We observe that e−t2/2 is a real valued function. Hence theorem 4.2.3 (g) shows that if X ∈ N(0, 1),

then −X ∈ N(0, 1), which is also readily checked without transforms. Indeed,

P (−X ≤ x) = P (X ≥ −x) = 1−P (X ≤ −x)

= 1− Φ (−x) = 1− (1− Φ (x)) = Φ (x) = P (X ≤ x) ,

where we used a well known property of Φ(x), which in its turn rests upon the fact that φ(−x) = φ(x).

Actually we have by this provided the solution to an exercise in section 2.6.2.

Example 4.2.5 (Normal Distribution X ∈ N
(
µ, σ2

)
) Let Z ∈ N(0, 1) and set X = σZ + µ, where σ > 0

and µ is an arbitrary real number. Then we find that

FX(x) = P (X ≤ x) = P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ

σ

)
,
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where Φ(x) is the distribution function of Z ∈ N(0, 1) and d
dxΦ(x) = φ (x). Thus we obtain by by (4.6) that

fX(x) =
d

dx
FX(x) =

1

σ
φ

(
x− µ

σ

)
=

1

σ
√
2π
e−(x−µ)2/2σ2

.

Hence X ∈ N
(
µ, σ2

)
. But by (e) in theorem 4.2.3 we have

ϕX(t) = ϕσZ+µ(t) = eiµtϕZ(σt) = eiµte−
σ2t2

2 ,

where we used (4.7). Without any doubt we have shown that

X ∈ N(µ, σ2) ⇔ ϕX(t) = eiµt−
σ2t2

2 . (4.8)

Example 4.2.6 (Poisson Distribution) Let X ∈ Po (λ), λ > 0. Due to definition (4.4)

ϕX(t) =

∞∑

k=0

eitke−λλ
k

k!
= e−λ

∞∑

k=0

(
eitλ

)k

k!
= e−λee

itλ

= eλ(e
it−1),

where we invoked the standard series expansion of ez for any complex z. In other words, we have found the

following:

X ∈ Po (λ) ⇔ ϕX(t) = eλ(e
it−1). (4.9)

Some of the next few examples are concerned with the continuous case of the definition by evaluating the integral

in (4.4). The reader with a taste for mathematical rigor may become consterned for the fact that we will be

proceeding as if everything was real valued. This is a pragmatic simplification of the presentation, and the

results in the cases below will equal those obtained, when using a more rigorous approach. The computation of

Fourier transforms and inverse Fourier transforms can then, of course, require contour integration and residue

calculus, which we do not enter upon in the main body of the text. An exception is the section on Mellin

transforms.

Example 4.2.7 (Exponential Distribution) Let X ∈ Exp (λ), λ > 0. By definition (4.4)

ϕX(t) = E
[
eitX

]
=

∞∫

0

eitx
1

λ
e−x/λ dx

=
1

λ

∞∫

0

e−x((1/λ)−it) dx =
1

λ

[ −1

((1/λ)− it)
e−x((1/λ)−it)

]∞

0

=
1

λ

1

(it− (1/λ))
=

1

(1− iλt)
.

Thus we have

X ∈ Exp(λ) ⇔ ϕX(t) =
1

1− iλt
. (4.10)
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Example 4.2.8 (Laplace Distribution) X ∈ L (1) says that X has the p.d.f.

fX(x) =
1

2
e−|x|, −∞ < x < +∞. (4.11)

The definition in (4.4) gives

ϕX(t) =
1

2

∞∫

−∞

eitxe−|x| dx

We compute the integral by applying the definition of |x| to get

∞∫

−∞

eitxe−|x| dx =

0∫

−∞

eitxex dx +

∞∫

0

eitxe−x dx. (4.12)

We change the variable x = −u, in the first integral in the right hand side of (4.12), which yields

0∫

−∞

eitxex dx =

0∫

∞

e−itue−u (−1)du

=

∞∫

0

e−itue−u du =

∞∫

0

eitue−u du,

which is seen to be the complex conjugate of the second integral in the right hand side of (4.12). This second

integral is in its turn recognized from the directly preceding example as the characteristic function of Exp(1).

Thus we get by (4.10)
∞∫

0

eitxe−x dx =
1

1− it
.

Hence

1

2

∞∫

−∞

eitxe−|x| dx =
1

2

(
1

1− it
+

1

1− it

)

=
1

2

(
1

1 + it
+

1

1− it

)
=

1

2

(
1 + it+ 1− it

1 + t2

)
=

1

1 + t2
.

In summary,

X ∈ L (1) ⇔ ϕX(t) =
1

1 + t2
. (4.13)

The theorem 4.2.3 (g) shows that if X ∈ L (1), then X
d
= −X .

Example 4.2.9 (X ∈ Exp(1), Y ∈ Exp(1), X and Y independent, Distribution of X − Y ) LetX ∈ Exp(1),

Y ∈ Exp(1). In addition, X and Y are assumed independent. We want to find the distribution of X − Y . The

rules of computation with characteristic functions above entail

ϕX−Y (t) = ϕX(t) · ϕ−Y (t) = ϕX(t) · ϕY (−t),

and by (4.10)

=
1

1− it
· 1

1− i(−t) =
1

1− it
· 1

1 + it
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=
1

1 + t2
.

Here a reference to (4.13) gives that if X ∈ Exp(1), Y ∈ Exp(1), X and Y independent, then

X − Y ∈ L (1) . (4.14)

We have X − Y
d
= Y −X , too.

Example 4.2.10 (Gamma Distribution) Let X ∈ Γ (p, a), p > 0, a > 0. The p.d.f. is

fX(x) =





1
Γ(p)

xp−1

ap e−x/a 0 ≤ x

0 x < 0.

(4.15)

By definition (4.4)

ϕX(t) =

∞∫

0

eitx
1

Γ(p)

xp−1

ap
e−x/a dx

=

∞∫

0

1

Γ(p)

xp−1

ap
e−x((1/a)−it) dx.

We change the variable u = x ((1/a)− it) ↔ x = u/ ((1/a)− it) and get

=
1

ap
1

Γ(p)

∞∫

0

up−1

((1/a)− it)
p−1 e

−u du

((1/a)− it)

=
1

ap
1

Γ(p)

1

((1/a)− it)p

∞∫

0

up−1e−u du.

By definition of the Gamma function Γ(p) =
∞∫
0

up−1e−u du, and the desired characteristic function is

=
1

ap
1

((1/a)− it)
p =

1

(1− iat)
p .

Thus we have found that

X ∈ Γ (p, a) ⇔ ϕX(t) =
1

(1− iat)p
. (4.16)

Example 4.2.11 (Standard Cauchy) X ∈ C (0, 1) says that X is a continuous r.v., and has the p.d.f.

fX(x) =
1

π

1

1 + x2
, −∞ < x <∞. (4.17)

We are going to find the characteristic function of X ∈ C (0, 1) by the duality argument or the symmetry

property of the Fourier transforms, see [100, p. 252]. Since all transforms involved are real, we have no

difficulty for the fact that the characteristic function is the complex conjugate of the Fourier transform.
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Remark 4.2.1 The symmetry or duality property of the Fourier transform in (4.1) is as follows.

If f(x)
F→ f̂(t), then f̂(x)

F→ 2πf(−t).

By (4.13) we know that

X ∈ L (1) ⇔ ϕX(t) =
1

1 + t2
,

Let us hence apply the symmetry property first with ϕX(x) = 1
1+x2 . Then the symmetry property tells that

ϕX(x) =
1

1 + x2
Ch→ 2π · fX(−t) = 2π · 1

2
e−|−t| = πe−|t|.

But it is an obvious property of scaling of the Fourier transform (by (4.1)) that if f(x)
F→ f̂(t), then af(x)

F→
af̂(t) for any real constant a. By the scaling a = 1/π we get

1

π
ϕX(x) =

1

π

1

1 + x2
Ch→ 1

π
πe−|t| = e−|t|.

X ∈ C (0, 1) ⇔ ϕX(t) = e−|t|. (4.18)

Once more we find that X
d
= −X .

Example 4.2.12 (Point Mass Distribution) For the purposes of several statements in the sequel we intro-

duce a probability mass function with a notation reminiscent of the Dirac pulse.

δc(x) =

{
1 x = c

0 x 6= c.
(4.19)

Then δc is a distribution such that all mass is located at c. In the terminology of appendix 2.5 δc defines a

purely discrete measure with one atom at c. Then, if X ∈ δc,

ϕX(t) = eitc. (4.20)

Example 4.2.13 (Bernoulli Distribution) Let X ∈ Be (p). Here p = P (X = 1). Then we apply again the

discrete case of the definition (4.4) and get

ϕX(t) = E
[
eitX

]
= eit0(1− p) + eitp = (1 − p) + eitp.

X ∈ Be (p) ⇔ ϕX(t) = (1− p) + eitp. (4.21)

Example 4.2.14 (Symmetric Bernoulli Distribution) The characteristic function of X ∈ SymBe with

p.m.f. in (2.50) is computed as

ϕX(t) = E
[
eitX

]
= e−it 1

2
+ eit

1

2
= cos(t).

X ∈ SymBe ⇔ ϕX(t) = cos(t). (4.22)
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Example 4.2.15 (Binomial Distribution) Let X ∈ Bin (n, p). The discrete case of the definition (4.4)

yields

ϕX(t) =

n∑

k=0

eitkP (X = k) =

n∑

k=0

eitk

(
n

k

)
pk(1 − p)n−k =

n∑

k=0

(
n

k

)
(
eitp

)k
(1− p)n−k

=
(
eitp+ (1 − p)

)n
,

where we used the binomial theorem. We have thus found

X ∈ Bin (n, p) ⇔ ϕX(t) =
(
(1− p) + eitp

)n
. (4.23)

4.3 Characteristic Functions and Moments of Random Variables

One can compute moments by differentiation of the characteristic function.

Theorem 4.3.1 If the random variable X has the expectation, E [| X |] <∞, then

d

dt
ϕX(t) |t=0=

d

dt
ϕX(0) = iE [X ] . (4.24)

If E
[
| X |k

]
<∞, then

dk

dtk
ϕX(0) = ikE

[
Xk
]
. (4.25)

Proof: Formally, d
dtϕX(t) = E

[
d
dte

itX
]
= E

[
iXeitX

]
. Hence d

dtϕX(0) = iE [X ]. The legitimacy of changing

the order of diffentiation and expectation is taken for granted.

We can do some simple examples.

Example 4.3.2 (The Cauchy Distribution) In (4.18) X ∈ C (0, 1) was shown to have the characteristic

function ϕX(t) = e−|t|. Let us note that |t| does not have a derivative at t = 0.

Example 4.3.3 (Mean and Variance of the Poisson Distribution) We have in (4.9)

ϕX(t) = eλ(e
it−1).

Then
d

dt
ϕX(t) = eλ(e

it−1) · iλeit

and by (4.24)

E [X ] =
1

i

d

dt
ϕX(0) = λ,

as is familiar from any first course in probability and/or statistics.

d2

dt2
ϕX(t) = eλ(e

it−1) · i2λ2ei2t + eλ(e
it−1)i2λeit,
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and from (4.25)

E
[
X2
]
=

1

i2
d2

dt2
ϕX(0) = λ2 + λ.

Thus

Var [X ] = E
[
X2
]
− (E [X ])2 = λ2 + λ− λ2 = λ,

which again agrees with the expression derived in any first course in probability and/or statistics.

4.4 Characteristic Functions of Sums of Independent Random Vari-

ables

Let X1, X2, . . . , Xn be n independent random variables. We consider their sum

Sn = X1 +X2 + . . .+Xn =
n∑

k=1

Xk.

Theorem 4.4.1 X1, X2, . . . , Xn are independent random variables with respective characteristic functions

ϕXk
(t), k = 1, 2, . . . , n. Then the characteristic function ϕSn

(t) of their sum Sn =
∑n

k=1Xk is given by

ϕSn
(t) = ϕX1(t) · ϕX2 (t) · . . . · ϕXn

(t). (4.26)

Proof: ϕSn
(t) = E

[
eitSn

]
= E

[
eit(X1+X2+...+Xn)

]
= E

[
eitX1eitX2 · . . . · eitXn

]
. Then we can recall theorem

1.6.1 above, and suitably applied this gives by independence that

= E
[
eitX1

]
E
[
eitX2

]
· . . . · E

[
eitXn

]

= ϕX1(t) · ϕX2(t) · . . . · ϕXn
(t).

Corollary 4.4.2 X1, X2, . . . , Xn are independent and identically distributed random variables with the char-

acteristic function ϕX(t), X
d
= Xk. Then the characteristic function ϕSn

(t) of their sum Sn =
∑k

i=1Xi is given

by

ϕSn
(t) = (ϕX(t))

n
. (4.27)

If X and Y are independent random variables with probability densities fX and fY , respectively, then their

sum Z = X + Y has, as is checked in (2.110), the p.d.f. given by the convolutions

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx =

∫ ∞

−∞
fY (y)fX(z − y)dy.

If we write the convolution symbolically as, say,

fZ = fX ⊕ fY ,

then we have in the theorem 4.4.1 established the rule of transformation

fX ⊕ fY
Ch7→ ϕX · ϕY .
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This is plainly nothing but a well known and important property (convolution theorem) of Fourier transforms,

[100, p. 177].

As applications of the preceding we can prove a couple of essential theorems.

Theorem 4.4.3 X1, X2, . . . , Xn are independent and Xk ∈ N
(
µk, σ

2
k

)
for k = 1, 2, . . . , n. Then for any real

constants a1, . . . , an

Sn =

n∑

k=1

akXk ∈ N

(
n∑

k=1

akµk,

n∑

k=1

a2kσ
2
k

)
. (4.28)

Proof: By (4.26) we obtain

ϕSn
(t) = ϕa1X1(t)ϕa2X2(t) · . . . · ϕanXn

(t)

and by (e) in theorem 4.2.3 we get

= ϕX1(a1t) · ϕX2(a2t) · . . . · ϕXn
(ant).

By assumption and (4.8) we have ϕX(akt) = eiµkakt−
σ2
k
a2
k
t2

2 . This yields

ϕX1(a1t) · ϕX2(a2t) · . . . · ϕXn
(ant) = eiµ1a1t−

σ2
1a2

1t2

2 eiµ2a2t−
σ2
2a2

2t2

2 · . . . · eiµnant− σ2
na2

nt2

2

and some elementary rearrangements using the properties of the exponential function we find

= ei
∑n

k=1 µkakt−
∑n

k=1 a2
k
σ2
k
t2

2

or

ϕSn
(t) = ei

∑n
k=1 µkakt−

∑n
k=1 a2

k
σ2
k
t2

2 .

A comparison with (4.8) identifies ϕSn
(t) as the characteristic function of N

(∑n
k=1 akµk,

∑n
k=1 a

2
kσ

2
k

)
. By

uniqueness of the characteristic function we have shown the assertion as claimed.

Example 4.4.4 Let X1, . . . , Xn are I.I.D. and ∈ N(µ, σ2). Set X = 1
n

∑n
i=1Xi. Thus X ∈ N

(
µ, σ

2

n

)
.

Next we deal with sums of independent Poisson random variables.

Theorem 4.4.5 X1, X2, . . . , Xn are independent and Xk ∈ Po (λk) for k = 1, 2, . . . , n. Then

Sn =

n∑

k=1

Xk ∈ Po

(
n∑

k=1

λk

)
. (4.29)

Proof: By (4.26) we obtain

ϕSn
(t) = ϕX1(t) · ϕX2(t) · . . . · ϕXn

(t)

and when we invoke (4.9)

= eλ1(eit−1)eλ2(eit−1) · . . . · eλn(eit−1)

= e(λ1+...+λn)(eit−1).

Thus

ϕSn
(t) = e(λ1+...+λn)(eit−1).

But another look at (4.9) shows that the right hand side of the last equality is the characteristic function of

Po (
∑n

k=1 λk). Thus by uniqueness of characteristic functions the claim follows as asserted.
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Example 4.4.6 (Binomial Distribution as a Sum of Independent Be(p) Variables) By a comparison

of (4.21) with (4.23) it follows by uniqueness of characteristic functions that if X ∈ Bin (n, p), then

X
d
= U1 + U2 + . . .+ Un,

where Uk are independent and identically distributed (I.I.D.) Uk ∈ Be(p), k = 1, 2, . . . , n.

Example 4.4.7 (Sum of Two Independent Binomial Random Variables with the same p) X1 ∈ Bin (n1, p),

X2 ∈ Bin (n2, p), X1 and X2 are independent. Then

X1 +X2 ∈ Bin (n1 + n2, p) . (4.30)

To check this, by (4.23) and (4.26) it holds

ϕX1+X2(t) =
(
(1 − p) + eitp

)n1 ·
(
(1− p) + eitp

)n2

=
(
(1 − p) + eitp

)n1+n2
,

which proves the assertion.

Example 4.4.8 (Poisson binomial Distribution ) X ∈ Pobin (p1, p2, . . . , pn), 0 ≤ pi ≤ 1, i = 1, 2, . . . , n,

of Example 2.3.7 is naturally defined as the sum of independent Ui ∈ Be (pi), i = 1, 2, . . . , n that are independent,

or

X = U1 + . . .+ Un.

From this the mean and variance given in Example 2.3.7 are immediate. In addition, the characteristic function

is

ϕX(t) =

n∏

j=1

(
1− pj + pje

it
)
. (4.31)

Example 4.4.9 (Gamma Distribution a Sum of Independent Exp(λ) Variables) LetX ∈ Γ (n, λ), where

n is a positive integer. Then the finding in (4.16) shows in view of (4.10) that X is in distribution equal to

a sum of n independent Exp(λ)-distributed variables. In view of (2.2.10) we can also state that a sum of n

independent Exp(λ)-distributed variables has an Erlang distribution.

Example 4.4.10 (Sum of Two Independent Gamma Distributed Random Variables) LetX1 ∈ Γ (n1, λ)

and X2 ∈ Γ (n2, λ). Then in view of (4.16) and (4.26) we get that

X1 +X2 ∈ Γ (n1 + n2, λ) .
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4.5 Expansions of Characteristic Functions

4.5.1 Expansions and Error Bounds

We recall the complex exponential for a purely imaginary argument, or with a real t and x,

eitx = 1 +
∞∑

k=1

(itx)k

k!
= 1 + itx+

(itx)2

2
+

(itx)3

3!
+

(itx)4

4!
+ . . . .

Lemma 4.5.1 For real x we have

| eix −
n∑

k=0

(ix)k

k!
|≤ min

( |x|n+1

(n+ 1)!
,
2|x|n
n!

)
(4.32)

Proof: The proof is by complete induction. For n = 0 we claim that

| eix − 1 |≤ min (|x|, 2) ,

which is easily seen by drawing a picture of the complex unit circle and a chord of it to depict eix − 1.

We make the induction assumption that (4.32) holds for n. We wish to prove the assertion for n + 1. By

complex conjugation we find that it suffices to consider x > 0. We proceed by expressing the function to be

bounded as a definite integral.

eix −
n+1∑

k=0

(ix)k

k!
= eix − 1−

n+1∑

k=1

(ix)k

k!

= eix − 1−
n∑

k=0

(ix)k+1

(k + 1)!
=

∫ x

0

[
eit −

n∑

k=0

(it)k

k!

]
d(it).

Thus

| eix −
n+1∑

k=0

(ix)k

k!
|≤
∫ x

0

| eit −
n∑

k=0

(it)k

k!
| d(it).

At this point of the argument we use the induction hypothesis, i.e., (4.32) holds for n. This yields

∫ x

0

| eit −
n∑

k=0

(it)k

k!
| dt ≤

∫ x

0

min

( |t|n+1

(n+ 1)!
,
2|t|n
n!

)
dt

≤ min

( |x|n+2

(n+ 2)!
,
2|x|n+1

(n+ 1)!

)
.

(Why does the last inequality hold ?) In summary, we have shown that

| eix −
n+1∑

k=0

(ix)k

k!
|≤ min

( |x|n+2

(n+ 2)!
,
2|x|n+1

(n+ 1)!

)
,

which evidently tells that the assertion (4.32) holds for n+ 1. The proof by induction is complete.

The bound (4.32) leads immediately to the next bound for expansion of characteristic function.

Lemma 4.5.2 For a random variable X such that E [| X |n] <∞ we have

| ϕX(t)−
n∑

k=0

(it)kE
[
Xk
]

k!
|≤ E

[
min

( |tX |n+1

(n+ 1)!
,
2|tX |n
n!

)]
(4.33)
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Proof: By the definition of ϕX(t) we have

| ϕX(t)−
n∑

k=0

(it)kE
[
Xk
]

k!
|=| E

[
eitX

]
−

n∑

k=0

(it)kE
[
Xk
]

k!
|

=| E
[
eitX −

n∑

k=0

(it)kXk

k!

]
|≤ E

[
| eitX −

n∑

k=0

(it)kXk

k!
|
]

Now we apply the error bound in (4.32) on the expression inside the expectation, and the upper bound in (4.33)

follows.

For ease of effort in the sequel we isolate an important special case of the preceding. With n = 2 we have in

(4.33) the error bound

E

[
min

( |tX |3
3!

,
2|tX |2
2!

)]
≤ |t|2E

[
min

(
|t||X |3, 2|X |2

)

3!

]
.

Let o(t) denote any function such that limt→0
o(t)
t → 0 (Landau’s o -notation). o(t) is also called ’small ordo’.

In our case we construct a small ordo by observing that

o
(
t2
)
= |t|2E

[
min

(
|t||X |3, 2|X |2

)

3!

]

fulfills limt→0
o(t2)
t2 → 0. Thus we can write

ϕX(t) = 1 + itE [X ]− t2

2
E
[
X2
]
+ o

(
t2
)
. (4.34)

In view of the preceding there is also the following series expansion.

Theorem 4.5.3 Suppose that the random variable X has the nth moment E [| X |n] <∞ for some n. Then

ϕX(t) = 1 +

n∑

k=1

E
[
Xk
] (it)k
k!

+ o(|t|n). (4.35)

4.5.2 A Scaled Sum of Standardised Random Variables (Central Limit Theorem)

Let us now consider the following problem. X1, X2, . . . , Xn . . . is an infinite sequence of independent and

identically distributed random variables with E [Xk] = µ and Var [Xk] = σ2 for k = 1, 2, . . . ,. We standardise

the Xks by subtracting the common mean and then dividing the difference by the common standard deviation

or

Yk =
Xk − µ

σ
.

Thereby Yk’s are independent and identically distributed. In addition, we assume the standardization E [Yk] = 0

and Var [Yk] = 1. Let us furthermore add the first n of the Yk’s and scale the sum by the factor 1√
n
so that

Wn
def
=

1√
n

n∑

k=1

Yk =

n∑

k=1

Yk√
n

We shall now compute the characteristic function of Wn and then see what happens to this function, as n→ ∞.

It turns out that the scaling must be taken exactly as 1√
n
for anything useful to emerge.
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By (4.27) with Y
d
= Yk it follows that

ϕWn
(t) = ϕ∑

n
k=1

Yk√
n

(t) =
(
ϕ Y√

n
(t)
)n

.

By property (e) in theorem 4.2.3 we have that ϕ Y√
n
(t) = ϕY

(
t√
n

)
. Thus

ϕWn
(t) =

(
ϕY

(
t√
n

))n

.

When we expand ϕY

(
t√
n

)
as in (4.34) we obtain, as E [Yk] = 0 and Var [Yk] = 1,

ϕY

(
t√
n

)
= 1− t2

2n
+ o

(
t2

n

)
.

Thereby we get

ϕWn
(t) =

(
1− t2

2n
+ o

(
t2

n

))n

.

It is shown in the Appendix 4.6, see (4.42), that now

lim
n→∞

ϕWn
(t) = e−t2/2. (4.36)

In view of (4.7 ) we observe that the characteristic function of the scaled sum Wn of random variables converges

by the above for all t to the characteristic function of N(0, 1). We have now in essence proved a version of the

Central Limit Theorem, but the full setting of convergence of sequences of random variables will be treated

in chapter 6.

4.6 An Appendix: A Limit

4.6.1 A Sequence of Numbers with the Limit ex

The following statement appears under various guises in several of the proofs and exercises.

Proposition 4.6.1

cn → c⇒
(
1 +

cn
n

)n
→ ec, as n→ ∞. (4.37)

Proof: Let us consider

n ln
(
1 +

cn
n

)
= cn · ln

(
1 + cn

n

)
cn
n

. (4.38)

Here we recall a standard limit in calculus (or, the derivative of lnx at x = 1)

lim
h→0

ln(1 + h)

h
= 1.

Since cn → c by assumption, we have that cn
n → 0, as n→ ∞. Thus

lim
n→∞

ln
(
1 + cn

n

)
cn
n

= 1,

we get in (4.38) that

lim
n→∞

n ln
(
1 +

cn
n

)
= c.

Let xn = n ln
(
1 + cn

n

)
. Since ex is a continuous function we have

(
1 +

cn
n

)n
= exn → ec.

The proof above is strictly speaking valid for sequences of real numbers. We shall next present two additional

arguments.
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4.6.2 Some Auxiliary Inequalities

Lemma 4.6.2 For any complex numbers wi, zi, if |wi| ≤ 1 and |zi| ≤ 1, then

|
n∏

i=1

zi −
n∏

i=1

wi| ≤
n∑

i=1

|zi − wi|. (4.39)

Proof We have the identity

|
n∏

i=1

zi −
n∏

i=1

wi |=| (zn − wn)
n−1∏

i=1

zi + wn

(
n−1∏

i=1

zi −
n−1∏

i=1

wi

)
|

and the right hand side of this inequality is upper bounded by

≤| zn − wn | + |
n−1∏

i=1

zi −
n−1∏

i=1

wi |,

since |wn| ≤ 1 and |zi| ≤ 1. Then we use an induction hypothesis.

Lemma 4.6.3 For any complex numbers u and v,

|un − vn| ≤ |u− v|nmax(|u|, |v|)n−1 (4.40)

Proof We have the identity

un − vn = (u − v)un−1 + v(un−1 − vn−1)

and then

|un − vn| ≤ |u− v||un−1|+ |v||un−1 − vn−1|. (4.41)

Our induction hypothesis is that

|un−1 − vn−1| ≤ |u− v|(n− 1)max(|u|, |v|)n−2.

When we apply this in right hand side of (4.41) we get

|un − vn| ≤ |u− v||un−1|+ |v||u− v|(n− 1)max(|u|, |v|)n−2.

We note that

|un−1| ≤ max(|u|, |v|)n−1

and that

|v| ·max(|u|, |v|)n−2 ≤ max(|u|, |v|) ·max(|u|, |v|)n−2 = max(|u|, |v|)n−1.

Thus we have obtained

|un − vn| ≤ |u− v|max(|u|, |v|)n−1 + |u− v|(n− 1)max(|u|, |v|)n−1,

which proves (4.40) as asserted.
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4.6.3 Applications

The situation corresponding to (4.37) is often encountered as

lim
n→∞

(
1− t2

2n
+ o

(
t2

n

))n

= e−t2/2. (4.42)

1. Let us set

cn = −
(
t2

2
− n · o

(
t2

n

))
.

Then n · o
(
t
n

)
=

o( t
n)
1
n

→ 0, as n→ ∞. Thus cn → − t2

2 , as n→ ∞, and (4.42) follows by (4.37), since

cn
n

= −
(
t2

2n
− o

(
t2

n

))
.

2. Let us now check (4.42) using the inequalities in the preceding section. With regard to lemma 4.6.2 we

take for all i

zi =

(
1− t2

2n
+ o

(
t2

n

))

and

wi =

(
1− t2

2n

)
.

Then |wi| ≤ 1 and |zi| ≤ 1 and

|
n∏

i=1

zi −
n∏

i=1

wi| = |
(
1− t2

2n
+ o

(
t2

n

))n

−
(
1− t2

2n

)n

|,

and in view of the lemma 4.6.2 above we get

|
(
1− t2

2n
+ o

(
t2

n

))n

−
(
1− t2

2n

)n

| ≤ n | o
(
t2

n

)
|=

=|
o
(

t2

n

)

1
n

| .

When n→ ∞,
o
(

t2

n

)

1
n

→ 0, by definition of Landau’s o. Since

(
1− t2

2n

)n

→ e−t2/2, as n→ ∞,

it now follows that as n→ ∞ (
1− t2

2n
+ o

(
t2

n

))n

→ e−t2/2,

as was to be proved.

3. If | u |< 1 and | v |< 1, then we get in (4.40)

|un − vn| ≤ |u− v|n

and thus with

u =

(
1− t2

2n
+ o

(
t2

n

))
, v =

(
1− t2

n

)
,

we obtain again as n→ ∞, that
(
1− t2

2n
+ o

(
t2

n

))n

→ e−t2/2.
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4.7 Exercises

4.7.1 Additional Examples of Characteristic Functions

1. Let a < b. Show that

X ∈ U(a, b) ⇔ ϕX(t) =
eitb − eita

it(b− a)
. (4.43)

2. Let X ∈ Tri(−1, 1), which means that the p.d.f. of X is

fX(x) =

{
1− |x| |x| < 1

0 elsewhere.
(4.44)

Show that

X ∈ Tri(−1, 1) ⇔ ϕX(t) =

(
sin t

2
t
2

)2

. (4.45)

3. Let X1 ∈ U
(
− 1

2 ,
1
2

)
and X2 ∈ U

(
− 1

2 ,
1
2

)
. Assume that X1 and X2 are independent. Find the distribution

of X1 +X2.

4. X ∈ N(0, 1). Show that the characteristic function of X2 is

ϕX2(t) =
1√

1− 2it
. (4.46)

5. Assume that X1, . . . , Xn are independent and N(0, 1) distributed. Show that

n∑

i=1

X2
i ∈ χ2(n). (4.47)

Aid: You can do this with little effort by inspection of (4.16).

6. Stable Distributions

(a) X1, . . . , Xn are independent and C(0, 1) -distributed. Set Sn = X1 + . . .+Xn. Show that

1

n
Sn ∈ C(0, 1).

In other words, 1
nSn

d
= X .

(b) X1, . . . , Xn are independent and N(0, 1)-distributed. Set Sn = X1 + . . .+Xn. Show that

1√
n
Sn ∈ N(0, 1).

In other words, in this case 1√
n
Sn

d
= X .

(c) X is a r.v. and X1, . . . , Xn are independent r.v.’s and Xk
d
= X for all k. Set Sn = X1 + . . .+Xn. If

there exist sequences of real numbers an > 0 and bn such that for all n ≥ 1

Sn
d
= anX + bn,

then the distribution of X is said to be stable. Show that if

ϕX(t) = e−c|t|α , 0 < α ≤ 2, c > 0, (4.48)

then the distribution of X is stable. (It can be verified that ϕX(t) is in fact a characteristic function.)

Interpret (a) and (b) in terms of (4.48).
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7. Let X1, . . . , Xn, . . . be independent and C(0, 1) -distributed. Set Sn = X1 + . . .+Xn. Show that

1

n

n∑

k=1

Sk

k
∈ C(0, 1).

Note that the r.v.’s Sk

k are not independent.

8. (From [35]) Here we study the product of two independent standard Gaussian variables. More on products

of independent random variables is given in section 4.7.4.

(a) X1 ∈ N(0, 1) and X2 ∈ N(0, 1) are independent. Show that the characteristic function of their

product Y = X1 ·X2 is

ϕY (t) =
1√

1 + t2
. (4.49)

(b) Z1 ∈ Γ(a, b) and Z2 ∈ Γ(a, b) are independent. We set

U = Z1 − Z2,

and suppose we know that U
d
= Y , where Y has the distribution in part (a) of this exercise. What

are the values of a and b ? Answer: a = 1/2, b = 1.

9. (From [35]) The r.v. X has the characteristic function ϕ(t). Show that |ϕ(t)|2 is a characteristic function.

Aid: Take X1 and X2 as independent and X1
d
= X as well as X2

d
= X . Check the characteristic function

of Y = X1 −X2.

10. X ∈ IG(µ, λ) with p.d.f. given in (2.37). Find its characteristic function as

ϕX(t) = e
(λ

µ )
[

1−
√

1− 2µ2it
λ

]

.

11. X ∈ K(L, µ, ν) as in example 2.2.22. What could ϕX(t) be ? Aid: None known.

12. X ∈ Ske(µ1, µ2) as in example 2.3.15.

(a) Show that

ϕX(t) = e−(µ1+µ2)+µ1e
it+µ2e

−it

.

(b) Find E [X ] and Var [X ] using ϕX(t).

(c) Show that the sum and the difference of two independent Skellam-distributed variables are Skellam-

distributed.

4.7.2 Selected Exam Questions from the Past Decades

1. (5B1540 02-08-21, slightly simplified) The random variables X1, X2, . . . , Xn, . . . , are I.I.D. and have the

probability mass function

pX(−1) =
1

4
, pX(0) =

1

2
, pX(1) =

1

4
.

We define the random variable (random time) N by

N = min{n | Xn = 0},

i.e., N is the smallest (or first) n such that Xn = 0.
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(a) Show that N ∈ Fs
(
1
2

)
.

(b) Show that the characteristic function of SN =
∑N

k=1Xk is ϕSN
(t) = 1/(2− cos t).

(c) Find Var (SN ) (Answer: Var (SN ) = 1).

2. (5B1540 04-05-26) The random variable Yn is uniformly distributed on the numbers {j/2n|j = 0, 1, 2, . . . , 2n−
1}. The r.v. Xn+1 ∈ Be

(
1
2

)
is independent of Yn.

(a) Show that

Yn +
Xn+1

2n+1

d
= Yn+1.

(b) Show that
n∏

k=1

1 + eit/2
k

2
=

2n−1∑

l=0

eitl/2
n

2n
.

3. (5B1540 00-08-29) X ∈ Exp(1), Y ∈ Exp(1) are independent random variables. Show by means of

characteristic functions that

X +
Y

2

d
= max(X,Y ).

4. (an intermediate step of an exam question in FA 181 1981-02-06) Let X1, X2, . . . , Xn be independent and

identically distributed. Furthermore, a1, a2, . . . , an are arbitrary real numbers. Set

Y1 = a1X1 + a2X2 + . . .+ anXn

and

Y2 = anX1 + an−1X2 + . . .+ a1Xn.

Show that

Y1
d
= Y2.

4.7.3 Various Applications of the Characteristic Function

1. In section 10.4.1 and elsewhere we shall require the following result.

X ∈ N(0, σ2). Show that

E [Xn] =

{
0 n is odd

(2k)!
2kk! σ

2k n = 2k, k = 0, 1, 2, . . ..
(4.50)

Aid: ([66, pp. 23-24]): We have

ϕX(t) = e−
1
2 t

2σ2

.

Let

ϕ
(n)
X (t) =

dn

dtn
ϕX(t),

where ϕ
(0)
X (t) = ϕX(t), ϕ

(1)
X (t) = −tσ2ϕX(t). Show by induction that for n ≥ 2,

ϕ
(n)
X (t) = −(n− 1)σ2ϕ

(n−2)
X (t)− tσ2ϕ

(n−1)
X (t).

Then we get

ϕ
(n)
X (0) = −(n− 1)ϕ

(n−2)
X (0), n ≥ 2, (4.51)

which is regarded as a difference equation with the initial value ϕ
(1)
X (0) = 0. Solve (4.51).
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2. TheRice Method is a technique of computing moments of nonlinear transformations of random variables

by means of characteristic functions [104, pp. 378-]. Let H(x) be a (Borel) function such that its Fourier

transform Ĥ(t) exists. X is a random variable such that E [H(X)] exists. Then we recall the formula for

inverse Fourier transform in (4.2) as

H(x) =
1

2π

∫ ∞

−∞
eitxĤ(t)dt.

Then it follows, if the interchange of integral and expectation is taken for granted, that

E [H(X)] =
1

2π
E

[∫ ∞

−∞
eitXĤ(t)dt

]
=

1

2π

∫ ∞

−∞
E
[
eitX

]
Ĥ(t)dt,

and by definition of the characteristic function

E [H(X)] =
1

2π

∫ ∞

−∞
ϕX(t)Ĥ(t)dt. (4.52)

This is the tool of the Rice method. It may turn out that the integration in the right hand side can be

performed straightforwardly (often by means of contour integration and residue calculus).

Assume that X ∈ N(0, σ2). Show that

E [cos(X)] = e
σ2

2 .

Aid 1.: An engineering formula for the Fourier transform of cos(x) is, [101, p.413],

H(x) = cos(x)
F7→ Ĥ(t) =

1

2
(δ(t− 1) + δ(t+ 1)) ,

where δ(t) is the Dirac’s delta ’function’.

Aid 2.: If you do not feel comfortable with Dirac’s delta, write cos(x) by Euler’s formula, in this attempt

you do not really need (4.52).

4.7.4 Mellin Transform in Probability

The transform is named after Hjalmar Mellin1. The Mellin transform of probability densities is being applied

in communications engineering, econometrics, biology, classification, analytic combinatorics and other fields.

The point in this context is that products of random variables are part of the problem at hand, and that the

conclusion about the distribution of these products can be derived by Mellin transforms.

Example 4.7.1 A financial portfolio is valued in a domestic currency (e.g., SEK). The prices of shares and

other instruments are uncertain and are modeled as random variables. In addition the exchange rates are

uncertain, hence the value of the portfolio in, say, JPY may be modelled by a product of two random variables.

Example 4.7.2 In statistical methodology an important role is played by the following result. Suppose X ∈
N(0, 1), Y ∈ χ2(f), X and Y are independent. Then we know (presumably without a proof (?)) by any first

course in statistics that
X√
Y/f

∈ t(f) (4.53)

1Robert Hjalmar Mellin (1854 - 1933) studied at the University of Helsinki, where his teacher was Gösta Mittag-Leffler, who left

Helsinki for having been appointed to professor of mathematics at the University of Stockholm. Mellin did post-doctoral studies

in Berlin under Karl Weierstrass and in Stockholm. From 1908 till retirement Mellin served as professor of mathematics at the

Polytechnic Institute in Helsinki, which subsequently became Helsinki University of Technology, currently merged to a constituent

of the Aalto University.
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Figure 4.1: Mellin Auditorium, Aalto University Main Building, Otaniemi.

i.e., the ratio follows the Student’s t -distribution. We hint thereby that this can shown by a Mellin transfor-

mation.

For a random variable X ≥ 0 with the probability density fX(x) we define the Mellin transform as

f̂MX
(z) =

∫ ∞

0

xz−1fX(x)dx. (4.54)

Considered as a function of the complex variable z, f̂MX
(z) is a function of the exponential type and is analytic

in a strip parallel to the imaginary axis. The inverse transformation is

fX(x) =
1

2πi

∫

L

x−z f̂MX
(z)dz, (4.55)

for all x, where fX(x) is continuous. The contour of integration is usually L = {c− i∞, c+ i∞} and lies in the

strip of analycity of f̂MX
(z).

General Properties of the Mellin Transform

Several of the exercises below require proficiency in complex analysis to the extent provided in [93].

1. Let X ≥ 0 be a random variable. Then show that

(a) For any real constant a > 0,

f̂M(aX)
(z) = az−1f̂MX

(z). (4.56)
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(b) For any constant α,

f̂MXα (z) = f̂MX
(αz − α+ 1) (4.57)

In particular, the Mellin transform of 1
X is

f̂M
X−1

(z) = f̂MX
(−z + 2) (4.58)

2. Let X ≥ 0 and Y ≥ 0 be independent continuous random variables. Show that

f̂MXY
(z) = f̂MX

(z)f̂MY
(z). (4.59)

3. Let X ≥ 0 and Y ≥ 0 be independent continuous random variables. Show that

f̂MX
Y

(z) = f̂MX
(z)f̂MY

(−z + 2). (4.60)

4. Let fX(x) and fY (y) be two probability densities on (0,∞). Let

h(x) =

∫ ∞

0

1

y
fX

(
x

y

)
fY (y)dy =

∫ ∞

0

1

y
fX (y) fY

(
x

y

)
dy. (4.61)

Compute the Mellin transform of h(x). Aid: Recall (2.108) in the preceding.

The function h(x) is called the Mellin convolution of fX(x) and fY (y).

5. X ∈ U(0, 1). Show that

f̂MX
(z) =

1

z
, (4.62)

where the strip of analycity is the half-plane Re(z) > 0.

6. X ∈ Γ (p, 1). Show that

f̂MX
(z) =

Γ(z + p− 1)

Γ(p)
, (4.63)

where the strip of analycity is the half-plane Re(z) > 0.

7. The Mellin transform of a probability density is

f̂MX
(z) = Γ(z), (4.64)

where the strip of analycity is the half-plane Re(z) > 0. Find fX(x). A piece of residue calculus is required

for the inversion in (4.55).

8. The random variables Xk, k = 1, 2, . . . , n are independent and have the density

fX(x) =

{
(a+ 1)xa if 0 ≤ x ≤ 1

0 elsewhere.

(a) Show that

f̂M∏n
k=1

Xk
(z) =

(
a+ 1

z + a

)n

. (4.65)

(b) Show that

f∏n
k=1 Xk

(x) =

{
(a+1)n

(n−1)! x
a
(
ln 1

x

)n−1
if 0 ≤ x ≤ 1

0 elsewhere.
(4.66)

9. In example 2.2.22 it was claimed that if

X = X1 ·X2,

where X1 ∈ Γ (1/L, L), and X2 ∈ Γ (µ/ν, ν) are independent, then X has the p.d.f. in (2.38). Verify this

by means of the appropriate Mellin transforms. Aid: None available.
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The Mellin Transform of the Product of n Independent N(0, 1) Variables

The requirement X ≥ 0 would seem to be a serious impediment to usefulness the Mellin transform in probability

calculus. However, let X+ = max{X, 0} denote the positive part of X and X− = max{−X, 0} denote its

negative part. Thus X = X+ −X−, and

XY = X+Y + −X+Y − −X−Y + +X−Y −,

and then the Mellin transform of X can be defined for XY . This or other similar tricks enable us to extend the

transform to the general case2. Then we can show, e.g., that the product of n independent N(0, 1) variables is

(the student is not required to do this)

f∏n
k=1 Xk

(x) =
1

(2π)
n/2

1

2πi

∫ c+i∞

c−i∞

(
x2

2n

)−z

Γn (z) dz, (4.67)

where the contour of integration is a line parallel to the imaginary axis and to the right of origin. The integral

may be evaluated by residue calculus to give

f∏n
k=1 Xk

(x) =
∞∑

j=0

1

(2π)
n/2

R(z, n, j),

where R(z, n, j) denotes the residue of
(

x2

2n

)−z

Γn (z) at the nth order pole at z = −j. People knowledgeable in
special functions recognize by (4.67) also that f∏n

k=1 Xk
(x) is an instance of what is called Meijer’s G-function

(or H-function) [3, pp.419−425], which is a generalization of the hypergeometric function. The residues can

be evaluated by numerical algorithms, and therefore the probability density and the corresponding distribution

function are available computationally, and by virtue of compilation efforts in the past, in tables of of function

values.

10. Let X1, . . . , Xn be independent N(0, σ2) variables. Show that

f∏n
k=1 Xk

(x) =
1

(2πσ2)
n/2

1

2πi

∫ c+i∞

c−i∞

(
x2

(2σ)n

)−z

Γn (z) dz. (4.68)

11. Establish the result in (4.49) by means of (4.68).

The Mellin Transform is a Fourier Transform

Make the change of variable x = eu and z = c− it in (4.54). Then we get the transform

f̂MX
(c− it) =

∫ ∞

0

eu(c−it)fX (eu) dx, (4.69)

and the inverse in (4.55) as

fX (eu) =
1

2π

∫ ∞

−∞
eiute−ucf̂MX

(c− it)dt. (4.70)

This shows in view of (4.1) and (4.2) that we have in fact the pair of a function and its Fourier transform as in

(4.3), (
fX (eu) euc, f̂MX

(c− it)
)
.

2M.D. Springer & W.E. Thompson: The Distribution of Products of Independent Random Variables. SIAM Journal on Applied

Mathematics, Vol. 14, No.3, 1966, pp. 511−526.



Chapter 5

Generating Functions in Probability

5.1 Introduction

The topic in this chapter will be the probability generating functions and moment generating functions in

probability theory. Generating functions are encountered in many areas of mathematics, physics, finance and

engineering. For example, in [3] one finds the generating functions for Hermite, Laguerre, Legendre polynomials

and other systems of polynomials. The calculus of generating functions for problems of discrete mathematics

(e.g., combinatorics) is expounded in [41]. In control engineering and signal processing generating functions are

known plainly as z-transforms, see [93, 100]. The generic concept is as follows.

Consider a sequence of real numbers (ak)
∞
k=0, e.g., ak could be the value of the kth Hermite polynomial Hk

at x. The (ordinary) generating function of (ak)
∞
k=0 is defined as

G(t) =

∞∑

k=0

akt
k

for those values of t, where the sum converges. For a given series there exists a radius of convergence R > 0 such

that the sum converges absolutely for | t |< R and diverges for | t |> R. G(t) can be differentiated or integrated

term by term any number of times, when | t |< R, [69, section 5.4]. We recall also Abel’s Theorem: if R ≥ 1

then limt↑1G(t) =
∑∞

k=0 ak. In the sequel limits with t ↑ 1 will often be written as t→ 1.

In many cases the G(t) can be evaluated in a closed form. For example, the generating function of (proba-

bilist’s) Hermite polynomials Hk(x) in (2.97) is

G(t) = ext−
1
2 t

2

=

∞∑

k=0

Hk(x)t
k.

The individual numbers, Hk(x), in the sequence can be recovered (generated) from the explicit G(t) by differ-

entiation.

5.2 Probability Generating Functions

In this section we consider only discrete random variables X that have the non negative integers (or a subset

thereof) as values. We have the probability mass function

pX(k) = P (X = k) , k = 0, 1, 2, . . .

143
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The first example that comes to mind is X ∈ Po(λ), see example 2.3.8. In the case of a finite set of values we

take pX(k) = 0 for those non negative integers that cannot occur, e.g., when X takes only a finite number of

values.

Definition 5.2.1 ( Probability generating function ) X is a non negative integer valued random variable.

The probability generating function (p.g.f.) gX(t) of X is defined by

gX(t)
def
= E

[
tX
]
=

∞∑

k=0

tkpX(k). (5.1)

We could be more precise and talk about the p.g.f. of the probability mass function {pX(k)}∞k=0, but it is

customary and acceptable to use phrases like ’p.g.f. of a random variable’ or ’p.g.f. of a distribution’.

Example 5.2.1 (P.g.f. for Poisson distributed random variables) X ∈ Po(λ), λ > 0. The p.g.f. is

gX(t) =

∞∑

k=0

tke−λ k
λ

k!
= e−λ

∞∑

k=0

(tλ)k

k!
= e−λ · etλ,

where we used the series expansion of etλ, which converges for all t. In summary,

X ∈ Po(λ) ⇒ gX(t) = eλ(t−1). (5.2)

We write also

gPo(t) = eλ(t−1), t ∈ R.

Note that gX(1) =
∑∞

k=0 pX(k) = 1, so the series converges absolutely at least for | t |≤ 1. In addition,

gX(0) = pX(0). By termwise differentiation we get

g
(1)
X (t) =

d

dt
gX(t) =

∞∑

k=0

ktk−1pX(k) =

∞∑

k=1

ktk−1pX(k).

Then it follows that

g
(1)
X (0) = pX(1).

If we differentiate successively and evaluate the kth derivative g
(k)
X (t) at t = 0, we get

pX(k) = P (X = k) =
g
(k)
X (0)

k!
, k = 0, 1, 2, . . . . (5.3)

In this sense we can recover (generate) the probability mass function pX(n) from gX(t).

Example 5.2.2 X ∈ Po(λ), then by (5.2) g
(1)
X (t) = λeλ(t−1) and g

(1)
X (0) = e−λλ, as should be.

Theorem 5.2.3 (Uniqueness) If X and Y are two non negative integer valued random variables such that

gX(t) = gY (t) for all t ,

then

pX(k) = pY (k) k = 0, 1, 2, . . .
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We write this as

X
d
= Y.

(’X and Y are equal in distribution’).

Proof: Since gX(t) = gY (t) holds for a region of convergence, we can take that the equality holds for some

region around origin. Then we have by (5.3) for all k

pX(k) =
g
(k)
X (0)

k!
, pY (k) =

g
(k)
Y (0)

k!
.

But the assumption implies that g
(k)
X (0) = g

(k)
Y (0), and hence pX(k) = pY (k) for all k.

The uniqueness theorem means in the example above that (5.2) can be strengthened to

X ∈ Po(λ) ⇔ gX(t) = eλ(t−1). (5.4)

We can think of the generating functions of functions of X . The ’p.g.f. of Y = H(X)’ would then be

gY (t) = gH(X) = E
[
tH(X)

]
=

∞∑

k=0

tH(k)pX(k).

Example 5.2.4 Let Y = a+ bX , where X is a non negative integer valued random variable and a and b are

non negative integers. Then

gY (t) = E
[
ta+bX

]
= taE

[
tbX
]
= taE

[(
tb
)X]

= tagX
(
tb
)
, (5.5)

if tb is in the domain of convergence of gX .

Let us next compute additional examples of p.g.f.’s.

Example 5.2.5 (P.g.f. for Bernoulli random variables) X ∈ Be(p), 0 < p < 1. Here P(X = 1) = p,

P(X = 0) = 1− p = q (and . The p.g.f. is

gX(t) = t0(1− p) + tp = q + pt.

Hence we have

X ∈ Be(p) ⇔ gX(t) = q + pt. (5.6)

We write also

gBe(t) = q + pt.

We note that gX(0) = q = P(X = 0), g
(1)
X (t) = p and thus g

(1)
X (0) = p = P(X = 1) and g

(k)
X (0) = 0 for

k = 2, 3 . . ., as should be.

Example 5.2.6 (P.g.f. for Binomial random variables) X ∈ Bin(p), 0 < p < 1, q = 1− p. The p.g.f. is

gX(t) =

n∑

k=0

tk

(
n

k

)
pk(1 − p)n−k =

n∑

k=0

(
n

k

)
(tp)k(1− p)n−k

= ((1− p) + tp)
n
= (q + tp)

n
,
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where we used the binomial theorem.

X ∈ Bin(p) ⇔ gX(t) = (q + tp)n . (5.7)

We write also

gBin(t) = (q + tp)n .

When both (5.6) and (5.7) are taken into account, we find

gBin(t) = (gBe(t))
n
. (5.8)

Example 5.2.7 (P.g.f. for Geometric random variables) X ∈ Ge(p), 0 < p < 1, q = 1− p. pX(k) = qkp,

k = 0, 1, 2, . . .. The p.g.f. is

gX(t) =

∞∑

k=0

tkp(1− p)k = p

n∑

k=0

(tq)k,

which we sum as a geometric series to get

=
p

1− qt
,

if | t |< 1
q , where the radius of convergence is obtained from the radius of convergence of geometric series.

X ∈ Ge(p) ⇔ gX(t) = gGe(t) =
p

1− qt
, | t |< 1

q
. (5.9)

Example 5.2.8 (P.g.f. for First Success random variables) X ∈ Fs(p), 0 < p < 1, q = 1 − p. pX(k) =

qk−1p, k = 1, 2, . . .. The p.g.f. is

gX(t) =
∞∑

k=1

tkpqk−1 = p
∞∑

k=1

tkqk−1 =
p

q

n∑

k=1

(tq)k =
p

q

(
n∑

k=0

(tq)k − 1

)

and we sum the geometric series, if | t |< 1
q , to get

=
p

q

(
1

1− qt
− 1

)
=
p

q

(
qt

1− qt

)
=

pt

1− qt
.

X ∈ Fs(p) ⇔ gX(t) = gFs(t) =
pt

1− qt
, | t |< 1

q
. (5.10)

Example 5.2.9 (P.g.f. for X + 1, X ∈ Ge(p)) Let X ∈ Ge(p), 0 < p < 1, q = 1 − p. We set Y = X + 1.

Since X has values k = 0, 1, 2, . . . ,, the values of Y are k = 1, 2, . . . ,. To compute the p.g.f. of Y we can use

(5.5) with a = 1 and b = 1 and apply (5.9)

gY (t) = t · gX (t) = t · p

1− qt
=

pt

1− qt
.

Here a look at (5.10) and the uniqueness of p.g.f. entail

X + 1 ∈ Fs(p).
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This makes perfect sense by our definitions. If X ∈ Ge(p), then X is the number of independent attempts

in a binary trial until one gets the first success NOT INCLUDING the successful attempt. The first success

distribution Fs(p) is the distribution of the number of independent attempts in a binary trial until one gets the

first success INCLUDING the successful attempt. Clearly these very conceptions imply that X + 1 ∈ Fs(p), if

X ∈ Ge(p). Hence we have re-established this fact by a mechanical calculation. Or, we have checked that p.g.f.

corresponds to the right thing.

5.3 Moments and Probability Generating Functions

We find first a formula for g
(r)
X (1). We call

E [X(X − 1) · . . . · (X − (r − 1))]

the rth (descending) factorial moment of X .

Theorem 5.3.1 (Factorial Moments by p.g.f.) X is a non negative integer valued random variable, and

E [Xr] <∞ for some r > 0. Then

g
(r)
X (1) = E [X(X − 1) · . . . · (X − (r − 1))] . (5.11)

Proof: By successive differentiations

g
(r)
X (t) =

∞∑

k=r

k(k − 1) · . . . · (k − (r − 1))tk−rpX(k)

Then we observe that

∞∑

k=r

k(k − 1) · . . . · (k − (r − 1))pX(k) = E [X(X − 1) · . . . · (X − (r − 1))] .

As a clarification, by the law of the unconscious statistician (2.4)

E [X(X − 1) · . . . · (X − (r − 1))] =

∞∑

k=0

k(k − 1) · . . . · (k − (r − 1))pX(k),

but the terms corresponding to k = 0, 1, . . . , r − 1 contribute obviously by a zero to the sum in the right hand

side, and hence the claim in the theorem is true.

A number of special cases of the preceding result are of interest as well as of importance. We assume that the

moments required below exist.

•
g
(1)
X (1) = E [X ] . (5.12)

•
g
(2)
X (1) = E [X(X − 1))] = E

[
X2
]
− E [X ] .

As we have

Var[X ] = E
[
X2
]
− (E [X ])

2
,
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it follows that

Var[X ] = g
(2)
X (1) + E [X ]− (E [X ])

2

or

Var[X ] = g
(2)
X (1) + g

(1)
X (1)−

(
g
(1)
X (1)

)2
. (5.13)

Example 5.3.2 X ∈ Po(λ), and from (5.4)

g
(1)
X (1) = λeλ(t−1) |t=1= λ,

g
(2)
X (1) = λ2eλ(t−1) |t=1= λ2,

and

Var[X ] = g
(2)
X (1) + g

(1)
X (1)−

(
g
(1)
X (1)

)2
= λ2 + λ− λ2 = λ.

5.4 Probability Generating Functions for Sums of Independent Ran-

dom Variables

Let again X1, X2, . . . , Xn be n independent non negative integer valued random variables and consider their

sum

Sn = X1 +X2 + . . .+Xn =
n∑

k=1

Xk.

Then clearly Sn has, by basic algebra, the non negative integers as values. The results about the p.g.f. of the

sum follow exactly as the analogous results for characteristic functions of the sum .

Theorem 5.4.1 If X1, X2, . . . , Xn are independent non negative integer valued random variables with respec-

tive p.g.f.s gXk
(t), k = 1, 2, . . . , n. Then the p.g.f. gSn

(t) of their sum Sn =
∑n

k=1Xk is given by

gSn
(t) = gX1(t) · gX2(t) · . . . · gXn

(t). (5.14)

Proof: gSn
(t) = E

[
tSn
]
= E

[
t(X1+X2+...+Xn)

]
= E

[
tX1tX2 · . . . · tXn

]
. Then theorem 1.6.1 and independence

(of Borel functions of independent random variables) entail together that

= E
[
tX1
]
E
[
tX2
]
· . . . · E

[
tXn
]

= gX1(t) · gX2(t) · . . . · gXn
(t).

Example 5.4.2 (Sums of Independent Poisson Random Variables) X1, X2, . . . , Xn are independent

and Xk ∈ Po (λk), λk > 0 for k = 1, 2, . . . , n. Then (5.4) and (5.14) entail

gSn
(t) = eλ1(t−1) · eλ2(t−1) · . . . · eλn(t−1) = e(λ1+λ2+...+λn)(t−1).

Thus Sn ∈ Po(λ1 + λ2 + . . .+ λn), as was already found by means of characteristic functions.
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Corollary 5.4.3 X1, X2, . . . , Xn, are independent and identically distributed non negative integer valued

random variables with the p.g.f. gX(t), X
d
= Xk. Then the p.g.f. gSn

(t) of their sum Sn =
∑k

i=1Xi is given by

gSn
(t) = (gX(t))

n
. (5.15)

The assertions in (5.15) and (5.8) give another proof of the fact in Example 4.4.6.

5.5 Sums of a Random Number of Independent Random Variables

We consider N ,X1, X2, . . . , Xn, . . ., which are independent random variables with non negative integers as

values. X1, X2, . . . , Xn, . . . , are furthermore identically distributed with the p.g.f. gX(t). The p.g.f. of N is

gN ((t)). We want to study the sum of a random number of Xk’s, or,

SN =

{
0, if N = 0

X1 +X2 + . . .+XN , if N ≥ 1.
(5.16)

In operational terms of a computer simulation, we generate first an outcome N = n, then the independent

outcomes of X1,X2 . . . Xn and thereafter add the latter outcomes.

Theorem 5.5.1 (Composition Formula) The p.g.f. gSN
(t) of SN defined in (5.16) is

gSN
(t) = gN (gX(t)) . (5.17)

Proof: By definition of p.g.f. and double expectation in (3.9)

gSN
(t) = E

[
tSN
]
= E

[
E
[
tSN | N

]]
.

