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Two inequalities
ACB= P(A) < P(B)
P(AUB) < P(A) + P(B) (Boole’s inequality).



1.2 Change of variable in a probability density

Let X = (X1, Xs,...,X,,)" have the probability density fx (1,22, ..., Zn).
Define a new random vector Y = (Y1, Y5, ... ,Ym)T by

Y=g (X0, X)), i=12....m,

where g; are continuously differentiable and (g1, g2, - - ., gm) is invertible (in
a domain) with

Xz:hl(}/laaym)a i:1,2,...,m,

where h; are continuously differentiable. Then the density of Y is (in the
domain of invertibility)

fY(y17'--7ym) :fX(hl(9173/27---aym>7-~ahm<ylay2>~->ym)) | J|7

where J is the Jacobian determinant

Oz Ozy Oz
9y dy2 "7 Oy
ozy O Py
J = ‘8211 ‘6y2 T ‘é)ym
Oyr  Oy2 7 Oym

Example 1.1 If X has the probability density fx (x), Y = AX + b, and A
is invertible, then Y has the probability density

1 -1
Fx(y)= mfx (A (y — b))

2 Continuous bivariate distributions

2.1 Bivariate densities

2.1.1 Definitions

The bivariate vector (X, Y)T has a continuous joint distribution with density
fxy(z,y) if

PX <z,Y <y = /ac /y fxy (u,v)dudv.

2



where
o fxy(z,y) =20,
o X323 fry(a,y)dady =1
Marginal distribution:
o fx(x)= [T fxy(x,y)dy,
o fy(y) =" fxy(x,y)de.

Distribution function

Conditional densities:

« X|Y =y,
o)
Ixpy=y(z) == O
if fy(y) > 0.
oY |X=12x
fY‘X:x(y> = W’
if fx(z) > 0.

Bayes’ formula

fY|X:a:(y) ’ fx<$) _
fr(v)
frix=:(y) - fx(z)
I3 Frix=e(y) fx (x)dz’

Ixy=y(x) is a a posteriori density for X and fx(z) is a priori density for
X.

fX|Y=y<a7) =




2.1.2 Independence
X and Y are independent iff

fxy(z,y) = fx(x) - fy(y) for every (z,y).

2.1.3 Conditional density of X given an event B

fx(z) B
_ ! Pm TE
fxi8(2) { 0 elsewhere

2.1.4 Normal distribution
If X has the density f(z;u,o) defined by

Fal ) 1 _(a=w)?
T, 0) = € 202
XA V2mo?
then X € N(u,0?). X € N(0,1) is standard normal with density
¢(x) = fx(2;0,1).

The cumulative distribution function of X € N(0,1) is for x > 0

@(x):/_x f+/

)

and

2.1.5 Numerical computation of ®(x)

Approximative values of the cumulative distribution function of X € N (0, 1),
®(z), can be calculated for x > 0 by

where we use the following approximation!:

Q(x) ~ L ! e w2,
(1—*)[E+ L/a2 3 2r ) Vor

'P.O. Borjesson and C.E.W. Sundberg: Simple Approximations of the Error Function
Q(z) for Communication Applications. IEEE Transactions on Communications, March
1979, pp. 639—643.




2.2 Mean and variance

The expectations or means E(X), E(Y) are defined (if they exist) by

B = [ e,
E(Y) = /;Ooyfy(y)dy,

respectively. Variances Var(X), Var(Y) are defined as

var(x) = [ e = B fx(2)da,

—00

var(v) = [y B (),

—0o0

respectively. We have
Var(X) = E(X?) — (B(X))2

The function of a random variable g(X), the law of the unconscious

statistician,
+oo

B(g(X) = | gl@)fx(@)dr.

— 00

2.3 Chebyshev's inequality
< Var(X)

P(| X —-—EX)|>e¢)

e2

2.4 Conditional expectations

The conditional expectations of X given Y = y is
+oo

B(X|Y =) = /OO 2 fx1y—y(2)dz.

This can be seen as y — E(X|Y = y), as a function of Y.
E(X) = E(E(X]Y)),
Var(X) = Var(E(X|Y))+ E(Var(X|Y)).
E[(Y —9(X))?] = ENa[YIX]+E[(E[Y|X] - g(X))*].



2.5 Covariance

Cov(X,Y) = E(XY)-E(X)-E(Y)=
= E(X-EX)][Y - EY))

- / N / o= BOXO)y — EOYV) fxy (x,y)dady.

We have

n n—1 n
Var(} e, X;) = Zaz\/ar D+2>0 Y aa;Cov(X;, X;),
i=1 i=1 i=1 j=it+1
Cov(d a;Xi, ) b;X;) = Z a;b;Cov(X;, Xj).
i=1 j=1 i=1j=1

2.6 Coefficient of correlation

Coefficient of correlation between X and Y is defined as

COV(X Y)
P = pPXy =
\/ Var(X) - Var( )

3 Best linear prediction

« and ( that minimize

ElY — (a+ 8X)]

are given by

OXy
Oé—My—iux —My—PfMX
Ox
Oxy Oy
0% ox

where iy = E[Y], ux = E[X], o} = Var[Y], o% = Var[X], oxy =




4 Conditional Expectation w.r.t to a Sigma-

Field

a and b are real numbers, F[|Y || < oo, E[| Z|] < 00, E[| X |] < 0o and
H, G F are sigma fields, G C F, H C F.

5

1. Linearity:

ElaX +bY | G| =aE[X |G| +bE[Y | G|

. Double expectation :

EEY |Gl = E]Y]

. Taking out what is known: If Z is G -measurable, and E'[| ZY || <

9]

E[ZY |G| =ZFE|Y | G]

. An independent condition drops out: If Y is independent of G,

EY[¢]=E[Y]

. Tower Property : If H C G,

E[E[Y [G]|H]=E[Y | H]

. Positivity: If Y > 0,

E[Y |G >0

Covariance matrix

5.1 Definition

Covariance matrix

Ox = B [(X — ix) (X = jix)"]

where the entry in position (i, j)

Cx(i,5) = E[(Xi — i) (X5 — p)]

is the covariance between X; and Xj.



e Covariance matrix is nonnegative definite, i.e., for all x # 0 we have
XTCXX > 0

Hence
det CX Z 0.

e The covariance matrix is symmetric

Cx = CX

5.2 2 x 2 Covariance Matrix

The covariance matrix of a bivariate random variable X = (X3, X,)".

2
_ 01 pPO102
Cx = ( po10y O3 ) ’
where p is the coefficient of correlation of X; and X,, and o7 = Var (X)),
o3 = Var (X5). Cx is invertible iff p> # 1, then the inverse is

_ 1 o2 —poi0
CX1:2< 2 2,012>.

ofoi(l —p?) \ —poroa i

6 Discrete Random Variables

X is a (discrete) random variable that assumes values in X and Y is a
(discrete) random variable that assumes values in ).

Remark 6.1 These are measurable maps X (w), w € €, from a basic pro-
bability space (2, F, P) (= outcomes, a sigma field of of subsets of Q and
probability measure P on F), to X. .

X and ) are two discrete state spaces, whose generic elements are called
values or instantiations and denoted by x; and y;, respectively.

X =A{xy,- 2.}, Y ={y1, -, us}-

| X | (:= the number of elements in X) = L < oo, | Y |= J < oo. Unless
otherwise stated the alphabets