Since E
[
tSN | N

]
is measurable with respect to the sigma field generated by N , we can write by the Doob-

Dynkin theorem 1.5.5 that H(N) = E
[
tSN | N

]
. Then

E
[
E
[
tSN | N

]]
= E [H(N)] ,

and by the law of the unconscious statistician (2.4)

E [H(N)] =
∞∑

n=0

H(n)P (N = n) =
∞∑

n=0

E
[
tSN | N = n

]
P (N = n)

and as pN (n) = P (N = n), this equals

=
∞∑

n=0

E
[
tX1+X2+...+Xn | N = n

]
pN (n) =

∞∑

n=0

E
[
tX1+X2+...+Xn

]
pN (n) ,

where we took advantage of the assumed independence between the r.v.’s in the sum and the variable N (an

independent condition drops out). But then (5.15) yields

=

∞∑

n=0

(gX(t))
n
pN (n) .

In view of the definition of the p.g.f. of N the last expression is seen to equal

= gN (gX(t)) .

We refer to gSN
(t) = gN (gX(t)) as the composition formula. An inspection of the preceding proof shows

that the following more general composition formula is also true.
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Theorem 5.5.2 (Composition Formula with Characteristic Function) X1, X2, . . . , Xn, . . . are inde-

pendent and identically distributed random variables with the characteristic function ϕX(t). N is independent

of the Xks and has the non negative integers as values with the p.g.f. gN (t). The characteristic function ϕSN
(t)

of SN defined in (5.16) is

ϕSN
(t) = gN (ϕX(t)) . (5.18)

Example 5.5.3 Let N ∈ Po(λ), Xk ∈ Be(p) for k = 1, 2, . . .. From (5.6) gX(t) = q + pt and from (5.4)

gN (t) = eλ(t−1). Then (5.17) becomes

gSN
(t) = gN (gX(t)) = eλ(q+pt−1) = eλ(1−p+pt−1) = eλp(t−1),

i.e.,

gSN
(t) = eλp(t−1).

By uniqueness of p.g.f.s we have thus obtained that SN ∈ Po(λp). The result is intuitive: we can think of

first generating N ones (1) and then deciding for each of these ones, whether to keep it or not by drawing

independently from a Bernoulli random variable. Then we add the ones that remain. This can be called

’thinning’ of the initial Poisson r.v.. Therefore thinning of Po(λ) is probabilistically nothing else but drawing

an integer from Poisson r.v. with the intensity λ modulated by p, Po(λp).

The result in theorem 5.5.1 has many nice consequences, when combined with the moment formulas in section

5.3. Let us assume that all required moments exist.

• By (5.12) g
(1)
X (1) = E [X ] and thus

E [SN ] = g
(1)
SN

(1) = g
(1)
N (gX(1)) · g(1)X (1)

and since gX(1) = 1,

= g
(1)
N (1) · g(1)X (1) = E [N ] ·E [X ] .

In summary

E [SN ] = E [N ] · E [X ] . (5.19)

• We shall next show

Lemma 5.5.4

Var [SN ] = Var [N ] (E [X ])2 + E [N ] Var [X ] . (5.20)

Proof: We start handling this by (5.13) and get

Var [SN ] = g
(2)
SN

(1) + g
(1)
SN

(1)−
(
g
(1)
SN

(1)
)2
. (5.21)

We need the second derivative of gN (gX(t)), or

g
(2)
SN

(t) = g
(2)
N (gX(t)) ·

(
g
(1)
X (t)

)2
+ g

(1)
N (gX(t)) g

(2)
X (t),

and find its value at t = 1 as

g
(2)
SN

(1) = g
(2)
N (1) ·

(
g
(1)
X (1)

)2
+ g

(1)
N (1) g

(2)
X (1). (5.22)
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Now we have by the rule for factorial moments (5.11) both

g
(2)
N (1)) = E [N(N − 1)] = E

[
N2
]
− E [N ] ,

and

g
(2)
X (1)) = E

[
X2
]
− E [X ] .

By inserting these formulas in (5.22) we get

g
(2)
SN

(1) =
(
E
[
N2
]
− E [N ]

)
(E [X ])2 + E [N ]

(
E
[
X2
]
− E [X ]

)
.

In addition by (5.19)

g
(1)
SN

(1) = E [N ] · E [X ] .

When we insert these in (5.21), i.e., in

Var [SN ] = g
(2)
SN

(1) + g
(1)
SN

(1)−
(
g
(1)
SN

(1)
)2

we get

=
(
E
[
N2
]
− E [N ]

)
(E [X ])

2
+ E [N ]

(
E
[
X2
]
− E [X ]

)
+ E [N ] · E [X ]− (E [N ] · E [X ])

2
.

We simplify this step-by-step (one simplification per line), e.g., with eventual applications of Steiner
′
s

formula (2.6),

= E
[
N2
]
(E [X ])

2 − E [N ] (E [X ])
2
+ E [N ]

(
E
[
X2
]
− E [X ]

)
+ E [N ] · E [X ]− (E [N ] · E [X ])

2

=
(
E
[
N2
]
− (E [N ])2

)
(E [X ])2 − E [N ] (E [X ])2 + E [N ]

(
E
[
X2
]
− E [X ]

)
+ E [N ] ·E [X ]

= Var [N ] (E [X ])
2 − E [N ] (E [X ])

2
+ E [N ]

(
E
[
X2
]
− E [X ]

)
+ E [N ] ·E [X ]

= Var [N ] (E [X ])
2 − E [N ] (E [X ])

2
+ E [N ]E

[
X2
]
− E [N ]E [X ] + E [N ] ·E [X ]

= Var [N ] (E [X ])
2 − E [N ] (E [X ])

2
+ E [N ]E

[
X2
]

= Var [N ] (E [X ])2 + E [N ]
(
E
[
X2
]
− (E [X ])2

)

= Var [N ] (E [X ])
2
+ E [N ] Var [X ] ,

which is (5.20), as was to be shown.

5.6 The Probability of an Even Number of Successes

One of the powerful applications of ordinary generating functions is to solve various recurrences or difference

equations, see [41, 45]. As one demonstration of these capabilities, we compute the probability of an even

number of successes in the first k of an infinite Bernoulli sequence.

We consider an infinite sequence {Xn}n≥1 of independent Be(p) -distributed random variables, which means

that p is the probability of success and q = 1− p is the probability of failure for every Xn. We refer to the Xn

as (Bernoulli) trials. For any k ≥ 1

Ek = {an even number of successes in the first k trials}.
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Since the infinite sequence lacks memory due to independence, we can always drop a finite number of trials in

the beginning and yet, in this new infinite sequence, the probability P (Ek) is for any k unaffected.

If the first trial is a failure, in order for the outcome to be in Ek, there must be an even number of successes

in the next k − 1 trials (lack of memory), or, in other words the outcome of the next k − 1 trials is in Ek−1. If

the first trial is a success, then there must be an odd number of successes in the next k − 1 trials, or, in other

words the outcome of the next k − 1 trials is in the complement Ec
k−1. Thus we can write

Ek = (Ek−1 ∩ {failure in the first trial }) ∪
(
Ec

k−1 ∩ {success in the first trial }
)
.

This expresses Ek as a union of two disjoint events, and therefore

= P (Ek−1 ∩ {failure in the first trial }) +P
(
Ec

k−1 ∩ {success in the first trial }
)
.

But as the trials are independent, we get

P (Ek) = P ({failure in the first trial })P (Ek−1) +P ({success in the first trial })P
(
Ec

k−1

)
. (5.23)

We let pk be defined by

pk
def
= P (Ek) .

Then we can write (5.23) as the difference equation or recursion

pk = qpk−1 + p (1− pk−1) . (5.24)

This is actually valid only for k ≥ 2. Namely, if k = 1, an even number of successes can come about in only one

way, namely by making zero successes, and thus we take p1 = q. If the equation in (5.24) is to hold for k = 1,

i.e.,

q = p1 = qp0 + p (1− p0) ,

we must take p0 = 1. The initial conditions for the equation in (5.24) must therefore be taken as

p1 = q, p0 = 1. (5.25)

Here is a first method of solution of (5.24). We write (5.24) as

pk − (q − p)pk−1 = p. (5.26)

Hence we are dealing with a non homogeneous linear difference equation of first order with constant

coefficients. One can solve (5.26) with the analytic techniques of difference equations [45, pp. 13−14].

We consider first the homogeneous equation

pk − (q − p)pk−1 = 0.

The standard ’Ansatz’ for its solution is pk = c1z
k, where c1 is a constant to be determined. This

gives clearly the general solution of the homogeneous difference equation as pHk = c1(q − p)k. We

need next to find a particular solution of the nonhomogenous equation

pk − (q − p)pk−1 = p.

In this situation one seeks for a constant as a particular solution. One sees that pSk = c2
1
2 is a

particular solution, where c2 is a constant to be determined. Then we have by linearity the complete

solution of (5.24) as the sum of the two solutions

pk = pHk + pSk = c1(q − p)k + c2
1

2
.
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The constants c1 and c2 are next determined by the two initial conditions p0 = 1 and p1 = q. This

gives the system of equations c1 +
c2
2 = 1, c1(1 − 2p) + c2

2 = (1 − p). Its solution is c1 = 1
2 and

c2 = 1. Hence we have obtained the complete solution as

pk =
1

2
(q − p)k +

1

2
=

1

2

(
1 + (q − p)k

)
.

This is the expression we should rediscover by using the generating function.

Let us introduce the (ordinary) generating function, see [55, pp. 86-87] or [35],

G(t) =

∞∑

k=0

pkt
k.

When we first multiply both sides of (5.24) by tk and then sum over k = 1, 2, . . .

∞∑

k=1

pkt
k = qt

∞∑

k=1

pk−1t
k−1 + pt

∞∑

k=1

tk−1 − pt

∞∑

k=1

tk−1pk−1

= qt
∞∑

k=0

pkt
k + pt

∞∑

k=0

tk − pt
∞∑

k=0

tkpk. (5.27)

By (5.25) we observe that
∞∑

k=1

pkt
k = G(t)− p0 = G(t)− 1.

Then we have in (5.27) that

G(t)− 1 = qtG(t) +
pt

1− t
− ptG(t),

where we have symbolically used
∑∞

k=0 t
k = 1

1−t . We solve algebraically w.r.t. G(t) to get

G(t) =
1

1− qt+ pt
+

pt

(1− t)(1− qt+ pt)
.

An expansion by partial fractions yields

G(t) =
1

1− qt+ pt
+

p

1− q + p

1

1− t
+

p

1− q + p

1

1− qt+ pt

=
1

2

1

1− t
+

1

2

1

1− qt+ pt
,

where we used 1− q + p = 2p. Thereby

2G(t) =
1

1− t
+

1

1− qt+ pt
.

If we recast the two terms in the right hand side as sums of respective geometric series we obtain

2

∞∑

k=0

pkt
k =

∞∑

k=0

tk +

∞∑

k=0

(q − p)ktk =

∞∑

k=0

(1 + (q − p)k)tk. (5.28)

When we identify the coefficients of tk in the power series in the both sides of (5.28) we get

pk =
1

2

(
1 + (q − p)k

)
k ≥ 0, (5.29)

which agrees with the expression found by the first method.
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5.7 Moment Generating Functions

5.7.1 Definition and First Properties

In this section we consider general random variables X in the sense that X need not have non negative integers

as values.

Definition 5.7.1 (Moment generating function) The moment generating function (m.g.f.) gX(t) for a

random variable X is defined by

ψX(t)
def
= E

[
etX
]
=





∞∑
k=−∞

etxkpX(xk) discrete r.v.,

∞∫
−∞

etxfX(x) dx continuous r.v.,

(5.30)

if there is a positive real number h such that E
[
etX
]
exists for | t |< h.

The requirement of existence of E
[
etX
]
is not satisfied for any h > 0, for example, by a random variable

X ∈ C(0, 1). Thus X ∈ C(0, 1) has no m.g.f. and, as has been pointed out in example 2.2.16, has no moments

either for that matter. Having said that, let us note that the analysis of optical fiber communication in [33] is

completely based on m.g.f.s. The pertinent uniqueness theorem is there, but we omit the proof.

Theorem 5.7.1 (Uniqueness) If X and Y are two random variables such that

ψX(t) = ψY (t) for all |t| < h ,

then

X
d
= Y

(’X and Y are equal in distribution’).

The proof of the following theorem should be obvious in view of the proofs of the analogous theorems for

characteristic and probability generating functions in the preceding .

Theorem 5.7.2 If X1, X2, . . . , Xn are independent random variables with respective m.g.f.s ψXk
(t), k =

1, 2, . . . , n, which all exist for |t| < h, for some h > 0. Then the m.g.f. ψSn
(t) of the sum Sn =

∑n
k=1Xk is

given by

ψSn
(t) = ψX1(t) · ψX2 (t) · . . . · ψXn

(t). (5.31)

There is again the immediate corollary.

Corollary 5.7.3 If X1, X2, . . . , Xn are independent and identically distributed random variables with the

m.g.f. ψX(t), which exists for |t| < h, h > 0. Then the m.g.f. ψSn
(t) of the sum Sn =

∑n
k=1Xk is given by

ψSn
(t) = (ψX(t))

n
. (5.32)
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Example 5.7.4 (M.g.f. for Random Variables Taking Values in Non Negative Integers ) If X is a

r.v. taking values in non negative integers the m.g.f. is by definition (5.30) in the discrete case, assuming

existence of ψX(t),

ψX(t) =

∞∑

k=0

etkpX(k) =

∞∑

k=0

(
et
)k
pX(k) = gX

(
et
)
,

where gX (et) is the p.g.f. of X with et in the domain of convergence of the p.g.f.. In view of this several

examples of m.g.f.s are immediate. We get by (5.4)

X ∈ Po(λ) ⇔ ψX(t) = eλ(e
t−1),

from (5.7)

X ∈ Bin(p) ⇔ ψX(t) =
(
q + etp

)n
,

and from (5.10)

X ∈ Fs(p) ⇔ ψX(t) =
pet

1− qet
, t < − ln(1− p).

Example 5.7.5 (M.g.f. for Y = aX + b) If X is a r.v. with the m.g.f. ψX(t), which exists for |at| < h, and

Y = aX + b, where a and b are real numbers, then

ψY (t) = etb · ψX(at). (5.33)

Example 5.7.6 (M.g.f. for X ∈ N(0, 1)) If X is ∈ N(0, 1), we have by the definition (5.30)

ψX(t) =

∞∫

−∞

etx
1√
2π
e−x2/2 dx

and complete the square to get

= e
t2

2

∞∫

−∞

1√
2π
e−(x−t)2/2 dx

︸ ︷︷ ︸
=1

= e
t2

2 .

Here we used the fact that the integrand in the underbraced integral is the probability density of N(t, 1). This

m.g.f. exists for all t.

X ∈ N(0, 1) ⇔ ψX(t) = e
t2

2 . (5.34)

Example 5.7.7 (M.g.f. for X ∈ N(µ, σ2)) If X ∈ N(µ, σ2), we have shown in example 4.2.5 above that if

Z ∈ N(0, 1) and X = σZ + µ, then X ∈ N(µ, σ2). Then as in (5.33)

ψX(t) = etµ · ψZ(σt),

and this gives by (5.34)

ψX(t) = etµe
σ2t2

2 = etµ+
σ2t2

2 .

X ∈ N(µ, σ2) ⇔ ψX(t) = etµ+
σ2t2

2 . (5.35)
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Example 5.7.8 (M.g.f. for a sum of independent normal random variables) Let X1 ∈ N(µ1, σ
2
1) and

X2 ∈ N(µ2, σ
2
2) be independent. Then by (5.31)

ψX1+X2(t) = ψX1(t) · ψX2(t) =

and by (5.35)

= etµ1+
σ2
1t2

2 · etµ2+
σ2
2t2

2 = et(µ1+µ2)+
(σ2

1+σ2
2)t2

2 .

Hence we have again established that

X1 +X2 ∈ N(µ1 + µ2, σ
2
1 + σ2

2). (5.36)

Example 5.7.9 (M.g.f. for an Exponential Random Variable) Let X ∈ Exp(a), a > 0. The p.d.f. is

fX(x) =





1
ae

−x/a x ≥ 0

0 x < 0.

The definition in (5.30) entails

ψX(t) =

∞∫

0

etx
1

a
e−x/a dx =

1

a

∞∫

0

e−x( 1
a
−t) dx

=
1

a

[
−1(
1
a − t

)e−x( 1
a
−t)

]+∞

0

,

and if 1
a − t > 0, i.e., if 1

a > t, we have

=
1

a

1(
1
a − t

) =
1

(1− at)
.

Thereby we have found

X ∈ Exp(a) ⇔ ψX(t) =
1

(1− at)
,

1

a
> t. (5.37)

Example 5.7.10 (M.g.f. for a Gamma (Erlang) Random Variable) X ∈ Γ (n, a), where n is a positive

integer. In other words, we consider an Erlang distribution. Then example 4.4.9 and (5.37) yield

X ∈ Γ (n, λ) ⇔ ψX(t) =

(
1

1− at

)n

,
1

a
> t. (5.38)

The proof of the statement in theorem 5.5.1 can be modified in an obvious manner to establish the following

composition rule.
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Theorem 5.7.11 (Composition Rule with m.g.f) X1, X2, . . . , Xn, . . . are independent and identically dis-

tributed random variables with the m.g.f. ψX(t) for |t| < h. N is independent of the Xks and has the non

negative integers as values and with the p.g.f. gN (t). The m.g.f. ψSN
(t) of SN defined in (5.16) is

ψSN
(t) = gN (ψX(t)) , (5.39)

wheer we assume that ψX(t) is in the domain of convergence of gN (t).

5.7.2 M.g.f. is really an Exponential Moment Generating Function, E.m.g.f !

The introduction to this chapter stated that ordinary generating functions of sequences of real numbers (ak)
∞
k=0

are functions (power series) of the form

G(t) =

∞∑

k=0

akt
k.

Yet, we have welcomed the m.g.f. as defined in (5.30), which is not at face value compatible the idea of ordinary

generating functions. For the sake of pedagogic coherence it should be appropriate to settle the issue1.

Let us suppose that we have a random variable X such that all moments E
[
Xk
]
k = 1, 2, . . ., exist. Then

a generating function for the sequence
(
E
[
Xk
])∞

k=0
in the ordinary sense would be

∞∑

k=1

E
[
Xk
]
tk.

This does not produce the moment generating function as defined in (5.30). Symbolically we have that

E

[
1

1− tX

]
=

∞∑

k=0

E
[
Xk
]
tk,

and this is the ordinary generating function of
(
E
[
Xk
])∞

k=0
. On the other hand, if we set

∞∑

k=0

E
[
Xk
]

k!
tk,

we can apply the series expansion of etx to obtain by termwise expectation

E
[
etX
]
=

∞∑

k=0

E
[
Xk
]

k!
tk, (5.40)

which equals the moment generating function ψX(t), as treated above. However, in mathematics, see, e.g., [41,

p. 350], the power series

EG(t) =

∞∑

k=0

ak

k!
tk

is called the exponential generating function of the sequence of real numbers (ak)
∞
k=0. In order to adhere

to the standard mathematical terminology we should hence call any ψX(t) = E
[
etX
]
the exponential moment

generating function (e.m.g.f.).

But the practice of talking about moment generating functions has become well established and is thereto

time-honoured. There is in other words neither a pragmatic reason to campaign for a change of terminology to

e.m.g.f.’s, nor a realistic hope of any success in that endeavour.

The take-home message is the following theorem.

1The point is made by J.P. Hoyt in The American Statistician, vol. 26, June 1972, pp. 45−46.
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Theorem 5.7.12 Let X be a random variable with m.g.f. ψX(t) that exists for |t| < h for some h > 0. Then

(i) For all k > 0, E
[
|X |k

]
<∞, i.e, moments of all orders exist.

(ii)

E
[
Xk
]
= ψ

(k)
X (0). (5.41)

Proof: We omit the proof of (i). To prove (ii) we observe that

ψX(t) =

∞∑

k=0

E
[
Xk
]

k!
tk, |t| < h, (5.42)

by successive differentiation one finds that the coefficient of tk

k! is equal to ψ
(k)
X (0).

5.8 Exercises

5.8.1 Probability Generating Functions

1. Pascal Distribution Let X ∈ Pascal(n, p), n = 1, 2, 3, . . ., 0 < p < 1 and q = 1− p, see Example 2.3.10.

Its probability mass function is then

pX(k) = P (X = k) =

(
k − 1

n− 1

)
pnqk−n, k = n, n+ 1, n+ 2, . . . . (5.43)

Show that the p.g.f. of X is

gX(t) =

(
pt

1− qt

)n

, |t| < q−1.

Note: Consider also the examples 5.2.8 and 5.2.9.

2. Negative Binomial Distribution Let Xi, i = 1, 2, . . . , n, be independent and have the distribution

Xi ∈ Ge(p). Define

Y = X1 +X2 + . . .+Xn.

(a) Find the p.g.f. of Y .

(b) Show that if Z ∈ Pascal(n, p), then Y
d
= Z − n.

(c) Show that the probability mass function of Y is

pY (k) =

(
n+ k − 1

k

)
pnqk, k = 0, 1, 2, . . .

Hence Y has the Negative Binomial distribution, Y ∈ NBin(n, p). Aid: The part (c) does not require

a generating function. Use the finding in (b) and (5.43).

3. X1,X2, . . . , Xn are independent Poisson distributed random variables with E [Xk] =
1
k . Show that the

p.g.f. of Yn =
∑n

k=1 kXk is

gYn
(t) = e

∑n
k=1

tk−1
k .

4. N assumes values in the nonnegative integers.

(a) Show that gN (t)−1
t−1 =

∑∞
k=0 P (N > k) tk, for |t| < 1.
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(b) Show that E [N ] =
∑∞

k=0 P (N > k).

5. ([35]) The r.v.’s X1,X2, . . . , Xn are independent and identically disributed. Their common distribution

function is FX(x). We consider the random variable N , which has the positive integers as values and has

the p.g.f. gN(t). N is independent of X1,X2, . . . , Xn. Set

Y = max{X1, X2, . . . , XN}.

Show that

FY (y) = gN (FX(y)) .

Aid: The law of total probability (3.35) may turn out to be useful.

6. (From [49]) The r.v. X has the p.g.f. gX(t) = ln
(

1
1−qt

)
. Determine E [X ], Var [X ], and the p.m.f. of X .

Answers: E [X ] = Var [X ] = e− 1, pX(k) = (1−e−1)k

k , k ≥ 1.

7. Let us introduce

g̃X1−X2(t)
def
= E

[
tX1−X2

]
,

where X1 and X2 are two independent r.v.’s with non negative integers as values. Hence g̃ is an extension

of the notion of p.g.f. to a random variable with integers as values. Let X1 ∈ Po(µ1) and X2 ∈ Po(µ2),

X1 and X2 are independent.

(a) Show that

g̃X1−X2(t) = e−(µ1+µ2)+µ1t+µ2/t. (5.44)

(b) Find the p.m.f of X1 −X2 by means of the extended p.g.f. in (5.44).

Aid: The generating function of modified Bessel functions Ik(x) of the first kind is

ex(t+
1
t ) =

∞∑

k=−∞
Ik(x)t

k, t 6= 0,

see [3, pp. 292−293].

Answer: X1 −X2 ∈ Ske(µ1, µ2), see (2.62) 2 .

5.8.2 Moment Generating Functions

1. X is a random variable with values in the non negative integers. We know that

E [X ] = 1.

Let B be the event B = {X > 0}. We consider X truncated to the positive integers, X |B, i.e., X

conditioned on B (recall section 3.3). We have in addition that

X |B ∈ Fs(p).

Find the m.g.f. of X as

ψX(t) = 1− p+
p2et

1− (1 − p)et
.

2This is how John Gordon Skellam (1914-1979), a statistician and ecologist, derived the p.m.f. (2.62).
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2. X ∈ Ra (a), c.f., example 2.2.17. Compute the m.g.f. of X . Answer:

ψX(t) = 1 +
a

2
t e(

a
2 )

2t2/2

√
π

2

(
erf

( a
2 t√
2

)
+1

)
,

where erf is the error function

erf(x) =
2√
π

∫ x

0

e−t2dt, −∞ < x <∞

3. M.g.f. of the Gumbel distribution Let distribution function of the r.v. X be

FX(x) = e−e−x

, −∞ < x <∞.

Or, X ∈ Gumbel, as defined in example 2.2.19.

(a) Find the m.g.f. of X . What is the region of existence ? Answer: ψX(t) = Γ(1− t), |t| < 1.

Aid: Find the p.d.f. of X and use the appropriate part of the definition in (5.30). In the resulting

integral make the change of variable u = ex and be sure to find the right limits of integration.

(b) Show that E [X ] = γ = Euler’s constant.

Aid: Karl Weierstrass3 re-expressed (You need not check this) the Gamma function in (2.7)

with
1

Γ(x)
= xeγx

∞∏

r=1

(
1 +

x

r

)
e−

x
r ,

where γ is Euler’s constant. Show now that

d
dxΓ(x)

Γ(x)
= − 1

x
− γ +

∞∑

r=1

(
1

r
− 1

r + x

)
.

The function
d
dx

Γ(x)

Γ(x) is known as the Digamma function.

(c) Show that Var [X ] = π2

6 .

4. Find the m.g.f. of the logistic distribution with p.d.f. in (2.39). Answer: B(1 − t, 1 + t), −1 < t < 1,

where B is the Beta function given in (2.31).

5. Difference of two independent Gumbel variables V ∈ Gumbel and W ∈ Gumbel are independent.

In other words their common distribution function is found in (2.35). Show that

U = V −W ∈ logistic(0, 1),

where the distribution logistic(0, 1) is given in Example 2.2.23.

Hint: The two directly preceding exercises should be useful.

6. (a) Find the m.g.f. of X ∈ U(0, 2). Answer: ψX(t) = 1
2t

(
e2t − 1

)
.

(b) E [Xn] = 2n

n+1 . Determine the distribution of X . Answer: It is an easy guess that case (a) has

something to do with this.

7. E [Xn] = 1
n+1 . Find the distribution of X .

8. E [Xn] = c for n = 1, 2, . . . ,. Find the distribution of X . Answer: X ∈ Be(c), if 0 ≤ c ≤ 1. There is no

solution for c /∈ [0, 1].
3(1815−1897) spent a long career as teacher of mathematics at a gymnasium (high school) in Germany. He became Professor

of mathematics at Technical University of Berlin. Weierstrass has a fame in posterity as the ’father of modern analysis’.
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5.8.3 Sums of a Random Number of Independent Random Variables

1. Let X be a random variable assuming values in 0, 1, 2, . . .. Assume that

pX(0) = 0,

(5.45)

pX(k) =

∫ 1

0

u · (1− u)k−1du, k = 1, 2, . . . .

(a) Show that

pX(k) =
1

k(k + 1)
, k = 1, 2, . . . .

Aid: Apply a suitable Beta function (2.31).

(b) Show that the p.g.f. gX(t) is

gX(t) = 1 +
(1− t) ln(1 − t)

t
.

(c) Let X1,X2, . . . , Xn, . . . be I.I.D. with the probability mass function in (a). N ∈ Po (m) and N is

independent of Xk:s. Set

SN = X1 +X2 + . . .+XN , S0 = 0.

Show that the p.g.f. of SN is

gSN
(t) = (1− t)m

(1−t)
t .

Check that you get gSN
(0) = 1. What is the distribution of SN ? Hint: Try the world wide web

with Lea-Coulson Model for Luria -Delbrück Distribution or Lea-Coulson Probability

Generating Function for Luria -Delbrück Distribution as search words.

2. (5B1540 02-08-21, reconsidered) The random variables X1, X2, . . . , Xn, . . . , are I.I.D. and have the prob-

ability mass function

pX(−1) =
1

4
, pX(0) =

1

2
, pX(1) =

1

4
.

Let N ∈ Fs
(
1
2

)
and be independent of the Xk’s. Find the characteristic function of SN =

∑N
k=1Xk. (Aid:

Use (5.18).)

In an exercise to chapter 4 we defined for the same r.v.’s Xn the random variable N
′
by

N
′
= min{n | Xn = 0},

so that N
′
is the smallest (or first) n such that Xn = 0. It was found that the characteristic function of

is ϕS
N

′ (t) = 1/(2− cos t). What is the reason for the difference in the results about N and N
′
?

3. (FA 181 1982-02-05) Let X1, X2, . . . , Xn, . . . be independent and identically distributed with Xk ∈ N(0, 1),

k = 1, 2, . . . , n. N is a random variable with values in the positive integers {1, 2, . . .}. N is independent

of the variables X1, X2, . . . , Xn, . . .. We set

SN = X1 +X2 + . . .+XN .

We assume that

P (N = k) < 1, k = 1, 2, . . . .

Show now that SN cannot be a normal random variable, no matter what distribution N has, as long as

this distribution satisfies our assumptions. Aid: The result in (5.18) should turn out to be useful.



162 CHAPTER 5. GENERATING FUNCTIONS IN PROBABILITY

4. Let X1, X2, . . . , Xn, . . . be a sequence of independent and identically distributed r.v.’s ∈ Po (2). N is

independent of the Xn, N ∈ Po(1). Set SN = X1 +X2 + . . .+XN , S0 = 0. Find using the appropriate

p.g.f.’s that

P (SN = 0) = ee
−2−1. (5.46)

Compare with (3.39) in the preceding.

Answer: 1− 1.4 · 0.92.

6. (Due to Harald Lang) X1, X2, . . . , Xn, . . . is a sequence of independent and identically distributed r.v.’s

that assume values in the non negative integers. We have P (Xn = 0) = p . N assumes also values in the

non negative integers, is independent of the Xn and has the p.g.f. gN(t). Set SN = X1 +X2 + . . .+XN ,

S0 = 0. Express P (SN = 0) in terms of gN (t) and p. Answer: gN (p).

7. (Due to Harald Lang) Let p be the probability that when tossing a thumbtack (North American English),

or a drawing pin (British English) 4 it falls on its pin (not on its head). A person tosses a thumbtack

a number of times, until the toss results in falling on the pin for the first time. Let X be the serial

number of the toss, when the falling on the pin occurred for the first time. After that the person tosses

the thumbtack an additional X times. Let Y be the number of times the thumbtack falls on its pin in the

latter sequence of tosses. Find the p.m.f. of Y ,

(a) by a reasoning that evokes conditional probability,

(b) by finding the p.g.f. of Y .

Answer: pY (k) =
(1−p)k−1

(2−p)k+1 , k ≥ 1.

8. Compound Poisson Distribution Let Xk, k = 1, 2, . . . , be independent and have the distribution

Xk ∈ Po(µ). Let N ∈ Po (λ). N is independent of the Xk’s. Set

SN = X1 +X2 + . . .+XN .

(a) Show that the p.g.f. of SN is

gSN
(t) = eλ(e

µ(t−1)−1). (5.47)

(b) Show that

E [SN ] = λµ,Var [SN ] = λµ(1 + µ).

(c) In fact a good definition of the compound Poisson distribution is that it is the probability distribution

on the non negative integers with the p.g.f. in (5.47). In example 2.3.9 the compound Poisson

distribution was defined in terms of the p.m.f. in (2.54). Explain why the two definitions actually

deal with one and the same thing, i.e., SN ∈ ComPo(λ, µ) in the sense of example 2.3.9.

9. Let X1, X2, . . . , Xn, . . . be independent and identically distributed with Xk ∈ Exp(1/a), k = 1, 2, . . . ,.

N ∈ Fs(p). N is independent of the variables X1, X2, . . . , Xn, . . .. We set

SN = X1 +X2 + . . .+XN .

Show that SN ∈ Exp
(

1
pa

)
.

4a short nail or pin with usually a circular head, used to fasten items such as documents to a wall or board for display. In

Swedish: häftstift.
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10. (From [49]) Let 0 < p < 1. q = 1−p. X1, X2, . . . , Xn, . . . are independent and identically distributed with

Xk ∈ Ge(q), k = 1, 2, . . . ,. N ∈ Ge(p). N is independent of the variables X1, X2, . . . , Xn, . . .. We set

SN = X1 +X2 + . . .+XN .

(a) Show that the p.m.f. of SN is pSN
(k) = (1−p)2

(2−p)k+1 , k ≥ 1, pSN
(0) = 1

2−p .

(b) Show that SN | SN > 0 ∈ Fs(a), and show that a = 1−p
2−p .

11. (From [49]) Let X1, X2, . . . , Xn, . . . be independent and identically distributed with Xk ∈ L(a), k =

1, 2, . . . ,. Np ∈ Fs(p). Np is independent of the variables X1, X2, . . . , Xn, . . .. We set

SNp
= X1 +X2 + . . .+XNp

.

Show that
√
pSNp

∈ L(a).

12. (From [49]) Let X1, X2, . . . , Xn, . . . be independent and identically distributed with Xk ∈ Po(2), k =

1, 2, . . . ,. N ∈ Po(1). N is independent of the variables X1, X2, . . . , Xn, . . .. We set S0 = 0, and

SN = X1 +X2 + . . .+XN .

Show that

E [SN ] = 2,Var [SN ] = 6.

13. (From [49]) Let X1, X2, . . . , Xn, . . . be independent and identically distributed. N is independent of the

variables and has the non negative integers as values.

SN = X1 +X2 + . . .+XN .

Show that

Cov (X1 +X2 + . . .+XN , N) = E [X ] · Var [N ] .

14. (From [49]) Let X1, X2, . . . , Xn, . . . be independent. E [Xk] = mk, where m 6= 1, k = 1, 2, . . . ,. N is

independent of the variables and ∈ Po(λ). We set

SN = X1 +X2 + . . .+XN .

Show that

E [X1 +X2 + . . .+XN ] =
m

m− 1

(
eλ(m−1) − 1

)
.

5.8.4 Various Additional Generating Functions in Probability

1. (From [41]) The Dirichlet probability generating function

Dirichlet probability generating function DX(t) of a random variable X with values in the positive integers

is defined as

DX(t) =

∞∑

k=1

pX(k)

kt
.

Find E [X ], Var [X ] and E [lnX ] expressed in terms of DX(t) and its derivatives.
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2. The exponential generating function for factorial moments

The kth (descending) factorial moment is denoted by E
[
X [k]

]
and defined by

E
[
X [k]

]
= E [X(X − 1)(X − 2) · . . . · (X − (k − 1))] .

Let X be a random variable that assumes values in the nonnegative integers. Show that the exponential

generating function for factorial moments is

EGX(t) = E
[
(1 + s)

X
]
.

3. The ordinary moment generating function was in the preceding argued to be

E

[
1

1− tX

]
=

∞∑

k=0

E
[
Xk
]
tk.

What is one main disadvantage of this function as a tool in probability ?

4. Check that the solution in (5.29) satisfies (5.24) as well as (5.25).

5.8.5 The Chernoff Inequality

1. Let X be a random variable with the m.g.f. ψX(t). Show that for any constant c

P (X ≥ c) ≤ min
t≥0

e−tcψX(t). (5.48)

Aid: Try to find a suitable way of using the Markov inequality (1.38). The inequality in (5.48) is known

as the Chernoff Inequality or the Chernoff Bound.

2. Let X1, . . . Xn be independent and identically Be(p)-distributed. Show that

P

(
1

n

n∑

k=1

Xk ≥ c

)
≤ min

t≥0

[
pe(1−c)t + (1− p)e−ct

]n
. (5.49)

3. We continue with (5.49). Show that

P

(
1

n

n∑

k=1

Xk ≥ p+ ǫ

)
≤
((

p

p+ ε

)p+ε(
1− p

1− p− ε

)1−p−ε
)n

. (5.50)

Aid: Minimize the upper bound in (5.49) as a function of t by differential calculus.

We define for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 the number

D (x|y) def
= x ln

x

y
+ (1− x) ln

1− x

1− y
,

which is non negative, as can be checked. Then we can recast the bound in (5.50) as

P

(
1

n

n∑

k=1

Xk ≥ p+ ǫ

)
≤ e−nD(p|p+ǫ). (5.51)

The number D (p|p+ ǫ) is called the Kullback distance between the probability distributions

Be (p) and Be (p+ ǫ), see [23].

4. (From [33, p. 324]) N ∈ Po(λ). Show that

P (N ≥ a) ≤
(
λ

a

)a

ea−λ,

where a ≥ λ.



Chapter 6

Convergence of Sequences of Random

Variables

6.1 Introduction

This chapter introduces and deals with the various modes in which a sequence of random variables defined in a

common probability space (Ω,F ,P) can be said to converge. We start by three examples (for as many different

senses of convergence, there will be a fourth mode, almost sure convergence, later in this chapter).

Results about convergence of sequences are important for the same reasons as limits are important every-

where in mathematics. In probability theory we can find simple approximations to complicated or analytically

unaccessible probability distributions. In section 6.5 we clarify the formulas of propagation of error by conver-

gence of sequences. In section 7.4.2 we will give meaning to a sum of a countably infinite number of random

variables that looks like
∑∞

i=0 aiXi. In section 10.5 we will define by a limit for a Wiener process an integral

that looks like
∫ b

a
f(t)dW (t).

Example 6.1.1 (Convergence to Gumbel Distribution) Let X1, X2, . . . , Xn, . . . be an I.I.D. sequence of

Exp(1) -distributed r.v.’s. Let us consider the random variable

Xmax = max{X1, X2, . . . , Xn}.

It is clear that Xmax is a well defined r.v., since it holds for any x ∈ R that {Xmax ≤ x} = ∩n
i=1{Xi ≤ x} ∈ F .

We wish to understand or approximate the probabilistic behaviour of Xmax for large values of n, which we study

by letting n→ ∞. Let x > 0. By independence

P (Xmax ≤ x) = P (∩n
i=1{Xi ≤ x}) =

n∏

i=1

P ({Xi ≤ x})

= (FX(x))
n
=
(
1− e−x

)n
,

since all Xk ∈ Exp(1). Then

P (Xmax ≤ x) =
(
1− e−x

)n → 0,

as n→ ∞. This is an intuitive result, but it does not contribute much to any the purpose of useful approximation

we might have had in mind. We need a more refined apporoach. The trick turns out to be to shift Xmax by a

suitable amount depending on n, or precisely by − lnn,

Yn = Xmax − lnn, n = 1, 2, . . . (6.1)

165
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Then for any x ∈ R

FYn
(x) = P (Yn ≤ x) = P (Xmax ≤ x+ lnn)

and by the computation above this equals

=
(
1− e−(x+lnn)

)n
=

(
1− e−x

n

)n

.

Now we get, as n→ ∞,

FYn
(x) =

(
1− e−x

n

)n

→ e−e−x

.

Let us write

FY (x) = e−e−x

, −∞ < x <∞. (6.2)

This is the distribution function of a Gumbel distributed random variable Y , c.f. example 2.2.19. Hence it

should be permissible to say that there is the convergence of Yn to Y in the sense that FYn
(x) → FY (x).

Example 6.1.2 (Weak Law of Large Numbers ) X1, X2, . . . are independent, identically distributed (I.I.D.)

random variables with finite expectation µ and with variance σ2. We set Sn = X1 +X2 + . . . +Xn, n ≥ 1.

We want to understand the properties of the arithmetic mean 1
nSn for large values of n, which we again study

by letting n→ ∞.

We need to recall that by I.I.D. E
[
1
nSn

]
= µ and Var

[
1
nSn

]
= 1

n2nσ
2 = σ2

n . Then Chebyshev’s inequality

in (1.27) yields for any ǫ > 0 that

P

(
| Sn

n
− µ |> ǫ

)
≤ 1

ǫ2
Var

(
Sn

n

)
=

1

ǫ2
σ2

n
.

Thus we have for any ǫ > 0

P

(
| Sn

n
− µ |> ǫ

)
→ 0,

as n → ∞. Again it should be correct to say that there is the convergence of Sn

n to µ in the sense that the

probability of an arbitrary small deviation of Sn

n from µ goes to zero with increasing n.

For example, we know by the (weak) law of large numbers that 1
n

∑n
k=1Xk

P→ p, as n → ∞, if

X1, . . .Xn are independent and identically Be(p)-distributed. Therefore (5.51) tells that the prob-

ability of 1
n

∑n
k=1Xk being larger than p goes to zero exponentially in n, and that the rate of

convergence is determined by the Kullback distance D (p|p+ ǫ).

Example 6.1.3 (Convergence of Second Order Moments ) X1, X2, . . . is a sequence three point random

variables such that

P (Xn = −1) =
1

2n
,P (Xn = 0) = 1− 1

n
,P (Xn = +1) =

1

2n
.

It is immediate that E [X ] = 0 and that E
[
X2

n

]
= (−1)2 · 1

2n + 02 ·
(
1− 1

n

)
+ (+1)2 · 1

2n = 1
n . Hence

E
[
X2

n

]
→ 0,
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as n→ ∞. Again we can regard this convergence of the second moments as a notion of probabilistic convergence

of the sequence X1, X2, . . . to 0. To be quite accurate, we are saying that Xn converges to zero in the sense that

E
[
(Xn − 0)

2
]
→ 0,

as n→ ∞.

6.2 Definitions of Modes of Convergence, Uniqueness of the Limit

Now we launch the general formal definitions of the three modes of convergence suggested by the three examples

in the section above in this chapter.

Definition 6.2.1 (Convergence in Distribution) A sequence of random variables (Xn)
+∞
n=0 converges in

distribution to the random variable X , if and only if it holds for the sequence of respective distribution

functions that

FXn
(x) → FX(x) as n→ ∞

for all x that are points of continuity of FX(x).

We write convergence in distribution compactly as

Xn
d→ X, as n→ ∞.

Remark 6.2.1 We try next to justify the presence of points of continuity in the definition above. Let Xn be

a random variable which induces, see (2.80), on the real line the total mass at the point 1
n ,

P

(
Xn =

1

n

)
= 1.

Then for any real x

FXn
(x) = P (Xn ≤ x) =

{
1 x ≥ 1

n

0 x < 1
n .

Then we consider the distribution function

FX(x) =

{
1 x ≥ 0

0 x < 0.

Thus we see that, as n→ ∞
x 6= 0 : FXn

(x) → FX(x),

but

x = 0 : FXn
(0) = 0 does not converge to FX(0) = 1.

But it is reasonable that the convergence FXn
(x) → FX(x) for x 6= 0 should matter, and therefore we require

convergence of the sequence of distribution functions only for the points of continuity of the limit distribution

function.
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The notation Xn
d→ X will be systematically distorted in the sequel, as we are going to write, e.g.,

Xn
d→ N(0, 1), Xn

d→ Po (λ) ,

and so on, if X ∈ N(0, 1), X ∈ Po (λ) and so on. In terms of the assumed licence to distort we have in the

example 6.1.1 found that

Xmax − lnn
d→ Gumbel.

A second mode of convergence is formulated by the next definition.

Definition 6.2.2 (Convergence in Probability) A sequence of random variables (Xn)
+∞
n=0 converges in

probability to the random variable X , if and only if it holds for all ǫ > 0 that

P (| Xn −X |> ǫ) → 0,

as n→ ∞.

We write this compactly as

Xn
P→ X, as n→ ∞.

The limiting random variable may be a degenerate on, i.e., a constant. This is the case in example 6.1.2, where

we found that
Sn

n

P→ µ, as n→ ∞.

Definition 6.2.3 (Convergence in r-mean) A sequence of random variables (Xn)
+∞
n=0 converges in r-

mean to the random variable X , if and only if it holds that

E [| Xn −X |r] → 0,

as n→ ∞. .

We have the compact expression

Xn
r→ X.

If r > s, then Xn
r→ X implies Xn

s→ X . In the sequel we shall be exclusively concerned with the case r = 2.

Here we talk about convergence in mean square

E |Xn −X |2 →0, as n→ ∞.

The chapter 7 below will be devoted to this convergence and its applications. Obviously, Xn
2→ X is the case

encountered in Example 6.1.3.

The limiting random variable in all of these modes of convergence is unique in distribution. This will now

be proved in the case of convergence in probability.

Theorem 6.2.1 if Xn
P→ X , as n→ ∞ and Xn

P→ Y , as n→ ∞, then

X
d
= Y.
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Proof: We apply in this the inequality in (1.33). For given ǫ > 0 we take C = {|X−Y | ≤ ǫ}, A = {|Xn−Y | ≤
ǫ/2} and B = {|Xn − Y | ≤ ǫ/2}. We check first that the condition

A ∩B ⊆ C,

required for (1.33) is valid here. We note by the triangle inequality that

|X − Y | = |(X −Xn) + (Xn − Y )| ≤ |X −Xn|+ |Xn − Y )|

But A ∩ B is the event that both A = {|Xn − Y | ≤ ǫ/2} and B = {|Xn − Y | ≤ ǫ/2} hold. Hence if the event

A ∩B holds,

|X −Xn|+ |Xn − Y )| ≤ ǫ/2 + ǫ/2 = ǫ,

i.e., if the event A ∩B holds, then

|X − Y | ≤ ǫ.

Thus we have checked that A ∩B ⊆ C.

The assumptions Xn
P→ X , as n→ ∞ and that Xn

P→ Y , as n→ ∞ mean that

P (Ac) = P ({|Xn − Y | > ǫ/2}) → 0

and

P (Bc) = P ({|Xn − Y | > ǫ/2}) → 0

as n→ ∞. Hence the inequality (1.33) implies that

P (Cc) = P ({|X − Y | > ǫ}) = 0

for any ǫ > 0. Hence we have shown that

P (X 6= Y ) = 0,

as was desired.

6.3 Relations between Convergences

The modes of convergence formulated above are related to each other by an easily memorized catalogue of

implications. The big picture is the following:

Xn
r→ X ⇒ Xn

P→ X

as n→ ∞.

Xn
P→ X ⇒ Xn

d→ X

as n→ ∞. If c is a constant,

Xn
P→ c⇔ Xn

d→ c

as n→ ∞. The last implication can also be written as, c.f. (4.19),

Xn
P→ c⇔ Xn

d→ δc.

We shall now prove each of these statements.
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Theorem 6.3.1

Xn
r→ X ⇒ Xn

P→ X (6.3)

as n→ ∞.

Proof: We use Markov’s inequality, (1.38). We check readily that this implies for a non negative random

variable U (U ≥ 0) and a > 0, that for r ≥ 1

P (U ≥ a) ≤ 1

ar
E [U r] .

Then we apply this to U =| Xn −X | and get

P (| Xn −X |≥ ǫ) ≤ 1

ǫr
E [| Xn −X |r] .

Thus the desired conclusion follows.

Theorem 6.3.2

Xn
P→ X ⇒ Xn

d→ X (6.4)

as n→ ∞.

Proof: Let us set FXn
(x) = P (Xn ≤ x). By some basic set operations we get

P (Xn ≤ x) = P ({Xn ≤ x} ∩ {| Xn −X |≤ ǫ}) +P ({Xn ≤ x} ∩ {| Xn −X |> ǫ})

(a case of the obvious application of finite additivity: P (A)= P (A ∩B) +P (A ∩Bc)). We observe that

| Xn −X |≤ ǫ⇔ −ǫ ≤ Xn −X ≤ ǫ

⇔ −Xn − ǫ ≤ −X ≤ −Xn + ǫ

⇔ Xn − ǫ ≤ X ≤ Xn + ǫ

Hence we can conclude that Xn ≤ x ⇒ X ≤ x + ǫ, for the event {Xn ≤ x} ∩ {| Xn −X |≤ ǫ}, which implies

that {Xn ≤ x} ∩ {| Xn −X |≤ ǫ} ⊆ {X ≤ x+ ǫ} ∩ {| Xn −X |≤ ǫ} and then

P ({Xn ≤ x} ∩ {| Xn −X |≤ ǫ}) ≤ P ({X ≤ x+ ǫ} ∩ {| Xn −X |≤ ǫ}) .

Thus we have obtained

P (Xn ≤ x) ≤ P ({X ≤ x+ ǫ} ∩ {| Xn −X |≤ ǫ}) +P ({Xn ≤ x} ∩ {| Xn −X |> ǫ}) ,

≤ P ({X ≤ x+ ǫ}) +P ({| Xn −X |> ǫ}) ,

where we implemented twice the generic rule P (A ∩B) ≤ P (A). Hence we have obtained

FXn
(x) ≤ FX(x+ ǫ) +P ({| Xn −X |> ǫ}) . (6.5)

If we change Xn 7→ X , x 7→ x− ǫ, X 7→ Xn, we can as above prove that

FX(x− ǫ) ≤ FXn
(x) +P ({| Xn −X |> ǫ}) . (6.6)

As n→ ∞, the two inequalities (6.5) and (6.6) and the assumption Xn
P→ X entail (c.f., appendix 1.9) that

FX(x− ǫ) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x+ ǫ) (6.7)
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If we now let ǫ ↓ 0, we get by existence of left limits and right continuity (theorem 1.5.6) required of distribution

functions

FX(x−) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x). (6.8)

But the definition 6.2.1 requires us to consider any point x of continuity of FX(x). For such a point

FX(x−) = FX(x)

and we have obtained in (6.8)

FX(x) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x), (6.9)

and therefore

lim inf
n→∞

FXn
(x) = lim sup

n→∞
FXn

(x) = FX(x). (6.10)

Thus the desired limit exists and

lim
n→∞

FXn
(x) = FX(x). (6.11)

This is the assertion that was to be proved.

For the proof of the next theorem exploits the point mass distribution δc in (4.19).

Theorem 6.3.3 Let c be a constant. Then

Xn
P→ c⇔ Xn

d→ c (6.12)

as n→ ∞.

Proof:

⇒ : Xn
P→ c⇒ Xn

d→ c, as n→ ∞, is true by (6.4).

⇐ : We assume in other words that Xn
d→ δc, as n→ ∞. Let us take ǫ > 0 and consider in view of definition

6.2.2

P (| Xn − c |> ǫ) = 1−P (−ǫ ≤ Xn − c ≤ ǫ)

by the rule (2.91)︸ ︷︷ ︸
= 1− (FXn

(c+ ǫ)− FXn
(c− ǫ) +P (Xn = c− ǫ))

= 1− FXn
(c+ ǫ) + FXn

(c− ǫ)−P (Xn = c− ǫ)

≤ 1− FXn
(c+ ǫ) + FXn

(c− ǫ),

since P (Xn = c− ǫ) ≥ 0. Now, by assumption

FXn
(c+ ǫ) → FX(c+ ǫ) = 1,

since

FX(x) =

{
1 x ≥ c

0 x < c

and c+ ǫ is a point of continuity of FX(x). By assumption

FXn
(c− ǫ) → FX(c− ǫ) = 0,

where c− ǫ is a point of continuity of FX(x). Thus

1− FXn
(c+ ǫ) + FXn

(c− ǫ) → 1− 1 + 0 = 0,

as n→ ∞, and we have proved the assertion as claimed.
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6.4 Some Rules of Computation

The following statements contain useful rules of computation, but the pertinent proofs, except the last one, are

left to the interested reader.

Theorem 6.4.1 (Xn)n≥1 and (Yn)n≥1 are two sequences such that Xn
P→ X and Yn

P→ Y , as n→ ∞. Then

Xn + Yn
P→ X + Y.

Theorem 6.4.2 (Xn)n≥1 and (Yn)n≥1 are two sequences such that Xn
r→ X and Yn

r→ Y , as n→ ∞ for some

r > 0. Then

Xn + Yn
r→ X + Y.

The following theorem has been accredited to two past researchers in probability1.

Theorem 6.4.3 (Cramér -Slutzky Theorem) (Xn)n≥1 and (Yn)n≥1 are two sequences such that Xn
d→ X

and Yn
P→ a, as n→ ∞, where a is a constant. Then, as n→ ∞,

(i)

Xn + Yn
d→ X + a.

(ii)

Xn − Yn
d→ X − a.

(iii)

Xn · Yn d→ X · a.

(iv)
Xn

Yn

d→ X

a
for a 6= 0.

The proof of the next assertion is an instructive exercise in probability calculus and the definition of continuity

of a function.

Theorem 6.4.4 (Xn)n≥1 is a sequence such that Xn
P→ a, as n → ∞, where a is a constant. Suppose that

h(x) is a function that is continuous at a. Then

h (Xn)
P→ h(a), (6.13)

as n→ ∞.

Proof: Take an arbitrary ǫ > 0. We are to show that

P (| h (Xn)− h(a) |> ǫ) → 0,

1Harald Cramér (1893-1985) was a mathematician and actuary. He was professor of mathematical statistics at the University of

Stockholm. Evgeny Evgenievich Slutzky (1880-1948) was a Russian mathematical statistician, economist and political economist.
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as n→ ∞. We shall, as several times above, find an upper bound that converges to zero, if Xn
P→ a is assumed.

We write on this occasion the expression in the complete form

P (| h (Xn)− h(a) |> ǫ) = P ({ω ∈ Ω| | h (Xn(ω))− h(a) |> ǫ}) .

Since h(x) is continuous at a we have that for all ǫ > 0 there exists a δ = δ(ǫ) > 0 such that

| x− a |≤ δ ⇒| h(x) − h(a) |≤ ǫ.

If we take the logical negation of this implication we get that

| h(x)− h(a) |> ǫ⇒| x− a |> δ.

For the corresponding events this gives the inclusion

{ω ∈ Ω| | h (Xn(ω))− h(a) |> ǫ} ⊆ {ω ∈ Ω| | Xn(ω)− a |> δ}.

Thus we get

P ({ω ∈ Ω| | h (Xn(ω))− h(a) |> ǫ}) ≤ P ({ω ∈ Ω| | Xn(ω)− a |> δ}) .

But by assumption we have that

P ({ω ∈ Ω| | Xn(ω)− a |> δ}) → 0,

as n→ ∞, which proves the claim as asserted.

The next example shows how these results are applied in statistics.

Example 6.4.5 Let (Xn)n≥1 be a sequence of independent r.v.,s Xn ∈ Be(p), 0 < p < 1. Let Sn = X1 +X2 +

. . .+Xn. We wish to study the distribution of

Q =
1
nSn − p√
1
n
Sn(1− 1

n
Sn)

n

,

as n → ∞. The r.v. Q is used for building confidence intervals for p, where p is carries a statement about an

unknown population proportion. In order to handle this expression we note the following. We can write

1

n
Sn − p =

1

n

n∑

k=1

(Xk − p) .

Thus

Q =

1√
n

∑n
k=1 (Xk − p)

√
1
nSn

(
1− 1

nSn

) =

1√
n

∑n
k=1

(Xk−p)√
p(1−p)√

1
n
Sn(1− 1

n
Sn)

p(1−p)

.

The rationale for the introducing this identity will become soon clear. We define for x ∈ [0, 1] the continuous

function

h(x) =

√
x (1− x)

p (1− p)
.

Then

Q =

1√
n

∑n
k=1

(Xk−p)√
p(1−p)

h
(
1
nSn

) . (6.14)

By properties of Bernoulli variables

E [Xi] = p,Var [Xi] = p (1− p) .
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Hence we observe in the numerator of Q that 1√
n

∑n
k=1

(Xk−p)√
p(1−p)

is a scaled sum of exactly same form as the

scaled sum in section 4.5.2 above (replace µ 7→ p, σ 7→
√
p (1− p) in Xk−µ

σ ). The provisional argument in

loc.cit. entails that
1√
n

n∑

k=1

(Xk − p)√
p (1− p)

d→ N(0, 1),

as n → ∞. In the denominator of (6.14) we observe that the weak law of large numbers, example 6.1.2 above,

implies
1

n
Sn

P→ p,

as n → ∞. Then we get by (ii) in Cramér -Slutzky theorem that
(
1− 1

nSn

) P→ (1 − p). Thus (6.13) in the

theorem above implies, as 0 < p < 1, that

h

(
1

n
Sn

)
P→ h(p) = 1.

But then case (iv) in the Cramér -Slutzky Theorem entails that

Q =

1√
n

∑n
k=1

(Xk−p)√
p(1−p)

h
(
1
nSn

) d→ N(0, 1),

as n → ∞, which resolves the question posed. In the section 6.6.3 we ascertain that the central limit theorem

suggested in section 4.5.2 by means of characteristic functions is valid.

6.5 Asymptotic Moments and Propagation of Error

As an application of the preceding rules for computing limits we shall next consider in terms of asymptotic

moments what is known as propagation of error. Propagation of error is formally stated concerned with

expressing the mean and variance of a (suitably smooth) function Y = g(X) of a random variable X in terms

of µ = E [X ] and σ2 = Var[X ]. Two well known formulas [15, pp.273−274] or [51, section 9.9] in propagation

of error are

E [g(X)] ≈ g(µ),Var [g(X)] ≈ σ2 d

dx
g(x)|x=µ. (6.15)

It can be a difficult task to judge or justify in a general way when these formulas should be applicable. Calcula-

tions of the propagation of error based on the formulas above have for many decades provided practically very

accurate approximations, e.g., in instrument technology [52, 83]2. We shall clarify the approximations above

by the most common justification of approximations in probability calculus, i.e., by means of convergence in

distribution of a sequence of random variables.

Remark 6.5.1 If we approximate the expectations as in (6.15) with g(x) = 1/x we get

E

[
1

X

]
≈ 1

E [X ]
, (6.16)

as a practically minded rule for computing E
[
1
X

]
. But if X ∈ C(0, 1) , then 1

X ∈ C(0, 1). For C(0, 1), the

expectation does not exist, as shown in example 2.2.16. Hence, an approximation like (6.16) makes no sense in

this situation.

2see also H.H. Ku: Notes on the Use of Propagation of Error Formulas. Journal of Research of the National Bureau of Standards

- C. Engineering and Instrumentation. Vol 70C, no 4, October - December, 1966
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Suppose that {Xn}n≥1 is a sequence of random variables such that

√
n (Xn − µ)

d→ N
(
0, σ2

)
, (6.17)

as n → ∞. We say that µ and σ2/n are the asymptotic mean and asymptotic variance, respectively, of

the sequence {Xn}n≥1. The obvious example is Xn = 1
n

∑n
i=1 Zi of Zi, I.I.D. variables with µ = E [Zi] and

σ2 = Var[Zi].

Note that we do not suppose that µn = E [Xn], σ
2
n = Var[Xn] and that µn → µ and σ2

n → σ2. In fact

E [Xn], and Var[Xn] are not even required to exist.

Theorem 6.5.1 (Propagation of Error) Let {Xn}n≥1 be a sequence of random variables such that (6.17)

holds. Let g(x) be a differentiable function with the first derivative g
′
(x) which is continuous and that g

′
(µ) 6= 0.

Then it holds that
√
n (g(Xn)− g(µ))

d→ N

(
0, σ2

(
g

′
(µ)
)2)

, (6.18)

as n→ ∞.

Proof: By the mean value theorem of calculus [69, p.100] there exists for every x and µ a number ξ between x

and µ such that

g(x)− g(µ) = g
′
(ξ)(x − µ). (6.19)

Thus there is a well defined function of ω, Zn, such that | Zn − µ |≤| Xn − µ | and by (6.19)

g (Xn)− g(µ) = g
′
(Zn) (Xn − µ) . (6.20)

In fact, Zn is a random variable, a property we must require, but this will be proved after the theorem.

By (i) and (iii) of the Cramér -Slutzky Theorem 6.4.3

(Xn − µ) =
1√
n

[√
n (Xn − µ)

] d→ 0 ·N
(
0, σ2

)
,

as n → ∞. Hence Xn − µ
P→ 0 in view of theorem 6.3.3 and (6.12). Since | Zn − µ |≤| Xn − µ |, we get that

| Zn − µ | P→ 0 (it is here we need the fact that Zn is a sequence of random variables), as n → ∞. But then

(6.13) in theorem 6.4.4 implies, as n→ ∞, that

g
′
(Zn)

P→ g
′
(µ), (6.21)

by the assumed continuity of the derivative g
′
(x). Now we have in (6.20)

√
n (g(Xn)− g(µ)) =

√
ng

′
(Zn) (Xn − µ)

= g
′
(Zn)

√
n (Xn − µ) .

By (6.17) and (iii) of the Cramér -Slutzky Theorem 6.4.3 and by (6.21)

√
n (g(Xn)− g(µ))

d→ g
′
(µ)X,

where X ∈ N(0, σ2). Hence we have established (6.18) as claimed.

It is, of course, still a matter of judgement to decide whether the approximation in the theorem above can

be used in any given situation.

The following indented section of text verifies that Zn defined in (6.20) is a random variable and can be

skipped at the first reading.
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We have earlier maintained that unmeasurable sets lack importance in practice, as they are very

hard to construct. The claim that Zn in (6.20) is a random variable seems innocuous for such a

setting of mind. However, we can ask, if there is a proof the claim. The mean value theorem of

calculus gives Zn as a well defined function of ω by (6.20). According to the definition 1.5.1 we need

in addition to show that Zn is a measurable map from F to the Borel σ algebra. To that end we fix

an arbitrary n and drop it temporarily from the notation. Let us define for each ω ∈ Ω,

H(X(ω))
def
=

{
g

′
(µ) if X(ω) = µ

g(X(ω))−g(µ)
X(ω)−µ if X(ω) 6= µ.

H(X(ω)) is a random variable, as g (X(ω)) is a random variable and a ratio of two random variables

is a random variable. We set for each ω ∈ Ω

G(z)
def
= H(X(ω))− g

′
(z) .

We should actually be writing Gω(z), as there is a different function G(z) for each ω, but we abstain

from this for simplicity. Then G(z) is a random variable and is continuous as a function of z and

(6.20) corresponds to finding for fixed ω a root (at least one exists by the mean value theorem of

calculus) Z(ω) to the equation

G(z) = 0. (6.22)

(i) We assume first that G(X(ω))G(µ) < 0. Then we can apply the method of bisection to

construct a root to (6.22). We assume first that X(ω) < µ. Then we set for k = 1, 2, . . . ,

a0(ω) = X(ω), b0 = µ

ak(ω) = ak−1(ω) bk(ω) = mk−1(ω), if G(ak−1(ω))G(mk−1(ω)) < 0

(6.23)

ak(ω) = mk−1(ω) bk(ω) = bk−1(ω), if G(ak−1(ω))G(mk−1(ω)) > 0.

Here

mk(ω) =
ak−1(ω) + bk−1(ω)

2
,

which explains the name bisection (draw a picture) given to this iterative method of solving

equations. By the construction it holds that

G(ak(ω))G(bk(ω)) < 0 (6.24)

Since X is a random variable,m1 is a random variable, and since G(z) is a random variable, too,

both a1 and b1 are by (6.23) random variables. Therefore, by the steps of construction of the

bisection, each mk is a random variable. It holds that ak−1(ω) ≤ ak(ω) and bk(ω) ≤ bk−1(ω),

ak(ω) < bk(ω) and ak(ω) − bk(ω) =
1
2k
(µ −X(ω)). Thus we have the limit, which we denote

by Z(ω),

Z(ω) = lim
k→∞

mk(ω) = lim
k→∞

ak(ω) = lim
k→∞

bk(ω).

Since Z(ω) is a pointwise limit of random variables, it is a random variable (this can be verified

by writing the statement of convergence by means of unions and intersections of events).

Then it follows by continuity of G(z) and (6.24) that

G2(Z(ω)) = lim
k→∞

G(ak(ω))G(bk(ω)) ≤ 0
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or that G2(Z(ω)) = 0, i.e., G(Z(ω)) = 0 so that Z(ω) is a root of (6.22) between X(ω) and µ,

and Z is random variable, as was claimed.

If we assume that X(ω) > 0 we get the same result by trivial modifications of the proof above.

(ii) The caseG(X(ω))G(µ) ≥ 0 contains two special cases. First, there is a unique root to G(z) = 0,

which we can find by a hill-climbing technique of as limit of measurable approximations. Or,

we can move over to a subdomain with a root, where the bisection technique of case (i) again

applies.

The method of bisection is a simple (and computationally ineffective) algorithm of root solving, but

in fact it can be evoked analogously in a constructive proof the theorem of intermediate values [69,

pp.71-73] of differential calculus.

6.6 Convergence by Transforms

6.6.1 Theorems on Convergence by Characteristic Functions

Let us start again by some examples of what we shall be studying in this section.

Example 6.6.1 As in example 6.1.3 we have the sequence (Xn)
+∞
n=1 of three point random variables

P (Xn = −1) =
1

2n
,P (Xn = 0) = 1− 1

n
,P (Xn = +1) =

1

2n
.

We have found, loc.cit., that

X2
n

2→ 0,

as n→ ∞. We know by (6.3) and (6.12) that

X2
n

2→ 0 ⇒ Xn
P→ 0 ⇔ Xn

d→ 0.

If we compute the characteristic function of Xn we get

ϕXn
(t) =

1

2n
e−it +

(
1− 1

n

)
e−i0 +

1

2n
eit

=

(
1− 1

n

)
+

1

2n

(
eit + e−it

)

and by Euler’s formula for cos t

=

(
1− 1

n

)
+

1

2n
(2 cos t) .

As n→ ∞, we see that

ϕXn
(t) → 1 = ei0.

We have in the preceding introduced the distribution δc, c.f., (4.19) above. The characteristic function of δc is

by (4.20)

ϕδc(t) = 1 · eitc.

Hence we have obtained that

ϕXn
(t) → ϕδ0(t),

as n→ ∞. Clearly this corresponds to the fact that Xn
d→ 0.



178 CHAPTER 6. CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES

Example 6.6.2 (Xn)
+∞
n=1 is a sequence of random variables such that Xn ∈ Bin

(
n, λn

)
for n = 1, 2, . . . ,, λ > 0.

We have by (4.23) that

ϕXn
(t) =

((
1− λ

n

)
+ eit

λ

n

)n

,

which we rewrite as

=

(
1 +

λ

n

(
eit − 1

))n

,

and then by a standard limit as n→ ∞,

→ eλ(e
it−1) = ϕPo(λ),

where we recognized the result (4.9). In words, we should be allowed to draw the conclusion that

Xn
d→ Po(λ).

This result tells rigorously that we can approximate X ∈ Bin
(
n, λn

)
for small p and large n by Po(np).

In fact these two examples present two respective examples of the workings of the following fundamental

theorem.

Theorem 6.6.3 (Continuity Theorem for Characteristic Functions) (a) If Xn
d→ X , and X is a ran-

dom variable with the characteristic function ϕX(t), then

ϕXn
(t) → ϕX(t), for all t,

as n→ ∞.

(b) If {ϕXn
(t)}∞n=1 is a sequence of characteristic functions of random variables Xn, and

ϕXn
(t) → ϕ(t), for all t,

and ϕ(t) is continuous at t = 0, then ϕ(t) is the characteristic function of some random variable X

(ϕ(t) = ϕX(t)) and

Xn
d→ X.

The proof is omitted. We saw an instance of case(a) in example 6.6.1. In addition, we applied correctly the

case (b) in example 6.6.2, since eλ(e
it−1) is continuous at t = 0.

With regard to the ’converse statement’ in (b) it should be kept in mind that one can construct sequences

of characteristic functions that converge to a function that is not a characteristic function.

By means of characteristic functions we can easily prove (proof omitted) the uniqueness theorem for con-

vergence in distribution.

Theorem 6.6.4 (Uniqueness of convergence in distribution) If Xn
d→ X , and Xn

d→ Y , then

X
d
= Y.



6.6. CONVERGENCE BY TRANSFORMS 179

6.6.2 Convergence and Generating Functions

We note the following facts.

Theorem 6.6.5 If {Xn}n≥1 is a sequence of random variables with values in the non negative integers and

p.g.f.’s gXn
(t). If

gXn
(t) → gX(t),

as n→ ∞, then Xn
d→ X , as n→ ∞.

Theorem 6.6.6 {Xn}n≥1 is a sequence of random variables such that the m.g.f.’s ψXn
(t) exist for |t| < h for

some h > 0. Suppose that X is a random variable such that its m.g.f. ψX(t) exists for |t| < h1 ≤ h for some

h1 > 0 and that

ψXn
(t) → ψX(t),

as n→ ∞, then Xn
d→ X , as n→ ∞.

6.6.3 Central Limit Theorem

We can now return to the sum scaled by 1√
n

in the section 4.5.2 above and formulate and prove the finding

there as a theorem.

Theorem 6.6.7 (Central Limit Theorem) X1, X2, . . . , Xn . . . is an infinite sequence of independent and

identically distributed random variables with E [Xk] = µ and Var [Xk] = σ2 for k = 1, 2, . . . ,. Define

Wn
def
=

1√
n

n∑

k=1

Xk − µ

σ
.

Then

Wn
d→ N(0, 1), as n→ ∞. (6.25)

Proof: In section 4.5.2 we have shown that for all t

lim
n→∞

ϕWn
(t) = e−t2/2. (6.26)

Since the function e−t2/2 is the characteristic function of N(0, 1) and is continuous at t = 0, it follows in view

of case (b) of theorem 6.6.3 and by uniqueness of characteristic functions that Wn
d→ N(0, 1), as n→ ∞.

The Berry-Esseen3 theorem (1941, 1942, respectively) gives us the speed of convergence in the central limit

theorem :

|FWn
(x) − Φ(x)| ≤ Cρ

σ3
√
n
,

where ρ = E
[
|X |3

]
. Since the 1940’s there has been an intensive activity for finding the best value of the

constant C. By the year 2011 the best estimate is known to be C < 0.4784.

There are several more complex versions, extensions and generalizations of the central limit theorem, e.g.,

to martingales.

3Carl Gustav Esseen, (1918-2001), appointed in 1949 to professor of applied mathematics at KTH, the Royal Institute of

Technology. In 1962 his professorship was transferred to mathematical statistics and in 1967, he obtained the first chair in

mathematical statistics at Uppsala University.
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6.7 Almost Sure Convergence

6.7.1 Definition

The final mode of convergence of sequences of random variables to be introduced is almost sure convergence.

Definition 6.7.1 (Almost Sure Convergence) A sequence of random variables (Xn)
+∞
n=1 converges al-

most surely or with probability one to the random variable X , (X exists and has values in R) if and only

if it holds that

P ({ω ∈ Ω|Xn(ω) → X(ω) as n→ ∞ }) = 1.

We express this more compactly as

Xn
a.s.→ X.

Let us set

C = {ω ∈ Ω|Xn(ω) → X(ω) as n→ ∞ }.

This means, in the language of real analysis [36], that the sequence of measurable functions Xn converges ’point-

wise’ to the limiting measurable function X on a set of points (=elementary events, ω), which has probability

one. We are thus stating that P (C) = 1 if and only if Xn
a.s.→ X . We shall next try to write the set C more

transparently.

Convergence of a sequence of numbers (xn)n≥1 to a real number x means by definition that for all ǫ > 0

there exists an n(ǫ) such that for all n > n(ǫ) it holds that |xn − x| < ǫ. By this understanding we can write C

in countable terms, i.e. we replace the arbitrary ǫ’s with 1/k’s, as

C = ∩∞
k=1 ∪∞

m=1 ∩n≥m

{
ω ∈ Ω| | Xn(ω)−X(ω) |≤ 1

k

}
. (6.27)

By properties of σ-fields it holds that C ∈ F , and thus P (C) is well defined.

6.7.2 Almost Sure Convergence Implies Convergence in Probability

Next we augment (6.3) and (6.4) by one more implication.

Theorem 6.7.1

Xn
a.s.→ X ⇒ Xn

P→ X (6.28)

as n→ ∞.

Proof: Let us look at the complement Cc or, by De Morgan’s rules, from (6.27)

Cc = ∪∞
k=1 ∩∞

m=1 ∪n≥m

{
ω ∈ Ω| | Xn(ω)−X(ω) |> 1

k

}
. (6.29)

Let us set (revert from arbitrary 1/k to arbitrary ǫ > 0)

An (ǫ) = {ω ∈ Ω| | Xn(ω)−X(ω) |> ǫ}

and

Bm (ǫ) = ∪n≥mAn (ǫ) . (6.30)

Then we set

A (ǫ) = ∩∞
m=1Bm (ǫ) = ∩∞

m=1 ∪n≥m An (ǫ) .
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Then clearly

Cc = ∪∞
k=1A

(
1

k

)
.

In view of (1.14) and the discussion around it

A (ǫ) = {ω ∈ Ω|An (ǫ) infinitely often }.

Of course, Xn(ω) → X(ω) if and only if ω /∈ A (ǫ). Hence, if P (C) = 1, then P (A (ǫ)) = 0 for all ǫ > 0.

We have as in section 1.7 that Bm (ǫ) is a decreasing sequence of events with limit A (ǫ). Therefore,

by continuity of probability measures from above, i.e., theorem 1.4.9, it follows that if P (A (ǫ)) = 0, then

P (Bm (ǫ)) → 0. But by construction in (6.30), An (ǫ) ⊆ Bm (ǫ). Hence

P (Bm (ǫ)) ≥ P (An (ǫ)) = P ({ω ∈ Ω| | Xn(ω)−X(ω) |> ǫ}) .

Hence P (Bm (ǫ)) → 0 implies

P ({ω ∈ Ω| | Xn(ω)−X(ω) |> ǫ}) → 0,

as n→ ∞, which we have as m→ ∞.

6.7.3 A Summary of the General Implications between Convergence Concepts

and One Special Implication

We have thus shown that as n→ ∞,

Xn
a.s.→ X ⇒ Xn

P→ X

Xn
r→ X ⇒ Xn

P→ X

Xn
P→ X ⇒ Xn

d→ X

If c is a constant,

Xn
P→ c⇔ Xn

d→ δc.

There are no further implications that hold in general. It is shown in the exercises in section 6.8.5 that almost

sure convergence does not imply convergence in mean square, and vice versa. It can be shown by examples that

Xn
P→ X does not imply Xn

a.s.→ X .

Additional implications between convergence concepts can be established under special assumptions. The

following result shows in this regard that if we have a sequence of r.v.’s that are almost surely bounded by a

constant, and the sequence converges in probability to the r.v. X , then the sequence converges in mean square

to X , too.

Theorem 6.7.2 (Xn)n≥1 is a sequence of r.v.’s such that i) and ii) below are satisfied:

i) There is a positive real number L such that P (| Xn |≤ L) = 1 for every n.

ii) Xn
P→ X , as n→ +∞.

Then

Xn
2→ X (6.31)

as n→ ∞.

The steps of the required proof are the exercise of subsection 6.8.4 below.
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6.7.4 The Strong Law of Large Numbers

The statement

We let X1, X2, . . . be I.I.D. with E [Xi] = m and Var [Xi] = σ2 < ∞. We define Sn = X1 + X2 + · · · + Xn.

We are interested in showing the strong form of the law of large numbers (SLLN), i.e., a law of large

numbers such that Sn/n → m as n → ∞ with probability one or almost surely. This means that we want to

prove that

P

(
lim
n→∞

Sn

n
= m

)
= 1,

i.e., that there exists a set C with P (C) = 1, where

C =

{
ω| lim

n→∞
|Sn(ω)

n
−m| = 0

}
.

We need in other words to prove that for every ω ∈ C and for every ε > 0 there is N(ω, ε) so that if n ≥ N(ω, ε)

holds that |Sn/n−m| ≤ ε.

It suffices to prove that |Sn

n
−m| > ε can occur only a finite number of times, i.e.,

lim
N→∞

P

(
|Sn

n
−m| > ε some n ≥ N

)
= 0.

Note the distinction with regard to the law of large numbers in the weak form, which says that that for all ε > 0

P

(
|Sn

n
−m| > ε

)
→ 0 as n→ ∞.

In words: for the law of large numbers in the strong form |Sn/n−m| must be small for all sufficiently large n

for all ω ∈ C, where P (C) = 1.

In tossing a coin we can code heads and tails with 1 and 0, respectively, and we can identify an ω with

a number in the interval [0, 1] drawn at random, where binary expansion gives the sequence of zeros

and ones. The law of large numbers says in this case that we will obtain with probability 1 a number

such that the proportion of 1:s in sequence converges towards 1/2. There can be ”exceptional” -ω -

for example the sequence 000 . . . is possible, but such exceptional sequences have the probability 0.

After these deliberations of pedagogic nature let us get on with the proof4.

The Proof of SLLN

Without restriction of generality we can assume that E(Xi) = m = 0, since we in any case can consider Xi−m.

We have Var [Sn] = nσ2. By Chebyshev,s inequality (1.27) it holds that

P (|Sn| > nε)) ≤ Var [Sn]

(nε)2
=

nσ2

(nε)2
=

σ2

nε2
.

Unfortunately the harmonic series
∑∞

1 1/n is divergent so we cannot use Borel-Cantelli lemma 1.7.1 directly.

But it holds that
∑∞

1 1/n2 <∞ and this means that we can use the lemma for n2, n = 1, 2, . . . . We have

P (|Sn2 | > n2ε) ≤ σ2

n2ε2
.

4Gunnar Englund is thanked for pointing out this argument.
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In other words it holds by Borel-Cantelli lemma 1.7.1, that P (|Sn2

n2
| > ε i.o.) = 0 which proves that Sn2/n2 → 0

almost surely. We have in other words managed to establish that for the subsequence n2, n = 1, 2, . . . there is

convergence with probability 1. It remains to find out what will happen between these n2. We define therefore

Dn = max
n2≤k<(n+1)2

|Sk − Sn2 |,

i.e., the largest of the deviation from Sn2 that can occur between n2 and (n+ 1)2. We get

D2
n = max

n2≤k<(n+1)2
(Sk − Sn2)2 ≤

(n+1)2−1∑

k=n2

(Sk − Sn2)2,

where we used the rather crude inequality max(|x|, |y|) ≤ (|x|+ |y|). This entails

E
[
D2

n

]
≤

(n+1)2−1∑

k=n2

E
[
(Sk − Sn2)2)

]
.

But E
[
(Sk − Sn2)2

]
= (k − n2)σ2 ≤ 2nσ2 as n2 ≤ k < (n + 1)2 and there are 2n terms in the sum and this

entails

E
[
D2

n

]
≤ (2n)(2n)σ2 = 4n2σ2.

With Chebyshev,s inequality (1.27) this gives

P
(
Dn > n2ε

)
≤ 4n2σ2

(n2ε)2
=

4σ2

n2ε2
.

In other words, Dn/n
2 → 0 holds almost surely. Finally this yields for k between n2 and (n+ 1)2 that

|Sk

k
| ≤ |Sn2 |+Dn

k
≤ |Sn2 |+Dn

n2
→ 0.

This means that we have succeeded in proving that Sn/n→ 0 with probability 1. We have done this under the

condition that Var(Xi) = σ2 <∞, but with a painstaking effort we can in fact prove that this condition is not

necessary.

6.8 Exercises

6.8.1 Convergence in Distribution

1. (5B1540 2003-08-27) The random variables X1, X2, . . . be I.I.D. with the p.d.f. fX(x) = 1−cosx
πx2 .

(a) Check that fX(x) = 1−cosx
πx2 is a probability density. Aid: First, note 1 − cosx = 2

(
sin x

2

)2
. Then

recall (4.45), and the inverse transform (4.2), i.e.,

f(x) =
1

2π

∫ ∞

−∞
eitxf̂(t)dt.

(b) Show that 1
n (X1 +X2 + . . .+Xn)

d→ C(0, 1), as n→ ∞. Aid: Use (4.2) to find ϕX(t).

2. Assume that X ∈ Ge(p). Show that

pX
d→ Exp(1),

as p ↓ 0.
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3. (5B1540 2004-08-25) Yn is uniformly distributed over the set {j/2n; j = 0, 1, 2, . . . , 2n − 1}, n = 1, 2, . . . .

Show by means of a sequence of characteristic functions that

Yn
d→ U(0, 1),

as n→ ∞.

4. (From [35]) This exercise studies convergence in distribution in relation to convergence of the corresponding

sequence of expectations.

{Xn}n≥1 is a sequence of r.v.’s such that for a real number r

P (Xn = x) =

{
1− 1

n x = 0
1
n x = nr.

(a) Show that

Xn
d→ δ0,

as n→ ∞.

(b) Investigate limn→∞E [Xn] for r < 1, r = 0 and r > 1. Is there convergence to the expectation of the

limiting distribution δ0?

5. X ∈ Po(λ). Show that
X − λ√

λ

d→ N(0, 1),

as λ→ ∞.

6. (From [35]) {Xn}n≥1 is a sequence of independent r.v.’s such that

P (Xn = x) =

{
1
2 x = − 1

2n

1
2 x = 1

2n .

Set Sn = X1 +X2 + . . .+Xn. Show that

Sn
d→ U(−1, 1),

as n→ ∞.

7. (From [35]) {Xn}n≥1 is a sequence of independent r.v.’s such that

P (Xn = x) =

{
1
2 x = −1
1
2 x = 1.

Let N ∈ Po(λ). N is independent of {Xn}n≥1. Set Y = X1 +X2 + . . .+XN . Show that

Y√
λ

d→ N(0, 1),

as λ→ ∞.

8. (From [35]) {X(n)
l }l≥1 is for each n a sequence of independent r.v.’s such that

P
(
X

(n)
l = x

)
=

{
1− 1

n x = 0
1
n x = 1.
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Let N assume values in the non negative integers. N is independent of {X(n)
l }l≥1 for each n. Set

S
(n)
N = X

(n)
1 +X

(n)
2 + . . .+X

(n)
N+n.

Show that

S
(n)
N

d→ Po(1),

as n→ ∞.

9. (From [35]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ Po(λ) for each n. N is independent of

{Xn}n≥1, and N ∈ Ge(p). Set

SN = X1 +X2 + . . .+XN , S0 = 0.

Let now λ→ 0, while at the same time p→ 0, so that p
λ → α, where α is a pre-selected positive number.

Show that

SN
d→ Fs

(
α

α+ 1

)
.

10. (From [49]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ C(0, 1). Show that

Yn
def
=

1

n
max (X1, . . . , Xn)

d→ FY (y) = e−
1
πy , y > 0,

as n→ ∞. Aid: arctan(x) + arctan(1/x) = π
2 and arctan y = y − y3

3! +
y5

5! −
y7

7! . . ..

11. (From [49]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ Pa(1, 2).

(a) Show that

Yn
def
= min (X1, . . . , Xn)

P→ 1,

as n→ ∞.

(b)

n(Yn − 1)
d→ Exp

(
1

2

)
,

as as n→ ∞.

12. (From [49]) Xn ∈ Ge(λ/(n+ λ)), where λ > 0. Show that

Xn

n

d→ Exp

(
1

λ

)
,

as n→ ∞.

13. (From [49]) Xn ∈ Bin(n2,m/n), where m > 0. Show that

Xn −m · n√
mn

d→ N (0, 1) ,

as n→ ∞.

14. (From [49]) {Xn}n≥1 is a sequence of independent and identically distributed r.v.’s, with the characteristic

function

ϕ(t) =

{
1−

√
|t|(2− |t|) |t| ≤ 1

0 |t| ≥ 1.

Show that
1

n2

n∑

k=1

Xk
d→ X,

as n→ ∞, where ϕX(t) = e−
√

2|t| and compare with (4.48).
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15. (From [49]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ La(a) for each n. N is independent of

{Xn}n≥1, and N ∈ Po(m). Set

SN = X1 +X2 + . . .+XN , S0 = 0.

Let now m→ +∞, when at the same time a→ 0, so that ma2 → 1. Show that then

SN
d→ N (0, 2) .

16. (From [49]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ Po(µ) for each n. N is independent of

{Xn}n≥1, and N ∈ Po(λ). Set

SN = X1 +X2 + . . .+XN , S0 = 0.

Let now λ→ ∞, while at the same time µ→ 0, so that µλ→ υ > 0. Show that

SN
d→ Po(υ).

17. (From [49]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ Po(µ) for each n. N is independent of

{Xn}n≥1, and N ∈ Ge(p). Set

SN = X1 +X2 + . . .+XN , S0 = 0.

Let now µ→ 0, while at the same time p→ 0, so that p
µ → α > 0. Show that then

SN
d→ Ge

(
α

α+ 1

)
.

18. (From [83])

Let {Tn}n≥1 be a sequence of random variables such that

√
n (Tn − θ)

d→ N
(
0, σ2(θ)

)

as n → ∞. Let g(x) be a differentiable function with the first derivative g
′
(x) which is continuous and

g
′
(θ) 6= 0. Show that √

n (g(Tn)− g(θ))

g′(Tn)σ(Tn)

d→ N (0, 1) , (6.32)

as n → ∞. We can think of a sequence of statistical estimators Tn of the parameter θ that has the

asymptotic mean zero and the asymptotic variance σ2(θ)/n. The difficulty is that the asymptotic variance

depends on the parameter to be estimated. The result above provides of way of overcoming this so that

we can, e.g., find approximate confidence intervals for g(θ), which are independent of θ.

19. [Propagation of Error]

(a) X ∈ N(µ, σ2). Find the exact value of Var
[
eX
]
.

(b) X ∈ N(µ, σ2). Find Var
[
eX
]
using (6.15) and compare with (a).
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6.8.2 Central Limit Theorem

1. (From [35]) X ∈ Γ(a, b). Show that
X − E [X ]√

Var(X)

d→ N(0, 1),

as a→ ∞. Use both of the following two methods:

(a) The central limit theorem.

(b) The continuity theorem 6.6.3.

2. (From [35]) Use the result in the preceding example to show that the χ2(n) distribution with a large

number of degrees of freedom is approximately N(0, 1).

3. (From [35]) {Xn}n≥1 is a sequence of independent r.v.’s, Xn ∈ U(0, 1) for every n. Take

Yn = e
√
n (X1 ·X2 · . . . ·Xn)

1/
√
n
.

Show that

Yn
d→ Log-Normal,

as n → ∞. The Log-Normal distribution is found in (2.93). Here the parameters of the Log-Normal

distribution are µ = 0 and σ2 = 1.

4. (From [35]) Let {Xn}n≥1 be a sequence of independent r.v.’s, Xn ∈ U(0, e) for every n. Show that

(X1 ·X2 · . . . ·Xn)
1/

√
n d→ Log-Normal,

as n→ ∞. The Log-Normal distribution is in (2.93). Here the parameters of the Log-Normal distribution

are µ = 0 and σ2 = 1.

5. {Xn}n≥1 is a sequence of independent and identically distributed SymBer - r.v.’s, i.e., they have with the

common p.m.f.

pX (k) =

{
1
2 k = −1
1
2 k = 1.

Set

Sn =

n∑

k=1

Xk√
k
.

Show that the following statements of convergence hold, as n→ ∞:

(a) Var[Sn]
lnn → 1. For this statement it is an advantage to know that

∑n
k=1

1
k − lnn → γ, where γ is

Euler’s constant = 0.577 . . ..

(b)
Sn − E [Sn]

lnn

d→ N(0, 1).

6. (From [49]) {Xn}n≥1 is an I.I.D. sequence of r.v.’s and E [X ] = µ <∞ for for each n. Nn is independent

of {Xn}n≥1, and Nn ∈ Ge(pn).

Let now pn → 0, as n→ ∞. Show that

pn (X1 +X2 + . . .+XNn
)

d→ Exp(µ),

as n→ ∞.
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7. (From [49]) {Xn}n≥1 is a sequence of positive I.I.D. r.v.’s with E [Xn] = 1 and Var [Xn] = σ2. For n ≥ 1

Sn
def
= X1 +X2 + . . .+Xn.

Show that √
Sn −√

n
d→ N

(
0,
σ2

4

)
,

as n→ ∞.

8. {Xi}i≥1 are I.I.D. N(µ, σ2). Find the asymptotic distribution of {eTn}n≥1, where Tn = 1
n

∑n
i=1Xi.

6.8.3 Convergence in Probability

1. (From [35]) Let Xk ∈ Be (pk), k = 1, 2, . . . , n. The variables Xk are independent.

Sn =

n∑

k=1

Xk.

Show that
1

n

(
Sn −

n∑

k=1

pk

)
P→ 0,

as n→ ∞. Aid: Use Chebychev’s inequality (1.27).

2. (From [35]) Xk, k = 1, 2, . . . , is a sequence of independent random variables such that

P
(
Xk = 2k

)
=

1

2
,P
(
Xk = −2k

)
=

1

2
.

Investigate, whether the weak law of large numbers holds for this sequence. Aid: Check first that∑n
k=1Xk < 0 with probability 1/2 and

∑n
k=1Xk > 0 with probability 1/2. Then you can deduce

that the weak law of large numbers does not hold.

3. (From [35]) Let X1, X2, . . . , X2n+1 be independent and identically distributed r.v.’s. They have a distri-

bution function FX(x) such that the equation FX(m) = 1
2 has a unique solution. Set

Mn = median (X1, X2, . . .X2n+1) .

The median of an odd number of numerical values is the middle one of the numbers. Median is thus

algorithmically found by sorting the numerical values from the lowest value to the highest value and

picking the middle one, i.e., the one separating the higher half of the list from the lower half. Show that

Mn
P→ m,

as n→ ∞.

4. (sf2940 2012-02-11) X1, X2, . . . , Xn, . . . are independent and identically distributed r.v.’s. Xn
d
= X , and

E [X ] = µ, Var [X ] = σ2 > 0. Set

Xn =
1

n

n∑

k=1

Xk,

Show that
1

n

n∑

k=1

(
Xk −Xn

)2 P→ σ2, (6.33)

as n→ ∞. Aid: In order to do this you may prefer considering the following
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(a) Check that
n∑

i=1

(
Xi −Xn

)2
=

n∑

i=1

(Xi − µ)
2 − n

(
Xn − µ

)2
.

(b) Part (a) yields

S2
n =

1

n− 1

n∑

i=1

(
Xi −Xn

)2
=

=
1

n− 1

n∑

i=1

(Xi − µ)
2 − n

n− 1

(
Xn − µ

)2
.

Apply the weak law of large numbers and a suitable property of convergence in probability to prove

the assertion.

5. X1, X2, . . . , Xn, . . . are independent and identically distributed r.v.’s., Xn
d
= X for each n, and E [X ] = µ,

Var [X ] = σ2 > 0. Set

Xn =
1

n

n∑

k=1

Xk,

and

S2
n =

1

n− 1

n∑

k=1

(
Xk −Xn

)2
.

Show that √
n
(
Xn − µ

)

Sn

d→ N(0, 1).

as n→ ∞. Aid: The result in (6.33) is definitely useable here.

6. Show that the t(n) distribution converges to N(0, 1), as n→ ∞. Aid: Consider exercise 5. in this section.

7. X1, X2, . . . , Xn, . . . is a sequence of r.v.’s such that as n→ ∞,

Xn
P→ X, Xn

P→ Y. (6.34)

Show that P (X = Y ) = 1. Aid: Convince yourself of the inclusion of events

{|X + Y | > 2ǫ} ⊂ {|X | > ǫ} ∪ {|Y | > ǫ}.

8. Let X1, X2, . . . , be independent r.v’s and ∈ U(−1, 1). Let

Yn
def
=

∑n
k=1Xk∑n

k=1X
2
k +

∑n
k=1X

3
k

.

Show that

Yn
P→ 0,

as n→ ∞.

9. (From [49]) X1, X2, . . . , Xn, . . . is a sequence of independent r.v.’s. Xk ∈ Exp(k!). Let Sn = X1+ . . .+Xn.

Show that
Sn

n

d→ Exp(1),

as n→ +∞.



190 CHAPTER 6. CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES

6.8.4 Proof of Theorem 6.7.2

This exercise consists of the steps (a) -((d) for establishing Theorem 6.7.2, c.f., [50].

(a) Show that even the limiting r.v. X is bounded almost surely by L, or,

P (| X |≤ L) = 1.

Aid: Show that for any ǫ > 0

P (| X |≥ L+ ǫ) ≤ P(| X −Xn |≥ ǫ).

and draw the desired conclusion.

(b) Justify by the preceding that P(|X −Xn|2 ≤ 4L2) = 1.

(c) Let I be the indicator function

I|X−Xn|≥ǫ =

{
1, if |X −Xn| ≥ ǫ

0, if |X −Xn| < ǫ .

Show that the inequality

|X −Xn|2 ≤ 4L2I|X−Xn|≥ǫ + ǫ2

holds almost surely.

(d) Determine now the limit of

E
[
| X −Xn |2

]
,

as n→ +∞.

6.8.5 Almost Sure Convergence, The Interrelationship Between Almost Sure

Convergence and Mean Square Convergence, Criteria for Almost Sure Con-

vergence

The exercises here rely on the Borel-Cantelli lemmas in the section 1.7.

1. Let, as in the proof of theorem 6.28,

An (ε)
def
= {| Xn −X |> ε}

and

Bm (ε) = ∪n≥mAn (ε) .

Then show that

(a) Xn
a.s.→ X , as n → ∞ ⇔ P (Bm (ε)) → 0, as m → ∞. Aid: Part of this is imbedded in the proof of

theorem 6.28.

(b) Xn
a.s.→ X , as n→ ∞, if

∑
n≥1 P (An (ε)) <∞ for all ε > 0.

2. (From [48, p.279]) Define

Xn =

{
n3 with probability n−2

0 with probability 1− n−2

Then show that Xn
a.s.→ 0, but that the sequence Xn does not converge in L2.

Aid: You need a result in the preceding exercise 1. in this section.
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3. (From [48, p.279]) Define a sequence of independent r.v.’s

Xn =

{
1 with probability n−1

0 with probability 1− n−1

Then show that Xn
2→ 0, but that the sequence Xn does not converge almost surely.

Aid: You need a result in the preceding exercise 1. in this section.

4. (From [35]) X ∈ U(0, 1). Write an outcome X = x in its binary expansion

x = 0.a1a2a3a4a5 . . .

where ak = 0 or ak = 1. Show that
1

n

n∑

k=1

ak
a.s→ 1

2
,

as n→ ∞.

5. {Xn}n≥1 is a sequence of random variables such that there is a sequence of (non negative) numbers

{ǫn}n≥1 such that
∑∞

n=1 ǫn <∞ and

∞∑

n=1

P (| Xn+1 −Xn |> ǫn) < +∞. (6.35)

Show that there is a random variable X such that Xn
a.s.→ X , as n→ ∞.
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Chapter 7

Convergence in Mean Square and a

Hilbert Space

7.1 Convergence in Mean Square; Basic Points of View

7.1.1 Definition

We restate the definition of convergence in mean square.

Definition 7.1.1 A random sequence {Xn}∞n=1 with E
[
X2

n

]
<∞ is said to converge in mean square to a

random variable X , if

E
[
|Xn −X |2

]
→ 0 (7.1)

as n→ ∞.

We write also

Xn
2→ X.

This definition is silent about convergence of individual sample paths (Xn(ω))
∞
n=1 (a fixed ω ∈ Ω ). By a sample

path we mean that we take a fixed ω ∈ Ω and obtain the sequence of outcomes (Xn(ω))
∞
n=1. Hence, by the

above we can not in general claim that Xn(ω) → X(ω) for an arbitrarily chosen ω or almost surely, as shown

in the preceding.

7.1.2 The Hilbert Space L2 (Ω,F ,P)

Convergence in mean square, as defined above, deals with random variables X such that E
[
X2
]
< ∞. Then

we say that X ∈ L2 (Ω,F ,P). For X ∈ L2 (Ω,F ,P) and Y ∈ L2 (Ω,F ,P) we can set

〈X,Y 〉 def
= E [XY ] . (7.2)

We can easily verify that

(i) 〈X,Y 〉 = 〈Y,X〉,

(ii) 〈X,X〉 ≥ 0, 〈X,X〉 = 0 ⇔ X = 0 almost surely.

(iii) 〈aX + bY, Z〉 = a〈X,Z〉+ b〈Y, Z〉, where Z ∈ L2 (Ω,F ,P) and a and b are real constants.

193
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In view of (i)-(iii) we can regard random variables X ∈ L2 (Ω,F ,P) as elements in a real linear vector space

with the scalar product 〈X,Y 〉. Hence L2 (Ω,F ,P) equipped with the scalar product 〈X,Y 〉 is a pre-Hilbert

space, see e.g., in [96, Appendix H p. 252]1 or [89, ch. 17.7] and [92, pp. 299−301]. Thus we define the norm

(or length)

‖ X ‖def=
√
〈X,X〉. (7.3)

and the distance or metric

δ(X,Y )
def
= ‖ X − Y ‖=

√
E (X − Y )

2
. (7.4)

Then we can write

Xn
2→ X ⇔ δ(Xn, X) → 0.

In fact one can prove the completeness of our pre-Hilbert space, [63, p. 22]. Completeness means that if

δ(Xn, Xm) → 0, as min(m,n) → ∞ ,

then there exists X ∈ L2 (Ω,F ,P) such that Xn
2→ X . In other words, L2 (Ω,F ,P) equipped with the scalar

product 〈X,Y 〉 is a Hilbert space. Hence several properties in this chapter are nothing but special cases of

general properties of Hilbert spaces.

Hilbert spaces are important, as, amongst other things, they possess natural notions of length, orthogonality

and orthogonal projection, see [36, chapter 6.] for a full account. Active knowledge about Hilbert spaces in

general will NOT be required in the examination of this course.

7.2 Cauchy-Schwartz and Triangle Inequalities

The norm of any Hilbert space, like here (7.3) in L2 (Ω,F ,P), satisfies two famous and useful inequalities.

Lemma 7.2.1 X ∈ L2 (Ω,F ,P), Y ∈ L2 (Ω,F ,P).

|E [XY ] | ≤ E [|XY |] ≤
√
E [|X |2] ·

√
E [|Y |2]. (7.5)

√
E [|X ± Y |2] ≤

√
E [|X |2] +

√
E [|Y |2]. (7.6)

The inequality (7.5) is known as the Cauchy-Schwartz inequality, and is but a special case of Hölder’s inequality

in (1.25) for p = q = 2. The inequality (7.6) is known as the triangle inequality.

7.3 Properties of Mean Square Convergence

Theorem 7.3.1 The two random sequences {Xn}∞n=1 and {Yn}∞n=1 are defined in the same probability space

and Xn ∈ L2 (Ω,F ,P) for all n and Yn ∈ L2 (Ω,F ,P) for all n. Let

Xn
2→ X,Yn

2→ Y.

Then it holds that

(a)

E [X ] = lim
n→∞

E [Xn]

1The reference is primarily to this book written in Swedish, as it is the texbook for SI1140 Mathematical Methods in Physics

http://www.kth.se/student/kurser/kurs/SI1140?l=en UK, which is a mandatory course for the programme CTFYS at KTH.
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(b)

E
[
|X |2

]
= lim

n→∞
E
[
|Xn|2

]

(c)

E [XY ] = lim
n→∞

E [Xn · Yn]

(d) If Z ∈ L2 (Ω,F ,P), then

E [X · Z] = lim
n→∞

E [XnZ] .

Proof We prove (c), when (a) and (b) have been proved. First, we see that |E [XnYn] | <∞ and |E [XY ] | <∞
by virtue of the Cauchy - Schwartz inequality and the other assumptions. In order to prove (c) we consider

|E [XnYn]− E [XY ] | ≤ E| [(Xn −X)Yn +X (Yn − Y ) |] ,

since |E [Z] | ≤ E [|Z|]. Now we can use the ordinary triangle inequality for real numbers and obtain:

E| [(Xn −X)Yn +X (Yn − Y ) |] ≤ E [|(Xn −X)Yn|] + E [|X (Yn − Y ) |] .

But Cauchy-Schwartz entails now

E [|(Xn −X)Yn|] ≤
√
E [|Xn −X |2]

√
E [|Yn|2]

and

E [|(Yn − Y )X |] ≤
√
E [|Yn − Y |2]

√
E [|X |2].

But by assumption
√
E [|Xn −X |2]→ 0, E

[
|Yn|2

]
→ E

[
|Y |2

]
(part (b)), and

√
E [|Yn − Y |2]→ 0, and thus the

assertion (c) is proved.

We shall often need Cauchy’s criterion for mean square convergence , which is the next theorem.

Theorem 7.3.2 Consider the random sequence {Xn}∞n=1 with Xn ∈ L2 (Ω,F ,P) for every n. Then

E
[
|Xn −Xm|2

]
→ 0 (7.7)

as min(m,n) → ∞ if and only if there exists a random variable X such that

Xn
2→ X.

The assertion here is nothing else but that the pre-Hilbert space defined section 7.1.2 above is complete. A

useful form of Cauchy’s criterion is known as Loève’s criterion:

Theorem 7.3.3

E
[
|Xn −Xm|2

]
→ 0 ⇐⇒ E [XnXm] → C. (7.8)

as min(m,n) → ∞, where the constant C is finite and independent of the way m,n→ ∞.

Proof Proof of ⇐=: We assume that E [XnXm] → C. Thus

E
[
|Xn −Xm|2

]
= E [Xn ·Xn +Xm ·Xm − 2Xn ·Xm]

→ C + C − 2C = 0.
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Proof of =⇒: We assume that E
[
|Xn −Xm|2

]
→ 0. Then for any m and n

E [XnXm] = E [(Xn −X)Xm] + E [XXm] .

Here,

E [(Xn −X)Xm] → E [0X ] = 0,

by theorem 7.3.1 (c), since Xn
2→ X according to Cauchy’s criterion. Also,

E [XXm] → E
[
X2
]
= C

by theorem 7.3.1 (d). Hence

E [XnXm] → 0 + C = C.

7.4 Applications

7.4.1 Mean Ergodic Theorem

Although the definition of converge in mean square encompasses convergence to a random variable, in many

applications we shall encounter convergence to a constant.

Theorem 7.4.1 The random sequence {Xn}∞n=1 is uncorrelated and with E [Xn] = µ < ∞ for every n and

Var [Xn] = σ2 <∞ for every n. Then

1

n

n∑

j=1

Xn
2→ µ,

as n→ ∞.

Proof Let us set Sn = 1
n

∑n
j=1Xn. We haveE [Sn] = µ and Var [Sn] =

1
nσ

2, since the variables are uncorrelated.

For the claimed mean square convergence we need to consider

E
[
|Sn − µ|2

]
= E

[
(Sn − E [Sn])

2
]
= Var [Sn] =

1

n
σ2

so that

E
[
|Sn − µ|2

]
=

1

n
σ2 → 0

as n→ ∞, as was claimed.

7.4.2 Mean Square Convergence of Sums

Consider a sequence {Xn}∞n=0 of independent random variables in L2 (Ω,F ,P) with E [Xi] = µ and Var [Xi] =

σ2. We wish to find conditions such that we may regard an infinite linear combination of random variables as

a mean square convergent sum, i.e.,
n∑

i=0

aiXi
2→

∞∑

i=0

aiXi,
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as n→ ∞. The symbol
∑∞

i=0 aiXi is a notation for a random variable in L2 (Ω,F ,P) defined by the converging

sequence. The Cauchy criterion in theorem 7.3.2 gives for Yn =
∑n

i=0 aiXi and n < m that

E
[
|Yn − Ym|2

]
= E

[
|

m∑

i=n+1

aiXi|2
]
= σ2

m∑

i=n+1

a2i + µ2

(
m∑

i=n+1

ai

)2

, (7.9)

since by Steiner,s formula EZ2 = Var(Z) + (E [Z])2 for any random variable that has variance. We need to

recall a topic from mathematical analysis.

Remark 7.4.1 TheCauchy sequence criterion for convergence of sums states that a sum of real numbers

ai
∞∑

i=0

ai

converges if and only if the sequence of partial sums is a Cauchy sequence. By a partial sum we mean a finite

sum like

Sn =

n∑

i=0

ai.

That the sequence of partial sums is a Cauchy sequence says that for every ε > 0, there is a positive integer N

such that for all m ≥ n ≥ N we have

|Sm − Sn| =
∣∣∣∣∣

m∑

i=n+1

ai

∣∣∣∣∣ < ε,

which is equivalent to

lim
n→∞
k→∞

n+k∑

i=n

ai = 0. (7.10)

This can be proved as in [69, p.137−138]. The advantage of checking convergence of
∑∞

i=0 ai by partial sums is

that one does not need to guess the value of the limit in advance.

By the Cauchy sequence criterion for convergence of sums we see in the right hand side of (7.9) by virtue of

(7.10) that E
[
|Yn − Ym|2

]
converges by the Cauchy sequence convergence of sums to zero if and only if

• in case µ 6= 0
∞∑

i=0

|ai| <∞,

(which implies
∑∞

i=0 a
2
i <∞)

• in case µ = 0
∞∑

i=0

a2i <∞.

7.4.3 Mean Square Convergence of Normal Random Variables

Let us suppose that we have

Xn ∈ N
(
µn, σ

2
n

)
(7.11)

and, as n→ ∞,

Xn
2→ X. (7.12)
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Thus (7.12) implies in view of Theorem 7.3.1 (a) and (b) that there are numbers µ and σ2 such that

µn → µ = E [X ] , σ2
n → σ2 = Var [X ] .

Then the characteristic functions for Xn are

ϕXn
(t) = eiµnt− 1

2σ
2
nt

2

.

Therefore we have for all real t that

ϕXn
(t) → eiµt−

1
2σ

2t2 ,

and thus X ∈ N
(
µ, σ2

)
by the continuity theorem 6.6.3 for characteristic functions

Theorem 7.4.2 If Xn ∈ N
(
µn, σ

2
n

)
and Xn

2→ X , as n→ ∞, then X is a normal random variable.

As an application, we can continue with the sums in section 7.4.2. If Xi are independent N
(
µ, σ2

)
, and∑∞

i=0 |ai| <∞, then
∞∑

i=0

aiXi ∈ N

(
µ

∞∑

i=0

ai, σ
2

∞∑

i=0

a2i

)
. (7.13)

7.5 Subspaces, Orthogonality and Projections in L2 (Ω,F ,P)

A subspace M of L2 (Ω,F ,P) is a subset such that

• If X ∈M and Y ∈M , then aX + bY ∈M , for all real constants a and b.

If Mα is a subspace for α in an arbitrary index set I, then ∩α∈IMα is a subspace.

If a subspace M is such that if Xn ∈M and if Xn
2→ X , then X ∈M , we say that M is closed.

Example 7.5.1 Let M0 = {X ∈ L2 (Ω,F ,P) | E [X ] = 0}. This is clearly a subspace. By Theorem 7.3.1 (a)

M0 is also a closed subspace. It is also a Hilbert space in its own right.

Example 7.5.2 Let {0} = {X ∈ L2 (Ω,F ,P) | X = 0 a.s.}. Then {0} is a subspace, and a subspace of any

other subspace.

Let X = (X1, X2, . . .) be a sequence of random variables in L2 (Ω,F ,P). We define the subspace spanned

by X1, X2, . . . , Xn, which is the subspace LX
n consisting of all linear combinations

∑n
i=1 aiXi of the random

variables, and their limits in the mean square, or

LX
n = sp {X1, X2, . . . , Xn} . (7.14)

Since we here keep the number of random variables fixed and finite, the limits in the mean square are limits of

Ym =
n∑

i=1

ai(m)Xi, as m→ ∞.

Next we define orthogonality [96, p. 253];
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Definition 7.5.1 Two random variables X ∈ L2 (Ω,F ,P) and Y ∈ L2 (Ω,F ,P) are said to be orthogonal, if

〈X,Y 〉 = 0. (7.15)

If X ∈M0 and Y ∈M0, the subspace in example 7.5.1, then orthogonality means that

〈X,Y 〉 = E [XY ] = 0,

and we are more used to saying that X and Y are uncorrelated.

Definition 7.5.2 Let X ∈ L2 (Ω,F ,P) and M be a subspace of L2 (Ω,F ,P). If it holds for all Y in M that

〈X,Y 〉 = 0, we say that X is orthogonal to the subspace M , and write this as

X ⊥M. (7.16)

We define the subspace M⊥

M⊥ def
= {X ∈ L2 (Ω,F ,P) | X ⊥M}. (7.17)

One might also want to check that M⊥ is actually a subspace, as is claimed above.

The following theorem is fundamental for many applications, and holds, of course, for any Hilbert space,

not just for L2 (Ω,F ,P), where we desire to take advantage of it.

Theorem 7.5.3 Let M be a closed subspace of L2 (Ω,F ,P) Then any X ∈ L2 (Ω,F ,P) has a unique decom-

position

X = ProjM (X) + Z (7.18)

where ProjM (X) ∈M and Z ∈M⊥. In addition it holds that

‖ X − ProjMX ‖= min
V ∈M

‖ X − V ‖ (7.19)

Proof is omitted, and can be found in many texts and monographs, see, e.g., [26, pp. 35−36] or [36, p.204−206].

The theorem and proof in [96, p. 262] deals with a special case of the result above.

For our immediate purposes the interpretation of theorem 7.5.3 is of a higher priority than expediting its proof.

We can think of ProjM (X) as an orthogonal projection of X to M or as an estimate of X by means of M .

Then Z is the estimation error. ProjM (X) is optimal in the sense that it minimizes the mean squared error

‖ X − V ‖2= E
[
(X − V )2

]
.

This interpretation becomes more obvious if we take M = LX
n as in (7.14). Then ProjM (X) ∈ M must be

of the form

ProjM (X) =
n∑

i=1

aiXi. (7.20)

which is an optimal linear mean square error estimate of X by means of X1, X2. . . Xn. The coefficients

ai can be found as a solution to a system of linear equations, see the exercises below.

Example 7.5.4 We reconsider M0 in example 7.5.1 above. Then the random variable 1, i.e., 1(ω) = 1 for

almost all ω, is orthogonal to M0, since

E [X · 1] = E [X ] = 0,

for any X ∈M0. The orthogonal subspace M⊥
0 is in fact spanned by 1,

M⊥
0 = {Z | Z = c · 1, c ∈ R}.

Every X in L2 (Ω,F ,P) can then be uniquely decomposed as

X = ProjM (X) + Z, ProjM (X) = X − E [X ] , Z = E [X ] · 1.
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Example 7.5.5 X and Y are random variables in L2 (Ω,F ,P). Let us consider the subspace M = LY
1 ⊂ M0

(example 7.5.1 above) spanned by Y −µY , where µY = E [Y ]. Thus ProjM (X −µX), µX = E [X ], is a random

variable that is of the form

ProjM (X − µX) = a (Y − µY )

for some real number a. Let

Z = (X − µX)− a (Y − µY ) .

Then we know by theorem 7.5.3 that for the optimal error Z

Z ⊥ LY
1 ,

which is the same as saying that we must find a that satisfies

〈Z, a (Y − µY )〉 = 0.

When we write out this in full terms we get

E [[(X − µX)− a (Y − µY )) · a (Y − µY )] = 0 (7.21)

⇔

aE [(X − µX) · (Y − µY )]− a2E
[
(Y − µY )

2
]
= 0

⇔

aCov (X,Y ) = a2Var(Y ),

which gives

a =
Cov (X,Y )

Var(Y )
. (7.22)

This makes good sense, since if X and Y are independent, then Cov (X,Y ) = 0, and ProjM (X − µX) = 0 (=

the random variable 0(ω) = 0 for all ω ∈ Ω). Clearly, if X and Y are independent, there is no information

about X in Y (and vice versa), and there is no effective estimate that would depend on Y . Let us write

a =
Cov (X,Y )

Var(Y )
=

Cov (X,Y )√
Var(X)

√
Var(Y )

·
√
Var(X)√
Var(Y )

= ρX,Y ·
√
Var(X)√
Var(Y )

,

where ρX,Y is the coefficient of correlation between X and Y . Then we have

X − µX = ρX,Y ·
√
Var(X)√
Var(Y )

· (Y − µY ) + Z

⇔

X = µX + ρX,Y ·
√
Var(X)√
Var(Y )

· (Y − µY ) + Z.

Therefore, the the best linear mean square estimator of X by means of Y is

X̂ = µX + ρX,Y ·
√
Var(X)√
Var(Y )

· (Y − µY ) . (7.23)
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7.6 Exercises

7.6.1 Mean Square Convergence

1. Assume Xn ∈ L2 (Ω,F ,P) for all n and Yn ∈ L2 (Ω,F ,P) for all n and

Xn
2→ X,Yn

2→ Y,

as n→ ∞. Let a and b be real constants. Show that

aXn + bYn
2→ aX + bY,

as n→ ∞. You should use the definition of mean square convergence and suitable properties of ‖ X ‖ as

defined in (7.3).

2. Consider

Xn =

n∑

k=1

1

k
Wk, n ≥ 1.

where Wk are independent and N(0, σ2) -distributed.

(a) Determine the distribution of Xn.

(b) Show that there is the convergence

Xn
2→ X as n→ ∞,

and that X ∈ N
(
0, σ

2π2

6

)
.

3. The sequence {Xn}∞n=1 of random variables is such that E [Xi] = µ for all i, Cov (Xi, Xj) = 0, if i 6= j

and such that Var(Xi) ≤ c and for all i. Observe that the variances are thus uniformly bounded but not

necessarily equal to each other for all i. This changes the setting from that in theorem 7.4.1 above. Show

that

1

n

n∑

j=1

Xj
2→ µ,

as n→ ∞.

7.6.2 Optimal Estimation as Projection on Closed Linear Subspaces in L2 (Ω,F ,P)

1. Let X ∈ M0, see example 7.5.1. Assume also that Y1, . . . , YN are in M0. The closed subspace in M0

spanned by Y1, . . . , YN is

M = LY
N .

We want to find the optimal projection of X to LY
N , which means to find ProjM (X) =

∑N
k=1 akYk such

that E
[
(X − V )

2
]
is minimized for V ∈ LY

N . We set

γmk = 〈Ym, Yk〉, m = 1, . . . , N ; k = 1, . . . , N

(7.24)

γom = 〈Ym, X〉, m = 1, . . . , N.
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(a) Show first that if a1, . . . , aN are solutions to the linear system of equations

N∑

k=1

akγmk = γom;m = 1, . . . , N, (7.25)

then

X − ProjM (X) ⊥ LY
N , (7.26)

c.f., (7.21) above.

(b) Show that

E
[
(X − (a1Y1 + . . .+ aNYN ))

2
]

(7.27)

is minimized, if the coefficients a1, . . . , aN satisfy the system of equations (7.25).

Aid: Let b1, . . . , bN be an arbitrary set of real numbers. set

ProjM (X) =
N∑

k=1

akYk.

for a1, . . . , aN that satisfy the system of equations (7.25). Then we can write the estimation error ε

using an arbitrary linear estimator b1Y1 + . . .+ bNYN in LY
N as

ε = X − (b1Y1 + . . .+ bNYN ) = (X − ProjM (X)) +

N∑

k=1

(ak − bk)Yk.

Expand now E
[
ε2
]
and recall (7.26).

2. Let P = {A1, A2, . . . , Ak} be partition of Ω, i.e., Ai ∈ F , i = 1, 2, . . . , k, Ai ∩ Aj = ∅, j 6= i and

∪k
i=1Ai = Ω. Let χAi

i = 1, . . . , k be the indicator functions of the cells Ai i = 1, . . . , k, respectively. Note

that every χAi
∈ L2 (Ω,F ,P). We take the subspace spanned by all linear combinations of the indicator

functions

LP
n = sp {χA1 , χA2 , . . . , χAn

} . (7.28)

In other words, LP
n is spanned by random variables of the form

k∑

i=1

ciχAi
(ω),

where cis are real constants.

Let X ∈ M0, (example 7.5.1). Find the optimal projection ProjLP
n
(X) of X to LP

n . A good hint is that

the answer should coincide with the expression for the conditional expectation E [X | P ] in section 3.4

above.

3. (From [50]) Let X have a Rayleigh distribution with parameter 2σ2 > 0, X ∈ Ra
(
2σ2
)
, or

fX(x) =

{
x
σ2 e

−x2/2σ2

x ≥ 0

0 elsewhere.

Let Z ∈ U(0, 1) (=the uniform distribution on (0, 1)). X and Z are independent. We multiply these to

get

Y = Z ·X.
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(a) Consider M = LY
1 , the subspace spanned by Y −E [Y ]. Find that the best linear estimator in mean

square sense, ProjM (X − E [X ]), is

X̂ = σ

√
π

2
+

(
1− π

4

)
(
2
3 − π

4

)
(
Y − σ

2

√
π

2

)
.

Aid: This is an application of the results in example 7.5.5, see (7.23). Preferably use the expression

for a from (7.22).

(b) Show that

E [X | Y ] =
σ√
2π

· e
−−Y 2

2σ2

Q
(
Y
σ

) ,

where the Q-function Q(x) = 1√
2π

∫∞
x e−

t2

2 dt is the complementary distribution function for the

standard normal distribution, i.e., Φ(x) = 1−Q(x).

Aid: Find the joint p.d.f. fX,Y (x, y) and the marginal p.d.f. fY (y) and compute E [X | Y = y] by

its definition.

Remark 7.6.1 This exercise shows that the best estimator in the mean square sense, E [X | Y ],

see section 3.7.3 in chapter 2., and the best linear estimator in the mean square sense,

ProjM (X − E [X ]), by no means have to be identical.
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Chapter 8

Gaussian Vectors

8.1 Multivariate Gaussian Distribution

8.1.1 Why Gaussianity ?

The Gaussian distribution is central in probability theory, since it is the final and stable or equilibrium

distribution to which other distributions gravitate under a wide variety of smooth operations, e.g., convolutions

and stochastic transformations, and which, once attained, is maintained through an even greater variety of

transformations.

In the sequel, see the chapters 10 and 11, we shall discuss the probability theory in relation to molecular

motion, [10, 17], and physical noise in a physical system. The pertinent events in the system could be the

individual impacts of small molecules, or the electric force from many electrons moving in a conductor. The

total force applied by these small molecules or electrons is the sum of the random forces applied by an individual

particle. Since the total force is a sum of many random variables and the microscopic fluctuations are fast as

compared to the motion of the system, we can think of evoking the central limit theorem to model the noise

with a Gaussian distribution.

Let us collect from the preceding chapters the following facts;

• X is a normal a.k.a. Gaussian random variable, if

fX(x) =
1

σ
√
2π
e−

1
2σ2 (x−µ)2 ,

where µ is real and σ > 0.

• Notation: X ∈ N(µ, σ2).

• Properties: X ∈ N(µ, σ2) ⇒ E[X ] = µ, Var[X ] = σ2.

• X ∈ N(µ, σ2), then the moment generating function is

ψX(t) = E
[
etX
]
= etµ+

1
2 t

2σ2

, (8.1)

and the characteristic function is

ϕX(t) = E
[
eitX

]
= eitµ−

1
2 t

2σ2

. (8.2)

• X ∈ N(µ, σ2) ⇒ Y = aX + b ∈ N(aµ+ b, a2σ2).

205
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• X ∈ N(µ, σ2) ⇒ Z = X−µ
σ ∈ N(0, 1).

We shall next see that all of these properties are special cases of the corresponding properties of a multivariate

normal/Gaussian random variable as defined below, which bears witness to the statement that the normal

distribution is central in probability theory.

8.1.2 Notation for Vectors, Mean Vector, Covariance Matrix & Characteristic

Functions

An n× 1 random vector or a multivariate random variable is denoted by

X =




X1

X2

...

Xn




= (X1, X2, . . . , Xn)
′
,

where
′
is the vector transpose. A vector in Rn is designated by

x =




x1

x2
...

xn




= (x1, x2, . . . , xn)
′
.

For the clarity of expression we note that

x
′
x =

n∑

i=1

x2i

is a scalar product (i.e. a number) and

xx
′
= (xixj)

n,n
i=1,j=1

is n× n-matrix. The same statements hold for the random variable X
′
X and the random matrix, or matrix of

random variables, XX
′
.

We denote by FX (x) the joint distribution function of X, which means that

FX (x) = P (X ≤ x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) .

The following definitions are natural. We have the mean vector

µX = E [X] =




E [X1]

E [X2]
...

E [Xn]



,

which is a n× 1 column vector of means (=expected values) of the components of X.

The covariance matrix is a square n× n -matrix

CX := E
[
(X− µX) (X− µX)

′]
,

where the entry ci,j at the position (i, j) of CX is

ci,j
def
= E [(Xi − µi) (Xj − µj)] ,
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that is the covariance ofXi andXj . Every covariance matrix, now designated byC, is by construction symmetric

C = C
′

(8.3)

and nonnegative definite, i.e, for all x ∈ Rn

x
′
Cx ≥ 0. (8.4)

It is shown on courses in linear algebra that nonnegative definiteness implies detC ≥ 0. In terms of the entries

ci,j of a covariance matrix C = (ci,j)
n,n,
i=1,j=1 the preceding implies the following necessary properties.

1. ci,j = cj,i (symmetry).

2. ci,i = Var (Xi) = σ2
i ≥ 0 (the elements in the main diagonal are the variances, and thus all elements in

the main diagonal are nonnegative).

3. c2i,j ≤ ci,i · cj,j (Cauchy-Schwartz’ inequality, c.f., (7.5)). Note that this yields another proof of the fact

that the absolute value of a coefficient of correlation is ≤ 1.

Example 8.1.1 The covariance matrix of a bivariate random variable X = (X1, X2)
′
is often written in the

following form

C =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (8.5)

where σ2
1 = Var (X1), σ

2
2 = Var (X2) and ρ = Cov(X,Y )/(σ1σ2) is the coefficient of correlation of X1 and X2.

C is invertible (⇒ positive definite) if and only if ρ2 6= 1.

Linear transformations of random vectors are Borel functions Rn 7→ Rm of random vectors. The rules for

finding the mean vector and the covariance matrix of a transformed vector are simple.

Proposition 8.1.2 X is a random vector with mean vector µX and covariance matrix CX. B is am×nmatrix.

If Y = BX+ b, then

EY = BµX + b (8.6)

CY = BCXB
′
. (8.7)

Proof For simplicity of writing, take b = µ = 0. Then

CY = EYY
′
= EBX (BX)

′
=

= EBXX
′
B

′
= BE

[
XX

′
]
B

′
= BCXB

′
.

We have

Definition 8.1.1

φX (s)
def
= E

[
eis

′
X

]
=

∫

Rn

eis
′
xdFX (x) (8.8)

is the characteristic function of the random vector X.
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In (8.8) s
′
x is a scalar product in Rn,

s
′
x =

n∑

i=1

sixi.

As FX is a joint distribution function on Rn and
∫
Rn is a notation for a multiple integral over Rn, we know

that ∫

Rn

dFX (x) = 1,

which means that φX (0) = 1, where 0 is a n× 1 -vector of zeros.

Theorem 8.1.3 [Kac’s theorem] X = (X1, X2, · · · , Xn)
′
. The components X1, X2, · · · , Xn are independent

if and only if

φX (s) = E
[
eis

′
X

]
=

n∏

i=1

φXi
(si),

where φXi
(si) is the characteristic function for Xi.

Proof Assume that X = (X1, X2, · · · , Xn)
′
is a vector with independent Xi, i = 1, . . . , n, that have, for

convenience of writing, the joint p.d.f. fX (x). We have in (8.8)

φX (s) =

∫

Rn

eis
′
xfX (x) dx

=

∫ ∞

∞
. . .

∫ ∞

−∞
ei(s1x1+...+snxn)

n∏

i=1

fXi
(xi) dx1 · · · dxn

(8.9)

=

∫ ∞

∞
eis1x1fX1 (x1) dx1 · · ·

∫ ∞

−∞
eisnxnfXn

(xn) dxn = φX1(s1) · · ·φXn
(sn),

where φXi
(si) is the characteristic function for Xi.

The more complicated proof of the assertion in the other direction is found in [61, pp.155−156].

8.1.3 Multivariate Normal/Gaussian Distribution

Definition 8.1.2 X has a multivariate normal or Gaussian distribution with mean vector µ and covariance

matrix C, written as X ∈ N (µ,C), if and only if the characteristic function is given as

φX (s) = eis
′
µ− 1

2 s
′
Cs. (8.10)

The next statement is a manifestation of the Cramér-Wold theorem1 or the Cramér-Wold device, [67,

p. 87], which states that a probability measure on (Rn,B (Rn)) is uniquely determined by the totality of its

one-dimensional projections. Seen from this angle a multivariate normal distribution is characterized by the

totality of its one dimensional linear projections.

1Hermann Wold, 1908 - 1992, was a doctoral student of Harald Cramér, then Professor of statistics at Uppsala University and

later at Gothenburg University http://en.wikipedia.org/wiki/Herman Wold
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Theorem 8.1.4 X has a multivariate normal distribution N (µ,C) if and only of

a
′
X =

n∑

i=1

aiXi (8.11)

has a normal distribution for all vectors a
′
= (a1, a2, . . . , an).

Proof Assume that a
′
X has a multivariate normal distribution for all a and that µ and C are the mean vector

and covariance matrix of X, respectively. Here (8.6) and (8.7) with B = a
′
give

Ea
′
X = a

′
µ,Var

[
a

′
X
]
= a

′
Ca.

Hence, if we set Y = a
′
X, then by assumption Y ∈ N

(
a

′
µ, a

′
Ca
)
and the characteristic function of Y is by

(8.2)

ϕY (t) = eita
′
µ− 1

2 t
2
a
′
Ca.

The characteristic function of X is by definition

ϕX (s) = Eeis
′
X.

Thus

ϕX (a) = Eeia
′
X = ϕY (1) = eia

′
µ− 1

2a
′
Ca.

Thereby we have established that the characteristic function of X is

ϕX (s) = eis
′
µ− 1

2 s
′
Cs.

In view of definition 8.1.2 this shows that X ∈ N (µ,C). The proof of the statement in the other direction is

obvious.

Example 8.1.5 In this example we study a bivariate random variable (X,Y )
′
such that both X and Y have

normal marginal distribution but there is a linear combination (in fact, X + Y ), which does not have a normal

distribution. Therefore (X,Y )
′
is not a bivariate normal random variable. This is an exercise stated in [80].

Let X ∈ N
(
0, σ2

)
. Let U ∈ Be

(
1
2

)
and be independent of X . Define

Y =

{
X if U = 0

−X if U = 1.

Let us find the distribution of Y . We compute the characteristic function by double expectation

ϕY (t) = E
[
eitY

]
= E

[
E
[
eitY | U

]]

= E
[
eitY | U = 0

]
· 1
2
+ E

[
eitY | U = 1

]
· 1
2

= E
[
eitX | U = 0

]
· 1
2
+ E

[
e−itX | U = 1

]
· 1
2

and since X and U are independent, the independent condition drops out, and X ∈ N
(
0, σ2

)
,

= E
[
eitX

]
· 1
2
+ E

[
e−itX

]
· 1
2
=

1

2
· e− t2σ2

2 +
1

2
· e− t2σ2

2 = e−
t2σ2

2 ,
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which by uniqueness of characteristic functions says that Y ∈ N
(
0, σ2

)
. Hence both marginal distributions of

the bivariate random variable (X,Y ) are normal distributions. Yet, the sum

X + Y =

{
2X if U = 0

0 if U = 1

is not a normal random variable. Hence (X,Y ) is according to theorem 8.1.4 not a bivariate Gaussian random

variable. Clearly we have (
X

Y

)
=

(
1 0

0 (−1)U

)(
X

X

)
. (8.12)

Hence we multiply (X,X)
′
once by a random matrix to get (X,Y )

′
and therefore should not expect (X,Y )

′
to

have a joint Gaussian distribution. We take next a look at the details. If U = 1, then

(
X

Y

)
=

(
1 0

0 −1

)(
X

X

)
= A1

(
X

X

)

and if U = 0, (
X

Y

)
=

(
1 0

0 1

)(
X

X

)
= A0

(
X

X

)
.

The covariance matrix of (X,X)
′
is clearly

CX = σ2

(
1 1

1 1

)
.

We set

C1 =

(
1 −1

−1 1

)
, C0 =

(
1 1

1 1

)
.

One can verify, c.f. (8.7), that σ2C1 = A1CXA
′
1 and σ2C0 = A0CXA

′
0. Hence σ2C1 is the covariance matrix

of (X,Y ), if U = 1, and σ2C0 is the covariance matrix of (X,Y ), if U = 0.

It is clear by the above that the joint distribution FX,Y should actually be a mixture of two distributions

F
(1)
X,Y and F

(0)
X,Y with mixture coefficients

(
1
2 ,

1
2

)
,

FX,Y (x, y) =
1

2
· F (1)

X,Y (x, y) +
1

2
· F (0)

X,Y (x, y).

We understand this as follows. We draw first a value u from Be
(
1
2

)
, which points out one of the distributions,

F
(u)
X,Y , and then draw a sample of (X,Y ) from F

(u)
X,Y . We can explore these facts further.

Let us determine the joint distribution of (X,Y )
′
by means of the joint characteristic function, see

eq.(8.8). We get

ϕX,Y (t, s) = E
[
ei(tX+sY )

]
= E

[
ei(tX+sY ) | U = 0

]
· 1
2
+ E

[
ei(tX+sY ) | U = 1

]
· 1
2

= E
[
ei(t+s)X)

]
· 1
2
+ E

[
ei(t−s)X

]
· 1
2

=
1

2
e−

(t+s)2σ2

2 +
1

2
e−

(t−s)2σ2

2 .

From the above

(t− s)2 = (t, s)C1

(
t

s

)
(t+ s)2 = (t, s)C0

(
t

s

)
.
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We see that C1 and C2 are non-negative definite matrices. (It holds also that detC1 = detC0 = 0.)

Therefore
1

2
e−

(t+s)2σ2

2 +
1

2
e−

(t−s)2σ2

2 =
1

2
e−

σ2
s
′
C0s

2 +
1

2
e−

σ2
s
′
C1s

2 ,

where s = (t, s)
′
. This shows by uniqueness of characteristic functions that the joint distribution

of (X,Y ) is a mixture of N

((
0

0

)
, σ2C0

)
and N

((
0

0

)
, σ2C1

)
with the mixture coefficients

(
1
2 ,

1
2

)
.

Additional properties are:

1. Theorem 8.1.6 If Y = BX+ b, and X ∈ N (µ,C), then

Y ∈ N
(
Bµ+ b, BCB

′
)
.

Proof We check the characteristic function of Y; some linear algebra gives

ϕY (s) = E
[
eis

′
Y

]
= E

[
eis

′
(b+BX)

]
=

= eis
′
bE
[
eis

′
BX

]
= eis

′
bE

[
e
i
(

B
′
s

)′
X

]

or

ϕY (s) = eis
′
bE

[
e
i
(

B
′
s

)′
X

]
. (8.13)

Here

E

[
e
i
(

B
′
s

)′
X

]
= ϕX

(
B

′
s
)
.

Furthermore

ϕX

(
B

′
s
)
= e

i
(

B
′
s

)′
µ− 1

2

(

B
′
s

)′
C

(

B
′
s

)

.

Since (
B

′
s
)′

µ = s
′
Bµ,

(
B

′
s
)′

C
(
B

′
s
)
= s

′
BCB

′
s,

we get

e
i
(

B
′
s

)′
µ− 1

2

(

B
′
s

)′
C

(

B
′
s

)

= eis
′
Bµ− 1

2 s
′
BCB

′
s.

Therefore

ϕX

(
B

′
s
)
= eis

′
Bµ− 1

2 s
′
BCB

′
s (8.14)

and by (8.14) and (8.13) above we get

ϕY (s) = eis
′
bϕX

(
B

′
s
)
= eis

′
beis

′
Bµ− 1

2 s
′
BCB

′
s

= eis
′
(b+Bµ)− 1

2 s
′
BCB

′
s,

which by uniqueness of characteristic functions proves the claim as asserted.
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2. Theorem 8.1.7 A Gaussian multivariate random variable has independent components if and only if the

covariance matrix is diagonal.

Proof Let Λ be a diagonal covariance matrix with λis on the main diagonal, i.e.,

Λ =




λ1 0 0 . . . 0

0 λ2 0 . . . 0

0 0 λ3 . . . 0

0
. . .

... . . . 0

0 0 0 . . . λn



.

Then

ϕX (t) = eit
′
µ− 1

2 t
′
Λt =

= ei
∑n

i=1 µiti− 1
2

∑n
i=1 λit

2
i

= eiµ1t1− 1
2
λ1t

2
1eiµ2t2− 1

2
λ2t

2
2 · · · eiµntn− 1

2
λnt

2
n

is the product of the characteristic functions of Xi ∈ N (µi, λi), which are by theorem 8.1.3 seen to be

independent.

3. Theorem 8.1.8 If C is positive definite ( ⇒ detC > 0), then it can be shown that there is a simultaneous

p.d.f. of the form

fX (x) =
1

(2π)n/2
√
detC

e−
1
2 (x−µX)

′
C

−1(x−µX). (8.15)

Proof It can be checked by a lengthy but straightforward computation that

eis
′
µ− 1

2 s
′
Cs =

∫

Rn

eis
′
x

1

(2π)n/2
√
det(C)

e−
1
2 (x−µ)

′
C

−1(x−µ)dx.

4. Theorem 8.1.9 (X1, X2)
′
is a bivariate Gaussian random variable. The conditional distribution for X2

given X1 = x1 is

N

(
µ2 + ρ · σ2

σ1
(x1 − µ1), σ

2
2(1− ρ2)

)
, (8.16)

where µ2 = E(X2), µ1 = E (X2), σ2 =
√
Var (X2), σ1 =

√
Var (X1) and ρ = Cov(X1, X2)/ (σ1 · σ2) .

Proof is done by an explicit evaluation of (8.15) followed by an explicit evaluation of the pertinent con-

ditional p.d.f. and is deferred to Appendix 8.4.

Hence for bivariate Gaussian variables the best estimator in the mean square sense, E [X2 | X1],

and the best linear estimator in the mean square sense are one and the same random variable,

c.f., example 7.5.5 and remark 7.6.1.

Definition 8.1.3 Z ∈ N (0, I) is a standard Gaussian vector, where I is n× n identity matrix.

Let X ∈ N (µX,C). Then, if C is positive definite, we can factorize C as

C = AA
′
,



8.2. PARTITIONED COVARIANCE MATRICES 213

for n× n matrix A, where A is lower triangular, see [80, Appendix 1]. Actually we can always decompose

C = LDL′,

where L is a unique n× n lower triangular, D is diagonal with positive elements on the main diagonal, and we

write A = L
√
D. Then A−1 is lower triangular. Then

Z = A−1 (X− µX)

is a standard Gaussian vector. In some applications, like, e.g., in time series analysis and signal processing, one

refers to A−1 as a whitening matrix. It can be shown that A−1 is lower triangular, thus we have obtained Z

by a causal operation, in the sense that Zi is a function of X1, . . . , Xi. Z is known as the innovations of X.

Conversely, one goes from the innovations to X through another causal operation by X = AZ+ b, and then

X = N
(
b, AA

′
)
.

Example 8.1.10 (Factorization of a 2× 2 Covariance Matrix) Let

(
X1

X2

)
∈ N (µ,C) .

Let Z1 och Z2 be independent N(0, 1). We consider the lower triangular matrix

B =

(
σ1 0

ρσ2 σ2
√
1− ρ2

)
, (8.17)

which clearly has an inverse, as soon as ρ 6= ±1. Moreover, one verifies that C = B ·B′
, when we write C as in

(8.5). Then we get (
X1

X2

)
= µ+B

(
Z1

Z2

)
, (8.18)

where, of course, (
Z1

Z2

)
∈ N

((
0

0

)
,

(
1 0

0 1

))
.

8.2 Partitioned Covariance Matrices

Assume that X, n× 1, is partitioned as

X = (X1,X2)
′
,

where X1 is p× 1 and X2 is q × 1, n = q + p. Let the covariance matrix C be partitioned in the sense that

C =

(
Σ11 Σ12

Σ21 Σ22

)
, (8.19)

where Σ11 is p× p, Σ22 is q × q e.t.c.. The mean is partitioned correspondingly as

µ :=

(
µ1

µ2

)
. (8.20)
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Let X ∈ Nn (µ,C), where Nn refers to a normal distribution in n variables, C and µ are partitioned as in

(8.19)-(8.20). Then the marginal distribution of X2 is

X2 ∈ Nq (µ2,Σ22) ,

if Σ22 is invertible. Let X ∈ Nn (µ,C), where C and µ are partitioned as in (8.19)-(8.20). Assume that the

inverse Σ−1
22 exists. Then the conditional distribution of X1 given X2 = x2 is normal, or,

X1 | X2 = x2 ∈ Np

(
µ
1|2,Σ1|2

)
, (8.21)

where

µ
1|2 = µ1 +Σ12Σ

−1
22 (x2 − µ2) (8.22)

and

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

By virtue of (8.21) and (8.22) the best estimator in the mean square sense and the best linear estimator

in the mean square sense are one and the same random variable .

8.3 Appendix: Symmetric Matrices & Orthogonal Diagonalization

& Gaussian Vectors

We quote some results from [5, chapter 7.2] or, from any textbook in linear algebra. An n × n matrix A is

orthogonally diagonalizable, if there is an orthogonal matrix P (i.e., P
′
P =PP

′
= I) such that

P
′
AP = Λ,

where Λ is a diagonal matrix. Then we have

Theorem 8.3.1 If A is an n× n matrix, then the following are equivalent:

(i) A is orthogonally diagonalizable.

(ii) A has an orthonormal set of eigenvectors.

(iii) A is symmetric.

Since covariance matrices are symmetric, we have by the theorem above that all covariance matrices are

orthogonally diagonalizable.

Theorem 8.3.2 If A is a symmetric matrix, then

(i) Eigenvalues of A are all real numbers.

(ii) Eigenvectors from different eigenspaces are orthogonal.

That is, all eigenvalues of a covariance matrix are real. Hence we have for any covariance matrix the

spectral decomposition

C =

n∑

i=1

λieie
′

i, (8.23)
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where Cei = λiei. Since C is nonnegative definite, and its eigenvectors are orthonormal,

0 ≤ e
′

iCei = λie
′

iei = λi,

and thus the eigenvalues of a covariance matrix are nonnegative.

Let now P be an orthogonal matrix such that

P
′
CXP = Λ,

and X ∈ N (0,CX), i.e., CX is a covariance matrix and Λ is diagonal (with the eigenvalues of CX on the main

diagonal). Then if Y = P
′
X, we have by theorem 8.1.6 that

Y ∈ N (0,Λ) .

In other words, Y is a Gaussian vector and has by theorem 8.1.7 independent components. This method of

producing independent Gaussians has several important applications. One of these is the principal component

analysis, c.f. [59, p. 74]. In addition, the operation is invertible, as

X = PY

recreates X ∈ N (0,CX) from Y.

8.4 Appendix: Proof of (8.16)

Let X = (X1, X2)
′
∈ N(µX, C), µX =

(
µ1

µ2

)
and C in (8.5) with ρ2 6= 1. The inverse of C in (8.5) is

C−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
.

Then we get by straightforward evaluation in (8.15)

fX (x) =
1

2π
√
detC

e−
1
2 (x−µX)

′
C−1(x−µX)

=
1

2πσ1σ2
√
1− ρ2

e−
1
2Q(x1,x2), (8.24)

where

Q(x1, x2) =

1

(1− ρ2)
·
[(

x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(
x2 − µ2

σ2

)2
]
.

Now we claim that

fX2|X1=x1
(x2) =

1

σ̃2
√
2π
e
− 1

2σ̃2
2
(x2−µ̃2(x1))

2

,

a p.d.f. of a Gaussian random variable X2|X1 = x1 with the (conditional) expectation µ̃2(x1) and the (condi-

tional) variance σ̃2

µ̃2(x1) = µ2 + ρ
σ2
σ1

(x1 − µ1), σ̃2 = σ2
√

1− ρ2.

To prove these assertions about fX2|X1=x1
(x2) we set

fX1(x1) =
1

σ1
√
2π
e
− 1

2σ2
1

(x1−µ1)
2

, (8.25)
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and compute the ratio
fX1,X2(x1,x2)

fX (x1)
. We get from the above by (8.24) and (8.25) that

fX1,X2(x1, x2)

fX(x1)
=

σ1
√
2π

2πσ1σ2
√
1− ρ2

e
− 1

2Q(x1,x2)+
1

2σ2
1
(x1−µ1)

2

,

which we organize, for clarity, by introducing the auxiliary function H(x1, x2) by

−1

2
H(x1, x2)

def
= −1

2
Q(x1, x2) +

1

2σ2
1

(x1 − µ1)
2.

Here we have

H(x1, x2) =

1

(1 − ρ2)
·
[
(x− µ1)

2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(
x2 − µ2

σ2

)2
]
−
(
x1 − µ1

σ1

)2

=
ρ2

(1 − ρ2)

(x1 − µ1)
2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2(1− ρ2)
+

(x2 − µ2)
2

σ2
2(1− ρ2)

.

Evidently we have now shown

H(x1, x2) =

(
x2 − µ2 − ρσ2

σ1
(x1 − µ1)

)2

σ2
2(1− ρ2)

.

Hence we have found that

fX1,X2(x1, x2)

fX(x1)
=

1√
1− ρ2σ2

√
2π
e
− 1

2

(x2−µ2−ρ
σ2
σ1

(x1−µ1))2

σ2
2
(1−ρ2) .

This establishes the properties of bivariate normal random variables claimed in (8.16) above.

As an additional exercise on the use of (8.16) (and conditional expectation) we make the following check of

correctness of our formulas.

Theorem 8.4.1 X = (X1, X2)
′
∈ N

((
µ1

µ2

)
, C

)
⇒ ρ = ρX1,X2 .

Proof We compute by double expectation

E [(X1 − µ1)(X2 − µ2)] = E(E([(X1 − µ1)(X2 − µ2)] |X1)

and by taking out what is known,

= E((X1 − µ1)E [X2 − µ2] |X1)) = E(X1 − µ1) [E(X2|X1)− µ2]

and by (8.16)

= E((X1 − µ1)

[
µ2 + ρ

σ2
σ1

(X1 − µ1)− µ2

]

= ρ
σ2
σ1
E(X1 − µ1)((X1 − µ1))

= ρ
σ2
σ1
E(X1 − µ1)

2 = ρ
σ2
σ1
σ2
1 = ρσ2σ1.

In other words, we have established that

ρ =
E [(X1 − µ1)(X2 − µ2)]

σ2σ1
,

which says that ρ is the coefficient of correlation of (X1, X2)
′
.
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8.5 Exercises

8.5.1 Bivariate Gaussian Variables

1. (From [42]) Let (X1, X2)
′ ∈ N (µ,C), where

µ =

(
0

0

)

and

C =

(
1 ρ

ρ 1

)
.

(a) Set Y = X1 −X2. Show that Y ∈ N(0, 2− 2ρ).

(b) Show that for any ε > 0

P (|Y | ≤ ε) → 1,

if ρ ↑ 1.

2. (From [42]) Let (X1, X2)
′ ∈ N (µ,C), where

µ =

(
0

0

)

and

C =

(
1 ρ

ρ 1

)
.

(a) We want to find the distribution of the random variable X1 | X2 ≤ a. Show that

P (X1 ≤ x | X2 ≤ a) =
1

Φ(a)

∫ x

−∞
φ(u)Φ

(
a− ρu√
1− ρ2

)
du, (8.26)

where Φ(x) is the distribution function of N(0, 1) and φ(x) the p.d.f. of N(0, 1), i.e., d
dxΦ(x) = φ(x).

We sketch two different solutions.

Aid 1. We need to find

P (X1 ≤ x | X2 ≤ a) =
P ({X1 ≤ x} ∩ {X2 ≤ a})

P (X2 ≤ a)
.

Then

P ({X1 ≤ x} ∩ {X2 ≤ a}) =
∫ x

−∞

∫ a

−∞
fX1,X2(u, v)dudv =

=

∫ x

−∞
fX2(v)

∫ a

−∞
fX1|X2=v(u)dudv.

Now find fX2(v) and fX1|X2=v(u) and make a change of variable in
∫ a

−∞ fX1|X2=v(u)du.

Aid 2. Use (8.18), which shows how to write (X1, X2)
′
, as a linear transformation of (Z1, Z2)

′
with

N(0, I), or as (
X1

X2

)
= B

(
Z1

Z2

)
.

Then you can, since B is invertible, write the event

{X1 ≤ x} ∩ {X2 ≤ a}

as an event using (the innovations) Z1 and Z2 and then compute the desired probability using

the joint distribution of Z1 and Z2.
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(b) Show using (8.26) that

lim
ρ↑1

P (X1 ≤ x | X2 ≤ a) =

{
Φ(x)
Φ(a) if x ≤ a

1 if x > a.

3. (From [42]) Determine the constant c so that the function

c · e−(x2−xy+y2)

becomes the p.d.f. of a bivariate normal distribution, and determine its parameters, that is, its mean

vector and covariance matrix.

Answer: c =
√
3

2π , N

((
0

0

)
,

(
2
3

1
3

1
3

2
3

))
.

4. (From [42]) (X1, X2)
′ ∈ N (0,C), where 0 = (0, 0)

′
.

(a) Show that

Cov
(
X2

1 , X
2
2

)
= 2 (Cov (X1, X2))

2
(8.27)

(b) Find the mean vector and the covariance matrix of
(
X2

1 , X
2
2

)′
.

5. [Estimation theory] Let

(
X

Y

)
∈ N

((
µX

µY

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

As in section 3.7.3 we have the estimator

Ŷ = E [Y | FX ] = E [Y | X ]

and the estimation error

Ỹ = Y − Ŷ .

(a) Find E
(
Ỹ
)
, and show that

Var
[
Ỹ
]
= σ2

Y (1− ρ2).

Aid: Recall theorem 3.7.3 and (8.16).

(b) What is the distribution of Ỹ ?

6. Rosenblatt Transformation for Bivariate Gaussian Variables Let
(
X1

X2

)
∈ N

((
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

Find the Rosenblatt transform (3.43) from (X1, X2) to (Z1, Z2), i.e.

z1 = FX1 (x1)

(8.28)

z2 = FX2|X1=x1
(x2) .

(8.29)

Note that Z1 ∈ U(0, 1) and Z2 ∈ U(0, 1), and must be independent.
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7. [Estimation theory and Tower Property] Let

(
X

Z

)
∈ N

((
µX

µZ

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

In addition we have for an interval [a, b] and some c ∈ [a, b]

Y = χA(X) =

{
1 a ≤ X ≤ b

0 X /∈ [a, b].

Suppose now that we want to estimate Z by means of Y = 1 and take

E [Z|Y = 1]

as our chosen estimator.

(a) Show that

E [Z|Y = 1] = µZ + ρ · σ2
σ1

(H1 − µX),

where

H1 =
1

Φ
(

b−µx

σ1

)
− Φ

(
a−µx

σ1

)
∫ b

a

x
1

σ1
√
2π
e
− (x−µX )2

2σ2
1 dx.

Aid: Start by recalling section 3.32 and the formula (3.7.4).

(b) Find

Var [Z − E [Z|Y = 1]] .

8. In the mathematical theory of communication, see [23], (communication in the sense of transmission of

messages via systems designed by electrical and computer engineers, not in the sense of social competence

and human relations or human-computer interaction (HCI)) one introduces the mutual information

I(X,Y ) between two continuous random variables X and Y by

I(X,Y )
def
=

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy, (8.30)

where fX,Y (x, y) is the joint p.d.f. of (X,Y ), fX(x) and fY (y) are the marginal p.d.f.s of X and Y , respec-

tively. I(X,Y ) is in fact a measure of dependence between random variables, and is theoretically speaking

superior to correlation, as we measure with I(X,Y ) more than the mere degree of linear dependence

between X and Y .

Assume now that (X,Y ) ∈ N

((
0

0

)
,

(
σ2 ρσ2

ρσ2 σ2

))
. Check that

I(X,Y ) = −1

2
log
(
1− ρ2

)
. (8.31)

Aid: The following steps solution are in a sense instructive, as they rely on the explicit conditional

distribution of Y | X = x, and provide an interesting decomposition of I(X,Y ) as an intermediate step.

Someone may prefer other ways. Use

fX,Y (x, y)

fX(x)fY (y)
=
fY |X=x(y)

fY (y)
,

and then

I(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) log fY |X=x(y)dxdy
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−
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) log fY (y)dxdy.

Then one inserts in the first term on the right hand side

fX,Y (x, y) = fY |X=x(y) · fX(x).

Observe that the conditional distribution of Y | X = x is here

N
(
ρx, σ2(1− ρ2)

)
,

and take into account the marginal distributions of X and Y .

Interpret the result in (8.31) by considering ρ = 0, ρ = ±1. Note also that I(X,Y ) ≥ 0.

9. (From [101]) The matrix

Q =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(8.32)

is known as the rotation matrix2. Let
(
X1

X2

)
∈ N

((
0

0

)
,

(
σ2
1 0

0 σ2
2

))

and let (
Y1

Y2

)
= Q

(
X1

X2

)

and σ2
2 ≥ σ2

1 .

(i) Find Cov(Y1, Y2) and show that Y1 and Y2 are independent for all θ if and only if σ2
2 = σ2

1 .

(ii) Supppose σ2
2 > σ2

1 . For which values of θ are Y1 and Y2 are independent ?

10. (From [101]) Let (
Y1

Y2

)
∈ N

((
0

0

)
,

(
1 + ρ 0

0 1− ρ

))
.

Set (
X1

X2

)
= Q

(
Y1

Y2

)
,

where Q is the rotation matrix (8.32) with θ = π
4 . Show that

(
X1

X2

)
∈ N

((
0

0

)
,

(
1 ρ

ρ 1

))
.

Hence we see that by rotating two independent Gaussian variables with variances 1 + ρ and 1− ρ, ρ 6= 0,

with 45 degrees, we get a bivariate Gaussian vector, where covariance of the two variables is equal to ρ.

11. (X,Y ) is a bivariate Gaussian r.v. with Var [X ] = Var [Y ]. Show that X + Y and X − Y are independent

r.v.’s.

12. Let (
X1

X2

)
∈ N

((
0

0

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

Show that Var [X1X2] = σ2
1σ

2
2

(
1 + ρ2

)
.

2y = Qx is a rotation of x by the angle θ, as explained in any text on linear algebra, see, e.g., [5, p.187 ].
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13. X ∈ N(0, 1), Y ∈ N(0, 1), and are independent.

(a) Show that E [X | X > Y ] = 1√
π
.

(b) Show that E [X + Y | X > Y ] = 0.

14. X ∈ N(0, σ2), Y ∈ N(0, σ2), and are independent. Show that

X − Y

X + Y
∈ C(0, 1).

Aid: Recall the exercise 2.6.3.4..

15. X1, X2, X3 are independent and ∈ N(1, 1). We set

U = X1 +X2 +X3, V = X1 + 2X2 + 3X3.

Determine V | U = 3. Answer: N(6, 2).

16. X = (X1, X2, X3)
′
has the mean vector µ = (0, 0, 0)

′
and the covariance matrix

C =




3 −2 1

−2 2 0

1 0 1


 .

Find the distribution of X1 +X3 given that

(a) X2 = 0.

(b) X2 = 2.

Answers: (a) N(0, 4), (b) N(−2, 4).

17. X = (X1, X2)
′
has the mean vector µ = (0, 0)

′
and the covariance matrix
(

1 ρ

ρ 1

)

Find the distribution of the random variable

X2
1 − 2ρX1X2 +X2

2

1− ρ2

by computing its m.g.f.. Answer: χ2(2).

18. Return to the Mean (
X1

X2

)
∈ N

((
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

Check that
E [X2 | X1]− E[X2]

σ2
= ρ

X1 − E[X1]

σ1
. (8.33)

This equality provides a strict mathematical expression for an important statistical phenomenon, namely

return to the mean, or regression, as discovered by Francis Galton3.

Assume that |ρ| < 1. Then (8.33) tells us that the standardized distance between E [X2 | X1]

and its mean E[X2] is smaller than than the standardized distance between X1 and its mean

E[X1]. Here we think of X1 and X2 as a first and second measurement, respectively, of some

property, like the height of a parent and the height of an adult child of that parent.
3Sir Francis Galton, 1822 −1911, contributed to statistics, sociology, psychology, anthropology, geography, meteorology, genetics

and psychometry, was active as tropical explorer and inventor, and one of the first proponents of eugenics.
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8.5.2 Covariance Matrices & The Four Product Rule

1. C is a positive definite covariance matrix. Show that C−1 is a covariance matrix.

2. C1 and C2 are two n× n covariance matrices. Show that

(a) C1 +C2 is a covariance matrix.

(b) C1 ·C2 is a covariance matrix.

Aid: The symmetry of C2 ·C1 is immediate. The difficulty is to show that C1 ·C2 is nonneg-

ative definite. We need a piece of linear algebra here, c.f. appendix 8.3. Any symmetric and

nonnegative definite matrix can written using the spectral decomposition, see (8.23),

C =

n∑

i=1

λieie
′

i,

where ei is a real (i.e., has no complex numbers as elements) n×1 eigenvector, i.e., Cei = λiei

and λi ≥ 0. The set {ei}ni=1 is a complete orthonormal basis in Rn, which amongst other

things implies that every x ∈ Rn can be written as

x =
n∑

i=1

(x
′
ei)ei,

where the number x
′
ei is the coordinate of x w.r.t. the basis vector ei. In addition, or-

thonormality is recalled as the property

e
′

jei =

{
1 i = j

0 i 6= j.
(8.34)

We make initially the simplifying assumption that C1 and C2 have the same eigenvectors,

so that C1ei = λiei, C2ei = µiei. Then we can diagonalize the quadratic form x
′
C2C1x as

follows.

C1x =
n∑

i=1

(x
′
ei)C1ei =

n∑

i=1

λi(x
′
ei)ei

=

n∑

i=1

λi(x
′
ei)ei. (8.35)

Also, since C2 is symmetric

x
′
C2 = (C2x)

′
=




n∑

j=1

(x
′
ej)C2ej




′

or

x
′
C2 =

n∑

j=1

µj(x
′
ej)e

′

j . (8.36)

Then for any x ∈ Rn we get from (8.35) and (8.36) that

x
′
C2C1x =

n∑

j=1

n∑

i=1

µjλi(x
′
ej)(x

′
ei)e

′

jei
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and because of (8.34)

=

n∑

i=1

µjλi

(
x

′
ei

)2
.

But since µj ≥ 0 and λi ≥ 0, we see that

n∑

i=1

µjλi

(
x

′
ei

)2
≥ 0,

or, for any x ∈ Rn,

x
′
C2C1x ≥ 0.

One may use the preceding approach to handle the general case, see, e.g., [8, p.8]. The

remaining work is left for the interested reader.

(c) C is a covariance matrix. Show that eC is a covariance matrix.

Aid: Use a limiting procedure based on that for any square matrix A

eA
def
=

∞∑

k=0

1

k!
An.

(see, e.g., [8, p.9]). Do not forget to prove symmetry.

2. Four product rule Let (X1, X2, X3, X4)
′ ∈ N (0,C). Show that

E [X1X2X3X4] =

E [X1X2] ·E [X3X4] + E [X1X3] · E [X2X4] + E [X1X4] ·E [X2X3] (8.37)

The result is a special case of Isserli’s theorem, which is in particle physics known as Wick’s theorem 4.

Aid : Take the characteristic function of (X1, X2, X3, X4)
′
. Then use

E [X1X2X3X4] =
∂4

∂s1∂s2∂s3∂s4
φ(X1,X2,X3,X4) (s) |s=0.

As an additional aid one may say that this requires a lot of manual labour. Note also that we have

∂k

∂ski
φX (s) |s=0 = ikE

[
Xk

i

]
, i = 1, 2, . . . , n. (8.38)

8.5.3 Bussgang’s Theorem & Price’s Theorem

In this section we assume that
(
X

Y

)
∈ N

((
µX

µY

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

1. Bussgang’s Theorem

Let g(y) be a Borel function such that E [|g(Y )|] <∞. We are interested in finding

Cov (X, g(Y )) .

Establish now Bussgang’s theorem or Bussgang’s formula, which says that

Cov (X, g(Y )) =
Cov (Y, g(Y ))

σ2
2

· Cov (X,Y ) . (8.39)

4http://en.wikipedia.org/wiki/Isserlis’ theorem
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Aid: Use double expectation, so that You write

Cov (X, g(Y )) = E [(X − µX) (g(Y )− E [g(Y )])]

= E [E [(X − µX) (g(Y )− E [g(Y )]) | Y ]] .

2. Bussgang’s Theorem and Stein’s Lemma Assume next that g(y) is such that

lim
y→∞

g(y) = g∞ <∞, lim
y→−∞

g(y) = g−∞ <∞,

and that g(y) is (almost everywhere) differentiable with the first derivative g
′
(y) such that E

[
g

′
(Y )
]
<∞.

Show that

E
[
g

′
(Y )
]
=

Cov (Y, g(Y ))

σ2
2

. (8.40)

Aid: Use an integration by parts in the integral expression for Cov (Y, g(Y )).

Remark 8.5.1 If we write from (8.39) and (8.40) we get

Cov (X, g(Y )) = E
[
g

′
(Y )
]
· Cov (X,Y ) . (8.41)

In statistics (8.41) known as Stein’s lemma, whereas the (electrical) engineering literature refers to (8.39)

and/or (8.40) as Bussgang’s theorem5, see, e.g., [85, p. 340]. In the same way one can also prove that if

X ∈ N(µ, σ2),

E
(
g(X)(X − µ)

)
= σ2E

(
g′(X)

)
,

which is known as Stein’s lemma, too. Stein’s lemma has a ’Poissonian’ counterpart in Chen’s lemma

(2.123). A repeated application of Stein,s lemma on the function g(x) = x2n−1 yields the moment identity

(4.50), too.

The formula (8.41) has been applied as a test of Gaussianity in time series and signal analysis.

3. Bussgang’s Theorem and Clipping

Let next µX = µY = 0 and let g(y) be

g(y) =





L L ≤ y

y |y| ≤ L

−L y ≤ −L.

This represents ’clipping’ of y at the levels ±L. Show that

Cov (X, g(Y )) = 2erf

(
L

σ2

)
· Cov (X,Y ) , (8.42)

where erf (x) is defined in (2.19). What happens, if L→ ∞ ?

5J. Bussgang: Cross-correlation function of amplitude-distorted Gaussian signals. Res.Lab. Elec. MIT, Tech. Rep. 216, March

1952.
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4. Bussgang’s Theorem and Hard Limiting

Let next µX = µY = 0, let q > 0 and let g(y) be the sign function with scaling of levels, i.e.,

g(y) =





q
2 0 < y

0 y = 0

− q
2 y < 0.

(8.43)

This is called hard limiting. Show that

Cov (X, g(Y )) =
q

2

√
2

πσ2
2

· Cov (X,Y ) . (8.44)

Can Bussgang’s theorem-Stein’s lemma from (8.41) be used here, and if yes, how ? The formula in (8.44)

is known in circuit theory as the ’input/ouput moment equation for relay correlator’.

5. (From [85, p. 340]) Price’s Theorem

(
X

Y

)
∈ N

((
0

0

)
,

(
1 ρ

ρ 1

))
.

(a) Show that if fX,Y (x, y) is the joint bivariate p.d.f., then

∂n

∂nρ
fX,Y (x, y) =

∂2n

∂nx∂ny
fX,Y (x, y).

(b) Show that if Q(x, y) is a sufficiently differentiable function integrable with its derivatives w.r.t. x, y,

then
∂n

∂nρ
E [Q(X,Y )] = E

[
∂2n

∂nx∂ny
Q(X,Y )

]
. (8.45)

This is known as Price’s Theorem.

(c) Let Q(x, y) = xg(y), where g(y) is differentiable. Deduce (8.41) by means of (8.45).

Remark 8.5.2 In the applications of Bussgang’s and Price’s theorems the situation is mostly that X ↔ X(t)

and Y ↔ X(t+ h) , where X(t) and X(t+ h) are random variables in a Gaussian weakly stationary stochastic

process, which is the topic of the next chapter.
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Chapter 9

Stochastic Processes: Weakly

Stationary and Gaussian

9.1 Stochastic Processes

9.1.1 Definition and Terminology, Consistency Theorem

In intuitive terms, a stochastic process is a probabilistic model for evolvement in time of some system that

is regarded as being subject to randomly varying influences. We can think that a stochastic process is an

ensemble of waveforms (sample functions or sample paths), a waveform chosen at random. A stochastic process is

mathematically speaking a family of (infinitely many) random random variables defined on the same probability

space.

Definition 9.1.1 A stochastic process is a family of random variables X(t),

X = {X(t) | t ∈ T },

where T is the index set of the process. All random variables X(t) are defined on the same probability space

(Ω,F ,P).

In these lecture notes the set T is R or a subset of R, e.g., T = [0,∞) or T = (−∞,∞) or T = [a, b], a < b,

and is not countable. We shall thus talk about stochastic processes in continuous time.1

There are three ways to view a stochastic process;

• For each fixed t ∈ T , X(t) is a random variable Ω 7→ R.

• X is a measurable function from T × Ω with value X(t, ω) at (t, ω).

• For each fixed ω ∈ Ω, T ∋ t 7→ X(t, ω) is a function of t called the sample path (corresponding to ω).

The mathematical theory deals with these questions as follows. Let now t1, . . . , tn be n points in T and

X(t1), . . . , X(tn) be the n corresponding random variables in X. Then for an arbitrary set of real numbers

x1, x2, . . . , xn we have the joint distribution

Ft1,t2,...,tn (x1, x2, . . . , xn) = P (X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn) .

1A discrete time stochastic process with T ⊆ {0,±1,±2 . . .} is often called a time series.

227
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We denote a joint distribution function by

Ft1,...,tn .

Suppose that we have a family F of joint distribution functions or finite dimensional distributions Ft1,...,tn given

for all n and all t1, . . . , tn ∈ T

F = {Ft1,...,tn}(t1,...,tn)∈Tn,n∈Z+
.

The question is, when we can claim that there exists a stochastic process with F as its family of finite dimensional

distributions.

Theorem 9.1.1 (Kolmogorov Consistency Theorem) Suppose that F is given and Ft1,...,tn ∈ F, and

Ft1,...,ti−1,ti+1,...,tn ∈ F. If it holds that

Ft1,...,ti−1,ti+1,...,tn (x1, . . . , xi−1, xi+1, . . . , xn) = lim
xi↑∞

Ft1,...,tn (x1, . . . , xn) , (9.1)

then there exists a probability space (Ω,F ,P) and a stochastic process of random variables X(t), t ∈ T , on

(Ω,F ,P) such that F is its family of finite dimensional distributions.

Proof is omitted here. A concise and readable proof is found in [68, Chapter 1.1].

The condition (9.1) says in plain words that if one takes the joint distribution function for n variables from F,

it has to coincide with the marginal distribution for these n variables obtained by marginalization of a joint

distribution function from F for a set of n + 1 (or, any higher number of) variables that contains these n

variables.

Example 9.1.2 Let φ ∈ U(0, 2π) and

X(t) = A sin(wt+ φ), −∞ < t <∞,

where the amplitude A and the frequency w are fixed. This is a stochastic process, a sine wave with a random

phase. We can specify the joint distributions. Take X = (X(t1), X(t2), . . . , X(tn))
′
, the characteristic function

is

φX (s) = E
[
eis

′
X

]
= E

[
eiR sin(φ+θ)

]
,

where

R = A

√√√√
(

n∑

k=1

sk cos(wtk)

)2

+

(
n∑

k=1

sk sin(wtk)

)2

= A

√√√√
n∑

k=1

n∑

j=1

sksj cos(w(tk − tj)

and

θ = tan−1

(∑n
k=1 sk sin(wtk)∑n
k=1 sk cos(wtk)

)
.

The required details are left for the diligent reader. Hence, see [8, p. 38 -39],

φX (s) =
1

2π

∫ 2π

0

eiR sin(φ+θ)dφ

=
1

2π

∫ 2π

0

eiR sin(φ)dφ = J0(R),
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where J0 is the Bessel function of first kind of order zero, [3, pp. 248−249, eq. (6.30)] or in [96, sats

8.1 eq. (12), p. 327] or [92, p. 270]. Needless to say, the joint distribution is not a multivariate Gaussian

distribution.

The figures 9.1 and 9.2 illustrate the ways to view a stochastic process stated in the above. We have the

probability space (Ω,F ,P), where Ω = [0, 2π], F = restriction of the Borel sigma field B (R) to [0, 2π], and P

is the uniform distribution on Borel sets in [0, 2π]. Thus φ ↔ ω. For one φ drawn from U(0, 2π), we have in

figure 9.1 one sample path (or, a random waveform) of X(t) = sin(0.5t + φ) (w = 0.5 and A = 1). In figure

9.2 the graphs are plots of an ensemble of five sample paths of the process corresponding to five samples from

U(0, 2π). If we focus on the random variable X(20), we see in figure 9.2 five outcomes of X(20). For the third

point of view, we see, e.g., X(20, ω5) = 0.9866, the green path at t = 20. In the figure 9.3 we see the histogram

for 1000 outcomes of X(20).

Remark 9.1.1 The histogram in figure 9.3 can be predicted analytically. We have for w = 0.5, A = 1, t = 20,

X(20) = sin(20 + φ), φ ∈ U(0, 2π), (9.2)

i.e., X(20) = H(φ). Since we can by periodicity move to any interval of length 2π, we can consider X(20) =

sin(φ). It is shown in the example 2.4.2 that the p.d.f. of X(20) is

fX(20)(x) =

{
1

π
√
1−x2

, −1 < x < 1

0, elsewhere.

Alternatively, [8, p. 18]), the characteristic function of any random variable like X(20) in the random sine wave

is, since we can by periodicity move to any interval of length 2π,

ϕX(20)(t) = E
[
eit sin(φ)

]
=

1

2π

∫ 2π

0

eit sin(φ)dφ = J0(t)

and by inverse Fouriertransformation, (4.2), we get

fX(20)(x) =
1

2π

∫ π/2

−π/2

e−itxJ0(t)dt.

and this gives fX(20) by a change of variable.

Example 9.1.3 We generalize the example 9.1.2 above. Let φ ∈ U(0, 2π) and A ∈ Ra(2σ2), which means that

A has the p.d.f.

fA(x) =

{
x
σ2 e

−x2/2σ2

x ≥ 0

0 elsewhere.

Let φ and A be independent. We have a stochastic process, which is a sine wave with a random amplitude and

a random phase. Then we invoke the sine addition formulas

X(t) = A sin(wt+ φ) = A sin(φ) cos(wt) +A cos(φ) sin(wt).

It follows that A sin(φ) and A cos(φ) are independent random variables

X1 = A sin(φ) ∈ N(0, σ2), X2 = A cos(φ) ∈ N(0, σ2).
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Figure 9.1: One sample path of X(t) = sin(0.5t+ φ) for t ∈ [0, 20], φ ∈ U(0, 2π).

To verify this, we make the change of variables

x1 = A sin(φ), x2 = A cos(φ),

solve

A =
√
x21 + x22, tan(φ) =

x1
x2
,

compute the Jacobian J , and evaluate fA(
√
x21 + x22)

1
2π |J |.

The characteristic function for X = (X(t1), X(t2), . . . , X(tn))
′
is

φX (s) = E
[
ei(A sin(φ)

∑n
k=1 sk cos(wtk)

]
·E
[
ei(A cos(φ)

∑n
k=1 sk sin(wtk)

]

= E
[
e−iσ

2

2

∑n
j=1

∑n
k=1 sjsk cos(w(tk−tj))

]
.

A second glance at the formula obtained reveals that this should be the characteristic function of a multivariate

normal distribution, where the covariance matrix depends on the time points {tk}nk=1 only through their mutual

differences tk−tj . As will be understood more fully below, this means that the random sine wave {X(t) | −∞ <

t < ∞} in this example is a weakly stationary Gaussian stochastic process with the autocorrelation

function CovX(t, s) = cos(wh) for h = t− s. We shall now define in general terms the autocorrelation functions

and related quantities for stochastic processes.
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Figure 9.2: Five sample paths of X(t) = sin(0.5t + φ) for t ∈ [0, 20], for five outcomes of φ ∈ U(0, 2π).

Of the random variable X(20) we see five outcomes, (ωi ≡ φi), X(20, ω1) = 0.5554, X(20, ω2) = 0.0167,

X(20, ω3) = −0.9805, X(20, ω4) = −0.0309, X(20, ω5) = 0.9866.

9.1.2 Mean Function, Autocorrelation Function

We shall in the sequel be preoccupied with the moment functions, as soon as these these exist, of a stochastic

process {X(t) | t ∈ T }. Let us assume2 that X(t) ∈ L2 (Ω,F ,P) for all t ∈ T .

Here, and in the sequel the computational rules (2.47) and (2.48) find frequent and obvious appli-

cations without explicit reference.

The mean function of the stochastic process X = {X(t) | t ∈ T }, µX(t), is

µX(t) = E[X(t)], t ∈ T. (9.3)

The variance function is

VarX(t) = E
[
X2(t)

]
− µ2

X
(t), t ∈ T,

and the autocorrelation function RX(t, s), is

RX(t, s) = E [X(t) ·X(s)] , t, s ∈ T. (9.4)

The autocovariance function (a.c.f.) is

CovX(t, s) = RX(t, s)− µX(t) · µX(s). (9.5)

2In [25, 46] such stochastic processes are called curves in L2 (Ω,F ,P).
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Figure 9.3: The histogram for 1000 outcomes of X(20), X(t) = sin(0.5t+ φ), φ ∈ U(0, 2π).

These moment functions depend only on the bivariate joint distributions Ft,s. We talk also about second order

distributions and about second order properties of a stochastic process.

The terminology advocated above is standard in the engineering literature, e.g., [38, 50, 56, 71, 80, 85, 97,

101], but for a statistician the autocorrelation function would rather have to be CovX(t, s)/
√
VarX(t) ·VarX(s).

Example 9.1.4 We revisit example 9.1.3 above. The process is

X(t) = X1 cos(wt) +X2 sin(wt),

where X1 ∈ N(0, σ2) and X2 ∈ N(0, σ2) are independent. Then the mean function is

µX(t) = cos(wt)E [X1] + sin(wt)E [X2] = 0,

and the autocorrelation function is

RX(t, s) = E [X(t) ·X(s)] =

E [(X1 cos(wt) +X2 sin(wt)) · (X1 cos(ws) +X2 sin(ws))] =

and since E [X1 ·X2] = E [X1] · E [X2] = 0,

= σ2 (cos(wt) cos(ws) + sin(wt) sin(ws))

= σ2 cos(w(t − s)),

as was already suggested via the characteristic function in example 9.1.3.
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The autocorrelation function has several distinct properties that are necessary for a function to be an autocor-

relation function. For example, if RX(t, s) is an autocorrelation function, then the following Cauchy-Schwarz

inequality holds.

| RX(t, s) |≤
√
RX(t, t)

√
RX(s, s), for all t, s ∈ T . (9.6)

A characterization of autocorrelation functions is given in the next theorem.

Theorem 9.1.5 RX(t, s) is the autocorrelation function of a process X = {X(t) | t ∈ T }, if and only if it has

the following properties.

1. Symmetry

RX(t, s) = RX(s, t), for all t, s ∈ T . (9.7)

2. Nonnegative definiteness
n∑

i=1

n∑

j=1

xixjRX(ti, tj) ≥ 0 (9.8)

for all x1, x2, . . . , xn, all t1, t2, . . . , tn and all n.

Proof: We show the necessity of the property in (9.8).

n∑

i=1

n∑

j=1

xixjRX(tj , ti) = E



(

n∑

i=1

xiX(ti)

)2

 ≥ 0.

Clearly (9.8) means that every n× n - matrix (RX(ti, tj))
n,n
i=1,j=1 is nonnegative definite as in (8.4).

The important question raised by theorem 9.1.5 above is, how to check that a given symmetric function

R(t, s) of (t, s) ∈ T × T is nonnegative definite.

Example 9.1.6 Consider the function of (t, s) given by

1

2

(
H

α

)2H (
eα(t−s) + e−α(t−s) − eα(t−s)

(
1− e−

α(t−s)
H

)2H)

for α > 0 and 0 < H < 1. Is this an autocorrelation function?3

One way to decide the question in example above and elsewhere is to find a random process that has R(t, s)

as its autocorrelation function. This can, on occasion, require a lot of ingenuity and effort and is prone to

errors. We shall give several examples of autocorrelation functions and corresponding underlying processes. It

should be kept in mind right from the start that there can be many different stochastic processes with the same

autocovariance function.

There is a class of processes with random variables X(t) ∈ L2 (Ω,F ,P) called weakly stationary pro-

cesses, that has been extensively evoked in the textbook and engineering literature and practice, c.f., [1, 38,

50, 56, 71, 80, 85, 89, 97, 101, 103]. Weakly stationary processes can be constructed by means of linear analog

filtering of (white) noise, as is found in the exercises of section 9.7.5. The weakly stationary processes are defined

as having a constant mean and an autocorrelation function which is a function of the difference between t and

s, c.f., example 9.1.4. The weakly stationary processes will be defined and treated in section 9.3.

We begin with a few examples of families of autocorrelation functions.

3The answer may be found in http://arxiv.org/abs/0710.5024
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Example 9.1.7 (Bilinear forms of autocorrelation functions) Take any real function f(t), t ∈ T . Then

R(t, s) = f(t) · f(s) (9.9)

is an autocorrelation function of a stochastic process. In fact, take X ∈ N(0, 1), and set X(t) = f(t)X . Then

R(t, s) is the autocorrelation of the process {X(t) | t ∈ T }. The mean function is the constant = 0. Thus

R(t, s) =

n∑

i=0

fi(t) · fi(s)

and even

R(t, s) =

∞∑

i=0

fi(t) · fi(s) (9.10)

are autocorrelation functions.

The next example is a construction of a stochastic process that leads to the bilinear R(t, s) as given in (9.10),

see [7, pp. 6−10] or [103, pp. 82−88].

Example 9.1.8 Let Xi ∈ N(0, 1) be I.I.D. for i = 0, 1, . . .. Take for i = 0, 1, . . . the real numbers λi ≥ 0 such

that
∑∞

i=0 λi <∞. Let ei(t) for i = 0, 1, . . . be a sequence of functions of t ∈ [0, T ] such that

∫ T

0

ei(t)ej(t)dt =

{
1 i = j

0 i 6= j
(9.11)

and that (ei)
∞
i=0 is an orthonormal basis in L2([0, T ]), [96, pp. 279−286]. We set

XN (t)
def
=

N∑

i=0

√
λiXiei(t).

Then one can show using the methods in section 7.4.2 that for every t ∈ [0, T ]

XN (t)
2→ X(t) =

∞∑

i=0

√
λiXiei(t), (9.12)

as N → ∞. Clearly, by theorem 7.4.2 X(t) is a Gaussian random variable. The limit is in addition a stochastic

process such that

E [X(t)X(s)] =

∞∑

i=0

√
λiei(t)

√
λiei(s),

where we used theorem 7.3.1. But this is (9.10) with fi(t) =
√
λiei(t). This example will be continued in

example 9.2.3 in the sequel and will eventually yield a construction of the Wiener process, see section 10.3

below.

Example 9.1.9 A further bilinear form of autocorrelation functions By some further extensions of

horizons, [46, chapter 2.3], we can show that integrals of the form

R(t, s) =

∫ b

a

f(t, λ) · f(s, λ)dλ

are autocorrelation functions.
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Example 9.1.10 [Separable autocorrelation functions] We have here a family of autocorrelation functions

that turn out to correspond to certain important processes.

1. Let T = [0,∞) and σ > 0. Then

R(t, s) = σ2 min(t, s) (9.13)

is an autocorrelation function of a stochastic process. How can one claim this ? The answer is deferred

till later, when it will be shown that this is the autocorrelation function of a Wiener process.

2. T = [0, 1] and

R(t, s) =

{
s(1 − t) s ≤ t

(1 − s)t s ≥ t.
(9.14)

This is the autocorrelation function of a process known as the Brownian bridge or the tied down Wiener

process.

3. Let T = (−∞,∞) and a > 0

R(t, s) = e−a|t−s| =

{
ease−at s ≤ t

eate−as s ≥ t.
(9.15)

This is the autocorrelation function of a weakly stationary process, as it is a function of |t − s|. One

process having this autocorrelation function is a stationary Ornstein-Uhlenbeck process in the chapter 11,

another is the random telegraph signal in chapter 12.5.

4. Let T = (−∞,∞).

R(t, s) =

{
u(s)v(t) s ≤ t

u(t)v(s) s ≥ t
(9.16)

Here u(s) > 0 for all s ∈ T . We can write (9.16) more compactly as

R(t, s) = u (min(t, s)) v (max(t, s)) .

By this we see that all the preceding examples (9.13) - (9.15) are special cases of (9.16) for appropriate

choices of u(·) and v(·). Processes with this kind of autocorrelation functions are the so called Gauss-

Markov processes.

5. Let T = (−∞,∞) and

R(t, s) =

k∑

i=1

ui (min(t, s)) vi (max(t, s)) (9.17)

These autocovariance functions constitute the class of separable autocorrelation functions. We

shall say more of the processes corresponding to separable autocorrelation functions (i.e. Gauss-Markov

processes) in the in section 9.5.

Example 9.1.11 (Periodic Autocorrelation) [97, pp. 272−273] Let {Bi}i≥1 be a sequence of independent

random variables with Bi ∈ Be(1/2) for all i. Define

Θi =

{
π
2 if Bi = 1

−π
2 if Bi = 0.
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Take for T > 0 and for any integer k

Θ(t) = Θk for kT ≤ t < (k + 1)T .

Note that in this example T is the length of a time interval, actually the time for transmission of one bit, not

the overall index set, as elsewhere in this text. Set

X(t) = cos (2πfct+Θ(t)) , −∞ < t <∞.

This process is known as Phase-Shift Keying (PSK) , which is a basic method of modulation in transmission

of binary data.

We determine the mean function and the autocorrelation function of PSK. It is helpful to introduce two auxiliary

functions

sI(t) =

{
cos (2πfct) if 0 ≤ t < T

0 else

and

sQ(t) =

{
sin (2πfct) if 0 ≤ t < T

0 else.

Then we get by the cosine addition formula that

cos (2πfct+Θ(t)) = cos (Θ(t)) cos (2πfct)− sin (Θ(t)) sin (2πfct)

=

∞∑

k=−∞
[cos (Θk) sI(t− kT )− sin (Θk) sQ(t− kT )] .

This looks like an infinite sum, but actually there is no need to prove any convergence.

The mean function follows easily, since cos (Θk) = 0 and sin (Θk) = ±1 with equal probabilities. Hence

E [X(t)] = 0 for all t.

The autocorrelation function is thus

RX(t, s) =
∑

k,l

E [sin (Θk) sin (Θl)] sQ(t− kT )sQ(s− lT ).

Here we have, if k 6= l,

E [sin (Θk) sin (Θl)] = 1 · 1P
(
Θk =

π

2

)
P
(
Θk =

π

2

)
+ 1 · (−1)P

(
Θk =

π

2

)
P
(
Θk = −π

2

)

+(−1) · 1P
(
Θk =

−π
2

)
P
(
Θk =

π

2

)
+ (−1) · (−1)P

(
Θk = −π

2

)
P
(
Θk = −π

2

)

=
1

4
− 1

4
− 1

4
+

1

4
= 0.

If k = l, then E
[
sin2 (Θk)

]
= 1

2 + 1
2 = 1.

Therefore we have

RX(t, s) =
∞∑

k=−∞
sQ(t− kT )sQ(s− lT ).

Since the support4 of sQ(t) is [0, T [, there is no overlap, i.e., for any fixed pair (t, s) only one of the product

terms in the sum can be nonzero. Also, if t and s are not in the same period, then this term is not zero.

4by the support of a function f(t) we mean the set of points t, where f(t) 6= 0.



9.2. MEAN SQUARE CALCULUS: THE MEAN SQUARE INTEGRAL 237

If we put

(t) = t/T − ⌊t/T ⌋, ⌊t/T ⌋ = integer part of t/T ,

then we can write

RX(t, s) =

{
sQ((t))sQ((s)) for ⌊t/T ⌋ = ⌊s/T ⌋
0 else

Thus the autocorrelation function RX(t, s) of PSK is a periodic function in the sense that RX(t, s) = RX(t +

T, s+ T ) (i.e., periodic with the same period in both variables). The textbook [38, chapter 12] and the mono-

graph [60] contain specialized treatments of the theory and applications of stochastic processes with periodic

autocorrelation functions.

One way of constructing stochastic processes that have a given autocorrelation function is by mean square

integrals of stochastic processes in continuous time, as defined next.

9.2 Mean Square Calculus: The Mean Square Integral

There is a mean square calculus of stochastic processes, see [1, 46, 56, 66, 71, 89, 97], that is nicely applicable

to weakly stationary processes.

9.2.1 Definition and Existence of the Mean Square Integral

Definition 9.2.1 Let {X(t)|t ∈ T } be a stochastic process in continuous time with X(t) ∈ L2 (Ω,F ,P) for

every t ∈ T . The mean square integral
∫ b

a X(t)dt of {X(t)|t ∈ T } over [a, b] ⊆ T is defined as the mean square

limit (when it exists)
n∑

i=1

X(ti)(ti − ti−1)
2→
∫ b

a

X(t)dt, (9.18)

where a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0, as n→ ∞.

The sample paths of a process {X(t)|t ∈ T } need not be integrable in Riemann’s sense5. Since a mean square

integral does not involve sample paths of {X(t)|t ∈ T }, we are elaborating an easier notion of integration.

Theorem 9.2.1 The mean square integral
∫ b

a
X(t)dt of {X(t)|t ∈ T } exists over [a, b] ⊆ T if and only if the

double integral ∫ b

a

∫ b

a

E [X(t)X(u)] dtdu

exists as an integral in Riemann’s sense. We have also

E

[∫ b

a

X(t)dt

]
=

∫ b

a

µX(t)dt (9.19)

and

Var

[∫ b

a

X(t)dt

]
=

∫ b

a

∫ b

a

CovX(t, u)dtdu. (9.20)

5The Riemann integral is the integral handed down by the first courses in calculus, see, e.g., [69, chapter 6].
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Proof Let Yn =
∑n

i=1X(ti)(ti − ti−1). Evoking Loéve’s criterion in theorem 7.3.3 we study

E [YnYm] =

n∑

i=1

m∑

j=1

E [X(ti)X(uj)] (ti − ti−1)(uj − uj−1),

where the right hand side is an ordinary Riemann’s sum. Hence

n∑

i=1

m∑

j=1

E [X(ti)X(uj)] (ti − ti−1)(uj − uj−1) →
∫ b

a

∫ b

a

E [X(t)X(u)] dtdu = C,

in case the double integral exists, when a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0 as n → ∞.

So the assertion follows, as claimed.

The expectation E
[∫ b

a
X(t)dt

]
is obtained as

E

[∫ b

a

X(t)dt

]
= E

[
lim
△

n∑

i=1

X(ti)(ti − ti−1)

]
,

where the auxiliary notion lim△ refers to mean square convergence as a = t0 < t1 < . . . < tn−1 < tn = b and

maxi |ti − ti−1| → 0 as n→ ∞, and by theorem 7.3.1 (a)

= lim
n→∞

E [Yn] = lim
n→∞

n∑

i=1

E [X(ti)] (ti − ti−1)

and then

= lim
n→∞

n∑

i=1

µX(ti)(ti − ti−1) =

∫ b

a

µX(t)dt.

The variance is computed by

Var

[∫ b

a

X(t)dt

]
= E



(∫ b

a

X(t)dt

)2

−

(∫ b

a

µX(t)dt

)2

.

Here

E



(∫ b

a

X(t)dt

)2

 = E

[(∫ b

a

X(t)dt ·
∫ b

a

X(u)du

)]

and from theorem 7.3.1 (c)

E

[∫ b

a

X(t)dt ·
∫ b

a

X(u)du

]
= E

[
lim
△
Yn · Ym

]

= lim
min(m,n)→∞

E [Yn · Ym] ,

where E [Yn · Ym] =
∑n

i=1

∑m
j=1 E [X(ti)X(uj)] (ti − ti−1)(uj − uj−1). Thus

Var

[∫ b

a

X(t)dt

]
→
∫ b

a

∫ b

a

E [X(t)X(u)] dtdu −
(∫ b

a

µX(t)dt

)2

=

∫ b

a

∫ b

a

(E [X(t)X(u)]− µX(t)µX(u)) dtdu,

which is the assertion as claimed.

One can manipulate mean square stochastic integrals much in the same way as ordinary integrals.
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Theorem 9.2.2 (a) ∫ b

a

(αX(t) + βY (t)) dt = α

∫ b

a

X(t)dt+ β

∫ b

a

Y (t)dt

(b) a < b < c ∫ b

a

X(t)dt+

∫ c

b

X(t)dt =

∫ c

a

X(t)dt

Hence we may define new stochastic process Y = {Y (t) | t ∈ T } by a stochastic integral. For each t ∈ T we set

Y (t) =

∫ t

a

X(s)ds.

The mean function of the process Y is

µY (t) =

∫ t

a

µX(s)ds, t ∈ T,

and its autocovariance is

CovY (t, s) =

∫ t

0

∫ s

0

CovX(u, v)dudv, (t, s) ∈ T × T.

Example 9.2.3 We continue with example 9.1.8, where we constructed the random variables

X(t) =

∞∑

i=0

√
λiXiei(t), t ∈ [0, T ] (9.21)

and found their autocorrelation R(t, s) function as a bilinear form. The expression (9.21) is known as the

Karhunen-Loéve expansion of X(t). When we consider the mean square integral

∫ T

0

X(t)ei(t)dt,

we obtain by the results on this category of integrals above and by the results on convergence in mean square

underlying (9.21) that ∫ T

0

X(t)ej(t)dt =

∞∑

i=0

√
λiXi

∫ T

0

ej(t)ei(t)dt =
√
λjXj , (9.22)

where we used (9.11). Then

∫ T

0

R(t, s)ej(s)ds =

∫ T

0

E [X(t)X(s)] ej(s)ds = E

[
X(t)

∫ T

0

X(s)ej(s)ds

]

and from (9.22)

= E
[
X(t)

√
λjXj

]

and from (9.21)

=

∞∑

i=0

√
λi
√
λjE [XiXj ] ei(t) = λjej(t),

since Xi ∈ N(0, 1) and I.I.D.. In summary, we have ascertained that

∫ T

0

R(t, s)ej(s)ds = λjej(t). (9.23)
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This is an integral equation, which is to be solved w.r.t. ei and λj . It holds in fact that we can regard

ei’s as eigenfunctions and λis as the corresponding eigenvalues of the autocorrelation function R(t, s). If

R(t, s) is continuous in [0, T ] × [0, T ], we can always first solve (9.23) w.r.t. λi and ei and then construct

X(t) =
∑∞

i=0

√
λiXiei(t). For the rigorous mathematical details we refer to [46, pp. 62−69]. The insights in

this example will be made use of in section 10.3.

9.3 Weakly Stationary Processes

Definition 9.3.1 A process X = {X(t) | t ∈ T =]−∞,∞[} is called (weakly) stationary if

1. The mean function µX(t) is a constant function of t, µX(t) = µ.

2. The autocorrelation function RX(t, s) is a function of (t− s), so that

RX(t, s) = RX(h) = RX(−h), h = (t− s).

It follows that for a weakly stationary process even the variance functions is a constant, say σ2
X
, as a function

of t, since

VarX(t) = E
[
X2(t)

]
− µ2

X(t) = RX(0)− µ2 def
= σ2

X.

In addition, the autocovariance is

CovX(h) = RX(h)− µ2,

and then

CovX(0) = σ2
X.

By (9.6) we get here

| RX(h) |≤ RX(0). (9.24)

This is another necessary condition for a function RX(h) to be an autocorrelation function of a weakly stationary

process.

We have already encountered an example of a weakly stationary process in example 9.1.4.

9.3.1 Bochner’s Theorem, Spectral Density and Examples of Autocorrelation

Functions for Weakly Stationary Processes

The following theorem gives an effective criterion for deciding, when a function R(h) is nonnegative definite. A

simpler version of it is sometimes referred to as the Einstein-Wiener-Khinchin theorem .

Theorem 9.3.1 [Bochner’s Theorem] A function R(h) is nonnegative definite if and only if it can be

represented in the form

R(h) =
1

2π

∫ ∞

−∞
eihfdS(f), (9.25)

where S(f) is real, nondecreasing and bounded.
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Proof of ⇐, or we assume that we have a function R(h) that is given by (9.25). Then we show that R(h) is

nonnegative definite. Assume that
d

df
S(f) = s(f)

exists, thus s(f) ≥ 0. Then take any x1, . . . xn and t1, . . . tn,

n∑

i=1

n∑

j=1

xiR(ti − tj)xj =
1

2π

∫ ∞

−∞

n∑

i=1

n∑

j=1

xie
i(ti−tj)fxjs(f)df

=
1

2π

∫ ∞

−∞

n∑

i=1

xie
itif

n∑

j=1

xje
−itjfs(f)df =

1

2π

∫ ∞

−∞

∣∣∣∣∣

n∑

i=1

xie
itif

∣∣∣∣∣

2

s(f)df ≥ 0.

Here |z|2 = z · z is the squared modulus of a complex number so that z is the complex conjugate of z.

One elegant and pedagogical proof of the converse statement, namely that if R(h) is nonnegative definite

function, then we can express it as in (9.25), is due to H. Cramér and can be found in [25, pp. 126−128].

The function S(f) is called the spectral distribution function. If S(f) has a derivative,

d

df
S(f) = s(f),

then s(f) is called the spectral density. Clearly s(f) ≥ 0, as S(f) is nondecreasing. Since R(h) = R(−h), we
get also that s(f) = s(−f) is to be included in the set of necessary conditions for R(h) to be an autocorrelation

function.

Another term used for s(f) is power spectral density, as

E
[
(X(t))

2
]
= RX(0) =

1

2π

∫ ∞

−∞
sX(f)df.

The electrical engineering6 statement is that sX(f) is the density of power at the frequency f .

Operationally, if one can find a Fourier transform s(f) of a function R(h) with the properties

• s(f) ≥ 0, and s(−f) = s(f),

then R(h) is the autocorrelation of a weakly stationary process.

Some examples of pairs of autocorrelation functions and (power) spectral densities are given in the table below

quoted from [42]. When reading certain details of this table one should remember that sin(0)
0 = 1 in view of

limh→0
sin(h)

h = 1.

Autocorrelation functions R(h) Spectral densities s(f)

e−a|h| 2a
a2+f2

e−a|h| cos(bh) a
a2+(f−b)2 + a

a2+(f+b)2

a
π

sin(ah)
ah

{
1 |f | ≤ a

0 |f | > a{
1− a|h| |h| < 1/a

0 |h| ≥ 1/a
1
a

(
sin( f

2a )
f
2a

)2

e−a|h|

4(a2+b2)

(
cos(bh)

b + sin(bh)
b

)
1

(a2+(f−b)2)(a2+(f+b)2)

6If X(t) is a voltage or current developed across a 1-ohm resistor, then (X(t))2 is the instantaneous power absorbed by the

resistor.
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9.3.2 Mean Square Continuity of Weakly Stationary Processes

In the category of second order properties we note the following.

Definition 9.3.2 Let X = {X(t)|t ∈ T } be a stochastic process in continuous time. Then the process is mean

square continuous if, when t+ τ ∈ T ,

E
[
(X(t+ τ)−X(t))

2
]
→ 0

as τ → 0.

In order to see what the definition implies let us expand

E
[
(X(t+ τ)−X(t))2

]
= E [X(t+ τ)X(t+ τ)] − E [X(t+ τ)X(t)]

−E [X(t)X(t+ τ)] + E [X(t)X(t)]

= CovX (t+ τ, t+ τ) − CovX (t, t+ τ)− CovX (t, t+ τ) + CovX (t, t)+

+ (µX (t+ τ)− µX(t))
2
.

We get a neat result from this, if we assume that X is weakly stationary, as then from the above

E
[
(X(t+ τ)−X(t))

2
]
= CovX(0)− 2CovX(τ) + CovX(0).

Theorem 9.3.2 A weakly stationary process is mean square continuous, if and only if CovX(τ) is continuous

in the origin.

Continuity in mean square does not without further requirements imply continuity of sample paths.

9.4 Gaussian Processes

9.4.1 Definition and Existence

The chapter on Gaussian processes in [67, ch. 13] is an up-to-date and powerful presentation of the topic as a

part of modern probability theory.

Definition 9.4.1 A stochastic process X = {X(t) | t ∈ T } is called Gaussian, if every stochastic n-vector

(X(t1), X(t2), · · · , X(tn))
′
is a multivariate normal vector for all n and all t1, t2, · · · , tn.

In more detail, this definition says that all stochastic n× 1-vectors

(X(t1), X(t2), · · · , X(tn))
′

have a multivariate normal distribution

Ft1,t2,...,tn ↔ N
(
µ(t1, t2, · · · , tn),C(t1, t2, · · · , tn)

)
,

where µ(t1, t2, · · · , tn) is an n× 1 expectation vector, with elements given by

µX(ti) = E(X(ti)) i = 1, . . . , n
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and the n× n covariance matrix C(t1, t2, · · · , tn) = (cij)
n,n
i=1,j=1 has the entries

cij = CovX(ti, tj) = RX (ti, tj)− µX(ti)µX(tj), i = 1, . . . , n; j = 1, . . . , n,

i.e., the entries in the covariance matrix are the appropriate values of the autocovariance function.

We show next a theorem of existence for Gaussian processes. This sounds perhaps like a difficult thing to

do, but by the Kolmogorov consistency theorem, or (9.1), all we need to show in this case is effectively that

• All marginal distributions of a multivariate normal distribution are normal distributions.

Remark 9.4.1 Evidently, if µZ(t) = E(Z(t)) = 0 for all t ∈ T , then

X(t) = f(t) + Z(t)

has mean function µX(t) = E(X(t)) = f(t). Hence we may without loss of generality prove the existence of

Gaussian processes by assuming zero as mean function.

Theorem 9.4.1 Let R(t, s) be a symmetric and nonnegative definite function. Then there exists a Gaussian

stochastic process X with R(t, s) as its autocorrelation function and the constant zero as mean function.

Proof Since the mean function is zero, and since R(t, s) is a symmetric and nonnegative definite function, we

find that

C(t1, t2, · · · , tn+1) = (R(ti, tj))
n+1,n+1
i=1,j=1

is the covariance matrix of a random vector (X(t1), X(t2), · · · , X(tn+1))
′
. We set for ease of writing

Ctn+1
= (R(ti, tj))

n+1,n+1
i=1,j=1 .

We know by [49, p. 123] that we can take the vector (X(t1), X(t2), · · · , X(tn+1))
′
as multivariate normal. We

set for simplicity of writing

Xtn+1
= (X(t1), X(t2), · · · , X(tn+1))

′
,

and let

Ftn+1
↔ N

(
0,Ctn+1

)

denote its distribution function. Then the characteristic function for Xtn+1
is with sn+1 = (s1, . . . , sn+1) given

by

φXtn+1
(sn+1) := E

[
eis

′
n+1Xtn+1

]
=

∫

Rn+1

eis
′
n+1xdFtn+1

(x) . (9.26)

Let us now take

s
′

(i) = (s1, . . . , si−1, si+1, . . . sn+1) .

The proof has two steps.

1. We show that φXtn+1
((s1, . . . , si−1, 0, si+1, . . . sn+1)) gives us the characteristic function of

Xt(i)
= (X(t1), X(t2), . . . , X(ti−1), X(ti+1), . . . , X(tn+1))

′
.

We denote by Ft(i)
its distribution function.

2. We show that φXtn+1
((s1, . . . , si−1, 0, si+1, . . . sn+1)) is the characteristic function of a normal distribution

for the n− 1 variables in Xt(i)
.

The details of the steps outlined are as follows.
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1. Set

x(i) = (x1, . . . , xi−1, xi+1, . . . xn+1) .

We get that

φXtn+1
((s1, . . . , si−1, 0, si+1, . . . sn+1))

=

∫ ∞

∞
. . .

∫ ∞

−∞
ei(s1x1+···+si−1xi−1+si+1xi+1+···+sn+1xn+1)

∫ xi=∞

xi=−∞
dFtn+1

(x)

=

∫ ∞

∞
. . .

∫ ∞

−∞
ei(s1x1+···+si−1xi−1+si+1xi+1+···+sn+1xn+1)dFt(i)

(
x(i)

)
(9.27)

is the characteristic function of Xt(i)
.

2. On the other hand, we have the quadratic form

(s1, . . . , si−1, 0, si+1, . . . sn+1)Ctn+1
(s1, . . . , si−1, 0, si+1, . . . sn+1)

′

=
n+1∑

l=1,l 6=i

n+1∑

k=1,k 6=i

slskR(tl, tk)

= s
′

(i)Ct(i)
s(i).

In this Ct(i)
= (R(tl, tk))

n+1,n+1
l=1,l 6=i,k=1,k 6=i is recognized as the covariance matrix of Xt(i)

. By

(8.10) we have here, since Xtn+1
is a Gaussian random variable,

φXtn+1
((s1, . . . , si−1, 0, si+1, . . . sn+1))

= e
− 1

2 s
′
(i)Ct(i)

s(i) . (9.28)

But in view of (9.27) this is the characteristic function of Xt(i)
, and by (8.10) the expression in

(9.28) defines a multivariate normal distribution, with the covariance matrix of Xt(i)
inserted

in the quadratic form.

This establishes the consistency condition in (9.1).

The message from the above in a nutshell is that

• There exists a Gaussian process for every symmetric nonnegative definite function R(t, s).

• A Gaussian process is uniquely determined by its mean function and its autocorrelation

function.

9.4.2 Weakly Stationary Gaussian Processes

When the property

(X(t1 + h), X(t2 + h), . . . , X(tn + h))
d
= (X(t1), X(t2), . . . , X(tn))

holds for all n, all h ∈ R and all t1, t2, . . . , tn points in T for a stochastic process (not necessarily only Gaussian),

we call the process strictly stationary. In general, weak stationarity does not imply strict stationarity. But if

the required moment functions exist, strict stationarity obviously implies weak stationarity. Since the required

moment functions exist and uniquely determine the finite dimensional distributions for a Gaussian process,

it turns out that a Gaussian process is weakly stationary if and only if it is strictly stationary, as will be

demonstrated next.
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Theorem 9.4.2 A Gaussian process X = {Xt | t ∈ T =] − ∞,∞[} is weakly stationary if and only if the

property

(X(t1 + h), X(t2 + h), . . . , X(tn + h))
d
= (X(t1), X(t2), . . . , X(tn)) (9.29)

holds for all n, all h and all t1, t2, . . . , tn points in T .

Proof ⇒: The process is weakly stationary, (µX(t1), · · · , µX(tn)
′
is a vector with all entries equal to the same

constant value, say µ. The entries in C(t1, t2, · · · , tn) are of the form

RX (|ti − tj |)− µ2.

For the same reasons the entries of the mean vector for (X(t1 + h), . . . , X(tn + h)) are = µ for all h. Hence the

covariance matrix for (X(t1 + h), . . . , X(tn + h)) has the entries

RX (|(ti + h)− (tj + h)|)− µ2 = RX (|ti − tj |)− µ2.

That is, (X(t1 + h), X(t2 + h), . . . , X(tn + h)) and (X(t1), X(t2), . . . , X(tn)) have the same mean vector and

same covariance matrix. Since these are vectors with multivariate normal distribution, they have the same

distribution.

⇐: If the process is Gaussian, and (9.29) holds, then the desired conclusion follows as above.

The computational apparatus mobilized by Gaussian weakly stationary processes is illustrated by the next two

examples.

Example 9.4.3 The Gaussian weakly stationary process X = {X(t)| −∞ < t <∞} has expectation function

= 0 and a.c.f.

RX(h) = σ2e−λ|h|, λ > 0.

What is the distribution of (X(t), X(t− 1))
′
? Since X is Gaussian and weakly stationary, (X(t), X(t− 1))

′
has

a bivariate normal distribution, we need to find the mean vector and the covariance matrix.

The mean vector is found by E [X(t)] = E [X(t− 1)] = 0. Furthermore we can read the covariance matrix

from the autocorrelation function RX(h). Thereby E [X(t)X(t− 1)] = E [X(t− 1)X(t)] = RX(1) = σ2e−λ, as

t− (t− 1) = 1, and E
[
X2(t)

]
= E

[
X2(t− 1)

]
= RX(0) = σ2e−λ·0 = σ2. This says also that X(t) ∈ N

(
0, σ2

)

and X(t)
d
= X(t− 1). Thus, the coefficient of correlation is

ρX(t),X(t−1) =
RX(1)

RX(0)
= e−λ.

Therefore we have established

(X(t), X(t− 1))
′
∈ N

((
0

0

)
, σ2

(
1 e−λ

e−λ 1

))
.

In view of (8.16), we get

X(t) | X(t− 1) = x ∈ N
(
e−λx, σ2(1− e−2λ)

)
.

Then for any real numbers a < b

P (a < X(t) ≤ b | X(t− 1) = x)

= P

(
a− e−λx

σ
√
1− e−2λ

<
X(t)− e−λx

σ
√
1− e−2λ

≤ b− e−λx

σ
√
1− e−2λ

| X(t− 1) = x

)

= Φ

(
b− e−λx

σ
√
1− e−2λ

)
− Φ

(
a− e−λx

σ
√
1− e−2λ

)
,

since X(t)−e−λx

σ
√

1−e−2λ
| X(t− 1) = x ∈ N(0, 1).
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Example 9.4.4 The Gaussian weakly stationary process X = {X(t)| −∞ < t <∞} has expectation function

= 0 and a.c.f.

RX(h) =
1

1 + h2
.

We want to find the probability

P (3X(1) > 1−X(2)) .

The standard trick is to write this as

P (3X(1) +X(2) > 1) .

Let us first set

Y
def
= 3X(1) +X(2).

We can use the matrix formulas in the preceding and write Y as

Y = B

(
X(1)

X(2)

)
= (3 1)

(
X(1)

X(2)

)

Since the mean vector of (X(1), X(2))
′
is the zero vector, we get by (8.6)

E [Y ] = BµX = B

(
0

0

)
= 0.

Next, the formula in (8.7) entails

CY = BCXB
′
, (9.30)

or, since Y is a scalar random variable, its variance is Var(Y ) = CY = BCXB
′
, (9.30) yields

BCXB
′
= (3 1)

(
1 1

1+12

1
1+12 1

)(
3

1

)
.

When we perform the requested matrix multiplications, we obtain

Var(Y ) = 13.

Hence Y ∈ N(0, 13). Then the probability sought for is

P (3X(1) > 1−X(2)) = P (Y > 1) = P

(
Y√
13

>
1√
13

)
= 1− Φ

(
1√
13

)
,

because Y√
13

∈ N(0, 1).

9.4.3 Distribution of Mean Square Integrals of Gaussian Processes

Let {X(t)|t ∈ T } be a Gaussian stochastic process. It follows that the Riemann sum
∑n

i=1X(ti)(ti − ti−1) is a

Gaussian random variable. If the mean square integral exists, then it has to have a normal distribution in view

of Theorem 7.4.2 above.
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Theorem 9.4.5 If the mean square integral
∫ b

a
X(t)dt exists for a Gaussian process {X(t)|t ∈ T } for [a, b] ⊆ T ,

then ∫ b

a

X(t)dt ∈ N

(∫ b

a

µX(t)dt,

∫ b

a

∫ b

a

CovX(t, u)dtdu

)
. (9.31)

To state an obvious fact, let us note that (9.31) implies that

∫ b

a X(t)dt−
∫ b

a µX(t)dt√∫ b

a

∫ b

a
CovX(t, u)dtdu

∈ N(0, 1).

9.5 The Gauss-Markov Processes and Separable Autocorrelation

Functions

9.5.1 The Markov Property Defined and Characterized

Let us assume that X = {X(t) | t ∈ T } is a Gaussian stochastic process with zero as mean function and with

autocorrelation RX(t, s). We are not restricting ourselves to weakly stationary processes.

We define now the Markov property for X as follows. For any t1 < . . . < tn−1 < tn in T and any

x1, . . . , xn−1, xn

P (X(tn) ≤ xn | X(t1) = x1, . . . , X(tn−1) = xn−1)

= P (X(tn) ≤ xn | X(tn−1) = xn−1) . (9.32)

The Markov property is saying in other words that the conditional distribution of X(tn) depends only on

X(tn−1), not on any chosen history X(t1) . . . , X(tn−2) prior to tn−1. The Markov property provides an envi-

ronment for numerous effective algorithms of prediction and Kalman filtering, [90]. We say that a Gaussian

process that satisfies (9.32) is a Gauss-Markov process .

Another way of writing (9.32) is in view of (3.23) that

P (X(tn) ≤ xn | σ (X(t1), . . . , X(tn−1))) = P (X(tn) ≤ xn | X(tn−1)) ,

where σ (X(t1), . . . , X(tn−1)) is the sigma field generated by X(t1), . . . , X(tn−1).

The process X has a family of transition densities fX(t)|X(t0)=x0
(x), which are conditional densities so

that for t0 < t and for any Borel set A

P (X(t) ∈ A | X(t0) = x0) =

∫

A

fX(t)|X(t0)=x0
(x)dx. (9.33)

We shall now characterize the Gauss-Markov processes by a simple and natural property [48, p. 382].

Theorem 9.5.1 The Gaussian process X = {X(t) | t ∈ T } is a Markov process if and only if

E [X(tn) | X(t1) = x1, . . . , X(tn−1) = xn−1] = E [X(tn) | X(tn−1) = xn−1] . (9.34)

Proof If (9.32) holds, then (9.34) obtains per definition of conditional expectation.

Let us assume conversely that (9.34) holds for a Gaussian process X. By properties of Gaussian vectors we

know that both

P (X(tn) ≤ xn | X(t1) = x1, . . . , X(tn−1) = xn−1)

and

P (X(tn) ≤ xn | X(tn−1) = xn−1)
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are Gaussian distribution functions, and are thus determined by their respective means and variances. We shall

now show that these are equal to each other. The statement about means is trivial, as this is nothing but (9.34),

which is the assumption.

We introduce some auxiliary notation.

Ỹ
def
= X(tn)− E [X(tn) | X(t1) = x1, . . . , X(tn−1) = xn−1]

= X(tn)− E [X(tn) | X(tn−1) = xn−1] .

But then Ỹ is the estimation error, when estimating the random variable X(tn) by E [X(tn) | X(tn−1) = xn−1],

or, which is the same thing here, estimating by E [X(tn) | X(t1) = x1, . . . , X(tn−1) = xn−1], as expounded in

section 3.7.3. We know that for Gaussian random variables we can find E [X(tn) | X(tn−1) = xn−1] by the

projection of X(tn) to the closed subspace spanned by X(tn−1) (and X(t1), . . . , X(tn−2)), as explained after

theorem 8.1.9. Then we get by the orthogonality property of projections, see theorem 7.5.3, that for 1 ≤ k ≤ n−1

E
[
Ỹ X(tk)

]
= 0.

But Ỹ and X(tk) are Gaussian random variables, and E
[
Ỹ
]
= 0 by (3.29). Therefore Ỹ and X(tk) are

independent for 1 ≤ k ≤ n − 1 and Ỹ is independent of (the sigma field spanned by) X(t1), . . . , X(tn−1) by

properties of Gaussian vectors.

Set next Gk = {X(tk) = xk} and

G = G1 ∩G2 ∩ . . . ∩Gn−1.

Then, by the independence just proved

E
[
Ỹ 2 | G

]
= E

[
Ỹ 2 | Gn−1

]
,

and this is

Var
[
Ỹ | G

]
= Var

[
Ỹ | Gn−1

]
.

This says that the distributions in the right and left hand sides of (9.32) have the same variance, and we have

consequently proved our assertion as claimed.

9.5.2 The Chapman-Kolmogorov (or Smoluchowski) Equation for Transition Den-

sities

Let us take another look at (9.33) with t0 < t, A =]−∞, y]. For any s such that t0 < s < t, marginalization or

the law of total probability (3.35) gives

P (X(t) ≤ y | X(t0) = x) =

∫ ∞

−∞
P (X(s) = u,X(t) ≤ y, | X(t0) = x) du

=

∫ ∞

−∞

∫ y

−∞
fX(s),X(t)|X(t0)=x (u, v) dvdu =

∫ y

−∞

∫ ∞

−∞
fX(s),X(t)|X(t0)=x (u, v) dudv,

and by definition of conditional p.d.f.

=

∫ y

−∞

∫ ∞

−∞

fX(t0),X(s),X(t) (x, u, v)

fX(t0)(x)
dudv.

Now we invoke twice the definition of conditional p.d.f. (chain rule)

fX(t0),X(s),X(t) (x, u, v) = fX(t)|X(s)=u,X(t0)=x (v) · fX(s)|X(t0)=x (u) · fX(t0) (x) .
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By the Markov property (9.32) this equals

fX(t0),X(s),X(t) (x, u, v) = fX(t)|X(s)=u (v) · fX(s)|X(t0)=x (u) · fX(t0) (x) .

If we insert this in the integral above we get

P (X(t) ≤ y | X(t0) = x) =

∫ y

−∞

∫ ∞

−∞
fX(t)|X(s)=u (v) · fX(s)|X(t0)=x (u)dudv.

When we differentiate in both sides of this equality w.r.t. y, we get the following equation for the transition

densities

fX(t)|X(t0)=x(y) =

∫ ∞

−∞
fX(t)|X(s)=u (y) · fX(s)|X(t0)=x (u)du. (9.35)

It is hoped that a student familiar with finite Markov chains recognizes in (9.35) a certain similarity with the

Chapman-Kolmogorov equation7, now valid for probability densities. In statistical physics this equation is

called the Smoluchowski equation, see [58, p.200]. Regardless of the favoured name, the equation (9.35) can

be regarded as a consistency condition.

9.5.3 Gauss-Markov Processes and Separable Autocorrelation Functions

Since X is a Gaussian process with mean zero, we know that (see, e.g.,(8.16))

E [X(t) | X(s) = u] = ρX(s),X(t)

σX(t)

σX(s)
u =

=
RX(t, s)√

RX(t, t)
√
RX(s, s)

√
RX(t, t)√
RX(s, s)

u

i.e,

E [X(t) | X(s) = u] =
RX(t, s)

RX(s, s)
u. (9.36)

Thus by (9.36) we get for t0 < t

RX(t, t0)

RX(t0, t0)
x0 = E [X(t) | X(t0) = x0] =

∫ ∞

−∞
x fX(t)|X(t0)=x0

(x)
︸ ︷︷ ︸

=
∫ ∞
−∞ fX(s)|X(t0)=x0

(u)·fX(t)|X(s)=u(x)du

dx,

and, as indicated, from (9.35)

=

∫ ∞

−∞
x

∫ ∞

−∞
fX(s)|X(t0)=x0

(u) · fX(t)|X(s)=u(x)dudx

=

∫ ∞

−∞
fX(s)|X(t0)=x0

(u) ·
∫ ∞

−∞
xfX(t)|X(s)=u(x)dx

︸ ︷︷ ︸
=E[X(t)|X(s)=u]

du

=

∫ ∞

−∞
fX(s)|X(t0)=x0

(u)E [X(t) | X(s) = u] du

and by two applications of (9.36) in the above

=
RX(t, s)

RX(s, s)

∫ ∞

−∞
ufX(s)|X(t0)=x0

(u)du

7This Chapman-Kolmogorov equation for densities was probably first discovered by Louis Bachelier in his theory of speculation,

[27].
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=
RX(t, s)

RX(s, s)

RX(s, t0)

RX(t0, t0)
x0,

or, equivalently

RX(t, t0) =
RX(t, s)RX(s, t0)

RX(s, s)
. (9.37)

Therefore we have found a necessary condition for an autocorrelation function to be the autocorrelation function

of a Gaussian Markov process.

Example 9.5.2 Consider a Gaussian process with the autocorrelation function is R(t, s) = min(t, s). It is

shown in an exercise of this chapter that min(t, s) is an autocorrelation function. Then, if t0 < s < t we check

(9.37) by
R(t, s)R(s, t0)

R(s, s)
=

min(t, s)min(s, t0)

min(s, s)
=
s · t0
s

= t0,

which equals R(t, t0) = min(t, t0) = t0. We shall show in the next chapter that min(t, s) corresponds, e.g., to

the Wiener process, and that the indicated process is a Gaussian Markov process.

The equation (9.37) is an example of a functional equation, i.e., an equation that in our case specifies the

function RX(t, s) in implicit form by relating the value of RX(t, s) at a pair of points with its values at other

pairs of points. It can be shown [103, p. 72] that if RX(t, t) > 0, then there are functions v(t) and u(t) such

that

RX(t, s) = v (max(t, s)) u (min(t, s)) . (9.38)

We demonstrate next that (9.38) is sufficient for a Gaussian random process X to be a Markov process. Let us

set

τ(t) =
u(t)

v(t)
.

Because it must hold by Cauchy-Schwartz inequality (7.5) that RX(t, s) ≤
√
RX(t, t) · RX(s, s), we ge that

τ(s) ≤ τ(t), if s < t. Hence, as soon as X is a Gaussian random process with zero mean and autocovariance

function given by (9.38), we can represent it as a Lamperti transform

X(t) = v(t)W (τ(t)) , (9.39)

where W (t) is a variable in a Gaussian Markov process with autocorrelation function RW(t, s) = min(t, s), as

in example 9.5.2. To see this we compute for s < t

E [X(t)X(s)] = E [v(t)W (τ(t)) v(s)W (τ(s))] =

= v(t)v(s)E [W (τ(t))W (τ(s))] =

= v(t)v(s)min(τ(t), τ(s)) = v(t)v(s)
u(s)

v(s)
= v(t)u(s) = v (max(t, s))u (min(t, s)) .

Thus, since W is a Gaussian Markov process (as will be proved in the next chapter) and since v(t) is a

deterministic (= non-random) function, the process with variables X(t) = v(t)W (τ(t)) is a Gaussian Markov

process.

In the preceding, see example 9.1.10, autocorrelation functions of the form RX(t, s) = v (max(t, s))u (min(t, s))

were called separable. We have now shown that Gaussian Markov processes lead to separable autocorrelation

functions.
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Example 9.5.3 Assume next that the Gaussian Markov process is also weakly stationary and mean square

continuous. Then RX is in fact continuous and (9.37) becomes

RX(t− t0) =
RX(t− s)RX(s− t0)

RX(0)
. (9.40)

We standardize without loss of generality by RX(0) = 1. But then we have

RX(t− t0) = RX(t− s)RX(s− t0),

which is with x = t− s, y = s− t0 of the form

G(x + y) = G(x) ·G(y).

This is one of Cauchy’s classical functional equations (to be solved w.r.t. G(·)). The requirements of autocorre-

lation functions for weakly stationary processes impose the additional condition | G(x) |≤ G(0). The continuous

autocovariance function that satisfies the functional equation under the extra condition is

RX(h) = e−a|h|. (9.41)

In chapter 11 below we shall construct a Gaussian Markov process (the ’Ornstein-Uhlenbeck process’) that,

up to a scaling factor, possesses this autocorrelation function.

9.6 What Can Not Be Computed by the Methods Introduced Above

?

In the preceding, and later in the exercises, one finds certain straightforward means of computation of proba-

bilities of events that depend on a finite number (most often two) of stochastic variables in a Gaussian process.

This is hardly the only kind of situation, where one in practice needs to compute a probability using a random

process. We take a cursory look at two reasonable problems, where we are concerned with events that do not

depend on a finite or even countable number of random variables. Thus the methods discussed above and in

the exercises below do not suffice and development of further mathematical tools is desired.

Let {X(t) | −∞ ≤ t ≤ ∞} be a Gaussian stationary stochastic process. There are often reasons to be

interested in the sojourn time

Lb
def
= Length ({t | X(t) ≥ b}) , (9.42)

that is, the time spent at or above a high level b. Or, we might want to find the extreme value distribution

P

(
max
0≤s≤t

X(s) ≤ b

)
.

To hint at what can be achieved, it can be shown, see, e.g., [2, 76], that if

RX(h) ∼ 1− 1

2
θt2, as t→ 0,

then the sojourn times Lb in (9.42) have approximately the distribution

Lb
d≈ 2V

θb
, (9.43)
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where

V
d
=

√
θY,

where Y ∈ Ra(2) (= Rayleigh distribution with parameter 2). One can also show that

P

(
max
0≤s≤t

X(s) ≤ b

)
≈ e−λbt,

where there is some explicit expression for λb, [2]. But to pursue this topic any further is beyond the scope and

possibilities of this text.

9.7 Exercises

The bulk of the exercises below consists of specimen of golden oldies from courses related to sf2940 run at KTH

once upon time.

9.7.1 Autocovariances and Autocorrelations

1. (From [8, p. 58]) Let R(t, s) = min(t, s) for t, s ∈ T = [0,∞). Show that R(t, s) is a covariance function.

Aid: The difficulty is to show that the function is nonnegative definite. Use induction. If t1 < t2, then

the matrix

(min(ti, tj))
2,2
i=1,j=1 =

(
t1 t1

t1 t2

)

is symmetric and has the determinant t2t1 − t21 > 0.

Assume that the assertion is true for all n × n matrices (min(ti, tj))
n,n
i=1,j=1. Then we prove it for ti for

i = 1, 2, . . . , n+ 1. Arrange or renumber ti’s in increasing order

min ti = t1 ≤ ti ≤ ti+1.

Hence
n+1∑

i=1

n+1∑

j=1

xi min(ti, tj)xj =

=

n+1∑

i=2

n+1∑

j=2

xi min(ti, tj)xj + t1x
2
1 + t1x1

n+1∑

j=2

xj .

For i, j ≥ 2

min(ti, tj)− t1 = min(ti − t1, tj − t1),

and thus
n+1∑

i=2

n+1∑

j=2

xi min(ti, tj)xj −
n+1∑

i=2

n+1∑

j=2

xit1xj

=

n+1∑

i=2

n+1∑

j=2

xi min(ti − t1, tj − t1)xj ≥ 0

by the induction hypothesis. Now draw the desired conclusion.
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2. Toeplitz Matrices, Toeplitz Forms, Centrosymmetric Matrices

A Toeplitz matrix is defined by the property, a.k.a the Toeplitz property, that the entries on each de-

scending diagonal from left to right are the same (’constant on all diagonals’) [47]. Or, if A = (Ai,j)
n,n
i=1,j=1

is a Toeplitz matrix, then

A =




a0 a−1 a−2 . . . . . . a−(n−1)

a1 a0 a−1
. . . . . .

...

a2 a1 a0 a−1
. . .

...
...

. . .
. . .

. . .
. . . a−2

...
. . .

. . . a1 a0 a−1

an−1 . . . . . . a2 a1 a0




.

The Toeplitz property means that

Ai,j = Ai+1,j+1 = ai−j .

(a) Let R(h) be the autocovariance function of a weakly stationary process and (R(ti − tj))
n,n
i=1,j=1 be the

covariance matrix (assume zero means) corresponding to equidistant times, i.e., ti − ti−1 = h > 0.

Convince yourself of the fact that (R(ti − tj))
n,n
i=1,j=1 is a Toeplitz matrix. E.g., take one of the

autocovariance functions for a weakly stationary process in the text above, and write down the the

corresponding covariance matrix for n = 4.

(b) An n× n matrix A = (aij)
n,n
i=1,j=1 is called centrosymmetric 8, when its entries aij satisfy

aij = an+1−i,n+1−j , for 1 ≤ i, j ≤ n. (9.44)

An equivalent way of saying this is that A = RAR, where R is the permutation matrix with ones on

the cross diagonal (from bottom left to top right) and zero elsewhere, or

R =




0 0 . . . 0 0 1

0 0 . . . 0 1 0

0 0 . . . 1 0 0
...

...
. . .

...
...

...

0 1 . . . 0 0 0

1 0 . . . 0 0 0 0




.

Show that a centrosymmetric matrix is symmetric.

(c) Show that the Toeplitz matrix (R(ti − tj))
n,n
i=1,j=1 in (a) above is centrosymmetric. To get a picture

of this, take one of the autocovariance functions for a weakly stationary process in the text above,

and write down the the corresponding covariance matrix for n = 4 and check what (9.44) means.

Therefore we may generalize the class of weakly stationary Gaussian processes by defining a class of

Gaussian processes with centrosymmetric covariance matrices.

9.7.2 Examples of Stochastic Processes

1. (From [42]) Let

X(t) =

{
2 for all t ∈]−∞,∞[ with probability 1

2

1 for all t ∈]−∞,∞[ with probability 1
2 .

8J.R. Weaver: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. American

Mathematical Monthly, pp. 711−717, 1985.



254 CHAPTER 9. STOCHASTIC PROCESSES: WEAKLY STATIONARY AND GAUSSIAN

Show that {X(t) | −∞ < t <∞} is strictly stationary.

2. The Lognormal Process (From [8]) {X(t)| − ∞ < t < ∞} is a weakly stationary Gaussian stochastic

process. The process Y = {Y (t)| −∞ < t <∞} is defined by

Y (t) = eX(t), −∞ < t <∞.

Find the mean function and the autocovariance function of the lognormal process Y.

Aid: Recall the moment generating function of a Gaussian random variable.

3. The Suzuki Process Let Xi = {Xi(t)| − ∞ < t < ∞}, be three (i = 1, 2, 3) independent weakly sta-

tionary Gaussian processes with mean function zero. X2 and X3 have the same autocovariance functions.

Let

Y (t) = eX1(t) ·
√
X2

2 (t) +X2
3 (t).

The stochastic process thus defined is known as the Suzuki process9 and is fundamental in wireless com-

munication (fading distribution for mobile radio) and widely used in dozens of other fields of engineering

and science.

Aid: A mnemonic for the Suzuki process is that it is a product of a lognormal process and a Rayleigh

process.

(a) Compute E [Y (t)].

(b) Find the p.d.f. of Y (t) (i.e, the Suzuki p.d.f.). Your answer will contain a mixture of densities, of

the type eq. (3.7) in [49, p. 41].

4. X = {X(t) | −∞ < t < ∞} is a strictly stationary process. Let g(x) be a Borel function. Define a new

process Y = {Y (t) | −∞ < t <∞} via

Y (t) = g (X(t)) , −∞ < t <∞.

Show that Y is a strictly stationary process, too.

9.7.3 Autocorrelation Functions

1. [Periodic Autocorrelation [60]] Let {X(t) | −∞ < t < ∞} is a weakly stationary process, with

E [X(t)] = 0 for all t and autocorrelation RX(h).

(a) Let f(t) be a function, which is periodic with period T , i.e, f(t) = f(t+ T ) for all t. Set

Y (t) = f(t) ·X(t).

Show that the process Y = {Y (t) | −∞ < t <∞} is periodically correlated in the sense that

RY(t, s) = RY(t+ T, s+ T ).

One can say that the process Y is produced by amplitude modulation.

(b) Let f(t) be a function, which is periodic with period T , i.e., f(t) = f(t+ T ) for all t. Set

Y (t) = X(t+ f(t)).

Show that the time modulated process {Y (t) | −∞ < t < ∞} is periodically correlated. Show also

that the variance function is a constant function of time.
9H. Suzuki: A statistical model for urban radio propagation, IEEE Transactions on Communications, 25, pp. 673–680, 1977.
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2. Band-limited Noise Show that

R(h) =
1

W2 −W1

(
sin(W2h)

h
− sin(W1h)

h

)

is an autocorrelation function.

9.7.4 Weakly Stationary Processes

1. [Prediction] X = {X(t)| − ∞ < t < ∞} is a weakly stationary Gaussian stochastic process with the

mean function µX(t) = m and the autocovariance function CovX(h). We want to predict X(t+ τ), τ > 0,

by means of a predictor of the form a ·X(t). Find a so that

E
[
(X(t+ τ)− a ·X(t))

2
]

is minimized. Note that the situation is the same as in example 7.5.5 above. Thus check that the optimal

parameter a is given by (7.22), or

a =
CovX(τ)

CovX(0)
.

What is the optimal value of E
[
(X(t+ τ)− a ·X(t))

2
]
?

2. [An Ergodic Property in Mean Square ] Ergodicity in general means that certain time averages are

asymptotically equal to certain statistical averages.

Let X = {X(t)| −∞ < t < ∞} be weakly stationary with the mean function µX(t) = m. The process X

is mean square continuous. We are interested in the mean square convergence of

1

t

∫ t

0

X(u)du

as t → ∞.

(a) (From [50, p.206],[89]) Show that

Var

(
1

t

∫ t

0

X(u)du

)
=

2

t

∫ t

0

(
t− τ

t

)
CovX(τ)dτ.

(b) Show that if the autocovariance function CovX(h) is such that

CovX(h) → 0, as h→ ∞,

then we have

lim
t→∞

E

[(
1

t

∫ t

0

X(u)du−m

)2
]
= 0.

Hint: The result in (a) should be useful.

3. (From [57]) Let X = {X(t)| − ∞ < t <∞} be weakly stationary with the mean function µX(t) = m and

autocovariance function CovX(h) such that

CovX(h) → 0, as h→ ∞.

Define a new process Y = {Y (t)|0 ≤ t <∞} by

Y (t) = X(t)−X(0).
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Find the autocovariance function CovY(t, s) and show that

lim
t→∞

CovY(t, t+ h) = CovX(h) + CovX(0).

In this sense Y becomes asymptotically weakly stationary.

4. (From [57] Let X = {X(t)| −∞ < t <∞} be a Gaussian random process such that

(X(t), X(s))
′
∈ N

((
α+ βt

α+ βs

)
, σ2

(
1 e−λ|t−s|

e−λ|t−s| 1

))
.

This is obviously not a weakly stationary process, as there is a linear trend in the mean function µX(t).

Let us define a new process Y by differencing, by which we mean the operation

Y (t) = X(t)−X(t− 1).

Show that the process Y is strictly stationary.

Aid: One of the intermediate results you should obtain here is that

CovY(t, s) = σ2
[
2 · e−λ|t−s| − e−λ|(t−s)+1| − e−λ|(t−s)−1|

]
.

Comment: Differencing removes here a linear trend and produces a stationary process. This recipe, called

de-trending, is often used in time series analysis.

5. (From [42]) Let s(f) be a real valued function variable that satisfies

s(f) ≥ 0, s(−f) = s(f), (9.45)

and ∫ ∞

−∞
s(f)df = K <∞. (9.46)

Let X1, X2, Y1 and Y2 be independent stochastic variables such that

E [X1] = E [X2] = 0, E
[
X2

1

]
= E

[
X2

2

]
=
K

2π
,

and Y1 and Y2 have the p.d.f. fY (y) =
s(y)
K .

Show that the process {X(t)| −∞ < t <∞} defined by

X(t) = X1 cos (Y1t) +X2 cos (Y2t)

is weakly stationary and has the spectral density s(f).

We have in this manner shown that if a function s(f) satisfies (9.45) and (9.46), then there exists at least

one stochastic process that has s(f) as spectral density.

6. (From [42]) X = {X(t)| −∞ < t <∞} is a weakly stationary process and Z ∈ U(0, 2π) is independent of

{X}. Set
Y (t) =

√
2X(t) cos (fot+ Z) −∞ < t <∞.

Show that Y = {Y (t)| −∞ < t <∞} has mean function µY = 0, and

RY(h) =
(
RX(h) + µ2

X

)
cos (foh) .

Comment This is a mathematical model for amplitude modulation, c.f., [71, kap.7].
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9.7.5 Gaussian Stationary Processes

1. (From [42]) {X(t)| −∞ < t <∞} is a weakly stationary Gaussian stochastic process with

µX = 0, RX(h) =
1

1 + h2
.

(a) The probability

P (3X(1) > 1−X(2)) = Q

(
1√
13

)
,

where Q(x) is the error function in (2.21), was found in the example 9.4.4. Re-verify this without

applying any matrix formula like (8.7). You should, of course, use Y = 3X(1) +X(2).

(b) Check that

P

(
| X(2)−

(
X(1) +X(3)

2

)
|> 1

)
= 2 ·Q

(
1√
0.6

)
.

where Q(x) is the error function in (2.21).

(c) Check that

P (X(2)−X(1) > 1 | X(3)−X(0) = 1) = Q

(
1− 1

3√
0.8

)
.

2. (From [42]) X = {X(t)| −∞ < t <∞} is a weakly stationary Gaussian stochastic process with

µX = m,

which is an unknown statistical parameter, and

CovX(h) =

{
1− |h|

2 if |h| < 2

0 if |h| ≥ 2.

We try to estimate the mean m by time discrete samples of X via

Yn =
1

n

n∑

k=1

X(k).

Show that

(a)

E [Yn] = m

(b)

Var [Yn] =
2n− 1

n2
.

(c) for ε > 0

P (| Yn −m |≤ ε) = Φ

(
ε

2n−1
n2

)
− Φ

(
− ε

2n−1
n2

)
.

Is it true that Yn
p→ m, as n→ ∞ ?

3. [Bandlimited Gaussian White Noise] A weakly stationary stationary Gaussian process Z = {Z(t) |
−∞ < t <∞} with mean zero that has the power spectral density

sZ(f) =

{
No

2 −W ≤ f ≤W ,

0 elsewhere,

is called bandlimited white noise. W is referred to as the bandwidth (in radians).



258 CHAPTER 9. STOCHASTIC PROCESSES: WEAKLY STATIONARY AND GAUSSIAN

(a) Show that the a.c.f. of Z is

RZ(h) = NoW · sin(Wh)

πWh
.

(b) Sample the process Z at time points πk
W for k = 0,±1,±2, . . . , so that

Zk = Z

(
πk

W

)
.

Find the autocorrelations

rk,l = E [Zk · Zl] .

(c) Show that for any t
k=n∑

k=−n

Zk ·
sin(W (t− πk

W ))

πW (t− πk
W )

2→ Z(t),

as n→ ∞. This is a stochastic version, [85, pp. 332− 336], of the celebrated sampling theorem10,

[100, pp. 187]. It predicts that we can reconstruct completely the band-limited process Z from its

time samples {Zk}∞k=−∞, also known as Nyquist samples.

Aid: (C.f. [103, p. 106]). The following result (’Shannon’s sampling theorem’) on covariance

interpolation is true (and holds in fact for all bandlimited functions)

RZ(h) =

∞∑

k=−∞
RZ

(
πk

W

)
· sin(W (t− πk

W ))

πW (t− πk
W )

,

and can be shown by an application of some Fourier transforms.

As for proving the stochastic version, the complex periodic function eift is first expanded as a Fourier

series

eift =

∞∑

k=−∞
eikft

sin(W (t− πk
W ))

πW (t− πk
W )

, (9.47)

which is uniformly convergent in the interval | f |≤W .

Then we study

E



(
Z(t)−

k=n∑

k=−n

Zk ·
sin(W (t− πk

W ))

πW (t− πk
W )

)2



and obtain (check this)

= RZ(0)− 2
k=n∑

k=−n

RZ

(
t− πk

W

)
· sin(W (t− πk

W ))

πW (t− πk
W )

+

k=n∑

k=−n

j=n∑

j=−n

RZ

(
(j − k)

π

W

)
· sin(W (t− πk

W ))

πW (t− πk
W )

sin(W (t− πj
W ))

πW (t− πj
W )

.

We represent this by power spectral densities and get (verify)

=

∫ W

−W

| eift −
n∑

k=−n

eikft
sin(W (t− πk

W ))

πW (t− πk
W )

|2 sZ(f)df.

Then the conclusion follows by (9.47).

10http://en.wikipedia.org/wiki/Nyquist-Shannon sampling theorem
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9.7.6 Mean Square Integrals of Processes

1. (From [42]) X = {X(t)| −∞ < t <∞} is a weakly stationary stochastic process with

µX = 2, CovX(h) = e−|h|.

Set

Y =

∫ 1

0

X(t)dt.

Check that

E [Y ] = 2,Var (Y ) =
2

e
.

2. [Linear Time Invariant Filters] Let X = {X(t)| − ∞ < t < ∞} be a stochastic process with zero as

mean function and with the autocorrelation function RX(t, s). Let

Y (t) =

∫ ∞

−∞
G(t− s)X(s)ds =

∫ ∞

−∞
G(s)X(t− s)ds,

assuming existence. One can in fact show that the two mean square integrals above are equal (almost

surely).

(a) Check that

RY(t, s) =

∫ ∞

−∞

∫ ∞

−∞
G(t− u)G(s− v)RX(u, v)dudv. (9.48)

(b) Show that if X is (weakly) stationary with zero as mean function and

Y (t) =

∫ ∞

−∞
G(t− s)X(s)ds,

then Y = {Y (t)| −∞ < t <∞} is (weakly) stationary.

(c) Assume that X = {X(t)|−∞ < t <∞} is a Gaussian weakly stationary stochastic process and with

the autocorrelation function RX(h) and

Y (t) =

∫ ∞

−∞
G(t− s)X(s)ds.

Show that {Y (t)| −∞ < t <∞} is a Gaussian process and find the distribution of Y (t) for any t.

Remark 9.7.1 The findings in this exercise provide a key, viz. the mathematical representations of

analog filters, for understanding of the pre-eminence of weakly stationary processes in [50, 56, 71, 80,

85, 97, 101]. One thinks of G(t) as the impulse response of a linear time-invariant filter with

the process as {X(t)| − ∞ < t < ∞} input and the process {Y (t)| − ∞ < t < ∞} as output. An

instance of applications is described in IEEE standard specification format guide and test procedure

for single- axis interferometric fiber optic gyros, IEEE Std 952-1997(R2008), c.f. Annexes B & C,

1998.

3. [The Superformula](From [71, 101] and many other texts) Let X = {X(t)| −∞ < t <∞} be a weakly

stationary stochastic process with zero as mean function and with the autocorrelation function RX(h).

Let

Y (t) =

∫ ∞

−∞
G(t− s)X(s)ds =

∫ ∞

−∞
G(s)X(t− s)ds,
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assuming existence. Suppose that the spectral density of X is sX(f). Show that the spectral density of

Y = {Y (t)| −∞ < t <∞} (recall the preceding exercise showing that Y is weakly stationary) is

sY(f) =| g(f) |2 sX(f), −∞ < f <∞, (9.49)

where g(f) is the transfer function

g(f) =

∫ ∞

−∞
e−ifhG(h)dh.

Note the connection of (9.49) to (9.48). In certain quarters at KTH the formula in (9.49) used to be

referred to in Swedish as the superformel.

4. (From [42]) X = {X(t)| −∞ < t <∞} is a weakly stationary process with mean function = µX and with

the autocorrelation function RX(h) = σ2e−|h|. Let

G(t) =

{
e−2t 0 ≤ t

0 t < 0.

Set

Y (t) =

∫ ∞

−∞
G(t− s)X(s)ds.

Show that if Y = {Y (t)| −∞ < t <∞}, then

µY =
µX

2
,

RY(h) =
σ2

2

(
2e−|h| − e−|h|

)
,

and that the spectral density is

sY(f) =
2σ2

(f2 + 4)(f2 + 1)
.

5. (From [71]) X = {X(t)| − ∞ < t < ∞} is a weakly stationary process with zero as mean function and

with the autocorrelation function RX(h) = e−c|h|. Let

G(t) =

{
1
T 0 ≤ t ≤ T

0 otherwise.

Set

Y (t) =

∫ ∞

−∞
G(t− s)X(s)ds.

Show that

RY(h) =

{
2

c2T 2

[
(C(T − |h|))− e−c|h| + e−cT cosh(ch)

]
|h| < T

2
c2T 2 e

−c|h| (cosh(ch)− 1) |h| ≥ T .

6. (From [42]) X = {X(t)| − ∞ < t < ∞} is a Gaussian stationary process with µX = 1 as mean function

and with the autocorrelation function RX(h) = e−h2/2. Show that

∫ ∞

−∞
X(t)e−t2/2dt ∈ N

(√
2π,

2π√
3

)
.

7. (From [105]) Let W = {W (t) | t ≥ 0} be a Gaussian process with mean function zero and the autocorre-

lation (i.e., autocovariance)

RW(t, s) = min(t, s).
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(a) Show that the mean square integral

Y (t) =

∫ t

0

W (s)ds

exists for all t ≥ 0.

(b) Show that the autocovariance function of the process Y = {Y (t) | t ≥ 0} is

RY(t, s) =

{
s2(3t−s)

6 t ≥ s
t2(3s−t)

6 t < s.

9.7.7 Mean Square Continuity

1. Show that if the autocovariance function of a weakly stationary process is continuous at the origin, then

it is continuous everywhere.

Aid: Apply in a suitable manner the Cauchy-Schwarz inequality, eq. (7.5), in the preceding.

2. A stochastic process {X(t) | t ∈ T } is said to be continuous in probability, if it for every ε > 0 and

all t ∈ T holds that

P (| X(t+ h)−X(t) |> ε) → 0,

as h → 0. Let {X(t) | t ∈ T } be a weakly stationary process. Suppose that the autocovariance function

is continuous at the origin. Show that then the process is continuous in probability.

Aid: Recall Markov’s inequality (1.38).

9.7.8 Memoryless Nonlinear Transformations of Gaussian Processes

Introduction

By a memoryless nonlinear transformation of a stochastic process {X(t)|t ∈ T }, we mean a stochastic process

{Y (t)|t ∈ T } defined by

Y (t) = Q (X(t)) , t ∈ T,

where Q is a Borel function.

In order to give a specific example, in lightwave technology11 a lot of attention is paid to clipping, c.f.,

section 8.5.3, where

Q (x) =

{
x if | x |< xo

xo · sign(x) if | x |> xo.

For this to be of interest, it is argued, c.f. [33, p.212−217], that a stationary Gaussian process can represent a

broadband analog signal containing many channels of audio and video information (e.g., cabletelevision signals

over optical fiber).

Let us incidentally note that in the context of clipping (e.g., of laser) it is obviously important for the

engineer to know the distribution of the sojourn time in (9.42) or

Lxo

def
= Length ({t | X(t) ≥ x0}) . (9.50)

The approximation in (9.43) is well known to be the practical man’s tool for this analysis.

11see, e.g., A.J. Rainal: Laser Intensity Modulation as a Clipped Gaussian Process. IEEE Transactions on Communications,

Vol. 43, 1995, pp. 490−494.
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By a nonlinear transformation of a stochastic process X = {X(t)|t ∈ T } with memory we mean, for one

example, a stochastic process Y = {Y (t)|t ∈ T } defined by

Y (t) =

∫ t

0

Q (X(s)) ds, [0, t] ⊂ T,

where Q is an integrable Borel function. In this case the value of Y (t) depends on the process X between 0 and

t, i.e., has at time t a memory of the ’past’ of the process. One can also say that Y (t) is a nonlinear functional

of the process X over [0, t].

Exercises, Hermite Expansions

1. X = {X(t)| −∞ < t <∞} is a weakly stationary Gaussian stochastic process with µX = 0, variance σ2
X

and autocorrelation RX(h). Let for every t

Y (t) = X2(t).

Let the cofficient of correlation between X(s) and X(t), h = t− s, be

ρX(h) =
RX(h)

RX(0)

Show that the autocorrelation function of Y = {Y (t)| −∞ < t <∞} is

RY(h) = σ4
X
·
[
1 + 2 (ρX(h))2

]
(9.51)

Hint: The four product rule in (8.37) of section 8.5 can turn out to be useful.

2. X = {X(t)| −∞ < t <∞} is a weakly stationary Gaussian stochastic process with µX = 0, variance σ2
X

and autocorrelation RX(h) such that RX(0) = 1. We observe a binarization of the process, c.f., (8.43),

Y (t) =

{
1 X(t) ≥ 0,

−1 X(t) < 0.
(9.52)

Show that

RX(h) = sin
(π
2
RY(h)

)
.

Aid: (From [89]). You may use the fact that (c.f., (8.24))

∫ ∞

0

∫ ∞

0

1

2π
√
1− ρ2

e
− 1

2(1−ρ2) (x
2−2ρxy+y2)

dxdy =
1

4
+

arcsin(ρ)

2π
.

3. Hermite Expansions of Nonlinearities We shall next present a general technique for dealing with

a large class of memoryless nonlinear transformations of Gaussian processes. This involves the first

properties of Hermite polynomials, as discussed in section 2.6.2. The next theorem forms the basis of

analysis of non-linearities in section 9.7.8.

Theorem 9.7.1 Suppose h(x) is a function such that

∫ ∞

−∞
h2(x)e−x2/2dx <∞. (9.53)

Then

h(x) =

∞∑

n=0

cn
n!
Hn(x), (9.54)
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where

cn =
1√
2π

∫ ∞

−∞
h(x)e−x2/2Hn(x)dx, n = 0, 1, 2, . . . , (9.55)

and the series converges with respect to the Hilbert space norm

‖ f ‖=
√∫ ∞

−∞
f2(x)e−x2/2dx.

We have the following result.

Theorem 9.7.2 Let X = {X(t)| − ∞ < t < ∞} be a weakly stationary process with the mean value

function = 0. Let Q(x) satisfy (9.53) and define

Y (t) = Q(X(t)), −∞ < t <∞. (9.56)

Then Y = {Y (t)| −∞ < t <∞} has the autocorrelation function

RY(h) =

∞∑

n=0

C2
n

n!

(
RX(h)

RX(0)

)n

, (9.57)

where

Cn =
1√
2π

∫ ∞

−∞
Q (xσX) e−x2/2Hn(x)dx.

Proof is outlined. These assertions are derived by Mehler’s Formula [24, p.133], which says the

following. Let

(X1, X2)
′
∈ N

((
0

0

)
,

(
1 ρ

ρ 1

))
.

Then the joint p.d.f. of (X1, X2)
′
is by (8.24)

fX1,X2 (x1, x2) =
1

2π
√
1− ρ2

e
− 1

2
1

(1−ρ2)
·[x2

1−2ρ·x1x2+x2
2]

and can be written as

fX1,X2 (x1, x2) =
e−x2

1/2

√
2π

e−x2
2/2

√
2π

∞∑

n=0

ρn

n!
Hn (x1)Hn (x2) . (9.58)

Hence, from (9.56), with h = t− s,

RY(h) = E [Y (t)Y (s)] = E [Q(X(t))Q(X(s))] =

=

∫ ∞

−∞

∫ ∞

−∞
Q (x1)Q (x2) fXt,Xs

(x1, x2) dx1dx2. (9.59)

Now we use in (9.59) the expansions (9.54), (9.58), (2.100) and (2.101) to obtain (9.57) in the special case

σX = 1.

(a) Verify by symbol manipulation (i.e., do not worry about the exchange of order between integration

and the infinite sums) that (9.59) leads to (9.57), as indicated in the last lines of the proof outlined

above.
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(b) Let now

Q(x) = ax3.

(i) Show that (9.53) is satisfied.

(ii) If X and Y are as above with Q(x) = ax3 in (9.56), then show that

RY(h) = 3a2σ6
X

[
3
RX(h)

RX(0)
+ 2

(
RX(h)

RX(0)

)3
]
.

(c) Let now

Q(x) = x2.

Verify that You get the result in (9.51) using (9.57).

9.7.9 Separable Autocovariances

Let us consider T = [0, 1] and

R(t, s) =

{
s(1− t) s ≤ t

(1− s)t s ≥ t.
(9.60)

1. Check, whether (9.37) holds for R(t, s) in (9.60).

2. Let W (t) be a random variable in a Gaussian process (i.e., Wiener process, see next chapter) with the

autocorrelation function RW(t, s) = min(t, s). Find a function τ(t) = u(t)/v(t) so that the process defined

by

B(t) = v(t)W (τ(t)) , (9.61)

has the autocorrelation function R(t, s) in (9.60).

3. Find functions s(t) and h(t) such that for 0 ≤ t <∞

W (t) = h(t)B (s(t)) , (9.62)

where W (t) and B(t) are as in (9.61).



Chapter 10

The Wiener Process

10.1 Introduction

10.1.1 Background: The Brownian Movement, A. Einstein

The British botanist Robert Brown examined1 in the year 1827 pollen grains and the spores of mosses suspended

in water under a microscope, see figure ??, and observed minute particles within vacuoles in the pollen grains

executing a continuous jittery motion. Although he was not the first to make this observation, the phenomenon

or the movement became known as the Brownian movement.

A note on terminology is at place here. Here we shall refer to the physical phenomenon as the Brownian

movement, and to the mathematical model, as derived below, as Brownian motion/Wiener process thus minding

of the accusations about ’mind projection fallacies’.

In one of his three great papers published in 1905 Albert Einstein carried a probabilistic analysis of molecular

motion and its effect on particles suspended in a liquid. Einstein admits to begin with [31, p.1] that he does not

know much of Brown’s movement. His purpose was not, as pointed out by L. Cohen2, to explain the Brownian

movement but to prove that atoms existed. In 1905, many scientists did not believe in atomic theory. Einstein’s

approach was to derive a formula from the atomic theory, and to expect that someone performs the experiments

that verify the formula.

In the 1905 paper, see [31], Einstein derives the governing equation for the p.d.f. f(x, t) of the particles,

which are influenced by the invisible atoms. The equation of evolution of f(x, t) is found as

∂

∂t
f(x, t) = D

∂2

∂x2
f(x, t).

Two brief and readable and non-overlapping recapitulations of Einstein’s argument for this are [58, pp. 231−234]

and [78, chapter 4.4]. Then Einstein goes on to show that the square root of the expected squared displacement

of the particle is proportional to the square root of time as

σX =
√
E [X(t)2] =

√
2Dt. (10.1)

It is generally overlooked that Einstein’s ’coarse time’ approach to thermodynamics implies that his finding in

(10.1) is valid only for very large t. Then Einstein derives the formula for the diffusion coefficient D as

D =
RT

N

1

6πkP
, (10.2)

1A clarification of the intents of Brown’s work and a demonstration that Brown’s microscope was powerful enough for observing

movements so small is found in http://www.brianjford.com/wbbrowna.htm
2The History of Noise. IEEE Signal Processing Magazine, vol. 1053, 2005.

265
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where R is the gas constant, T is the temperature, k is the coefficient of viscosity (Einstein’s notation) and P is

the radius of the particle. The constant N had in 1905 no name, but was later named Avogadro’s number3,

see [58, p. 236]. Next Einstein explains how to estimate N from statistical measurements. We have

σX =
√
t

√
RT

N

1

3πkP

so that

N =
1

σ2
X

RT

3πkP
,

where σ2
X is measured ’per minute’.

Besides the formulas and ideas stated, Einstein invoked the Maxwell & Boltzmann statistics, see, e.g., [17,

p. 39, p. 211], [58, chapter 6], and saw that the heavy particle is just a big atom pushed around by smaller

atoms, and according to energy equipartition, c.f., [17, chapter 19], the statistical properties of the big particle

are the same as of the real invisible atoms. More precisely, the mean kinetic energy of the pollen is the same

as the mean kinetic energy of the atoms. Therefore we can use the heavy particle as a probe of the ones we

cannot see. If we measure the statistical properties of the heavy particle, we know the statistical properties of

the small particles. Hence the atoms exist by the erratic movements of the heavy particle4.

J.B. Perrin5 was an experimentalist, who used (amongst other experimental techniques) direct measurements

of the mean square displacement and Einstein’s formula to determine Avogadro’s number, and was awarded

Nobel Prize in Physics in 1926 in large part, it is said, due to this. Actually, Perrin proceeded to determine

Boltzmann’s constant and the electronic charge by his measurement of Avogadro’s number, [58, p. 239].

10.1.2 Diffusion, Theory of Speculation & the Wiener Process

Another physical description of the background to the mathematical model to be introduced and analysed in

this chapter is diffusion of microscopic particles. There are two aspects in a diffusion: very rough particle

trajectories, c.f., figure 10.2, at the microscopic level giving rise to a very smooth behaviour of the density of

an entire cloud of particles.

The Wiener process6 W = {W (t) | t ≥ 0} to be defined below is a mathematical device designed as a

model of the motion of individual particles in a diffusion. The paths of the Wiener process exhibit an erratic

behaviour, while the density fW (t) of the random variable W (t) is for t > 0 given by

fW (t)(x) =
1√
2πt

e
−
x2

2t .

We set p(t, x) = 1√
2πt

e
−
x2

2t . Then p(t, x) is the solution of the partial differential equation known as the diffusion

(or the heat) equation [96, pp.130−134]

∂

∂t
p(t, x) =

1

2

∂2

∂x2
p(t, x), (10.3)

3The Avogadro constant expresses the number of elementary entities per mole of substance, c.f. [17, p.3].
4More on this and the history of stochastic processes is found in L. Cohen: The History of Noise. IEEE Signal Processing

Magazine, vol. 1053, 2005.
5Jean Baptiste Perrin 1870-1942, Perrin’s Nobel lecture with a discussion of Einstein’s work and Brownian movement is found

on

http://nobelprize.org/nobel prizes/physics/laureates/1926/perrin-lecture.html
6is named after Norbert Wiener, 1894−1964, who constructed it as a stochastic process in mathematical terms, as given here,

and proved that the process has continuous sample paths that are nowhere differentiable.

http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Wiener Norbert.html
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Figure 10.1: A Path of a Brownian Movement Particle

and can be interpreted as the density (in fact p.d.f.) at time t of a cloud issuing from a single point source at

time 0.

We shall study the one-dimensional Wiener process starting from the mathematical definition in 10.2.1

below and derive further properties from it. The Wiener process can be thought of as modelling the projection

of the position of the Brownian particle onto one of the axes of a coordinate system. A sample path of the

one-dimensional Wiener process is given in figure 10.3. In the literature, especially that emanating from British

universities, see, e.g., [26], this stochastic process is also known as the Brownian motion.

Apart from describing the motion of diffusing particles, the Wiener process is widely applied in mathematical

models involving various noisy systems, for example asset pricing at financial markets, c.f. [13, chapter 4].

Actually, Louis Bachelier (1870−1946)7 is nowadays acknowledged as the first person to define the stochas-

tic process called the Wiener process. This was included in his doctoral thesis with the title Théorie de la

spéculation, 19008 reprinted, translated and commented in [27]. This thesis, which treated Wiener process to

evaluate stock options, is historically the first contribution to use advanced mathematics in the study of fi-

nance. Hence, Bachelier is appreciated as a pioneer in the study of both financial mathematics and of stochastic

processes.

7http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Bachelier.html
8R. Mazo, an expert in statistical mechanics, chooses to write in [78, p. 4]:

The subject of the thesis (by Bachelier) was a stochastic theory of speculation on the stock market, hardly a topic

likely to excite interest among physical scientists (or among mathematicians either).
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Figure 10.2: A Brownian Movement Particle

10.2 The Wiener Process: Definition and First Properties

We need an auxiliary notation:

p(t, y, x) =
1√
2πt

e
−
(y − x)2

2t , t > 0,−∞ < x <∞,−∞ < y <∞. (10.4)

Clearly p(t, x, y) is the p.d.f. of a random variable with the distribution N(x, t). This p(t, x, y) is in fact the

transition p.d.f. of a Wiener process , as will be explained below.

Remark 10.2.1 If we with σ > 0 set

p(t, y, x;σ2) =
1√

2πσ2t
e
−
(y − x)2

2σ2t , t > 0,−∞ < x <∞,−∞ < y <∞, (10.5)

we shall get a process that is also called the Wiener process. In fact, scaling of time, i.e., the definition in

(10.4), which has σ = 1, is known as the standard Wiener process, but we shall not add the qualifier to our

statements.

Definition 10.2.1 The Wiener process a.k.a. Brownian motion is a stochastic process W = {W (t) |
t ≥ 0} such that
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Figure 10.3: A Sample Path of A Wiener Process

i) W (0) = 0 almost surely.

ii) for any n and any finite suite of times 0 < t1 < t2 < . . . < tn and any x1, x2, . . . , xn the joint p.d.f. of

W (t1),W (t2), . . . ,W (tn) is

fW (t1),W (t2),...,W (tn) (x1, x2, . . . , xn)

= p(t1, x1, 0)p(t2 − t1, x2, x1) · · · p(tn − tn−1, xn, xn−1). (10.6)

Let us next record a few of the immediate consequences of this definition.

1. We should perhaps first verify that (10.6) is in fact a joint p.d.f.. It is clear that fW (t1),W (t2),...,W (tn) ≥ 0.

Next from (10.6)
∫ ∞

−∞
· · ·
∫ ∞

−∞
p(t1, x1, 0)

n−1∏

i=1

p(ti+1 − ti, xi+1, xi)dx1 · · · dxn

=

∫ ∞

−∞
p(t1, x1, 0) · · ·

∫ ∞

−∞
p(tn − tn−1, xn, xn−1)dxn · · · dx1.

We integrate first with respect to xn and get
∫ ∞

−∞
p(tn − tn−1, xn, xn−1)dxn = 1,

since we have seen that p(tn − tn−1, xn, xn−1) is the p.d.f. of N(xn−1, tn − tn−1). An important thing is

that the integral is not a function of xn−1. Hence we can next integrate the factor containing xn−1 w.r.t
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xn−1, whereby the second of the two factors containing xn−2 will disappear, and continue successively in

this way, and get that

∫ ∞

−∞
p(t1, x1, 0) · · ·

∫ ∞

−∞
p(tn − tn−1, xn, xn−1)dxn · · · dx1 = 1.

The preceding computation indicates also how to prove that the Wiener process exists by the

Kolmogorov Consistency Theorem 9.1.1.

2. Take n = 1 and t1 = t, then (10.6) and (10.4) give

W (t) ∈ N(0, t), t > 0. (10.7)

3. n = 2, t1 = s < t2 = t. Then the joint p.d.f. of (W (s),W (t)) is by (10.6)

fW (s),W (t)(x, y) = p(s, x, 0) · p(t− s, y, x)

=
1√
2πs

e
−
x2

2s
1√

2π(t− s)
e
−
(y − x)2

2(t− s) . (10.8)

In view of (10.7) p(s, x, 0) is the marginal p.d.f. fW (s)(x) of W (s). Hence it holds for all x, y that

fW (s),W (t)(x, y)

fW (s)(x)
=

1√
2π(t− s)

e
−
(y − x)2

2(t− s) ,

which tells us that

fW (t)|W (s)=x(y) =
1√

2π(t− s)
e
−
(y − x)2

2(t− s) , t > s, (10.9)

or, equivalently,

W (t) |W (s) = x ∈ N(x, t− s), t > s. (10.10)

Inherent in the preceding is evidently that for t > s

W (t) = Z +W (s),

where Z ∈ N (0, t− s) and Z is independent of W (s). We shall, however, in the sequel obtain this finding

as a by-product of a general result.

4. Hence we have the interpretation of p(t − s, x, y) as a transition p.d.f., since for any Borel set A and

t > s

P (W (t) ∈ A |W (s) = x) =

∫

A

p(t− s, y, x)dy =

∫

A

1√
2π(t− s)

e
−
(y − x)2

2(t− s) dy.

This gives the probability of transition of the Wiener process from x at time s to the set A at time t.

The preceding should bring into mind the properties of a Gaussian process.

Theorem 10.2.1 The Wiener process W is a Gaussian process.
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Proof: We make a change of variables in (10.6). We recall (2.71): if X has the p.d.f. fX (x), Y = AX + b,

and A is invertible, then Y has the p.d.f.

fY (y) =
1

| detA |fX
(
A−1 (y − b)

)
. (10.11)

We are going to define a one-to-one linear transformation (with Jacobian = 1) between the n variables of the

Wiener process and its increments. We take any n and any finite suite of times 0 < t1 < t2 < . . . < tn. We

recall first

Z0 =W (t0) =W (0) = 0

so that

Z1 =W (t1)−W (t0) =W (t1)

and then

Zi
def
= W (ti)−W (ti−1), i = 2, . . . n.

The increments {Zi}ni=1 are a linear transformation of (W (ti))
n
i=1, or in matrix form




Z1

Z2

...

...

Zn−1

Zn




=




1 0 . . . 0 0 0

−1 1 . . . 0 0 0

0 −1 1
... 0 0

...
...

. . .
...

...
...

0 0 . . . −1 1 0

0 0 . . . 0 −1 1







W (t1)

W (t2)
...
...

W (tn−1)

W (tn)




. (10.12)

We write this as 


Z1

Z2

...

Zn−1

Zn




= A




W (t1)

W (t2)
...

W (tn−1)

W (tn)



.

The matrix A is lower triangular, and therefore its determinant is the product of the entries on the main

diagonal, see [92, p. 93]. Thus in the above detA = 1, and the inverse A−1 exists and detA−1 = 1
detA = 1.

Hence the Jacobian determinant J is = 1.

It looks now, in view of (10.11), as if we are compelled to invert A−1 and insert in fW (t1),...,W (tn). However,

due to the special structure of fW (t1),...,W (tn) in (10.6), we have a kind of stepwise procedure for this. By (10.6)

fW (t1),W (t2),...,W (tn) (x1, x2, . . . , xn) = p(t1, x1, 0)

n∏

i=2

p(ti − ti−1, xi, xi−1).

Here, by (10.9),

p(ti − ti−1, xi, xi−1) = fW (ti)|W (ti−1)=xi−1
(xi) =

1√
2π(ti − ti−1)

e
−
(xi − xi−1)

2

2(ti − ti−1) .

Hence, if we know that W (ti−1) = xi−1, then Zi = W (ti) − xi−1 or W (ti) = Zi + xi−1 and since we are

evaluating the p.d.f. at the point Zi = zi and W (ti) = xi, we get

p(ti − ti−1, xi, xi−1) =
1√

2π(ti − ti−1)
e
−

z2i
2(ti − ti−1) = fZi

(zi).
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Thus

Zi ∈ N(0, ti − ti−1)

and

fZ1,Z2,...,Zn
(z1, z2, . . . , zn) =

n∏

i=1

fZi
(zi).

This shows that the increments are independent, and that

fZ1,Z2,...,Zn
(z1, z2, . . . , zn) =

1

(2π)n/2
√
detΛ

e−z
′
Λ

−1
z/2

where Λ is the diagonal matrix

Λ =




t1 0 . . . 0 0 0

0 t2 − t1 . . . 0 0 0

0 0 t3 − t2
... 0 0

...
...

. . .
. . .

...
...

0 0 . . . 0 tn−1 − tn−2 0

0 0 . . . 0 0 tn − tn−1




. (10.13)

This matrix Λ is clearly symmetric. In addition, for any x ∈ Rn we have

x
′
Λx =

n∑

i=1

x2i · (ti − ti−1) > 0, (t0 = 0).

Hence the matrix Λ is a covariance matrix. In other words, Z1, Z2, . . . , Zn has a joint Gaussian distribution

N (0,Λ) and since 


W (t1)

W (t2)
...

W (tn−1)

W (tn)




= A−1




Z1

Z2

...

Zn−1

Zn



,

then (W (t1),W (t2), . . . ,W (tn−1),W (tn)) has a joint Gaussian distribution

N
(
0,A−1Λ(A−1)

′
)
. (10.14)

Since n and t1, . . . , tn were arbitrary, we have now shown that the Wiener process is a Gaussian process.

Remark 10.2.2 The proof above is perhaps overly arduous, as the main idea is simple. The increments {Zi}ni=1

and W (t1), . . . ,W (tn), correspond to each other

{Zi}ni=1 ↔ {W (ti)}ni=1

by an invertible linear transformation, since the inverse is given by

W (ti) =

i∑

k=1

Zk, (10.15)

which yields uniquely the Wiener process variables from the increments, remembering that W0 = W (0) = 0.

Thus, when we know that W (ti−1) = xi−1, then Zi = W (ti) − xi−1 and in the conditional p.d.f. p(ti −
ti−1, xi, xi−1) the change of variable is simple.
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A Gaussian process is uniquely determined by its mean function and its autocovariance function. We can

readily find the mean function µW(t) and the autocorrelation function RW(t, s). This will give us the matrices

A−1Λ(A−1)
′
in (10.14), too, but without any matrix operations. The mean function is from (10.7) and i) in

the definition

µW(t) = E [W (t)] = 0 t ≥ 0. (10.16)

Lemma 10.2.2 The RW(t, s) of the Wiener process is

RW(t, s) = min(t, s) (10.17)

for any t, s ≥ 0.

Proof Let us assume that t > s. Then by double expectation

E [W (t)W (s)] = E [E [W (t)W (s) |W (s)]] =

and by taking out what is known

= E [W (s)E [W (t) |W (s)]] .

We invoke here (10.10), i.e., E [W (t) |W (s)] =W (s), and obtain

= E
[
W 2(s)

]
= s,

where we used (10.7).

Exactly in the same manner we can show that if s > t

E [W (t)W (s)] = t.

Thus we have established (10.17), as claimed.

Remark 10.2.3 The definition (10.5) gives instead

RW(t, s) = σ2 min(t, s). (10.18)

The equation (10.17) implies that the covariance matrix CW of (W (t1), . . . ,W (tn))
′
, 0 < t1 < t2 < . . . < tn, is

CW =




t1 t1 . . . t1 t1 t1

t1 t2 . . . t2 t2 t2

t1 t2 . . . t3 t3 t3
...

...
. . .

...
...

...

t1 t2 . . . tn−2 tn−1 tn−1

t1 t2 . . . tn−2 tn−1 tn




. (10.19)

One could check that CW = A−1Λ(A−1)
′
, as it should by (10.14). We have encountered the matrix CW in an

exercise on autocovariance in section 9.7.1 of chapter 9 and shown without recourse to the Wiener process that

CW is indeed a covariance matrix.
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Lemma 10.2.3

E
[
(W (t)−W (s))

2
]
= |t− s| (10.20)

for any t, s ≥ 0.

Proof

E
[
(W (t)−W (s))

2
]
= E

[
W 2(t)− 2W (t)W (s) +W 2(s)

]

= E
[
W 2(t)

]
− 2E [W (t)W (s)] + E

[
W 2(s)

]

= t− 2min(t, s) + s

by (10.17) and (10.7). Then we have

=

{
t− 2s+ s = t− s if t > s

t− 2t+ s = s− t if s > t.

By definition of absolute value,

| t− s |=
{
t− s t > s

−(t− s) = s− t s > t.
(10.21)

Thus

E
[
(W (t)−W (s))

2
]
= |t− s|.

Lemma 10.2.4 For a Wiener process and for t ≥ s

W (t)−W (s) ∈ N(0, t− s). (10.22)

Proof Because the Wiener process is a Gaussian process, W (t) −W (s) is a Gaussian random variable. The

rest of the proof follows by (10.16) and (10.20).

The result in the following lemma is already found in the proof of theorem 10.2.1, but we state and prove it

anew for ease of reference and benefit of learning.

Lemma 10.2.5 For a Wiener process and for 0 ≤ u ≤ v ≤ s ≤ t

W (t)−W (s) is independent of W (v)−W (u) (10.23)

Proof We can write

(
W (v)−W (u)

W (t)−W (s)

)
=

(
1 −1 0 0

0 0 1 −1

)



W (v)

W (u)

W (t)

W (s)


 .

Therefore W (t) −W (s) and W (v)−W (u) are, by theorem 8.1.6, jointly Gaussian random variables with zero

means. It is enough to show that they are uncorrelated.

E [(W (t)−W (s)) (W (v)−W (u))] =

= E [W (t)W (v)]− E [W (t)W (u)]− E [W (s)W (v)] + E [W (s)W (u)]

= min(t, v)−min(t, u)−min(s, v) + min(s, u)

= v − u− v + u = 0.

In fact we have by this last lemma shown that
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Theorem 10.2.6 For a Wiener process and any finite suite of times 0 < t1 < t2 < . . . < tn the increments

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

are independent and Gaussian.

It follows also by the above that the increments of the Wiener process are strictly stationary, since for

all n and h

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

d
=W (t1 + h)−W (t0 + h),W (t2 + h)−W (t1 + h), . . . ,W (tn + h)−W (tn−1 + h),

by (10.20).

10.3 A Construction of the Wiener Process

Let us recall example 9.2.3, which was based on example 9.1.8. There we obtained the integral equation (9.23)

or ∫ T

0

R(t, s)ei(s)ds = λiei(t). (10.24)

Let us solve this with R(t, s) = min(t, s) in [0, T ], we follow [103, p. 87]. We insert to get

∫ T

0

min(t, s)ei(s)ds = λiei(t), (10.25)

or ∫ t

0

sei(s)ds+ t

∫ T

t

ei(s)ds = λiei(t). (10.26)

This is a case, where we can solve an integral equation by reducing it to an ordinary differential equation. We

differentiate thus once w.r.t. t in (10.26) and get

∫ T

t

ei(s)ds = λie
′

i(t). (10.27)

We differentiate once more, which yields

−ei(t) = λie
′′

i (t). (10.28)

We have also the obvious boundary conditions ei(0) = 0 from (10.26) and e
′
i(T ) = 0 from (10.27). Equation

(10.28) with ei(0) = 0 gives

ei(t) = A sin

(
1√
λi
t

)
.

When we check e
′
i(T ) = 0 we obtain

cos

(
1√
λi
T

)
= 0.

In other words

λi =
T 2

π2
(
i+ 1

2

)2 , i = 0, 1, . . .

Then the normalized eigenfunctions are

ei(t) =

√
2

T
sin

((
i+

1

2

)
π
t

T

)
,
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and we have by the computations in example 9.2.3

min(t, s) =
2

T

∞∑

i=0

T 2

π2
(
i+ 1

2

)2 sin

((
i+

1

2

)
π
t

T

)
sin

((
i+

1

2

)
π
s

T

)
,

which is an interesting expression for min(t, s) in [0, T ]× [0, T ] in its own right. In addition, by example 9.2.3

we can construct the Wiener process as

W (t) =

∞∑

i=0

T

π
(
i+ 1

2

) ·Xi ·
√

2

T
sin

((
i+

1

2

)
π
t

T

)
t ∈ [0, T ],

where Xi are I.I.D. and N(0, 1). We are omitting further details that would enable us to prove almost sure

convergence of the series [7, pp. 7−9].

10.4 The Sample Paths of the Wiener Process

The Wiener process shares with the Poisson process the status of being the most important process in probability

theory. Its sample paths display an astonishing range of behaviour, see, e.g., [19]. Here we are concentrating on

the mean square properties, which are straightforward by comparison. We shall, however, next indicate some

of the basic sample path properties of the Wiener process, as one needs to be sufficiently well-informed about

these in order to decide intelligently in what ways the Wiener process can, and in what ways it cannot, be

expected to reflect realistically the properties of some physical processes.

In view of (10.20) we see that

E
[
(W (t+ h)−W (t))

2
]
= |h| (10.29)

and hence the Wiener process is continuous in quadratic mean in the sense of the definition 9.3.2. As is known,

convergence in quadratic mean does not imply convergence almost surely. Hence the result in the following

section requires a full proof, which is of a higher degree of sophistication than (10.29). As we shall see below,

the actual proof does exploit (10.29), too.

10.4.1 The Sample Paths of the Wiener Process are Almost Surely Continuous

We need an additional elementary fact.

Z ∈ N(0, σ2) ⇒ E
[
Z4
]
= 3σ4. (10.30)

This can be found by the fourth derivative of either the moment generating or the characteristic function and

evaluation of this fourth derivative at zero9.

We shall now start the proof of the statement in the title of this section following [103, p.57−58] and [7,

chap.1]. The next proof can be omitted at first reading.

The Markov inequality (1.38) gives for every ε > 0 and h > 0

P (|W (t+ h)−W (t) |≥ ε) ≤ E
[
|W (t+ h)−W (t) |4

]

ε4
.

9By (4.50) the general rule is given as follows. If Z ∈ N(0, σ2), then

E [Zn] =

{

0 n is odd
(2k)!

2kk!
σ2k n = 2k, k = 0, 1, 2, . . ..
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The reason for selecting above the exponent = 4 becomes clear eventually. By (10.29) and (10.30)

we get

E
[
(W (t+ h)−W (t))

4
]
= 3h2.

Therefore

P (| W (t+ h)−W (t) |≥ hγ) ≤ 3h2−4γ .

Let now 0 ≤ γ < 1/4 and set δ = 1− 4γ > 0. We get

P (|W (t+ h)−W (t) |≥ hγ) ≤ 3h1+δ. (10.31)

These are preparations for an application of the Borel-Cantelli lemma. With that strategy in

mind we consider for nonnegative integers v the random variables

Zv
def
= sup

0≤k≤2v−1
|W ((k + 1)/2γ)−W (k/2γ) | .

Then

P

(
Zv ≥

(
1

2v

)γ)
≤ P

(
∪2v−1
k=0 |W ((k + 1)/2γ)−W (k/2γ) |≥

(
1

2v

)γ)
,

since if Zv ≥
(

1
2v

)γ
, then there is at least one increment such that | W ((k + 1)/2γ) −W (k/2γ) |≥(

1
2v

)γ
. Then by subadditivity, or A ⊂ ∪iAi then P(A) ≤∑iP(Ai), see chapter 1,

≤
2v−1∑

k=0

P

(
|W ((k + 1)/2γ)−W (k/2γ) |≥

(
1

2v

)γ)

≤ 3 · 2v
(

1

2v

)1+δ

= 3 · 2−δv,

where we used (10.31). Since
∑∞

v=0 2
−δv <∞ we have

∞∑

v=0

P

(
Zv ≥ 1

2vγ

)
<∞.

By the Borel-Cantelli lemma, lemma 1.7.1 above, the event

Zv ≥ 1

2vγ

occurs with probability one only a finite number of times. In other words, it holds that there is

almost surely an N(ω) such that for all v ≥ N(ω),

Zv ≤ 1

2vγ

and therefore

lim
n→∞

∞∑

v=n+1

Zv = 0, a.s..

This entails that

sup
t,s∈T ;|t−s|<2−n

| W (t)−W (s) |a.s.→ 0,

as n→ ∞, where T is any finite interval ⊂ [0,∞). This assertion is intuitively plausible, but requires

a detailed analysis omitted here, see [103, p. 86] for details.
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By the preceding we have in bits and pieces more or less established the following theorem, which is frequently

evoked as the very definition of the Wiener process, see [13, chapter 2].

Theorem 10.4.1 A stochastic process {W (t) | t ≥ 0} is a Wiener process if and only if the following four

conditions are true:

1) W (0) = 0.

2) The sample paths t 7→W (t) are almost surely continuous.

3) {W (t) | t ≥ 0} has stationary and independent increments.

4) W (t)−W (s) ∈ N(0, t− s) for t > s.

10.4.2 The Sample Paths of the Wiener Process are Almost Surely Nowhere

Differentiable; Quadratic Variation of the Sample Paths

We are not going to prove the following theorem.

Theorem 10.4.2 The Wiener process {W (t) | t ≥ 0} is almost surely non-differentiable at any t ≥ 0.

We shall next present two results, namely lemma 10.4.3 and theorem 10.4.4, that contribute to the understanding

of the statement about differentiation of the Wiener process. Let for i = 0, 1, 2, . . . , n

t
(n)
i =

iT

n
.

Clearly 0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n = T is a partition of [0, T ] into n equal parts. We denote by

△n
i W

def
= W

(
t
(n)
i+1

)
−W

(
t
(n)
i

)
(10.32)

the corresponding increment of the Wiener process. For future reference we say that the random quadratic

variation of the Wiener process is the random variable

n−1∑

i=0

(△n
i W )2 .

Lemma 10.4.3 The random quadratic variation converges in mean square to T , or

n−1∑

i=0

(△n
i W )2

2→ T, (10.33)

as n→ ∞.

Proof By the definition in chapter 7.1 we need to show that

E



(

n−1∑

i=0

(△n
i W )

2 − T

)2

→ 0
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as n→ ∞. First we do a simple manipulation of sums

n−1∑

i=0

(△n
i W )

2 − T =

n−1∑

i=0

(
(△n

i W )
2 − T

n

)
.

Thus

E



(

n−1∑

i=0

(△n
i W )2 − T

)2

 = E



(

n−1∑

i=0

(△n
i W )2 − T

n

)2



=
n−1∑

i=0

E

[(
(△n

i W )2 − T

n

)2
]

+2
∑

i<j

E

[(
(△n

i W )
2 − T

n

)((
△n

jW
)2 − T

n

)]
. (10.34)

By Theorem 10.2.6 the increments of the Wiener process are independent, when considered over non-overlapping

intervals. Thus

E

[(
(△n

i W )
2 − T

n

)((
△n

jW
)2 − T

n

)]
= E

[(
(△n

i W )
2 − T

n

)]
E

[((
△n

jW
)2 − T

n

)]
.

By (10.20) we get

E
[
(△n

i W )2
]
= E

[(
△n

jW
)2]

=
T

n
,

and the cross products in (10.34)vanish.

Thus we have obtained

E



(

n−1∑

i=0

(△n
i W )2 − T

)2

 =

n−1∑

i=0

E

[(
(△n

i W )2 − T

n

)2
]
.

We square the term in the sum in the right hand side

E

[(
(△n

i W )
2 − T

n

)2
]
= E

[
(△n

i W )
4
]
− 2

T

n
·E
[
(△n

i W )
2
]
+
T 2

n2
.

In view of (10.20)

E
[
(△n

i W )
2
]
=
T

n
,

and thus (10.30) entails

E
[
(△n

i W )
4
]
=

3T 2

n2
.

Thus

E



(

n−1∑

i=0

(△n
i W )

2 − T

)2

 =

n−1∑

i=0

(
3T 2

n2
− 2T 2

n2
+
T 2

n2

)

=

n−1∑

i=0

2T 2

n2
=

2T 2

n
.

Hence the assertion follows as claimed, when n→ ∞.

In the theory of stochastic calculus, see e.g., [70, p.62], one introduces the notation

[W,W ]([0, T ])
def
= lim

n−1∑

i=0

(△n
i W )

2
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or in [29, p.86],

< W >T
def
= lim

n−1∑

i=0

(△n
i W )

2

and refers to [W,W ]([0, T ]) as quadratic variation, too, but for our purposes we need not load the presentation

with these brackets.

We need to recall a definition from mathematical analysis [36, p.54].

Definition 10.4.1 The total variation of a function f from [0, T ] to R, is defined by

lim sup
△→0

n−1∑

i=0

| f(ti+1)− f(ti) |,

where 0 = t0 < t1 < . . . < tn = T is a partition of [0, T ] and

△ = max
i=0,...,n

| ti+1 − ti | .

The following theorem 10.4.4 implies that the length of a sample path of the Wiener process in any finite interval

is infinite. Hence we understand that a simulated sample path like the one depicted in figure 10.3 cannot be

but a computer approximation.

At this point we should pay attention to Brownian Scaling. If {W (t)|t ≥ 0} is the Wiener process, we

define for c > 0 a new process by

V (t)
def
=

1

c
W (c2t).

An exercise below shows that {V (t) | t ≥ 0} is a Wiener process. In words, if one magnifies the process

{W (t)|t ≥ 0}, i.e., chooses a small c, while at the same time looking at the process in a small neighborhood

of origin, then one sees again a process, which is statistically identical with the original Wiener process. In

another of the exercises we study Time Reversal

V (t)
def
= tW

(
1

t

)
,

in which we, for small values of t, we look at the Wiener process at infinity, and scale it back to small amplitudes,

and again we are looking at the Wiener process.

These phenomenona are known as self-similarity and explain intuitively that the length of a sample path of

the Wiener process in any finite interval must be infinite.

Theorem 10.4.4 The total variation of the sample paths of the Wiener process on any interval [0, T ] is infinite.

Proof As in lemma 10.4.3 we consider the sequence of partitions
(
t
(n)
0 , t

(n)
1 , . . . , t

(n)
n

)
of [0, T ] into n equal parts.

Then with the notation of (10.32) we get

n−1∑

i=0

| △n
i W |2≤ max

i=0,1,...,n
| △n

i W |
n−1∑

i=0

| △n
i W | . (10.35)

Since the sample paths of the Wiener process are almost surely continuous on [0, T ], we must have

lim
n→∞

max
i=0,1,...,n

| △n
i W |= 0, (10.36)

almost surely, as the partitions of [0, T ] become successively refined. as n increases.
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On the other hand, by lemma 10.4.3

n−1∑

i=0

(△n
i W )

2 2→ T > 0,

as n → ∞, which implies (this is a general fact about the relationship between almost sure and mean square

convergence) that there is a subsequence nk such that

nk−1∑

i=0

(△n
i W )

2 a.s.→ T, (10.37)

as k → ∞.

Next, from (10.35)
∑n−1

i=0 | △n
i W |2

maxi=0,1,...,n | △n
i W

|≤
n−1∑

i=0

| △n
i W | .

But then (10.36) and (10.37) entail

lim
k→∞

|
n−1∑

i=0

| △n
i W |→ ∞,

as the subsequences of partitions of [0, T ] become more and more refined as k increases.

A Motivational Argument Concerning Quadratic Variation

We make a summary and an interpretation of the preceding. Take the partition of thetime axis used in lemma

10.4.3 and set

Sn =
n−1∑

i=0

(△n
i W )2 .

The important fact that emerged above is that the variance of Sn is negligible compared to its expectation, or

E [Sn] = T,

while the proof of lemma 10.4.3 shows that

Var [Sn] =
2T 2

n
.

Thus, the expectation of Sn is constant, whereas the variance of Sn converges to zero, as n grows to infinity.

Hence Sn must converge to a non-random quantity. We write this as

∫ t

0

[dW ]2 = t

or

[dW ]
2
= dt. (10.38)

The formula (10.38) is a starting point for the intuitive handling of the differentials behind Itô’s formula in

stochastic calculus, see [13, pp. 50−55], [62, pp. 32−36], [68, chapter 5] and [29, 70].
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10.4.3 The Wiener Process is a Markov Process

Next we show that the Wiener process has the Markov property.

Theorem 10.4.5 For any t1 < . . . < tn−1 < tn and any x1, . . . , xn−1, xn

P (W (tn) ≤ xn |W (t1) = x1, . . . ,W (tn−1) = xn−1)

= P (W (tn) ≤ xn |W (tn−1) = xn−1) . (10.39)

Proof

P (W (tn) ≤ xn |W (t1) = x1, . . . ,W (tn−1) = xn−1)

=

∫ xn

−∞
fW (tn)|W (t1)=x1,...,W (tn−1)=xn−1

(v) dv

=

∫ xn

−∞

fW (t1),...,W (tn−1),W (tn) (x1, . . . , xn−1, v)

fW (t1),...,W (tn−1) (x1, . . . , xn−1)
dv

and we use (10.6) to get

∫ xn

−∞

p(t1, x1, 0)p(t2 − t1, x2, x1) · · · p(tn − tn−1, v, xn−1)

p(t1, x1, 0)p(t2 − t1, x2, x1) · · · p(tn−1 − tn−2, xn−1, xn−2)
dv

=

∫ xn

−∞
p(tn − tn−1, v, xn−1)dv = P (W (tn) ≤ xn |W (tn−1) = xn−1) .

The Wiener process is a Gaussian Markov process and its autocorrelation function is RW(t, s) = min(t, s).

Then, if t0 < s < t we check (9.37) by

RW(t, s)RW(s, t0)

RW(s, s)
=

min(t, s)min(s, t0)

min(s, s)
=
s · t0
s

= t0,

which equals RW(t, t0) = min(t, t0) = t0, as it should.

10.5 The Wiener Integral

This section draws mainly upon [26, chapter 3.4].

10.5.1 Definition

Definition 10.5.1 Let {W (t)|t ≥ 0} be a Wiener process and f(t) be a function such that
∫ b

a
f2(t)dt < ∞,

where 0 ≤ a < b ≤ +∞. The mean square integral with respect to the Wiener process or the Wiener integral∫ b

a
f(t)dW (t) is defined as the mean square limit

n∑

i=1

f(ti−1) (W (ti)−W (ti−1))
2→
∫ b

a

f(t)dW (t), (10.40)

where a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0 as n→ ∞.

In general, we know that the sample paths of the Wiener process have unbounded total variation, but have by

lemma 10.4.3 finite quadratic variation. Hence we must define
∫ b

a
f(t)dW (t) using mean square convergence,

which means that we are looking at all sample paths simultaneously.
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The reader should note the similarities and differences between the left hand side of (10.40) and the

the discrete stochastic integral in (3.56) above.

In physics the Wiener integral is a name for a different mathematical concept, namely that of a path integral.

By this we refer to an integral of a functional of the Wiener process with respect to the Wiener measure, which

is a probability measure on the set of continuous functions over [0, T ], see [78, chapter 6].

Remark 10.5.1 As pointed out in [105, p. 88], Wiener himself introduced the integral later named after him

by the formula of integration by parts

∫ b

a

f(t)dW (t) = [f(t)W (t)]
b
a −

∫ b

a

W (t)df(t), (10.41)

where the function f(t) is assumed have bounded total variation in the sense of definition 10.4.1. As the sample

functions of a Wiener process are continuous, the right hand side is well-defined, inasmuch the integral is a

Stieltjes integral [69, chapter 6.8].

Example 10.5.1 We consider

Xn =

n∑

i=1

e−λ i−1
n

(
W

(
i

n

)
−W

(
(i− 1)

n

))
, n ≥ 1.

That is, we have ti =
i
n in definition, see eq. (10.40), and 0 = t0 < t1 < . . . < tn−1 < tn = 1. We expect this to

converge to

Xn
2→
∫ 1

0

e−λudW (u),

as n→ ∞. This implies convergence in distribution. We shall find the limiting distribution.

We set for convenience of writing for all 1 ≤ i ≤ n

Yi
def
= W

(
i

n

)
−W

(
(i− 1)

n

)

and then

Yi ∈ N

(
0,

1

n

)

for all 1 ≤ i ≤ n. Thus, as a linear combination of normal random variables,

Xn =

n∑

i=1

e−λ i−1
n Yi

is a normal random variable. Its expectation and variance are as follows.

E [Xn] =

n∑

i=1

e−λ i−1
n E [Yi] = 0,

and since the increments (i.e., here Yi) of a Wiener process are independent for non overlapping intervals

Var (Xn) =

n∑

i=1

e−2λ i−1
n Var (Yi) =

1

n

n∑

i=1

e−2λ i−1
n .
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Therefore the characteristic function of Xn is

ϕXn
(t) = e−

t2

2
1
n

∑n
i=1 e−2λ i−1

n .

We can check the convergence in distribution by means of this without invoking Riemann sums. In fact we have

1

n

n∑

i=1

e−2λ i−1
n =

1

n

n−1∑

i=0

e−2λ i
n =

1

n

1− e−2λ

1− e−2λ 1
n

.

We write this as
1

n

1− e−2λ

1− e−2λ 1
n

=
1− e−2λ

1−e−2λ 1
n

1
n

.

Then we set f(t) = e−2λt, and recognize the difference ratio

1− e−2λ 1
n

1
n

= −
(
f
(
1
n

)
− f(0)

)

1
n

→ −f ′
(0) = 2λ,

as n→ ∞. Hence

lim
n→∞

1

n

n∑

i=1

e−2λ k−1
n =

1− e−2λ

2λ
.

We note that
∫ 1

0 e
−2λudu = 1−e−2λ

2λ . Thus we have shown that

Xn
d→
∫ 1

0

e−λudW (u) ∈ N

(
0,

∫ 1

0

e−2λudu

)
,

as n→ ∞.

10.5.2 Properties

Since (10.40) defines the Wiener integral in terms of convergence in mean square, we can easily adapt the

techniques in section 9.2 to this case and derive some of the basic properties of the Wiener integral defined in

(10.40).

1. The following property is readily verified:

∫ b

a

(f(t) + g(t)) dW (t) =

∫ b

a

f(t)dW (t) +

∫ b

a

g(t)dW (t),

if
∫ b

a
f2(t)dt <∞ and

∫ b

a
g2(t)dt <∞.

2.

E

[∫ b

a

f(t)dW (t)

]
= 0. (10.42)

This follows in the same way as the proof of the analogous statement in theorem 9.2.1, since

E

[
n∑

i=1

f(ti−1) (W (ti)−W (ti−1))

]
=

n∑

i=1

f(ti−1)E [(W (ti)−W (ti−1))] = 0,

by (10.22) of lemma 10.2.4 above.
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3.

Var

[∫ b

a

f(t)dW (t)

]
=

∫ b

a

f2(t)dt (10.43)

This follows again as in the proof of the analogous statement in theorem 9.2.1, since by theorem 10.2.6

the increments of the Wiener process over non-overlapping intervals are independent,

Var

[
n∑

i=1

f(ti−1) (W (ti)−W (ti−1))

]
=

n∑

i=1

f2(ti−1)Var [(W (ti)−W (ti−1))] ,

=
n∑

i=1

f2(ti−1)(ti − ti−1),

by (10.22) of lemma 10.2.4 above. Then

n∑

i=1

f2(ti−1)(ti − ti−1) →
∫ b

a

f2(t)dt,

as a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0 as n→ ∞.

4. Evidently
∑n

i=1 f(ti−1) (W (ti)−W (ti−1)) is a Gaussian random variable. By properties of convergence

in mean square of sequences of Gaussian random variables, see theorem 7.4.2 in section 7.4.3, and by

(10.42) and (10.43) we obtain

∫ b

a

f(t)dW (t) ∈ N

(
0,

∫ b

a

f2(t)dt

)
. (10.44)

5. If
∫ b

a f
2(t)dt <∞ and

∫ b

a g
2(t)dt <∞,

E

[∫ b

a

f(t)dW (t)

∫ b

a

g(t)dW (t)

]
=

∫ b

a

f(t)g(t)dt. (10.45)

Here we see a case of the heuristics in (10.38) in operation, too. To prove this, we fix a = t0 < t1 < . . . <

tn−1 < tn = b and start with the approximating sums, or,

E




n∑

i=1

f(ti−1) (W (ti)−W (ti−1)) ·
n∑

j=1

g(tj−1) (W (tj)−W (tj−1))




=

n∑

i=1

n∑

j=1

f(ti−1)g(tj−1)E [(W (ti)−W (ti−1)) · (W (tj)−W (tj−1))]

and as by theorem 10.2.6 the increments of the Wiener process over non-overlapping intervals are inde-

pendent,

=

n∑

i=1

f(ti−1)g(ti−1)(ti − ti−1) →
∫ b

a

f(t) · g(t)dt,

as a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0 as n→ ∞.

6. By the preceding we can define a new process with variables Y (t) by

Y (t) =

∫ t

0

h(s)dW (s).
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Then (10.45) can be manipulated to deliver

E [Y (t) · Y (s)] =

∫ min(t,s)

0

h2(u)du. (10.46)

To establish this claim, let I[0,t](u) = 1, if 0 ≤ u ≤ t and I[0,t](u) = 0 otherwise, and

f(u) = I[0,t](u) · h(u), g(u) = I[0,s](u) · h(u), (10.47)

take a = 0, b = +∞, and then

Y (t) =

∫ ∞

0

f(u)dW (u), Y (s) =

∫ ∞

0

g(u)dW (u).

By insertion we see that (10.46) is a special case of (10.45).

Example 10.5.2 The Wiener integral satisfies

W (t)
d
=

∫ t

0

dW (s). (10.48)

This is natural, but cannot be argued by differentiation. To establish (10.48) we write using (10.47)

Y (t)
def
=

∫ t

0

dW (s) =

∫ ∞

0

I[0,t](s)dW (s).

Clearly {Y (t) | t ≥ 0} is a Gaussian process. Then (10.46) entails

E [Y (t) · Y (s)] =

∫ min(t,s)

0

du = min(t, s), (10.49)

which shows that {
∫ t

0
dW (s) | t ≥ 0} is a Wiener process, and (10.48) is verified (as an equality in distribution).

Example 10.5.3 By (10.48) and the first property of the Wiener integral we can write for any τ > 0

W (t+ τ) −W (t)
d
=

∫ t+τ

t

dW (s). (10.50)

We note in this regard, e.g., that by (10.43)

Var [W (t+ τ)−W (t)] = Var

[∫ t+τ

t

dW (s)

]
=

∫ t+τ

t

ds = τ,

as it should, c.f., (10.20). The integral in (10.50) is sometimes called a gliding window smoother, see [97].

10.5.3 The Wiener Integral is a Scrambled Wiener Process

Suppose now that
∫∞
0 f2(t)dt <∞ and

Y (t) =

∫ t

a

f(u)dW (u).
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We assume for the sake of simplicity that f(u) > 0 for all u. We let

τ(t) = inf

{
s |
∫ s

0

f2(u)du = t

}
,

or, τ(t) is the time, when
∫ s

0 f
2(u)du as an increasing function of s first reaches the level t > 0. Evidently

t 7→ τ(t) is one-to-one, or, invertible, and the inverse is

τ−1(s) =

∫ s

0

f2(u)du.

Let us look at Y (τ(t)). Then from (10.43)

E
[
Y 2(τ(t))

]
=

∫ τ(t)

a

f2(u)du = τ−1 (τ(t)) = t.

Hence, if we define

V (t) = Y (τ(t)),

then {V (t) | t ≥ 0} is a Wiener process. Furthermore,

Y (t) = V
(
τ−1(t)

) d
=W

(
τ−1(t)

)
, (10.51)

which shows that a Wiener integral is a Wiener process on a distorted or scrambled time scale.

10.5.4 White Noise

In the engineering literature, see, e.g., [8, 32, 56, 71, 80, 85, 97] as well as in physics [58, p.255], [62, pp. 66−69],

one encounters the ’random process’ with variables
o

W such that

E
[ o

W (t)
o

W (s)
]
= δ(t− s), (10.52)

where δ(t − s) is the Dirac delta, see [96, p. 354]. As stated in [96, loc.cit], δ(t − s) is not a function in

the ordinary sense, but has to be regarded as a distribution, not in the sense of probability theory, but in the

sense of the theory of generalized functions (which is a class of functionals on the set of infinitely differentiable

functions with support in a bounded set).

Let us, as a piece of formal treatment, c.f., (10.48), set

W (t) =

∫ t

0

o

W (u)du. (10.53)

Then we get by a formal manipulation with the rules for integrals above that

E [W (t)W (s)] =

∫ t

0

∫ s

0

E
[ o

W (u)
o

W (v)
]
dudv

=

∫ t

0

∫ s

0

δ(u − v)dudv.

The ’delta function’ δ(u− v) is zero if u 6= v and acts (inside an integral) according to
∫ ∞

−∞
f(v)δ(u − v)dv = f(u).

Then with f(v) = I[0,s](v) we get

∫ s

0

δ(u − v)dv =

∫ ∞

−∞
I[0,s](v)δ(u − v)dv =

{
0 if u > s

1 if u < s.
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Thus ∫ t

0

∫ s

0

δ(u− v)dudv =

∫ min(t,s)

0

dv = min(t, s).

Hence, if we think of the process with variables
o

W (u) as being Gaussian, then the process introduced by the

variables W (t) in (10.53) is like a Wiener process ! Of course, by (10.53) one should get then

d

dt
W (t) =

o

W (t),

which is not possible, as the Wiener process has almost surely non-differentiable sample paths. Hence, the white

noise makes little, or perhaps, should make no sense. One can, nevertheless, introduce linear time invariant

filters, c.f. the exercises in section 9.7.6, with white noise as input, or

Y (t) =

∫ ∞

−∞
G(t− s)

o

W (s)ds,

and compute the autocovariances and spectral densities of the output process in a very convenient way. Thus,

despite of the fact that the white noise does not exist as a stochastic process in our sense, it can be formally

manipulated to yield useful results, at least as long as one does not try to do any non-linear operations. A

consequence of (10.52) is that the spectral density of the white noise is a constant for all frequencies,

s o

W
(f) = 1, −∞ < f <∞. (10.54)

(To ’check’ this, insert s o

W
(f) = 1 in the right hand side of (9.25).) In engineering, see, e.g., [77, 105], the white

noise is thought of as an approximation of a weakly stationary process that has a power spectral density which

is constant over very wide band of frequencies and then equals to, or decreases rapidly to, zero. An instance of

this argument will be demonstrated later in section 11.4 on thermal noise.

10.6 Martingales and the Wiener Process

This section on martingales in continuous time is, for one more time, just a scratch on the surface of an extensive

theory, [29], [70, chapter 7], [67, chapter 7]. We extend here the concepts in section 3.8.5. We shall first need

to define the notion of a filtration.

Definition 10.6.1 Let F be a sigma field of subsets of Ω. Let T be an index set, so that for every t ∈ T , Ft

is a sigma field ⊂ F and that

Fs ⊂ Ft s < t. (10.55)

Then we call the family of sigma fields (Ft)t∈T a filtration.

This leads immediately to the next definition, that of a martingale.

Definition 10.6.2 Let X = {X(t) | t ∈ T } is a stochastic process on (Ω,F ,P). Then we call X a martingale

with respect to the filtration (Ft)t∈T , if

1. E [| X(t) |] <∞ for all t ∈ T .

2. X(t) is measurable with respect to Ft for each t ∈ T .

3. For s ≤ t the martingale property holds:

E [X(t) | Fs] = X(s). (10.56)
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Let now W = {W (t) | 0 ≤ t} be a Wiener process. We define the filtration

FW

t
def
= the sigma field generated by W (s) for 0 ≤ s ≤ t.

We write this as

FW

t = σ (W (s); 0 ≤ s ≤ t) .

We should read this according to the relevant definition 1.5.3 in chapter 1. We take any number of indices

t1, . . . , tn, all ti ≤ s. The sigma field FW
t1,...,tn,s generated by the random variables W (ti) i = 1, . . . , n, is defined

to be the smallest σ field containing all events of the form {ω :W (ti)(ω) ∈ A} ∈ F , A ∈ B, where B is the Borel

σ field over R.

By independent increments, theorem 10.2.6, and lemma 10.2.4, eq. (10.22), we get that

E
[
W (t)−W (s) | FW

t1,...,tn,s

]
= E [W (t)−W (s)] = 0. (10.57)

Clearly sigma fields like FW
t1,...,tn,s generate FW

s , so that FW
t1,...,tn,s ⊂ FW

s entails by double expectation

E
[
W (t)−W (s) | FW

s

]
= E

[
E
[
W (t)−W (s) | FW

s

]
| FW

t1,...,tn,s

]

and by the tower property and (10.57)

= E
[
W (t)−W (s) | FW

t1,...,tn,s

]
= 0,

⇔ E
[
W (t) | FW

s

]
= E

[
W (s) | FW

s

]
,

but since W (s) is by construction FW
s -measurable, the rule of taking out what is known gives the martingale

property

E
[
W (t) | FW

s

]
=W (s). (10.58)

Since E [|W (t) |] <∞, we have the following theorem.

Theorem 10.6.1 W = {W (t) | t ≥ 0} is a Wiener process and the sigma field is FW
t = σ (W (s); 0 ≤ s ≤ t),

then W is a martingale with respect to the filtration
(
FW

t

)
t≥0

.

This has to be regarded as a very significant finding, because there is a host of inequalities and convergence

theorems e.t.c., that hold for martingales in general, and thus for the Wiener process. In addition, the martingale

property is of crucial importance for stochastic calculus.

While we are at it, we may note the following re-statement of the Markov property (10.39) in theorem 10.4.5.

Theorem 10.6.2 W is a Wiener process and the filtration is
(
FW

t

)
t≥0

, where FW
t = σ (W (s); 0 ≤ s ≤ t).

Then, if s < t and y ∈ R, it holds almost surely that

P
(
W (t) ≤ y | FW

s

)
= P (W (t) ≤ y |W (s)) . (10.59)



290 CHAPTER 10. THE WIENER PROCESS

10.7 Exercises

10.7.1 Random Walks

Random walk is a mathematical statement about a trajectory of an object that takes successive random steps.

Random walk is one of the most important and most studied topics in probability theory. The exercises on

random walks in this section are adapted from [10, 48] and [78, chapter 9.1]. We start with the first properities

of the (unrestricted) random walk, and then continue to find the connection to the Wiener process, whereby we

can interpret a random walk as the path traced by a molecule as it travels in a liquid or a gas and collides with

other particles [10, 78].

1. Let {Xi}∞i=1 be I.I.D. random variables with two values so that Xi = +1 with probability p and Xi = −1

with probability q = 1− p. We let

Sn = X1 +X2 + . . .+Xn, S0 = 0 (10.60)

The sequence of random variables {Sn}∞i=0 is called a random walk. We can visualize the random walk

as a particle jumping on a lattice of sites j = 0,±1,±2, . . . starting at time zero in the site 0. At any n

the random walk currently at j jumps to the right to the site j + 1 with probability p or to the left to

the site j − 1 with probability q. A random walk is thus constructed also a time- and space-homogeneous

finite Markov chain, see [95, lecture 6] for a treatment from this point of view.

(a) Show that

P (Sn = j) =

(
n
n+j
2

)
p

n+j
2 q

n−j
2 . (10.61)

Aid: We hint at a combinatorial argument. Consider the random variable R(n) defined by

R(n)
def
= the number of steps to the right in n steps.

Then it clearly (c.f., figure ??) holds that

Sn = R(n)− (n−R(n)),

and hence, if Sn = j, then R(n) = n+j
2 . Next, find the number of paths of the random walk such

that R(n) = n+j
2 and Sn = j. Find the probability of each of these paths and sum up them.

(b) Reflection principle Let

Sn = X1 +X2 + . . .+Xn + a.

Thus S0 = a and we suppose that Sn = b. Consider

Nn(a, b) = the number of possible paths from a to b.

Let

N0
n(a, b) = the number of paths from a to b, which pass 0.

Show that if a, b > 0, then

N0
n(a, b) = Nn(−a, b).

(c) Show that

Nn(a, b) =

(
n
n+b−a

2

)
.
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2. (From [43, 78]) Determine the characteristic function ϕSn
(t) of the random walk Sn in (10.60), and use

ϕSn
(t) to find the probability expression (10.61).

3. Here we impose a parameter (= δ) on the random walk in the preceding exercises. Thus, for all i ≥ 1,

Xi = δ > 0 with probability 1
2 , Xi = −δ with probability 1

2 , and {Xi}∞i=1 are independent.

We let

Sn = X1 +X2 + . . .+Xn, S0 = 0.

This sequence of random variables {Sn}∞i=0 is called a symmetric random walk. We can visualize

{Sn}∞i=0 as a particle jumping on sites jδ on a lattice with {0,±δ,±2δ, . . .} with δ as lattice spacing or

a step size. The random walk starts at time zero in the site 0.

(a) Show that

(Sn, σ (X1, X2, . . . , Xn))n≥0

is a martingale.

(b) Show that for m ≥ 0, n ≥ 0,

E [SnSm] = δ2 min(n,m). (10.62)

(c) Show that
Sn√
nδ

d→ N(0, 1),

as n→ ∞, i.e., that approximately for large n,

Sn ∈ N(0, nδ2). (10.63)

Remark 10.7.1 In view of (10.15) we can write the random variablesW (t1), . . . ,W (tn) of a Wiener

process in the form

W (ti) =
i∑

k=1

Zk,

where Zk =W (tk)−W (tk−1)s are I.I.D. for tk − tk−1 =constant. Since we have (10.62) and (10.63),

the symmetric random walk has a certain similarity with the Wiener process sampled at equidistant

times, recall even (10.18).

4. The random walk is as in the preceding exercise except that for any integer n ≥ 0 and for all i ≥ 1,

X
(n)
i = δn > 0 with probability 1

2 , X
(n)
i = −δn with probability 1

2 , and {X(n)
i }∞i=1 are independent. Here

δn is a sequence of positive numbers such that

δn → 0,

as n → ∞. In words, the spacing of the lattice becomes denser (taken as a subset of the real line) or, in

other words, the step size becomes smaller.

We impose a second sequence of parameters, τn > 0 for the purpose of imbedding the random walk in

continuous time. For a fixed n we can think of a particle undergoing a random walk moving to right or

to left on the lattice {0,±δn,±2δn, . . .} at every τn seconds. We assume that

τn → 0,
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as n→ ∞. We have, for some time t in seconds,

k = ⌊ t
τn

⌋.

Hence, it takes an inceasing number of steps to make a walk of length t in time. Let us now assume that

for some δ > 0 and τ > 0

⌊ t
τn

⌋δ2n → t
δ2

2τ
, (10.64)

as n→ ∞. E.g., the choice δn = δ√
n
, τn = 2τ

n satisfies all of the requirements above.

For a fixed n we have the random walk

S
(n)
k = X

(n)
1 +X

(n)
2 + . . .+X

(n)
k , S

(n)
0 = 0.

In view of (10.63) we get for fixed n and large k that

S
(n)
k ∈ N(0, kδ2n). (10.65)

Define for t ≥ 0

W (n)(t)
def
=

⌊ t
τn

⌋∑

i=1

X
(n)
i , (10.66)

so that W (n) (kτn) = S
(n)
k . The process {W (n)(t) | t ≥ 0} is a random walk in continuous time, or, a

stepwise constant interpolation of {S(n)
k }∞k=0.

(a) Show that for any t ≥ 0

W (n)(t)
d→ N

(
0, t

δ2

2τ

)
, (10.67)

as n→ ∞.

(b) Show that for any t > 0 and s ≥ 0

lim
n→∞

E
[
W (n)(t)W (n)(s)

]
=
δ2

2τ
min (t, s) . (10.68)

In the above we have produced evidence for the statement that a sequence Wn of sym-

metric random walks interpolated in continuous time and with decreasing stepsize and with

increasing number of steps (per unit of time) will (c.f.,(10.64)), for increasing n approximate

a (non-standard, see (10.18)) Wiener process, as would seem natural in view of the remark

10.7.1.

A pedagogical point of the exercise is that one can model and/or understand diffusion with-

out thermodynamics. We can regard D
d
= δ2

2τ

[
cm2

sec

]
as a diffusion coefficient, and δ

τ as

instantaneous velocity, c.f., [10]. We have found for large n again the result (10.1) on root-

mean squared displacement of a diffusing particle,
√
E
[(
W (n)(t)

)2]
=

√
2Dt.

We shall rediscover this finding using the Langevin dynamics in chapter 11.

The random walks above are known as unrestricted random walks. Random walks with absorbing

and/or reflecting boundaries, are concisely analyzed in [15]. The mathematical results on random

walks have been applied in computer science, physics, molecular biology, ecology, economics, psychology

and a number of other fields. For example,the price of a fluctuating stock and the financial status of a

gambler have been studied by random walks.
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10.7.2 Wiener Process

1. The Bivariate Distribution for (W (s),W (t)) Let 0 < s < t. We know that for the Wiener process

(W (s),W (t))
′
∈ N

((
0

0

)
,

(
s s

s t

))
.

Set CW =

(
s s

s t

)
. Then there is the bivariate joint normal p.d.f. of the form

fW (s),W (t)(x, y) =
1

2π
√
detCW

e

−
1

2
(x,y)C−1

W







x

y







. (10.69)

On the other hand, by our definition of the Wiener process, we have (10.8) or

fW (s),W (t)(x, y) =
1√
2πs

e
−
x2

2s
1√

2π(t− s)
e
−
(y − x)2

2(t− s) . (10.70)

Verify by explicit expansions that (10.69) and (10.70) are one and the same p.d.f..

2. Shift Let τ > 0. {W (t)|t ≥ 0} is a Wiener process. Define

V (t)
def
= W (t+ τ)−W (τ). (10.71)

Show that V = {V (t)|t ≥ 0} is a Wiener process.

3. Brownian Scaling Let c > 0 and {W (t)|t ≥ 0} be a Wiener process. Define

V (t)
def
=

1

c
W (c2t). (10.72)

Show that V = {V (t)|t ≥ 0} is a Wiener process.

4. Time Inversion {W (t)|t ≥ 0} is a Wiener process. Define

V (t)
def
= tW

(
1

t

)
. (10.73)

Show that V = {V (t)|t ≥ 0} is a Wiener process.

5. Time Reversal {W (t)|t ≥ 0} is a Wiener process. Define

V (t)
def
= W (1)−W (1− t) , 0 ≤ t ≤ 1. (10.74)

Show that V (t)
d
=W (t) for 0 ≤ t ≤ 1.

6. Brownian Bridge We give a first a general definition from [19, p.64]. Let x, y ∈ R and l > 0. A Gaussian

process X = {X(t) | 0 ≤ t ≤ l} with continuous sample paths and X(0) = x such that

µX(t) = x+ (y − x)
t

l
, Cov (X(t), X(s)) = min(s, t)− st

l

is called a Brownian Bridge from x to y of length l or a tied-down Wiener process. Note that

µX(l) = y and Cov (X(s), X(t)) = 0 if s = l or t = l, and hence X(l) = y.



294 CHAPTER 10. THE WIENER PROCESS

(a) (From [19, p.64]) Let {W (t)|t ≥ 0} be a Wiener process. Show that if Xx,l is a Brownian Bridge

from x to x of length l, then

Xx,l(t)
d
= x+W (t)− t

l
W (l) , 0 ≤ t ≤ l. (10.75)

(b) (From [19, p.64]) Let {W (t)|t ≥ 0} be a Wiener process. Show that if Xx,l is a Brownian Bridge

from x to x of length l, then

Xx,l(t)
d
= x+

l − t

l
W

(
lt

l − t

)
, 0 ≤ t ≤ l. (10.76)

(c) (From [19, p.64]) Show that if X is a Brownian Bridge from x to y of length l, then

X(t)
d
= Xx,l(t) + (y − x)

t

l
, 0 ≤ t ≤ l, (10.77)

where Xx,l(t) is a random variable of Xx,l, as in (a) and (b) above.

(d) Define the process

B(t)
def
= W (t)− tW (1) , 0 ≤ t ≤ 1. (10.78)

This is a process is tied down by the condition B(0) = B(1) = 0, Brownian bridge from 0 to 0 of

length 1. Compare with (9.61) in the preceding.

(i) Show that the autocorrelation function of {B(t)|0 ≤ t ≤ 1} is

RB(t, s) =

{
s(1− t) s ≤ t

(1− s)t s ≥ t.
(10.79)

(ii) Show that the increments of the Brownian bridge are not independent.

(iii) Let B = {B(t) | 0 ≤ t ≤ 1} be a Brownian bridge. Show that the Wiener process in [0, T ], in

the sense of (10.18), can be decomposed as

W (t) = B

(
t√
T

)
+

t√
T

· Z,

where Z ∈ N(0, 1) and is independent of B.

(iv) Show that for 0 ≤ t <∞
W (t) = (1 + t)B

(
t

1 + t

)
.

Compare with (9.62) in the preceding.

7. The Reflection Principle and The Maximum of a Wiener Process in a Finite Interval Let us

look at the collection of all sample paths t 7→W (t) of a Wiener process {W (t)|t ≥ 0} such that W (T ) > a,

where a > 0 and T > 0, here T is a time point. Since W (0) = 0, there exists a time τ , a random variable

depending on the particular sample path, such that W (τ) = a for the first time.

For t > τ we reflect W (t) around the line x = a to obtain

W̃ (t)
def
=

{
W (t) if t < τ

a− (W (t) − a) if t > τ .
(10.80)

Note that if t > τ , then W̃ (t) − a = −(W (t) − a), reflection. Thus W̃ (T ) < a, since W (T ) > a (draw a

picture).
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In fact we are saying that

W̃ (t) =

{
W (t) if t < τ

2W (τ)−W (t) if t > τ .
(10.81)

and that W̃ (t) is a Wiener process, but we have to admit that the proof is beyond the resources of these

lectures10

(a) Show that for t > τ ,

P (W (t) ≤ x+ a |W (τ) = a) = P (W (t) ≥ a− x |W (τ) = a) , (10.82)

where it may be useful to employ W̃ (t).

The equation (10.82) says that the probability law of the process for t > τ , given W (τ) = a, is

symmetrical with respect to x > a and x < a. In addition, the process is independent of the past of

the process prior to τ .

(b) Set now

M0≤u≤T
def
= max

0≤u≤T
W (u), M̃0≤u≤T

def
= max

0≤u≤T
W̃ (u).

t 7→W (t) and t 7→ W̃ (t) with the same probability of occurrence and such that

M0≤u≤T ≥ a, M̃0≤u≤T ≥ a.

Conversely, by the nature of this correspondence, every sample function t 7→W (t) for whichM0≤u≤T ≥
a results from either of the two sample functions t 7→ W (t) and t 7→ W̃ (t) with equal probability, one

of which is such that W (T ) > a unless W (T ) = a, but P(W (T ) = a) = 0. Show now that

P (M0≤u≤T ≥ a) =
2

T
√
2π

∫ ∞

a

e−x2/2Tdx. (10.83)

8. The Ornstein-Uhlenbeck Process {W (t)|t ≥ 0} is a Wiener process. Let a > 0. Define for all t ≥ 0

X(t)
def
= e−atW

(
e2at

)
. (10.84)

Show that X = {X(t)|t ≥ 0} is a Gaussian process with mean function

µX(t) = 0

and autocorrelation function

RX(t, s) = e−a|t−s|. (10.85)

A comparison of this with (11.12) below shows (with scaling σ2 = 2a) that the process X = {X(t)|t ≥ 0}
is an Ornstein-Uhlenbeck process. How is (10.84) related to the representation (9.39) ? Are the sample

paths of X = {X(t)|t ≥ 0} almost surely continuous ? The trick in (10.84) is known as the Lamperti

transform.

9. The Geometric Brownian Motion {W (t)|t ≥ 0} is a Wiener process. Let a, σ > 0 and x0 be real

constants. Then

X(t)
def
= x0e

(α− 1
2σ

2)t+σW (t).

Show that
10The statements to follow are true, but the complete analysis requires strictly speaking the so called strong Markov property

[70, p. 73]. For handling the strong Markov property one has definite advantage of both the techniques and the ’jargon of modern

probability’, but an intuitive physics text like [62, p.57−58] needs, unlike us, to pay no lip service to this difficulty in dealing with

the reflection principle.
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(a)

E [X(t)] = x0e
αt.

(b)

Var(X(t) = x20e
2αt
(
eσ

2t − 1
)
.

10. {Wi(t)|t ≥ 0}, i = 1, 2, are two independent Wiener processes. Define a new stochastic process {V (t)| −
∞ < t < +∞} by

V (t) =

{
W1(t) t ≥ 0

W2(−t) t < 0.

(a) Find P (V (1/2)− V (−1/2) > 1).

(b) Show that {V (t+ 1)− V (t)| −∞ < t < +∞} is a stationary Gaussian process.

11. Differentiation W is a Wiener process. Show that

| h |
| |W (t+ h)−W (t) |

p→ 0,

as h→ 0.

12. Partial diffential equation for a functional of the Wiener process Let h(x) be a bounded and

continuous function defined in the whole real line. {W (t)|t ≥ 0} is a Wiener process. Set

u(t, x) = E [h(x+W (t))] .

Show that u(t, x) satisfies
∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x), u(0, x) = h(x). (10.86)

Aid: Recall (10.3).

13. Fractional Brownian Motion WH = {WH(t) | 0 ≤ t < ∞} is a Gaussian stochastic process. Its

expectation is = 0 and its autocorrelation function equals

RWH
(t, s) = E [WH(t)WH(s)] =

1

2

(
t2H + s2H − |t− s|2H

)
, (10.87)

where 0 < H < 1 (H is known as the Hurst parameter ).

(a) Show that WH(t)
d
= 1

aHWH (at), where a > 0.

(b) Which process do we obtain for H = 1
2 ?

(c) Define the random variable

Y =WH (t+ h)−WH (t)

where h > 0. What is the distribution of Y ?

(d) Show that

Y =WH (t+ ah)−WH (t)
d
= aHWH (h) ,

which means that WH is the same in all time scales. This implies also that its sample paths are

fractals11.

11For this and other statements given here, see

B.B. Mandelbrot & J.W. van Ness: Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, vol. 10,

1968, pp. 422−437.
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14. Fractional Gaussian Process Let 1/2 < H < 1

WH,δ(t)
def
=

1

δ
(WH(t+ δ)−WH(t)) ,

where WH is the fractional Brownian motion with the autocorrelation function

RWH
(t, s) = E [WH(t)WH(s)] =

vH
2

(
t2H + s2H − |t− s|2H

)
, (10.88)

where 1
2 < H < 1 and

vH = −Γ(2− 2H) cos(πH)

πH(2H − 1)
.

Show that WH,δ is a stationary Gaussian process with zero mean and with autocorrelation function

RWH,δ
(h) =

vHδ
2H−2

2

(( | h |
δ

+ 1

)2H

− 2

( | h |
δ

)2H

+

∣∣∣∣
| h |
δ

− 1

∣∣∣∣
2H
)
.

It can be shown that the power spectral density of sWH,δ
(f) is approximately

sWH,δ
(f) ≈ f1−2H .

This implies that the increments of WH are a good model for so called 1/f -type noise encountered,

e.g., in electric circuits [11]. The 1/f -type noise models physical processes with long range dependencies.

10.7.3 The Wiener Integral

1. Let τ > 0 and

Y (t)
d
=

1

τ

∫ t+τ

t

dW (s). (10.89)

Note that (10.48 ) implies that

Y (t)
d
=

1

τ
(W (t+ τ)−W (t)) .

(a) Show that the autocorrelation function is

RY(h) =
1

τ
max

(
0, 1− |h|

τ

)
, h = t− s. (10.90)

(b) Use the Fourier transform of RY(h) (use the table of transform pairs in section 9.3.1 above) to argue

that Y (t) approaches white noise as τ → 0.

2. Let

Z(t)
d
=

∫ t

0

s2dW (s).

for t ∈ [0, T ].

(a) Find the scrambled representation (10.51) for Z(t).

(b) (From [62, p.52]) Set for a constant a

X(t)
d
= aZ(t) + t, 0 ≤ t ≤ T.

Find the p.d.f. of X(t).
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3. Fractional Brownian Motion Let 1/2 < H < 1 and

WH(t)
def
=

1

Γ(H + 1/2)
{I1 + I2} ,

where I1 and I2 are the Wiener integrals

I1 =

∫ 0

−∞

(
| t− u |H−1/2 − |u|H−1/2

)
dW (u)

and

I2 =

∫ t

0

(
| t− u |H−1/2

)
dW (u),

where the Wiener process has been extended to the negative values as in exercise 10. above. When

t < 0 the notation
∫ t

0 should be read as −
∫ 0

t . Show that this is a zero mean Gaussian process with

autocorrelation function given by (10.88).

4. Separable Autocorrelation Functions Use the representation (10.51) to show that

Y (t) =

∫ t

0

f(u)dW (u), t ≥ 0,

has a separable autocorrelation function. Has Y = {Y (t) | t ≥ 0} the Markov property ?

5. Martingales and Wiener integrals Let W be a Wiener process, and let

FW

t = σ (W (s); 0 ≤ s ≤ t) .

Set for t ≥
Y (t) =

∫ t

0

f(s)dW (s),

where
∫∞
0
f2(t)dt <∞. Show that the process

{Y (t) | 0 ≤ t}

is a martingale w.r.t.
(
FW

t

)
t≥0

.

6. Discrete Stochastic Integrals w.r.t. the Wiener Process Let W be a Wiener process, and let

0 = t0 < t1 < . . . ti−1 < ti < . . . < tn and

FW

ti = σ (W (t0),W (t1), . . .W (ti)) .

Let
∫∞
−∞ | f(x) |2 dx <∞ and X(ti) = f(W (ti−1)) and X = {X(ti) | i = 0, . . . , n}. Consider as in (3.56)

(X ⋆W)n
def
=

n∑

i=1

Xti (△W )ti . (10.91)

Show that this is a well defined discrete stochastic integral and that it is a martingale w.r.t.
(
FW

ti

)n
i=0

.

10.7.4 A Next Step: Stochastic Calculus

1. Let W = {W (t)|t ≥ 0} be a Wiener process and

X(t) = x0e
W (t), t ≥ 0.
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(a) Check first using the Taylor expansion of ex that for h > 0

X(t+h)−X(t) = X(t)

(
(W (t+ h)−W (t)) +

1

2!
(W (t+ h)−W (t))

2
+

1

3!
(W (t+ h)−W (t))

3
+ . . .

)
.

(b) Show that

E [X(t+ h)−X(t)−X(t) (W (t+ h)−W (t))] = O(h),

where O(h) is a function of h such that O(h)
h →M(= a finite limit). You will need (4.50).

Thus, if one tried to express X(t) formally by the seemingly obvious differential equation

dX(t) = X(t)dW (t),

the error would in the average be of order dt, which makes no sense, as truncation errors add linearly.

(c) Show that

E
[
(X(t+ h)−X(t)−X(t) (W (t+ h)−W (t)))

2
]
= O(h2).

(d) Show that

E

[
X(t+ h)−X(t)−X(t) (W (t+ h)−W (t)) − 1

2!
X(t) (W (t+ h)−W (t))

2

]
= o(h),

where o(h) is a function of h such that o(h)
h → 0 as h→ 0. Show that

E

[(
X(t+ h)−X(t)−X(t) (W (t+ h)−W (t))− 1

2!
X(t) (W (t+ h)−W (t))

2

)2
]
= o(h2).

By the preceding, we can write in the mean square sense

X(t+ h)−X(t) = X(t) (W (t+ h)−W (t)) +
X(t)

2
(W (t+ h)−W (t))

2
+ Z, (10.92)

where the remainder Z satisfies E [Z] = o(h) and E
[
Z2
]
= o(h2).

With (10.38) in mind we choose to express (10.92) (h→ dt) as

dX(t) = X(t)dW (t) +
X(t)

2
dt, t > 0 X(0) = x0 (10.93)

or

dX(t) = X(t)

(
dW (t) +

1

2
dt

)
, t > 0 X(0) = x0.

This is referred to as the stochastic differential equation satisfied by X(t) = x0e
W (t). Conversely, the

stochastic differential equation (10.93) is solved by X(t) = x0e
W (t). Here we have derived an instance of

Itô’s rule in stochastic calculus.

In the basic calculus the function x(t) = x0e
a(t), where a(t) is a differentiable function with a(0) = 0,

satisfies the first order homogeneous differential equation with an initial value,

d

dt
x(t) = x(t)

d

dt
a(t), t > 0, x(0) = x0.

Stochastic calculus has, by what we have found above, to differ from the ingrained rules of basic calculus

by force of the properties of the Wiener process. Moreover, we are actually to understand (10.93) in terms

of X(t) = x0e
W (t) satisfying

X(t)− x0 =

∫ t

0

X(s)dW (s) +
1

2

∫ t

0

X(s)ds, (10.94)

in which
∫ t

0 X(s)dW (s) must to be properly defined, the expression in (10.91) is a first step for this. For

further steps see, e.g., [13, 29, 70, 94].
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Chapter 11

The Langevin Equations and the

Ornstein-Uhlenbeck Process

11.1 On Langevin Equations

The French physicist Paul Langevin (1872−1946)1 published in 1908, see [73, Appendix A], a description of

the Brownian movement different from Einstein’s. Langevin’s approach is based on the Newtonian equations of

motion. In fact one talks in physics more generally about Langevin dynamics as a technique for mathematical

modelling of the dynamics of molecular systems. The Langevin approach applies simplified models accounting

for omitted degrees of freedom by the use of stochastic differential equations. Thus this piece of work exercises

a notable influence also on the theory of stochastic processes, and we shall now discuss it. We follow [39, 40],

see also [17, pp. 390−392], [58, pp.262−264], [62, pp. 71−74] and [78, chapter 4.6], [94, chapter 1].

Both Einstein and Langevin obtained by their respective mathematical methods the same physical statement,

namely (10.1), that the root-mean-squared displacement of a Brownian particle increases with the square root

of time for large times. We derive (10.1) by the Langevin theory.

Langevin introduced a stochastic force that pushes the Brownian particle in the velocity space, while Einstein

worked in the configuration space. In the terminology of this course Langevin described the Brownian particle’s

velocity as an Ornstein-Uhlenbeck process (to be defined below) and its position as the time integral of its

velocity, whereas Einstein described it as a Wiener process. The former is a more general theory and reduces

to the latter via a special limit procedure (see section 11.4 below).

Thus, X(t) is the position of the large suspended particle at time t > 0 and is given by

X(t) = X(0) +

∫ t

0

U(s)ds, (11.1)

where U(s) is the velocity of the particle. The Newtonian second law of motion gives

d

dt
U(t) = −aU(t) + σF (t), (11.2)

where a > 0 is a coefficient that reflects the drag force that opposes the particle’s motion through the solution

and F (t) is a random force representing the random collisions of the particle and the surrounding molecules.

1http://en.wikipedia.org/wiki/Paul Langevin

There are streets, high schools (’lycée’), town squares and residential areas in France named after Paul Langevin. He is buried in

the Parisian Panthéon.
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We can also write these equations, in very formal fashion, as

d2

dt2
X(t) = −a d

dt
X(t) + σF (t).

The expression (11.2) is called the Langevin equation (for the velocity of the Brownian motion). In physical

terms the parameters are

a =
γ

m
, σ =

√
g

m
,

where γ is the friction coefficient, and is by Stokes law given as γ = 6πkP , P = radius of the diffusing particle,

k = viscosity of the fluid, m is the mass of the particle. g is measure of the strength of the force F (t).

Additionally, τB = m
γ is known as the relaxation time of the particle. We obtain by (10.2) the Einstein relation

between the diffusion coefficient D and the friction coefficient γ as

D =
RT

N

1

6πkP
=
kBT

γ
,

where kB = R/N is the Boltzmann constant.

Following Langevin one can argue, since the time scale for random collisions is fast, that for Brownian movement

F (t) ≈
o

W (t),

or, the random force is white noise as described in section 10.5.4 above. In view of (10.53) we write the Langevin

theory of Brownian movement as

X(t) = X(0) +

∫ t

0

U(s)ds, (11.3)

and

dU(t) = −aU(t)dt+ σdW (t). (11.4)

By virtue of lessons in the theory of ordinary differential equations we surmise that (11.4) be solved with

U(t) = e−atU0 + σ

∫ t

0

e−a(t−u)dW (u). (11.5)

The stochastic interpretation of this requires the Wiener integral from section 10.5 above.

From now on the treatment of the Langevin theory of Brownian movement will differ from the physics texts like

[17, 62, 73, 78]. The quoted references do not construct an expression like (11.5). By various computations the

physics texts do, however, obtain the desired results for E
[
(X(t)−X(0))

2
]
that will be found using (11.5).

We shall next study the random process in (11.5), known as the Ornstein-Uhlenbeck process without paying

attention to physics and eventually show, in the set of exercises for this chapter, that U(t) in (11.5) does satisfy

(11.4) in the sense that it solves

U(t)− U0 = −a
∫ t

0

U(s)ds+ σ

∫ t

0

dW (s).

11.2 The Ornstein-Uhlenbeck Process

We use the Wiener integral as defined in section 10.5.1 above to define a Gaussian stochastic process with

variables Ũ(t) with a > 0, σ > 0 and t > 0 by

Ũ(t) = σ

∫ t

0

e−a(t−u)dW (u)
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= σe−at

∫ t

0

eaudW (u), (11.6)

where
∫ t

0 e
audW (u) is evidently well defined both in the sense of definition 10.5.1 and by (10.41). Then

E
[
Ũ(t)

]
= 0 for all t, and from (10.46)

E
[
Ũ(t) · Ũ(s)

]
= σ2e−a(t+s)

∫ min(t,s)

0

e2audu. (11.7)

Suppose t > s, then we have in (11.7)

= σ2e−a(t+s)

∫ s

0

e2audu =
σ2

2a
e−a(t+s)

[
e2as − 1

]

=
σ2

2a

(
e−a(t−s) − e−a(t+s)

)
. (11.8)

If t < s

E
[
Ũ(t) · Ũ(s)

]
=
σ2

2a

(
e−a(s−t) − e−a(t+s)

)
. (11.9)

Then we observe that
σ2

2a
e−a|t−s| =

{
σ2

2a e
−a(t−s) if t > s

σ2

2a e
−a(s−t) if s > t,

and thus

E
[
Ũ(t) · Ũ(s)

]
=
σ2

2a

(
e−a|t−s| − e−a(t+s)

)
. (11.10)

Let us next take U0 ∈ N(0, σ
2

2a ), independent of the Wiener process, and define

U(t) = e−atU0 + Ũ(t). (11.11)

Then again E [U(t)] = 0 and

E [U(t) · U(s)] =
σ2

2a
e−a(t+s) + E

[
Ũ(t) · Ũ(s)

]
,

and by (11.10)

E [U(t) · U(s)] =
σ2

2a
e−a|t−s|. (11.12)

As a summary, with U0 ∈ N(0, σ
2

2a ),

U(t) = e−atU0 + σ

∫ t

0

e−a(t−u)dW (u) (11.13)

defines a Gaussian weakly stationary process, known as the Ornstein-Uhlenbeck process. This implies

in view of the derivation of (9.41), or (11.12), from the functional equation (9.40) that the Ornstein-Uhlenbeck

process given in (11.13) is the only weakly stationary and mean square continuous Gaussian Markov process.

Let us note that from (11.12) U(t) ∈ N
(
0, σ

2

2a

)
and thus U(t)

d
= U0 for all t ≥ 0. In statistical physics this is

called equilibrium (of the dynamical system with the environment).

The following result can be directly discerned from (8.16) by means of (11.12), but we give an alternative

narrative as a training exercise on computing with Wiener integrals.

Lemma 11.2.1 For h > 0

U(t+ h) | U(t) = u ∈ N

(
e−ahu,

σ2

2a

(
1− e−2ah

))
. (11.14)
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Proof: We shall first find E [U(t+ h) | U(t)] with h > 0. In order to do this we show the intermediate result

that for any h > 0,

U(t+ h) = e−ahU(t) + σe−ah

∫ t+h

t

e−a(t−u)dW (u). (11.15)

We write

U(t+ h) = e−a(t+h)U0 + σ

∫ t+h

0

e−a((t+h)−u)dW (u)

= e−a(t+h)U0 + σe−ah

∫ t+h

0

e−a(t−u)dW (u)

= e−a(t+h)U0 + σe−ah

∫ t

0

e−a(t−u)dW (u) + σe−ah

∫ t+h

t

e−a(t−u)dW (u)

= e−ahe−atU0 + σe−ah

∫ t

0

e−a(t−u)dW (u) + σe−ah

∫ t+h

t

e−a(t−u)dW (u)

= e−ah

[
e−atU0 + σ

∫ t

0

e−a(t−u)dW (u)

]
+ σe−ah

∫ t+h

t

e−a(t−u)dW (u)

i.e., when we use (11.13) we get

U(t+ h) = e−ahU(t) + σe−ah

∫ t+h

t

e−a(t−u)dW (u),

which is (11.15), as desired.

We observe now by (11.15) that

E [U(t+ h) | U(t)] = E

[
e−ahU(t) + σe−ah

∫ t+h

t

e−a(t−u)dW (u) | U(t)

]

= E
[
e−ahU(t) | U(t)

]
+ E

[
σe−ah

∫ t+h

t

e−a(t−u)dW (u) | U(t)

]
,

and since we can take out what is known and since the increments of the Wiener process are independent of

the sigma field σ (U0,W (s) | s ≤ t) generated by the Wiener process up to time t and by the initial value,

= e−ahU(t) + E

[
σe−ah

∫ t+h

t

e−a(t−u)dW (u)

]
= e−ahU(t),

by a property of the Wiener integral, see (10.42), i.e., we have

E [U(t+ h) | U(t)] = e−ahU(t). (11.16)

Thus we have from (11.15) that

U(t+ h) = E [U(t+ h) | U(t)] + σe−ah

∫ t+h

t

e−a(t−u)dW (u). (11.17)

Or, σe−ah
∫ t+h

t e−a(t−u)dW (u) is the error, when we estimate U(t+h) by E [U(t+ h) | U(t)], and is independent

of E [U(t+ h) | U(t)], as already established in section 3.7.3. We have that

E

[
σe−ah

∫ t+h

t

e−a(t−u)dW (u)

]
= 0
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and

Var

[
σe−ah

∫ t+h

t

e−a(t−u)dW (u)

]
= σ2e−2ah

∫ t+h

t

e−2a(t−u)du

=
σ2e−2ahe−2at

2a

[
e2au

]t+h

t
=
σ2e−2ahe−2at

2a

[
e2a(t+h) − e2at

]

=
σ2

2a

(
1− e−2ah

)
.

Thus we have
e−ah

√
2a

∫ t+h

t

e−a(t−u)dW (u) ∈ N

(
0,
σ2

2a

(
1− e−2ah

))
.

The assertion in the lemma follows now by (11.16) and (11.17).

Note that (11.14) defines a Gaussian transition p.d.f.

fU(t+h)|U(t)=u (v) =
1√

2π σ2

2a (1− e−2ah)
e
− 1

2

(v−e−ahu)2

σ2
2a

(1−e−2ah) .

11.3 Mean-Squared Displacement: The Langevin Theory

Let us consider the general case of (11.11)

U(t) = e−atU∗ + Ũ(t), (11.18)

where U∗ ∈ N(0, σ∗), independent of the Wiener process. Then from (11.3)

X(t)−X(0) = U∗
∫ t

0

e−asds+

∫ t

0

Ũ(s)ds

= U∗ 1

a

[
1− e−at

]
+ σ

∫ t

0

e−as

∫ s

0

eaudW (u)ds.

As this is not a set of lecture notes in physics, we need to change the order of integration by proving (or referring

to the proof of) the following Fubini-type lemma [26, p.109] or [89, p.43]:

Lemma 11.3.1 If g(t, s) is a continuous function of (t, s) ∈ R ×R, then

∫ t2

t1

∫ s2

s1

g(t, s)dW (s)dt
d
=

∫ s2

s1

∫ t2

t1

g(t, s)dtdW (s), (11.19)

for all finite intervals [t1, t2] and [s1, s2].

This lemma entails

= U∗ 1

a

[
1− e−at

]
+ σ

∫ t

0

∫ t

u

e−a(s−u)dsdW (u)

= U∗ 1

a

[
1− e−at

]
+
σ

a

∫ t

0

(
1− e−a(t−u)

)
dW (u). (11.20)

Next, the mean squared displacement is from (11.20), as U∗ is independent of the Wiener process,

E
[
(X(t)−X(0))2

]
= E

[
(U∗)2

] 1

a2
[
1− e−at

]2
+ E

[(
σ

a

∫ t

0

(
1− e−a(t−u)

)
dW (u)

)2
]
.
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By the properties of the Wiener integral in section 10.5.2 we get

E

[(
σ

a

∫ t

0

(
1− e−a(t−u)

)
dW (u)

)2
]
=
σ2

a2

∫ t

0

(
1− e−a(t−u)

)2
du.

Some elementary algebra gives that

σ2

a2

∫ t

0

(
1− e−a(t−u)

)2
du =

σ2

a2

[
t− 2

a

(
1− e−at

)
+

1

2a

(
1− e−2at

)]
.

Then some additional elementary algebra yields

E
[
(X(t)−X(0))

2
]
=

[
1

a2
E
[
(U∗)2

]
− σ2

2a3

] [
1− e−at

]2
+
σ2

a2

[
t− 1

a

(
1− e−at

)]
. (11.21)

Here we note that if U∗ d
= U0 ∈ N

(
0, σ

2

2a

)
, or we are in the equilibrium, then the first term in the right hand

side is equal to zero. Thus, in the equilibrium,

E
[
(X(t)−X(0))

2
]
=
σ2

a2

[
t− 1

a

(
1− e−at

)]
. (11.22)

Then we expand
1

a

(
1− e−at

)
= t− at2

2
+O(t3)

to get for small values of t

E
[
(X(t)−X(0))

2
]
=
σ2

a2
at2

2

=
σ2

2a
t2 =

g

2γm
t2. (11.23)

Hence, for small values of t, we get X(t) = X(0) + U0t, which is like a free particle. For very large values of t

E
[
(X(t)−X(0))2

]
=
σ2

a2
t (11.24)

Next we invoke some of the pertinent physics. Let us here recall that

a =
γ

m
, σ =

√
g

m
, γ = 6πkP, kB = R/N.

The mean kinetic energy of the particle is m
2 E

[
U2(t)

]
. By equipartition of energy (c.f., [17, chapter 19.1],

[58, p. 76]) it must hold in the thermal equilibrium that

m

2
E
[
U2(t)

]
=
kBT

2
⇔ E

[
U2(t)

]
=
kBT

m
. (11.25)

Thus, from E
[
U2(t)

]
= σ2

2a we get

g = 2γkBT,

which is an instance of a fluctuation - dissipation formula/theorem, see [17, chapter 33.3] [40], [73, p. 59],

connecting the fluctuation parameter g to the dissipation parameter a. When we insert this fluctuation -

dissipation formula in (11.23) we get for small t

E
[
(X(t)−X(0))

2
]
= kBT t

2.

When we insert the fluctuation - dissipation formula in the constant in (11.24), we get

σ2

a2
=

g

γ2
=

2kBT

γ
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or for very large values of t

E
[
(X(t)−X(0))

2
]
=

2kBT

γ
t =

2kBT

6πkP
t = 2Dt,

where D is Einstein’s diffusion coefficient in (10.2), i.e.

D =
RT

N6πkP
,

now derived by Langevin’s description of the Brownian movement. Moreover, we have shown the crucial

statement √
E
[
(X(t)−X(0))2

]
∝

√
t.

In view of (11.25), so that U(t) ∈ N
(
0, kBT

m

)
, we have thus in equilibrium that the p.d.f. of U(t) is (recall (1.9))

fU (x) =

√
m

2πkBT
e
− m

2kBT
x2

,

which shows that the distribution of the velocities of the particles in the Langevin model of the Brownian

movement is the Maxwell-Boltzman velocity distribution [17, pp. 48−49]. A selection of Boltzmann’s

very readable) studies in these topics is [18].

Remark 11.3.1 Langevin is said to have claimed that his approach to Brownian movement is ’infinitely simpler’

than Einstein’s. Of course, for us the simplicity is due to an investment in Wiener integrals, Wiener processes,

convergence in mean square, multivariate Gaussianity and ultimately, sigma-additive probability measures and

the prerequisite knowledge in [16]. None of the mathematical machinery hereby summoned up was available to

Langevin himself, who anyhow figured out a way to deal correctly with the pertinent analysis.

11.4 The Langevin Equations for Thermal or Nyquist- Johnson Noise

Any circuit element that is above absolute zero will produce thermal noise. It is caused by electrons within a

conductor’s lattice and is an electrical analogy of the Brownian movement. Thermal noise was modelled

by Harry T. Nyquist2 in 1928 and experimentally measured by John E. Johnson (née Johan Erik Johansson

from Göteborg (=Gothenburg)), also in 1928, and is as a consequence widely known as Nyquist-Johnson noise,

see [17, chapter 33.2].

Nyquist demonstrated that thermal noise has a mean-square voltage value of 4kBTR(BW ). In this expression

kB is Boltzmann’s constant, T is temperature in degrees Kelvin, R is resistance in ohms, and BW is bandwidth.

We shall now find this formula and other results using the Langevin method following [40]3.

The problem is that of describing thermally generated electrical noise in a rigid wire loop of inductance L,

resistance R and absolute temperature T . The interactions between the conducting electrons and the thermally

vibrating atomic lattice of the wire give rise to temporally varying electromotive force, to be called the thermal

emf. The Langevin hypothesis is that that the thermal emf can be split into a sum of two separate forces

−RI(t) + V (t),

2For the life and work of Harry T. Nyquist (born in Nilsby in Värmland), see the lecture by K.J. Åström in [106].
3A survey of thermal noise and its physics with another pedagogical method of deriving the above formula is D. Abbott,

B.R. Davis, N.J. Phillips and K. Eshragian: Simple Derivation of the Thermal Noise Formula Using Window-Limited Fourier

Transforms and Other Conundrums. IEEE Transactions on Education, 39, pp. 1−13, 1996.
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where I(t) is the instantaneous electrical current in the loop and V (t) is the random force. RI(t) is called

the dissipative voltage, and V (t) is called the Johnson emf. By Faraday’s law there will be an induced emf.,

−L d
dtI(t), in the loop, and since the integral of the electric potential around the loop must vanish, we get the

circuit equation

−RI(t) + V (t)− L
d

dt
I(t) = 0,

or
d

dt
I(t) = −aI(t) + 1

L
V (t), (11.26)

where

a =
R

L
.

We argue (c.f, [44, pp. 392−394]) that

V (t) = L
√
c

o

W (t).

What this means is that a simple resistor can produce white noise in any amplifier circuit. Thus we have arrived

at the Ornstein-Uhlenbeck process, c.f., (11.4), or

dI(t) = −aI(t)dt+√
cdW (t),

with the solution

I(t) = e−atI0 +
√
c

∫ t

0

e−a(t−u)dW (u).

Mathematically seen the equation is the same as obtained for velocity in Langevin’s theory of Brownian move-

ment, but a diffusion coefficient is not of interest here. If the solution is in equilibrium, we get E
[
I2(t)

]
= c

2a .

By the equipartition theorem (for the velocity I(t) in equilibrium, no quantum effects) it must hold that

E
[
I2(t)

]
=
kBT

L
, (11.27)

and thus

c =
2kBTR

L2
.

Then we get that

E
[
V 2(t)

]
= L2 · c = 2kBTR,

which yields the (celebrated) Nyquist formula, namely that the spectral density of the thermal emf satisfies

for any f0 > 0, △f is the bandwidth, (recall (10.54)),

∫ f0+△f

f0

sV(f)df = 4kBTR△f.

Here sV(f) is the spectral density of theorem 9.3.1 restricted to the positive axis and multiplied by 2 (recall

that sV(f) = sV(−f)), so the presence of the factor 4 seems to have no deeper physical meaning. The standard

derivation of the Nyquist formula without the Langevin hypothesis is given, e.g., in [71, p. 131] or [11]. Today,

as pointed out in [106], the Nyquist formula is used daily by developers of micro and nano systems and for space

communication.

In view of (11.12) and the model above we get

E [I(t) · I(s)] = σ2

2a
e−a|t−s| =

kBT

L
e−

R
L
|t−s|. (11.28)

By the table of pairs of autocorrelation functions and spectral densities in section 9.3.1 we have that

RI(h) =
kBT

L
e−

R
L
|h| F↔ sI(f) =

kBT

L

2R
L(

R
L

)2
+ f2

. (11.29)
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This form of spectral density is sometimes called the Lorentzian distribution [58, p.257]. Then

sI(f) =
2kBT

R

1

1 + f2

(R
L )

2

.

If L ≈ 0, then sI(f) is almost constant up to very high frequencies and the autocorrelation function RU(h) is

almost zero except at h = 0. For all L ∫ ∞

−∞
RI(h)dh =

2kBT

R
,

and we can regard RI(h) as behaving for small L almost like the scaled Dirac’s delta 2kBT
R δ(h).

Or, for small L we get RI(t) ≈ V (t), and the practical distinction between the dissipative voltage and the

Johnson emf V (t) disappears. Thus, for L ≈ 0,

Q(t) =

∫ t

0

I(s)ds ≈
√

2kBT

R
W (t),

where Q(t) is something like the net charge around the loop and the factor
√

2kBT
R reminds us of Einstein’s

diffusion formula (10.2).

11.5 Exercises

1. Consider the Ornstein-Uhlenbeck process in (11.13). Find the coefficient of correlation ρU(t+h),U(t) for

h > 0. Use this to check (11.14) w.r.t. (8.16).

2. A Linear Stochastic Differential Equation Let us reconsider the representation in (11.13)

U(t) = e−atU0 + σ

∫ t

0

e−a(t−u)dW (u), (11.30)

where we now take U0 ∈ N
(
m,σ2

o

)
, independent of the Wiener process. Then the process {U(t) | t ≥ 0}

is no longer stationary, but has continuous sample paths as before.

(a) Show that the process {U(t) | t ≥ 0} satisfies the equation

U(t)− U0 = −a
∫ t

0

U(s)ds+ σ

∫ t

0

dW (s). (11.31)

A heuristic way of writing this is

dU(t) = −aU(t)dt+ σdW (t), (11.32)

which is a linear stochastic differential equation. Because the sample paths of a Wiener process

are nowhere differentiable, the expression in (11.32) is merely a (very good) notation for (11.31),

c.f., (10.93) and (10.94) above. Since this is a linear differential equation, we do not need the full

machinery of stochastic calculus [13, 29, 70].

Aid: Start with −a
∫ t

0 U(s)ds so that You write from (11.30)

−a
∫ t

0

U(s)ds = −a
∫ t

0

e−asU0ds+−aσ
∫ t

0

∫ s

0

e−a(s−u)dW (u)ds.

Then obtain by using lemma 11.3.1 above that

−a
∫ t

0

U(s)ds = U(t)− U0 − σ

∫ t

0

dW (u),

which is (11.31).
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(b) Let the mean function be µU(t) = E [U(t)]. Show that

d

dt
µU(t) = −aµU(t), t > 0, µU(0) = m.

(c) Let the variance function be VarU(t) = Var [U(t)]. Show that

d

dt
VarU(t) = −2aVarU(t) + σ2 t > 0, VarU(0) = σ2

o .

(d) Let the covariance function be CovU(t, s). Show that

∂

∂s
CovU(t, s) = −aCovU(t, s), s > t.

(e) Show that the limiting distribution in U(t)
d→ U∗, as t→ ∞ is

U∗ ∈ N

(
0,
σ2

2a

)
. (11.33)

Thus (11.33) shows that the velocities of the particles in the Langevin model of the Brownian move-

ment eventually attain a Maxwell-Boltzmann distribution from any initial normal distribution.

What happens with the limiting distribution, if we only assume in (11.30) E [U0] = m and Var [U0] =

σ2
0 but no Gaussianity?

3. A Linear Stochastic Differential Equation with Time Variable Coefficients (From [62, p. 53])

Solve the stochastic differential equation

dX(t) = −at2X(t)dt+ σdW (t), (11.34)

and find E [X(t)] and Var [X(t)].

Aid: Apply the same method used in solving (11.32): You solve first

dX(t) = −at2X(t)dt

and then invoke this solution formula to suggest a representation using a Wiener integral (c.f., (11.31)).

Then proceed as in the exercise above.

4. Let X(t) be the position of the Brownian movement particle according to the Langevin theory.

(a) Show that the expected displacement, conditionally on U∗ and X(0), has the mean function

µX(t)|U∗,X(0)(t) = E [X(t) | U∗, X(0)] = X(0) + U∗ 1

a

[
1− e−at

]
. (11.35)

(b) Show that

Var [X(t)−X(0)] =
2kBT

ma2

[
at− 3

2
+ 2e−at − 1

2
e−2at

]
. (11.36)

This is more often written with the relaxation factor τB = 1
a .

5. Give the expression for the transition p.d.f. of X(t), the position of the Brownian movement particle

according to the Langevin theory.
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6. The Brownian Projectile 4 This exercise is adapted from [73, pp. 69−73]. Suppose that a Brownian

particle with x − y -coordinates X(t), Y (t) (= horizontal displacement, vertical height) is initialized as a

projectile with

X(0) = Y (0) = Z(0) = 0,

and initial velocities

UX(0) = UX,0 > 0, UY (0) = UY,0, UZ(0) = 0.

Here UY,0 is the initial vertical velocity. The equations of motion are

X(t) =

∫ t

0

UX(s)ds, Y (t) =

∫ t

0

UY (s)ds (11.37)

with

dUX(t) = −aUX(t)dt+ βdWX(t)

(11.38)

dUY (t) = −a
(
UY (t) +

g

a

)
dt+ βdWY (t).

where g is the acceleration due to gravity, and WX and WY are two independent (standard) Wiener

processes associated with fluctuations in the respective directions. As expounded in one of the earlier

exercises in this section, the stochastic differential equations in (11.38) are not taken literally, but are to

be understood by means of the Wiener integral.

(a) We set for economy of expression

σ2(t)
def
=

β2

a3

(
ta− 2

(
1− e−at

)
+

1

2

(
1− e−a2t

))
.

Show that

X(t) ∈ N

(
UX,0

a

(
1− e−at

)
, σ2(t)

)

and

Y (t) ∈ N

(
UY,0

a

(
1− e−at

)
− g

a2
(
at+ e−at − 1

)
, σ2(t)

)
.

(b) Suppose at << 1, or the time is close to the initial value. Show that you get (leading terms)

E [X(t)] = UX,0t,

and

E [Y (t)] = UY,0t−
gt2

2
,

and

Var [Y (t)] = Var [X(t)] =
β2t3

3
.

Observe that E [Y (t)] is the expected height of the Brownian projectile at time t. Thus, close to

the start, the Brownian projectile preserves the effect of the initial conditions and reproduces the

deterministic projectile motion familiar from introduction to physics courses.

4In Swedish this might be ’brownsk kastparabel’, the Swedish word ’projektilbana’ corresponds to a different physical setting.
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(c) Suppose at >> 1, or that the time is late. Show that you get (leading terms)

E [X(t)] = 0,

and

E [Y (t)] = −gt
2

2
,

and

Var [Y (t)] = Var [X(t)] =
β2t

a2
.

This recapitulates the statistical behaviour of two standard Wiener processes with superimposed

constant drift downwards in the height coordinate, or for large t

dX(t) =
β

a
dWX(t), dY (t) = −gtdt+ β

a
dWY (t).

7. Stochastic Damped Harmonic Oscillator The harmonic oscillator is a multipurpose workhorse of

theoretical physics. We shall now give a description of the damped harmonic oscillator using the Langevin

dynamics. This discussion is adapted from [73, pp. 75−80], but is originally due to Subrahmanyan

Chandrasekhar in 1943 5.

A massive object of mass = m is attached to a spring and submerged in a viscous fluid. If it is set into

motion, the object will oscillate back and forth with an amplitude that decays in time. The collisions that

cause the oscillations to decay will also cause the object to oscillate randomly. γ is the friction coefficient,

not the Euler gamma. The Chandrasekhar equations for the random motion are

X(t) =

∫ t

0

U(s)ds, (11.39)

where
d

dt
U(t) = − γ

m
U(t)− γ

m
X(t) +

√
2kBT

m
dW (t). (11.40)

(a) Let µU (t) = E [U(t)] and µX(t) = E [X(t)]. Show that

d

dt
µU (t) = − γ

m
µU (t)−

γ

m
µX(t),

and
d

dt
µX(t) = µU (t).

Solve these equations !

(b) Show that the autocorrelation function of X is

RX(h) =
kBT

mω2
o

e−
γ

2mh

[
cos(ω1h) +

γ

2mω2
1

sin(ω1h)

]
,

where ωo = γ
m and ω1 =

√
ω2
o − γ2

4m2 . We have written this expression so that we emphasize the case

2ωo >>
γ
m (lightly damped oscillator), so that ω1 is defined.

Aid: This is tricky ! Some help can be found in [17, p. 440. example 33.5]. Find first the suitable

Fourier transforms.

What sort of formula is obtained by means of RX(0) ?

5There are several well known Indian born scientists with the family name Chandrasekhar. Subrahmanyan C. was

an applied mathematician, who worked with astrophysics, and became a laureate of the Nobel Prize in Physics in 1983

http://nobelprize.org/nobel prizes/physics/laureates/1983/chandrasekhar.html



Chapter 12

The Poisson Process

12.1 Introduction

The Poisson process is an important example of a point process. In probability theory one talks about a point

process, when any sample path of the process consists of a set of separate points. For example, the sample

paths are in continuous time, and assume values in integers. The Poisson process will be connected to the

Poisson distribution in the same way as the Wiener process is connected to the normal distribution: namely as

the distribution of the independent increments. We shall start with the definition and basic properties of the

Poisson process and then proceed with (engineering) models, where the Poisson process has been incorporated

and found useful. Poisson processes are applied in an impressing variety of topics. The applications range from

queuing, telecommunications, and computer networks to insurance and astronomy.

12.2 Definition and First Properties

12.2.1 The Counter Process and the Poisson Process

Let N(t) = number of occurrences of some event in in (0, t], i.e., N(t) has the nonnegative integers as values. A

physical phenomen of this kind is often called a counter process. The following definition gives a probabilistic

model for the counter process {N(t) | t ≥ 0}, which is obviously a point process.

Definition 12.2.1 N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0, if

(1) N(0) = 0.

(2) The increments N(tk) − N(tk−1) are independent stochastic variables for non-overlapping intervals, i.e.,

1 ≤ k ≤ n, 0 ≤ t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ tn and all n.

(3) N(t)−N(s) ∈ Po(λ(t− s)), 0 ≤ s < t.

There are alternative equivalent definitions, but this text will be restricted to the one stated above. Following

our line of approach to stochastic processes we shall first find the mean function, the autocorrelation function

and the autocovariance function of N, i.e., some of the the second order properties.

313
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12.2.2 Second Order Properties of the Poisson Process

The mean function of N is by definition (9.3)

µN(t) = E [N(t)] = λt, (12.1)

since N(t) = N(t)−N(0) ∈ Po(λt) by (3). The autocorrelation function is by definition (9.4)

RN(t, s) = E [N(t)N(s)] .

We assume first that t > s. Then

RN(t, s) = E [(N(t)−N(s) +N(s))N(s)] =

= E [(N(t)−N(s))N(s)] + E
[
N2(s)

]

= E [(N(t)−N(s))]E [N(s)] + E
[
N2(s)

]
,

where we applied the premise (2), i.e., N(t)−N(s) is independent of N(s) = N(s)−N(0), and now

= E [(N(t)−N(s))]︸ ︷︷ ︸
=λ(t−s)

E [N(s)]︸ ︷︷ ︸
=λs

+E
[
N2(s)

]
︸ ︷︷ ︸
=λs+(λs)2

in view of (3), and since E
[
N2(s)

]
= Var [N(s)] +E2 [N(s)], and by the properties of the Poisson distribution.

Then we get

= λ(t− s) · λs+ λs+ (λs)2 = λ2t · s+ λs.

If we repeat this for s > t, then we find

RN(t, s) = λ2t · s+ λt.

The preceding expressions can be summarized as

RN(t, s) = λ2t · s+ λmin(t, s). (12.2)

In view of (9.5), (12.1) and (12.2) we get the autocovariance function of N as

CovN(t, s) = RN(t, s)− µN(t)µN(s) = λmin(t, s).

Hence the autocovariance function of N is equal the autocovariance function in (10.18). Hence it must be clear

that the autocovariance function does not tell much about a stochastic process.

12.2.3 Occurrence/Arrival Times and Occupation/Interarrival Times of a Poisson

Process

Let us define Tk = the time of occurrence/arrival of the kth event. T0 = 0. The we have that

τk = Tk − Tk−1,

is the kth occupation/interarrival time. In words, τk is the random time the process occupies or visits the value

N(t) = k − 1, or the random time between the kth and the k − 1th arrival. In view of these definitions we can

(after a moment’s reflection) write

N(t) = max{k|t ≥ Tk}. (12.3)

In the same way we observe that

{N(t) = 0} = {T1 > t}. (12.4)

The contents of the following theorem are important for understanding the Poisson processes.
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Theorem 12.2.1 1. τ1, τ2 . . . , τk . . . are independent and identically distributed, τi ∈ Exp
(
1
λ

)
.

2. Tk ∈ Γ
(
k, 1

λ

)
, k = 1, 2, . . ..

The full proof will not be given. We shall check the assertion for τ1 and then for (τ1, τ2). We start with

deriving the distribution of τ1 = T1. Clearly τ1 ≥ 0. Then (12.4) yields P (T1 > t) = P (N(t) = 0)= e−λt, since

N(t) ∈ Po(λ). Then for t > 0

1− FT1(t) = P (T1 > t) = e−λt,

i.e.,

FT1(t) =

{
1− e−λt t > 0

0 t ≤ 0.

Hence τ1 = T1 ∈ Exp(1/λ).

Next we consider (τ1, τ2) and find first FT1,T2(s, t). We assume t > s. It will turn out to be useful to consider

the following expression.

P (T1 ≤ s, T2 > t) = P (N(s) ≥ 1, N(t) < 2) = P (N(s) = 1, N(t) = 1)

= P (N(s) = 1, N(t)−N(s) = 0) = P (N(s) = 1)P (N(t)−N(s) = 0)

= e−λsλse−λ(t−s) = sλe−λt. (12.5)

Then we have by the law of total probability (3.35) that

P (T1 ≤ s, T2 > t) +P (T1 ≤ s, T2 ≤ t) = P (T1 ≤ s) .

Thus, by (12.5),

FT1,T2(s, t) = P (T1 ≤ s, T2 ≤ t) = P (T1 ≤ s)−P (T1 ≤ s, T2 > t)

= P (T1 ≤ s)− sλe−λt.

Therefore
∂

∂s
FT1,T2(s, t) = fT1 (s)− λe−λt.

By a second partial differentiation we have established the joint p.d.f. of (T1, T2) as

fT1,T2(s, t) =
∂2

∂t∂s
FT1,T2(s, t) = λ2e−λt. (12.6)

Now, we consider the change of variables (T1, T2) 7→ (τ1, τ2) = (u, v) by

u = τ1 = T1 = g1 (T1, T2) ,

v = τ2 = T2 − T1 = g2 (T1, T2)

and its inverse (τ1, τ2) 7→ (T1, T2),

T1 = u = h1 (u, v)

T2 = T1 + τ2 = u+ v = h2 (u, v) .

Then by the formula for change of variable in (2.69) applied to (12.6)

fτ1,τ2(u, v) = fT1,T2(u, v + u) |J |︸︷︷︸
=1
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= λ2e−λ(v+u)

= λe−λu
︸ ︷︷ ︸

p.d.f. of Exp(1/λ)

· λe−λv
︸ ︷︷ ︸

p.d.f. of Exp(1/λ)

.

Thus fτ1,τ2(u, v) = fT1(u) · fτ2(v) for all pairs (u, v) and this ascertains that τ1 and τ2 are independent. Thus

τ1 and τ2 are independent. By example 4.4.9, the distribution of the sum of two I.I.D. r.v.’s ∈ Exp(1/λ) is T2 ∈
Γ
(
2, 1λ

)
. We should now continue by considering in an analogous manner T1, T2, T3 to derive fτ1,τ2,τ3(u, v, w)

and so on, but we halt at this point. The Gamma distributions in this theorem are all Erlang, c.f., example

2.2.10.

12.2.4 Two Auxiliary Probability Formulas

In this section we recapitulate two generally valid formulas for Poisson distribution.

Lemma 12.2.2 For t ≥ 0 we have

P (N(t) = even) =
1

2

(
1 + e−2λt

)
. (12.7)

P (N(t) = odd ) =
1

2

(
1− e−2λt

)
. (12.8)

Proof: We regard 0 as an even number, and get

P (N(t) = even) = P (N(t) = 0 or N(t) = 2 or N(t) = 4 . . .)

=

∞∑

k=0

P (N(t) = 2k) =

∞∑

k=0

e−λt (tλ)
2k

2k!
= e−λt

∞∑

k=0

(tλ)
2k

2k!
.

We know the two series expansions:

eλt =

∞∑

k=0

(tλ)
k

k!
, e−λt =

∞∑

k=0

(−1)k
(tλ)

k

k!
.

The trick here is to add these two series, which yields

eλt + e−λt = 2

∞∑

k=0

(tλ)2k

2k!
,

or ∞∑

k=0

(tλ)
2k

2k!
=

1

2

(
eλt + e−λt

)
.

The desired probability becomes

P (N(t) = even) = e−λt
∞∑

k=0

(tλ)
2k

2k!

= e−λt · 1
2

(
eλt + e−λt

)
=

1

2

(
1 + e−2λt

)
,

which proves (12.7). Since N(0) = 0, the formulas above hold even for t = 0. Next we observe

1 = P (N(t) = even) + P (N(t) = odd ) ,

and from (12.7) for t ≥ 0

P (N(t) = odd ) = 1− 1

2

(
1 + e−2λt

)
=

1

2

(
1− e−2λt

)
.
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By the above

P (N(t) = even) = e−λt · 1
2

(
eλt + e−λt

)
= e−λt · cosh(λt),

and

P (N(t) = odd) = e−λt · 1
2

(
eλt − e−λt

)
= e−λt · sinh(λt).

12.3 Restarting the Poisson Process

Theorem 12.3.1 N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0. Then the process Ns =

{N(t+ s)−N(s) | t ≥ 0} is a Poisson process.

Proof: The process Ns has clearly nonnegative integers as values and has nondecreasing sample paths, so we

are talking about a counter process. We set

Ns(t)
def
= N(t+ s)−N(s),

and get Ns(0) = 0, so the premise (1) in the definition is there. Next we show (3). For t > u > 0 we get

Ns(t)−Ns(u) = N(t+ s)−N(u+ s) ∈ Po(λ(t − u)),

which proves the claim vis-á-vis (3).

It remains to show that the increments are independent. Let 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ tn. Then the

increments of Ns are Ns(ti)−Ns(ti−1) = N(ti+s)−N(ti+s). But this corresponds to watching the increments

of N over the intervals determined by the points s ≤ t1 + s ≤ t2 + s ≤ . . . ≤ tn−1 + s ≤ tn + s. But the latter

increments are independent, as N is a Poisson process.

What does restarting mean? Observing N(t + s) − N(s) corresponds to moving the origin to (s,N(s)) in the

coordinate plane and running the process from there. The new process is again a Poisson process. The next

theorem shows that we can restart the process as new Poisson process from occurrence/arrival times, too.

Theorem 12.3.2 N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0, and Tk is the kth occur-

rence/arrival time. Then the process Nk = {N(t+ Tk)−N(Tk) | t ≥ 0} is a Poisson process.

Proof: The process NTk
has clearly nonnegative integers as values and has nondecreasing sample paths, and

therefore we are dealing with a counter process. We set for t ≥ 0

Nk(t)
def
= N(t+ Tk)−N(Tk).

We get immediately NTk
(0) = 0, so condition (1) in the definition is fulfilled.

We prove next the condition (3), i.e., that the increments of Nk have the Poisson distribution. If t > s, then

Nk(t)−Nk(s) ∈ Po(λ(t − s)). (12.9)

For any l = 0, 1, . . . ,

P (Nk(t)−Nk(s) = l) = P (N(t+ Tk)−N(s+ Tk) = l)

=

∫ ∞

0

P (N(t+ Tk)−N(s+ Tk) = l, Tk = u)du =

∫ ∞

0

P (N(t+ Tk)−N(s+ Tk) = l | Tk = u) fTk
(u)du

=

∫ ∞

0

P (N(t+ u)−N(s+ u) = l | Tk = u) fTk
(u)du
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But we have that the events {N(t + u) − N(s + u) = l} and {Tk = u} are independent for any u. This

follows, since Tk = u is an event measurable w.r.t. the sigma field generated by N(v), 0 < v ≤ s and the

N(t + u) −N(s + u) = l is an event measurable w.r.t. the sigma field generated by N(v), u + s < v ≤ t + u,

and the Poisson process has independent increments. Hence

=

∫ ∞

0

P (N(t+ u)−N(s+ u) = l) fTk
(u)du

=

∫ ∞

0

P


N(t+ u)−N(s+ u)︸ ︷︷ ︸

∈Po(λ(t−s))

= l


 fTk

(u)du

=

∫ ∞

0

e−λ(t−s) (λ(t − s))l

l!
fTk

(u)du = e−λ(t−s) (λ(t− s))l

l!

∫ ∞

0

fTk
(u)du

︸ ︷︷ ︸
=1

= e−λ(t−s) (λ(t − s))l

l!
,

as fTk
(u) is a p.d.f.! Hence we have shown (12.9). Finally we should show that the increments Nk(ti) −

Nk(ti−1) =N(ti + Tk) − N(ti−1 + Tk) are independent over nonoverlapping intervals. But if we use an analo-

gous consideration as in the corresponding step of the proof 12.3.1 , we are watching the increments over the

nonoverlapping intervals with the endpoints Tk ≤ t1 + Tk ≤ t2 + Tk ≤ . . . ≤ tn−1 + Tk ≤ tn + Tk. In the proof

above we have found that

N(t+ Tk)−N(s+ Tk) | Tk = u ∈ Po(λ(t− s)). (12.10)

Hence, the probabilistic properties of the increments of NTk
are independent of {Tk = u} for any u ≥ 0, and

(2) follows for NTk
, of course, by property (2) of the restarted Poisson process N.

12.4 Filtered Shot Noise

We refer here to [33, pp. 317−319] or [71, pp. 133−136]. Shot noise1 is a type of electronic noise, which

originates from the random movements of the carriers of the electric charge. The term also used to photon

counting in optical devices. A good mathematical model for this has been found to be valid both theoretically

and experimentally, if we regard the number of electrons emitted from a cathode as a Poisson process.

Let Tk, k = 1, 2, . . . , be the times of occurrence/arrival of the kth event, respectively, in a Poisson process

with intensity λ > 0. Let h(t) be function such that h(t) = 0 for t < 0. Then the stochastic process defined by

the random variables

Z(t) =

∞∑

k=1

h (t− Tk) , t ≥ 0, (12.11)

is a model called a filtered shot noise. We shall once more find the mean function of the process thus defined.

In addition we shall derive the m.g.f. of Z(t).

Borrowing from control engineering and signal processing we should/could refer to h(t) with h(t) = 0

for t < 0 in (12.11) as a causal impulse response of a linear filter. With

U(t) =

{
1 t ≥ 0,

0 t < 0

an example is

h(t) = e−tU(t).

1Shot noise is hagelbrus in Swedish.
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Since h(t) = 0 for t < 0, the sum in (12.11) contains for any t only a finite number of terms, since

there is only a finite number of arrivals in a Poisson process in a finite interval. The word ’causal’

means thus simply that Z(t) does not for a given t depend on the arrivals of events in the future

beyond t, i.e., on Tj > t, recall (12.3).

We start with the mean function. Since the sum in (12.11) consists for any t only of a finite number of

terms, there is no mathematical difficulty in computing as follows.

E [Z(t)] =
∞∑

k=1

E [h (t− Tk)] . (12.12)

The individual term in the sum is by the law of the unconscious statistician (2.4)

E [h (t− Tk)] =

∫ ∞

0

h (t− x) fTk
(x)dx,

where we know by theorem 12.2.1 that Tk ∈ Γ
(
k, 1

λ

)
(Erlang distribution, example 2.2.10). Thus

∫ ∞

0

h (t− x) fTk
(x)dx =

∫ ∞

0

h (t− x)
λkxk−1

(k − 1)!
e−λxdx,

= λk
∫ ∞

0

h (t− x)
xk−1

(k − 1)!
e−λxdx.

When we insert this in (12.12) we get

E [Z(t)] =

∞∑

k=1

λk
∫ ∞

0

h (t− x)
xk−1

(k − 1)!
e−λxdx

= λ

∫ ∞

0

h (t− x)
∞∑

k=1

λk−1xk−1

(k − 1)!
e−λxdx = λ

∫ ∞

0

h (t− x)
∞∑

k=0

λkxk

k!
︸ ︷︷ ︸

=eλx

e−λxdx

= λ

∫ ∞

0

h (t− x) dx.

Thus we have obtained Campbell’s Formula, i.e.,

E [Z(t)] = λ

∫ ∞

0

h (t− x) dx = λ

∫ t

0

h (t− x) dx. (12.13)

In the final step above we exploited the causality of the impulse response. Next we shall derive the m.g.f. of

filtered shot noise. We attack the problem immediately by double expectation to get

ψZ(t)(s) = E
[
esZ(t)

]
= E

[
E
[
esZ(t) | N(t)

]]
=

and continue the assault by the law of the unconscious statistician (2.4)

=
∞∑

l=0

E
[
esZ(t) | N(t) = l

]
P (N(t) = l)

=

∞∑

l=0

E
[
es

∑l
k=1 h(t−Tk) | N(t) = l

]
P (N(t) = l) ,
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since in (12.3), N(t) = max{k|t ≥ Tk},

=

∞∑

l=0

E
[
E
[
es

∑l
k=1 h(t−Tk) | N(t) = l

]]
P (N(t) = l) . (12.14)

Here we have in view of the result in (12.30) in one of the exercises that

E
[
es

∑l
k=1 h(t−Tk) | N(t) = l

]
=

l∏

k=1

∫ t

0

esh(t−x) 1

t
dx =

(∫ t

0

esh(t−x) 1

t
dx

)l

.

When we insert this in (12.14) we get

ψZ(t)(s) =

∞∑

l=0

(∫ t

0

esh(t−x) 1

t
dx

)l

e−λt (tλ)
l

l!

=
∞∑

l=0

e−λt

(
λ
∫ t

0
esh(t−x)dx

)l

l!
= e−λteλ

∫

t
0
esh(t−x)dx = eλ

∫

t
0 (e

sh(t−x)−1)dx.

In summary, the m.g.f. of the filtered shot noise Z(t) is

ψZ(t)(s) = eλ
∫

t

0 (e
sh(t−x)−1)dx. (12.15)

12.5 Random Telegraph Signal

12.5.1 Background: Popcorn Noise

A random telegraph signal (RTS) is a name used for a physical process, whose values at time t is either one

of only two possible values (say, UP and DOWN). Many processes including chemical reactions, cell membrane

ion channels, and electronic noise generate such signals. By this we referred to real life phenomena that we try

to model using stochastic processes, that is, in the final analysis using sigma-additive probability measures.

The material in this chapter deals with a probability model of RTS derived from the Poisson process. This

probabilistic model of RTS can be found as an exercise/example in several of the pertinent course texts [56,

pp. 392-394], [74, pp. 348−349], [85, pp. 211−212] or [89, pp. 354−356]. These references are occupied by a

drill in probability calculus.

In semiconductors RTS is also modelling what is known as popcorn noise. It consists of sudden step-like

transitions between two voltage or current levels at random and unpredictable times. Each switch in offset

voltage or current may last from several milliseconds to seconds, and when connected to an audio speaker, it

sounds, as is claimed, like popcorn popping.

Let Y ∈ Be(1/2) and N = {N(t)|t ≥ 0} be a Poisson process with intensity λ > 0. Y is independent of N.

Definition 12.5.1 Random Telegraph Signal

X(t) = (−1)
Y+N(t)

, t ≥ 0. (12.16)

Then X = {X(t) | t ≥ 0} is a process in continuous time flipping between UP (+1) and DOWN (−1) with a

random initial value and with the Poisson process generating the flips in time . The figure 12.1 shows in the

upper part a sample path of UPs and DOWNs and in the lower part the corresponding sample path of Poisson

process. In the figure we have Y = 0, since X(0) = 1.



12.5. RANDOM TELEGRAPH SIGNAL 321
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Figure 12.1: A sample path of the random telegraph signal and the corresponding sample path of a Poisson

process

Because N has the nonnegative integers as values, the definition 12.5.1 implies that:

X(t) =

{
(−1)Y · 1 N(t) is even

(−1)Y · (−1) N(t) is odd.
(12.17)

Hence it seems that lemma 12.2.2 must be instrumental here.

12.5.2 The Marginal Distribution and the Mean Function of RTS Modelled by

Poisson Flips

Lemma 12.5.1

P (X(t) = +1) = P (X(t) = −1) =
1

2
, t ≥ 0. (12.18)

Proof The law of total probability (3.35) gives

P (X(t) = +1) = P (X(t) = +1 | Y = 0)P (Y = 0) + P (X(t) = +1 | Y = 1)P (Y = 1) . (12.19)

We have that

P (X(t) = +1 | Y = 0) = P
(
(−1)

0+N(t)
= +1 | Y = 0

)
= P

(
(−1)

N(t)
= +1 | Y = 0

)

= P
(
(−1)

N(t)
= +1

)
= P (N(t) = even) =

1

2

(
1 + e−2λt

)
,

since Y is independent of N and by (12.7). In the same way we get

P (X(t) = +1 | Y = 1) = P
(
(−1) · (−1)N(t) = +1

)
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= P (N(t) = odd ) =
1

2

(
1− e−2λt

)

from (12.8). Since Y ∈ Be(1/2) by construction

P (Y = 0) = P (Y = 1) =
1

2
.

Insertion of the preceding results in (12.19) gives

P (X(t) = +1) =
1

2

[
1

2

(
1 + e−2λt

)
+

1

2

(
1− e−2λt

)]
=

1

2
,

as was claimed.

The mean function is by definition

µX(t) = E [X(t)] = (+1) · P (X(t) = +1) + (−1) · P (X(t) = −1)

=
1

2
− 1

2
= 0

by (12.18).

Lemma 12.5.2

µX(t) = 0, t ≥ 0. (12.20)

12.5.3 The RTS as a Weakly Stationary Process

The autocorrelation function of RTS

We shall compute

RX(t, s) = E [X(t)X(s)] .

With double expectation

E [X(t)X(s)] = E [E [X(t)X(s) | Y ]] =

= E [X(t)X(s) | Y = 0]P (Y = 0) + E [X(t)X(s) | Y = 1]P (Y = 1) . (12.21)

We work out case by case the conditional expectations in the right hand side. By (12.16)

E [X(t)X(s) | Y = 0] = E
[
(−1)

0+N(t)
(−1)

0+N(s) | Y = 0
]

= E
[
(−1)

N(t)+N(s)
]
,

since N is independent of Y . Hereafter we must distinguish between two different cases, i) s > t och ii) s < t.

i) Let s > t, and write

N(t) +N(s) = N(s)−N(t) + 2N(t).

Then N(s)−N(t) is independent of 2N(t) and 2N(t) is an even integer, so that

(−1)
2N(t)

= 1.

This implies

E
[
(−1)N(t)+N(s)

]
= E

[
(−1)N(s)−N(t)+2N(t)

]
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= E
[
(−1)

N(s)−N(t)
]
· E
[
(−1)

2N(t)
]
= E

[
(−1)

N(s)−N(t)
]
.

The law of the unconscious statistician (2.4) entails

E
[
(−1)

N(s)−N(t)
]
= (+1) · P (N(s)−N(t) = even)

+(−1) · P (N(s)−N(t) = odd ) .

But N(s)−N(t) ∈ Po (λ(s− t)), and the very same reasoning that produced (12.7) and (12.8) entails also

P (N(s)−N(t) = even) =
1

2

(
1 + e−2λ(s−t)

)
,

as well as

P (N(s)−N(t) = odd ) =
1

2

(
1− e−2λ(s−t)

)
.

Therefeore

(+1) · P (N(s)−N(t) = even) + (−1) · P (N(s)−N(t) = odd )

=
1

2

(
1 + e−2λ(s−t)

)
− 1

2

(
1− e−2λ(s−t)

)
= e−2λ(s−t).

For the second term in the right hand side of (12.21) it is ascertained in the same manner

E [X(t)X(s) | Y = 1] = (−1)2E
[
(−1)

N(t)+N(s)
]

= e−2λ(s−t).

Therefore we have for s > t

E [X(t)X(s)] = e−2λ(s−t)P (Y = 0) + e−2λ(s−t)P (Y = 1) =

= e−2λ(s−t), s− t > 0. (12.22)

ii) If s < t, t− s > 0, we write

N(t) +N(s) = N(t)−N(s) + 2N(s).

Again, N(t)−N(s) is independent of N(s),

P (N(t)−N(s) = even) =
1

2

(
1 + e−2λ(t−s)

)

P (N(t)−N(s) odd ) =
1

2

(
1− e−2λ(t−s)

)
.

Thus, as above we get

E [X(t)X(s)] = e−2λ(t−s), s < t. (12.23)

The results in (12.22) and (12.23) are expressed by 2 a single formula.

Lemma 12.5.3

E [X(t)X(s)] = e−2λ|t−s|. (12.24)

2

| t− s |=

{

t− s t > s

−(t− s) s ≥ t
⇔ − | t− s |=

{

−(t − s) t > s case ii) in eq. (12.23)

t − s = −(s− t) s ≥ t case i) in eq. (12.22)
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Proposition 12.5.4 The RTS is Weakly Stationary

Proof The mean function is a constant (=0), as established in (12.20). The autocorrelation function is

RX(h) = e−2λ|h| = RX (−h) , h = t− s,

as given in (12.24).

In fact we are going to show that the RTS modelled by Poissonian flips is strictly stationary, which implies

proposition 12.5.4. We shall, however, first establish mean square continuity and find the power spectral density.

We know, see theorem 9.3.2, that a weakly stationary process is mean square continuous, if its autoco-

variance function is continuous in origin. Autocovariance function is e−2λ|h| and is continuous in the origin, and

the conclusion follows. In other words

E
[
(X(t+ h)−X(t))

2
]
→ 0, as h→ 0.

Here we see very clearly that continuity in mean square does not tell about continuity of sample paths. Ev-

ery sample path of the weakly stationary RTS is discontinuous, or, more precisely, every sample path has a

denumerable number of discontinuities of the first kind3. The discontinuities are the level changes at random

times.

The astute reader recognizes in (12.24) the same expression as in (11.13), the autocorrelation function of an

Ornstein-Uhlenbeck process. This shows once more that identical second order properties can correspond to

processes with quite different sample path properties.

The Power Spectral Density

By the table of pairs of autocorrelation functions and spectral densities in section 9.3.1 we get the Lorentzian

distribution

RX(h) = e−2λ|h| F↔ sX(f) =
4λ

4λ2 + f2
. (12.25)

The figure 12.2 depicts the spectral density sX(f) for λ = 1 and λ = 2. This demonstrates that the random

telegraph signal moves to higher frequencies, i.e., the spectrum is less concentrated at frequences f around zero,

for higher values of the intensity λ, as seems natural.

12.5.4 The RTS is Strictly Stationary

The plan is to show the equality ,

P (X (tn) = xn, X (tn−1) = xn−1, . . . , X (t1) = x1) =

P (X (tn + h) = xn, X (tn−1 + h) = xn−1, . . . , X (t1 + h) = x1)

for all n, h > 0 and all 0 ≤ t1 ≤ t2 . . . ≤ tn. This is nothing but a consequence of the fact that the Poisson

process has independent increments over non-overlapping intervals, and that the increments have a distribution

that depends only on the mutual differences of the times, and that lemma 12.5.1 above holds.

We observe by (12.16)

X(t+ h) = (−1)
Y+N(t+h)

, h > 0.

3We say that a function f(t) for t ∈ [0, T ], has only discontinuities of the first kind, if the function is 1) bounded and 2) for

every t ∈ [0, T ], the limit from left lims↑t f(s) = f(t−) and the limit from the right lims↓t f(s) = f(t+) exist [91, p. 94].
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Figure 12.2: Spectral densities for RTS with λ = 1, λ = 2.

Then

X(t+ h) = (−1)Y+N(t+h)−N(t)+N(t) = (−1)N(t+h)−N(t) (−1)Y+N(t)

= (−1)
N(t+h)−N(t)

X(t),

where we used (12.16) once more. Thus we have

X(t+ h) = (−1)
N(t+h)−N(t)

X(t), h > 0. (12.26)

This expression for X(t + h) implies the following. If the UP-DOWN status of X(t) is known and given, the

status of X(t+ h) is determined by N(t+ h)−N(t). But N(t+ h)−N(t) is independent of X(t), because the

increments of the Poisson process are independent. Hence we have shown that

P (X(t+ h) = a | X(t) = b) = P (N(t+ h)−N(t) odd/even ) (12.27)

with respective combinations of a = ±1, b = ±1 and of even/odd. But as the increments of the Poisson process

are independent,

P (X(t+ h) | X (tn) , . . . , X (t1)) = P (X(t+ h) | X (tn))

for t1 ≤ . . . ≤ tn < t+ h, which is a Markov property. Then the chain rule in (3.34) implies that

P (X (tn) = xn, X (tn−1) = xn−1, . . . , X (t1) = x1)

= P (X (tn) = xn | X (tn−1) = xn−1, . . . , X (t1) = x1)

·P (X (tn−1) = xn−1 | X (tn−2) = xn−2, . . . , X (t1) = x1)

· . . . · P (X (t2) = x2 | X (t1) = x1)P (X (t1) = x1) .

= P (X (tn) = xn | X (tn−1) = xn−1) · . . . · P (X (t2) = x2 | X (t1) = x1) · P (X (t1) = x1) .
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Every factor in the last product is one of the combinations of the form in (12.27)

P (X(ti) = a | X(ti−1) = b) = P (N (ti)−N (ti−1) odd/even) .

Let now time be shifted by

ti 7→ ti + h

for every ti. For these times it holds again

P (X (tn + h) = xn, X (tn−1 + h) = xn−1, . . . , X (t1 + h) = x1) =

P (X (tn + h) = xn | X (tn−1 + h) = xn−1) · . . . · P (X (t1 + h) = x1) .

Every factor in this last product is one of the combinations of the same form as prior to the time shift, and are

of the form in (12.27)

P (X(ti + h) = a | X(ti−1 + h) = b) = P (N (ti + h)−N (ti−1 + h) odd/even) .

But we recall that

N (ti + h)−N (ti−1 + h) ∈ Po (λ(ti − ti−1))

and

N (ti)−N (ti−1) ∈ Po (λ(ti − ti−1))

for every i. In addition, lemma 12.5.1 yields that

P (X (t1 + h) = x1) = P (X (t1) = x1) .

These observations imply unequivocally that

P (X (tn) = xn, X (tn−1) = xn−1, . . . , X (t1) = x1) =

P (X (tn + h) = xn, X (tn−1 + h) = xn−1, . . . , X (t1 + h) = x1)

for all n, h > 0 and all 0 ≤ t1 ≤ t2 . . . ≤ tn. By this we have shown that the Poisson (and Markov) model of

RTS is strictly stationary.

12.6 Exercises

12.6.1 Basic Poisson Process Probability

1. N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0. Find

P (N(3) = 2 | N(1) = 0, N(5) = 4) .

Answer: 3
8 .

2. N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0. Show that

N(t)

t

P→ λ,

as t→∞.
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3. What is the probability that one of two independent Poisson processess reaches the level 2, before the

other reaches the level 1. Answer: 1
2 .

4. We say that N = {N(t) | t ≥ 0} is a Poisson process with random intensity Λ, if N | Λ = λ is a

Poissonprocess with intensity Λ = λ. Or, for every t ≥ 0, N(t) | Λ = λ ∈ Po(λt). We assume that Λ

∈ Exp(1/α).

(a) Show that

P (N(t) = k) =
α

t+ α

(
t

t+ α

)k

, k = 0, 1, 2, . . . (12.28)

(b) Find the m.g.f. ψN(t)(s) of N(t).

5. N1 = {N1(t) | t ≥ 0} is a Poisson process with intensity λ1, and N2 = {N2(t) | t ≥ 0} is another Poisson

process with intensity λ2. N1 and N2 are independent of each other.

Consider the probability that the first event occurs for N1, i.e., that N1 jumps from zero to one before

N2 jumps for the first time. Show that

P ( first jump for N1 ) =
λ1

λ1 + λ2
.

6. (From [35]) Let N = {N(t) | t ≥ 0} be a Poisson process with intensity λ = 2. We form a new stochastic

process by

X(t) =

⌊
N(t)

2

⌋
, t ≥ 0,

where ⌊x⌋ is the floor function, the integer part of the real number x, i.e., if k is an integer,

⌊x⌋ = k, for k ≤ x < k + 1,

i.e., the largest integer smaller than or equal to x.

(a) Find the probability

P (X(1) = 1, X(2) = 1) .

(b) Find the conditional probability

P (X(3) = 3 | X(1) = 1, X(2) = 1) .

7. Show that the Poisson process is continuous in probability, i.e.,

N(s)
P→ N(t),

as s→ t.

8. N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0. T = the time of occurrence of the first

event. Determine for all t ∈ (0, 1) the probability P (T ≤ t | N(1) = 1). Or, what is the distribution of

T | N(t) = 1? Answer: U(0, 1).

9. N = {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0. We take the conditioning event {N(t) = k}.
Recall (12.3), i.e, N(t) = max{k|t ≥ Tk}. Tj =, j = 1, . . . , k are the times of occurrence of the jth event,

respectively.
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Show that for 1 ≤ j ≤ k, 0 ≤ x ≤ t,

P (Tj ≤ x | N(t) = k) =

(
k

j

)(x
t

)j (
1− x

t

)k−j

(12.29)

In the right hand side we recognize the p.m.f. of Bin
(
k, xt

)
. This is a significant finding, let us see why.

If Tj ≤ x , then T1 ≤ x, T2 ≤ x, . . ., Tj−1 ≤ x, too. We think of drawing independently k points from

U [0, t]. Then the probability of any of them landing to the left of x (≤ t) is x
t . Hence the probability of j

of the points landing to the left of x is equal to the binomial probability in the right hand side of 12.29,

recall the generative model of the Binomial distribution. Thus we have found

T1, . . . , Tk are independent and Tj ∈ U(0, t), j = 1, . . . , k, conditioned on {N(t) = k}. (12.30)

10. The Distribution Function of the Erlang Distribution Let X ∈ Erlang (n, 1/λ). Show that

FX(t) = P (X ≤ t) = 1−
n−1∑

j=0

e−λt (λt)
j

j!
.

Aid: Let N = {N(t) | t ≥ 0} be a Poisson process with parameter λ > 0. Tn is its nth arrival time of N,

then convince yourself first of the fact that, {Tn ≤ t} = {N(t) ≥ n}.

11. N = {N(t) | t ≥ 0} is a Poisson process with intensity λ. Tk and Tk+1 are the kth and k + 1th

occurrence/arrival times.

(a) Show that for t > s ≥ 0

P (Tk ≤ s, Tk+1 > t) =
(sλ)k

k!
e−λt.

(b) Show that for t > s ≥ 0

fTk,Tk+1
(s, t) = λk+1 sk−1

(k − 1)!
e−λt.

(c) Let τk+1 be the k + 1th occupation/interarrival time. Show that

fTk,τk+1
(u, v) = λk+1 uk−1

(k − 1)!
e−λ(v+u)

What is the conclusion?

12.6.2 Various Processes Obtained from the Poisson Process

1. Let N = {N(t) | t ≥ 0} be a Poisson process with intensity λ > 0. We define Nk for k = 0, 1, 2, . . . by

sampling at the non negative integers and by subtraction of the mean function at the sampling points,

i.e.,

Nk = N(k)− λ · k.

Let FN

k = σ{N0, N1, . . . , Nk}. Show that {Nk,FN

k }∞k=0 is a martingale.

2. Let Xi, i = 1, 2, . . . , be Xi ∈ Fs (p) and I.I.D.. Let N = {N(t) | t ≥ 0} be a Poisson process with intensity

λ > 0. The process N is independent of Xi, i = 1, 2, . . . ,.

We define a new stochastic process X = {X(t) | t ≥ 0} with

X(t) =

N(t)∑

i=1

Xi, X(0) = 0, X(t) = 0, if N(t) = 0.
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We say that X = {X(t) | t ≥ 0} is a Pólya-Aeppli process or a Compound Poisson process with

parameters p and λ.

(a) Show that the m.g.f. of X(t) is

ψX(t)(s) = e
λt

(

esp
1−es(1−p)

−1
)

, s ≤ − ln(1− p).

(b) Find using ψX(t)(s) that

E [X(t)] =
λ

p
· t, Var [X(t)] =

λ · (2 − p)

p2
· t.

(c) It is being said that a Pólya-Aeppli process is a generalisation of the Poisson process (or that the

Poisson process is a special case of the Pólya-Aeppli process). Explain what this means. Aid:

Consider a suitable value of p.

(d) The process

Z(t) = ct−X(t), t ≥ 0, c > 0,

where {X(t) | t ≥ 0} is a Pólya-Aeppli process, is often used as a model of an insurance business and

is thereby called the risk process of Pólya and Aeppli. How should one interpret c, N and Xi:s

with respect to the needs of an insurance company ?

3. (From [99] and sf2940 2012-10-17) N = {N(t) | t ≥ 0} is a Poisson process with intensity λ > 0. We

define the new process Y = {Y (t) | 0 ≤ t ≤ 1} by

Y (t)
def
= N(t)− tN(1), 0 ≤ t ≤ 1.

(a) Are the sample paths of Y nondecreasing? Justify your answer. Answer: No.

(b) Find E [Y (t)]. Answer: 0.

(c) Find Var [Y (t)]. Answer: λt(1− t).

(d) Find the autocovariance of Y. Answer:

CovY(t, s) =

{
λs(1− t) s < t,

λt(1 − s) t ≤ s.

(e) Compare the autocovariance function in (d) with the autocovariance function in (10.79). What is

Your explanation?

4. (From [99]) N1 = {N1(t) | t ≥ 0} is a Poisson process with intensity λ1, and N2 = {N2(t) | t ≥ 0} is

another Poisson process with intensity λ2. N1 and N2 are independent of each other. Let T1 and T2 be

the times of occurrence/arrival of the first two events in N1. Let

Y = N2 (T2)−N2 (T1)

be the number of events in N2 during [T1, T2]. Show that

P (Y = k) =
λ1

λ1 + λ2

(
λ2

λ1 + λ2

)k

, k = 0, 1, 2 . . .

Aid: Note that T2 = τ2 + T1. Then

Y = N2 (τ2 + T1)−N2 (T1) .
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where τ2 is independent of T1 = τ1 by theorem 12.2.1. By extending the argument in the proof of the

restarting theorems 12.3.1 and 12.3.2 we have that

N2(t+ T1)−N2(T1) | τ2 = t ∈ Po(λ2t).

Now use the argument leading to (12.28).

5. M.g.f. of the Filtered Shot Noise and Campbell’s Formula Use the m.g.f. in (12.15) derive (12.13).

6. Find the mean and variance of Z(t) =
∑∞

k=1 h (t− Tk) , t ≥ 0, when

h(t) = e−tU(t),

and

U(t) =

{
1 t ≥ 0,

0 t < 0.

12.6.3 RTS

1. A Modified RTS If the start value Y is removed, the modified RTS is

Xo(t)
def
= (−1)

N(t)
, t ≥ 0. (12.31)

Show that

µX0(t) = E [Xo(t)] = e−2λt. (12.32)

2. Give a short proof of (12.20) without using (12.7), (12.8) and of (12.18).

3. Give a short proof of (12.24) without using (12.7), (12.8) and of (12.18).

4. Show that the m.g.f. of X(t) in the RTS is

ψX(t)(s) = cosh(t) ·
[
e−(1−λ)t cosh(λt) + e−(1+λ)t sinh(λt)

]
.

Find E (X(t)) and Var (X(t)) by this m.g.f. and compare with the determination without a generating

function.

5. RTS as a Markov Chain in Continuous Time In midst of the proof of strict stationarity we observed

that for any h > 0 and any t1 < . . . < tn

P (X(t+ h) | X (tn) , . . . , X (t1)) = P (X(t+ h) | X (tn)) . (12.33)

As already asserted, this says that the process X = {X(t) | t ≥ 0} is a Markov chain in continuous

time. As for all Markov chains in continuous time, we can define the transition probabilities

Pij(t)
def
= P (X(t) = j|X(0) = i) , i, j ∈ {+1,−1}.

This is the conditional probability that the RTS will be in state j at time t given that the RTS was in

state i at time t = 0. These functions of t are arranged in the matrix valued function

t 7→ PRTS(t) = {Pij(t)}i∈{+1,−1},j∈{+1,−1}.

(a) Show that

PRTS(t) =

(
1
2

(
1 + e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1− e−2λt

)
1
2

(
1 + e−2λt

)
)
.

(b) Check the Chapman - Kolmogorov equations

PRTS(t+ s) = PRTS(t)PRTS(s). (12.34)



Chapter 13

The Kalman-Bucy Filter

13.1 Background

The recursive algorithm known as the Kalman filter was invented by Rudolf E. Kalman1. His original work was

on random processes in discrete time, the extension to continuous time is known as the Kalman-Bucy Filter.

The Kalman-Bucy filter produces an optimal (in the sense of mean squared error) estimate of the sample path

(or, trajectory) of a stochastic process, which is observed in additive noise. The estimate is given by a stochastic

differential equation. We consider only the linear model of Kalman-Bucy filtering.

The Kalman filter was prominently applied to the problem of trajectory estimation for the Apollo space

program of the NASA (in the 1960s), and implemented in the Apollo space navigation computer. It was also

used in the guidance and navigation systems of the NASA Space Shuttle and the attitude control and navigation

systems of the International Space Station.

Robotics is a field of engineering, where the Kalman filter (in discrete time) plays an important role [98].

Kalman filter is in the phase-locked loop found everywhere in communications equipment. New applications

of the Kalman Filter (and of its extensions like particle filters) continue to be discovered, including global

positioning systems (GPS), hydrological modelling, atmospheric observations.

It has been understood only relatively recently that the Danish mathematician and statistician Thorvald

N. Thiele2 discovered the principle (and a special case) of the Kalman filter in his book published in Copenhagen

in 1889: Forelæsningar over Almindelig Iagttagelseslære: Sandsynlighedsregning og mindste Kvadraters Methode.

A translation of the book and an exposition of Thiele,s work is found in [72].

13.2 The One-dimensional Kalman Filter in Continuous Time

Let us consider an Ornstein-Uhlenbeck process

dU(t) = aU(t)dt+ σdW (t), t ≥ 0. (13.1)

and a process Y = {Y (s) | 0 ≤ t} of noisy observations of it

dY (t) = cU(t)dt+ gdV (t). (13.2)

1b. 1930 in Budapest, but studied and graduated in electrical engineering in USA, Professor Emeritus in Mathematics at ETH,

the Swiss Federal Institute of Technology in Zürich.
21838−1910, a short biography is in

http://www-groups.dcs.st-ac.uk./∼history/Biographies/Thiele.html
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where V = {V (s) | 0 ≤ t} is another Wiener process, which is independent of the Wiener process W = {W (s) |
0 ≤ t}. Let us set

Û(t)
def
= E

[
U(t) | FY

t

]
(13.3)

where FY
t is the sigma field generated by {Y (s) | 0 ≤ s ≤ t}.

The Kalman-Bucy Filter for an Ornstein-Uhlenbeck process observed in additive Wiener noise is then found

as follows.

dÛ(t) =

(
a− c2S(t)

g2

)
Û(t)dt +

cS(t)

g2
dY (t), Û(0) = E [U(0)] . (13.4)

Here

S(t) = E

[(
U(t)− Û(t)

)2]
, (13.5)

and S(t) satisfies the deterministic first order nonlinear differential equation known as Riccati equation

d

dt
S(t) = 2aS(t)− c2

g2
S(t)2 + σ2, S(0) = E

[
(U(0)− E [U(0)])

2
]
. (13.6)

The Riccati equation can be solved as

S(t) =
α1 −Kα2e

(α1−α2)c2t

g2

1−Ke
(α1−α2)c2t

g2

, (13.7)

where

α1 = c−2
(
ag2 − g

√
a2g2 + c2σ2

)

α2 = c−2
(
ag2 + g

√
a2g2 + c2σ2

)

and

K =
S(0)− α1

S(0)− α2
.

To derive these expressions we need the results about Û(t) as a projection on the linear span of {Y (s) | 0 ≤ s ≤ t}
(these hold by Gaussianity), c.f. section 7.5, its representation as a Wiener integral and in the mean square.

(Forthcoming, ≈ 10 pages))



Bibliography

[1] P. Albin: Stokastiska processer. (Stochastic Processes; in Swedish), Studentlitteratur, Lund 2003.

[2] D. Aldous: Probability Approximations via the Poisson Clumping Heuristic. Springer-Verlag, New York

1989.

[3] L.C. Andrews: Special Functions of Mathematics for Engineers. SPIE Optical Engineering Press, Belling-

ham; Washington, and Oxford University Press. Oxford, Tokyo, Melbourne, 1998.

[4] A. H. S. Ang & W. H. Tang. Probability Concepts in Engineering: Emphasis on Applications to Civil and

Environmental Engineering 2nd Edition. John Wiley & Sons, New York, 2007.

[5] H. Anton & C. Rorres: Elementary Linear Algebra with Supplemental Applications. John Wiley & Sons

(Asia) Pte Ltd, 2011.

[6] C. Ash: The Probability Tutoring Book. An Intuitive Course for Engineers and Scientists (and everyone

else!). IEEE Press, Piscataway, New Jersey, 1993.

[7] A.V. Balakrishnan: Stochastic Differential Systems I. Springer Verlag, Berlin 1973.

[8] A.V. Balakrishnan: Introduction to Random Processes in Engineering. John Wiley & Sons, Inc., New

York, 1995.

[9] A. Barbour, L. Holst & S. Jansson: Poisson Approximation. Clarendon Press, Oxford, 1992.

[10] H.C. Berg: Random Walks in Biology. Expanded Edition. Princeton University Press, Princeton, New

Jersey, 1993.

[11] A. Bernow, T. Bohlin, C. Davidson, R. Magnusson, G. Markesjö & S-O. Öhrvik : Kurs i elektroniskt brus.
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Absolutely continuous part of a measure, 72

Algebra of sets, 14

Almost sure properties, 25

Almost sure convergence implies convergence in

probability, 178

Asymptotic mean, 175

Asymptotic variance, 175

Autocorrelation function

Bilinear forms, 233

Bochner’s Theorem, 240

Definition, 231

Einstein-Wiener-Khinchin theorem, 240

Nonnegative definiteness, 233

Periodic, 235

Separable, 235

Bayesian integral, 92

Bayes’ rule, 104

Bayes’ rule with p.d.f., 93

Bessel functions

modified, first kind, 63

modified, second kind, 57

Berry-Esseen bound, 179

Beta function 55

Incomplete beta function, 55

Binomial coefficient, 40

Bivariate distributions

Bernoulli distribution, 65

Gaussian: see Gaussian bivariate

Logistic normal, 68

Bochner’s Theorem, 240

Borel field, 18

Borel function, 19

Borel Cantelli lemma, 31

Borel-Cantelli lemma, converse, 31

Bose-Einstein-statistics, 41

Brownian bridge, 293

Autocorrelation function, 294

Brownian motion, 265

Brownian projectile, 311

Bussgang’s formula, 223

Börjesson-Sundberg approximation, 51

Campbell’s Formula, 319

Cantor function, 76

Cantor set, 76

Cauchy criterion for mean square convergence in L2 (Ω,F ,P),

195

Central limit theorem, 179

Centrosymmetric matrix, 253

Chain rule

for probability, 104

for p.d.f., 247

Change of variable in a joint probability density, 67

Characteristic Functions for Probability Distributions

Bernoulli distribution, 126

Binomial distribution, 126

Cauchy distribution, 125

χ2(n), 136

Exponential distribution, 123

Gamma distribution, 125

inverse Gaussian, 137

Laplace distribution, 124

N(0, 1), 122

Normal/Gaussian distribution, 122

Point mass distribution, 126

Poisson distribution, 123

Skellam, 137

Stable distributions, 136

Sums of I.I.D. r.v.’s, 128

Symmetric Bernoulli distribution, 126

Triangular distribution, 136

Uniform distribution, 136

Characteristic Functions, Properties

Continuity theorem, 178

Definition, 119

Inversion of a characteristic function, 119

Kac’s theorem of independence via characteristic

340
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functions, 208

Non-negative definite, 121

of a random vector, 207

Uniqueness, 119

Chen’s lemma, 89

Closure

under complement, 14

under union, 14

under countable union, 15

Coefficient of correlation, 58

Complementary error function, 50

Convergence of Sequences of r.v.’s

Almost sure convergence implies convergence in

probability, 180

Convergence almost surely,
a.s.→ , 180

Convergence in distribution,
d→, 167

Convergence in probability,
P→, 168

Convergence in mean square,
2→, 168

Convergence in r-mean,
r→, 168

Cramér -Slutzky Theorem, 172

Implications between convergence concepts, sum-

mary of, 181

Composition formula for sum of a random number of

independent r.v.’s, 147

Conditional Probability

Conditional probability, elementary definition, 91

Conditional p.d.f, elementary definition, 91

Conditioning w.r.t. an event, 94

Conditioning w.r.t. a partition, 95

Law of total probability, 104

Conditional Expectation

Conditional expectation, elementary definition, 93

Double conditional expectation, 93

Conditional expectation w.r.t. a r.v., 96

Conditional expectation w.r.t. sigma field, 98

Double expectation w.r.t a sigma field, 99

Independent condition drops out, 99

Taking out what is known, 99

Tower property, 99

Jensen’s Inequality for, 103

Convolution integral, 128

Conditional Variance

Conditional variance, definition, 93

Total variance, 94

Continuity theorem for characteristic functions, 178

Covariance, 58

Covariance Matrix

Centrosymmetric, 253

Definition, 206

Nonnegative definite, 207

Symmetric, 214

Toeplitz, 253

Cramér -Slutzky Theorem, 172

Cramér-Wold device, 208

De Morgan’s rules, 13

Difference equations, linear with constant coefficients,

152

Digamma, 160

Dirichlet probability generating function, 163

Discontinuities of the first kind, 324

Distribution function, definition, 28

Distributions

Benford, 63

Bernoulli, 59

Beta, 55

Beta-uniform mixture, 105

Binomial, 61

Birnbaum-Saunders, 75

Cantor, 65

Cauchy, 54

chi-squared χ2(f), 53

Compound Poisson, 61

Double exponential, 52

Erlang, 53

Exponential, 51

Extreme value distributions, 55

First success, 60

F, Fisher -Snedecor, 83

Gamma, 52

Gaussian, 50

General Triangular, 50

Geometric, 60

Gumbel, 55

Hyperbolic secant, 77

Inverse Gaussian, 56

K-distribution, 57

Laplace, 52

Logistic, 57, 111

Log-normal, 77

Luria -Delbrück, 161
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Negative binomial, 62

Negative-binomial Beta, 64

Normal, 50

Pareto, 56

Pascal, 62

Point mass, 126

Poisson, 61

Poisson Plus Gauss, 105

Power law, 61

Rayleigh, 55

Rice, 85

Sinh-normal, 75

Skellam, 64

Skew-normal, 51

Standard Gaussian/normal N(0, 1), 50

Symmetric Bernoulli, 59

t(n) (Student), 54

Triangular, 49

Uniform, 49

Uniform discrete, 59

Zipf, 63

Waring, 63

Weibull, 53

Dominated convergence, 37

Doob-Dynkin theorem, 28

Einstein’s diffusion coefficient, 307

Einstein-Wiener-Khinchin theorem, 240

Equal in distribution
d
=, 77

Equipartition of energy, 306

Error function, 50

Estimation of a r.v. with another r.v.

Best linear, Gaussian, 214

Best mean square, Gaussian, 214

Estimation error, 110

Linear, 110

Estimation error, optimal linear estimation error,

110

Optimal linear error, 110

Euler gamma function, 49

Euler’s constant, 56

Even number of successes, 151

Exponential generating function, 157

for factorial moments, 164

Factorial, 40

Fermi-Dirac statistics, 41

Field of sets, 14

Filtered shot noise, 318

Campbell’s Formula, 319

Filtration, 112

Filtration, continuous time, 288

Financial status of a gambler, 292

Floor function, 88

Fluctuation - dissipation formula, 303

Four product rule, 223

Fourier transform,

Definition, 117

Duality property, 126

Inversion formula, 118

Fractional part, 89

Fractional Brownian motion, 296

Hurst parameter, 296

Functional equation, 250

Functional equation, G(x + y) = G(x) ·G(y), 251
Function of a r.v., probability density, 65

Gauss-Markov stochastic process

Chapman-Kolmogorov (or Smoluchowski) Equa-

tion for transition densities, 245

Definition, 243

Markov property, 243

Transition density, 243

Gaussian bivariate

Best linear estimator, 214

Best mean square estimator, 214

Conditional distributions, 214

Conditional expectation, 216

Conditional Variance, 214

Mehler’s formula for, 263

p.d.f. of, 215

Rosenblatt transformation for bivariate Gaussian

Variables, 218

Gaussian multivariate

Cramér-Wold device, 208

Four product rule, 223

multivariate normal or Gaussian distribution, def-

inition 1, 208

multivariate normal or Gaussian, definition 2, 208

Gaussian stochastic process

Band-limited white, 257

Definition, 242

Marginal distributions, 243
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Markov, 247

Strictly stationary, 244

Stochastic mean square integrals of, 246

Generating function of a sequence, 143

Exponential generating function, 157

Radius of convergence, 143

Geometric Brownian motion, 295

Gram-Charlier expansion, 80

Hermite polynomials, 78

Hilbert space

Cauchy criterion for mean square convergence in

L2 (Ω,F ,P), 195

Cauchy-Schwartz inequality in L2 (Ω,F ,P), 194

Hilbert space L2 (Ω,F ,P), 194

Scalar (inner) product in L2 (Ω,F ,P), 193

Norm in L2 (Ω,F ,P), 194

Hurst parameter, 296

Impulse response, 259

Incomplete beta function, 55

Independence

independent events, 29

I.I.D., 30

independent, identically distributed, 30

independent random variables, 30

independent sigma fields, 29

Independent condition drops out, 99

Indicator function 1, 26

Indicator function 2, 45

Inequalities

Boole, 43

Cauchy-Schwartz in L2 (Ω,F ,P), 194

Chebychev, 36

Chernoff, 162

Hölder, 36

Jensen, 35

Jensen’s for Conditional Expectation, 103

Markov, 45

Mill, 90

Integer part, 88

Integral equation, 240

Itô’s rule, 299

IVA, 341

Jacobian, 66

Joint probability density, 57

Joint probability mass function, 64

Kalman Filter, 331

Kac’s theorem of independence via characteristic func-

tions, 204

Karhunen-Loéve expansion, 239

Kolmogorov consistency , 228

Kullback distance, 164

Kurtosis, 77

Lack of memory, 105

Lamperti transform, 250

Landau’s o-notation, 132

Langevin dynamics, 301

Law of the unconscious statistician, 34

Laplace transform, 118

Law of large numbers

Strong, 182

Weak, 166

Leptokurtosis, 77

Likelihood ratio, 114

lim supAn and lim inf An, 39

Linear time-invariant filter, 259

Logistic function, 57

Loglikelihood, 114

Marcum Q-function, 84

Marginal p.d.f., 57

Marginal p.m.f., 64

Martingale

Continuous time, 288

Definition, 114

Martingale property, 112

Likelihood ratio, 114

Loglikelihood, 114

Stochastic integral, discrete, 114

Wiener process, 288

Wiener integral, 298

Maxwell -Boltzmann statistics, 41

Maxwell-Boltzmann velocity distribution, 307

Mean square convergence

Loève’s criterion for, 195

of Normal Random Variables, 198

of a sum of independent normal random variables,

198

of sums of independent random variables, 198

Mean vector, 206

Measurable random variable, measurable function 26

Mehler’s formula for bivariate Gaussian p.d.f., 263
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Mellin transform

Definition, 118

Mellin convolution, 141

Mellin transform, Gamma distribution, 141

Mellin transform, the product of n independent

N(0, 1) variables, 142

Mellin transform, uniform distribution, 141

Mixing integral, 92

Moment Generating Function (m.g.f.) for Distribu-

tions

Definition, 154

Sum of I.I.D. r.v.’s, 155

Exponential distribution, 156

Gamma distribution, 156

Gumbel distribution, 158

N(0, 1), 155

Normal distribution, 155

Rayleigh distribution, 160

Monotone class, 45

Multiplication principle, 39

Mutual information (Shannon), 219

Noise

Filtered shot noise, 318

Nyquist- Johnson Noise, 307

Popcorn noise, 320

Shot noise, 318

White, 287

1/f noise, 297

Nyquist- Johnson Noise, 307

Nyquist formula, 308

Order statistic, 68

Ornstein-Uhlenbeck Process

Definition, 302

Lamperti transform, 295

Mean function, 309

Variance function, 309

Stochastic differential equation for, 302

o(t), 132

Partial differential equation

Heat equation, 266

Diffusion equation, 266

Phase-Shift Keying, 236

Platykurtosis, 77

Poisson Process

Autocorrelation function, 314

Counter process, 313

Definition, 313

Mean function, 314

Restarted, 317

Shot noise, 318

Thinning, 148

Times of occurrence, 314

Pólya-Aeppli process, 329

Posterior probability density, 93

Power law, 61

Price’s theorem, 225

Prior probability density, 92

Probability Generating Function (p.g.f.)

Definition, 144

Composition formula for sum of a random number

of independent r.v.’s, 149

factorial moments, 147

Sum of I.I.D. r.v.’s, 148

Probability Generating Function (p.g.f.) for Distribu-

tions

Binomial, 145

Compound Poisson, 162

First success, 146

Geometric, 146

Luria -Delbrück, 161

Negative binomial, 158

Poisson, 144

Pascal, 158

Skellam, 159

Probability density, p.d.f., definition, 47

Probability integral transform (PIT), 109

Probability mass function p.m.f., definition, 48

Probability Measure

continuity from below, 21

continuity from above, 22

countable additivity, 19

probability measure, definition, 19

finite additivity, 20

subaditivity, 21

Product of two r.v.’s, p.d.f., 81

Propagation of error, 174

Q-function, 51

Börjesson-Sundberg approximation, 51

Random time, 108

Sojourn time, 251
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Random Telegraph Signal, see Telegraph Signal

Random variable, 26

Random walk, 290

Reflection principle for , 290

Range of n I.I.D. r.v.’s, 86

Ratio of two r.v.’s, 67

Reflection principle

for random walks, 290

for Wiener porcess, 294

Rice method for mean of a transformed r.v., 139

Robotics, 331

Rosenblatt transformation, 108

for bivariate Gaussian Variables, 218

Rotation matrix, 220

Sampling theorem, 258

Scale-free probability distribution, 111

Small world, 111

Skewness, 77

Stable distributions, 136

Set theory

decreasing sequence of sets, 16

De Morgan’s rules, 13

field of sets, 14

increasing sequence of sets, 15

pairwise disjoint sets, 13

power set, 14

set difference, 13, 22

Sine wave with random phase, 224

Sigma fields

filtration, 112

filtration, continuous time, 284

monotone class, 45

predictable, 114

σ -field, 14

σ algebra, 14

σ -field generated by a random variable, 27

Signal-to-noise ratio, 85

Singular part of a measure, 73

Spectral density, 240

Steiner
′
s formula, 48

Stein’s lemma, 224

Stochastic differential equation, 299

Stochastic damped harmonic oscillator, 312

Stochastic Processes

Autocorrelation function, 231

Band-limited Gaussian white, 257

Definition, 227

Gaussian, definition, 242

Gauss-Markov, 246

Kolmogorov consistency theorem, 228

Lognormal, 254

Mean function, 231

Mean square continuous, 242

Strictly stationary, 244

Suzuki, 254

Transition density, 247

Weakly stationary, 240

Spectral density, 241

Stochastic integral,

discrete, 114

discrete w.r.t. a Wiener process, 298

in mean square, 237

Strictly stationary process, 244

Sum of random number of independent r.v.’s, 149

Superformel, 260

Taking out what is known, 99

Telegraph signal, random

Autocorrelation function, 322

Chapman - Kolmogorov equations, 330

Definition, 320

Discontinuities of the first kind, 322

Mean function, 322

Spectral density, 324

Strictly stationary, 324

Weakly stationary, 324

Théorie de la spéculation, 267

Thinning, 150

Toeplitz matrix, 253

Total probability, law of, 104

Total variance, 94

Tower property, 99

Transfer function, 260

Weakly stationary process, 240

Unconscious statistician, law of, 34

White noise, 287

Wiener integral, 298

Wiener process

Autocorrelation function, 273

Bivariate p.d.f. for, 293

Brownian bridge, 293
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Construction by Karhunen-Loéve, 275

Definition, 268

Kolmogorov consistency, 270

Martingale in continuous time, 288

Mean function, 273

Mean squared displacement, 273

Non-differentiability of sample paths, 278

Quadratic variation, 278

Reflection principle, 294

Scaling, 280

Scrambled, 286

Time inversion, 293

Time reversal, 293

Transition p.d.f., 268

Total variation, 280


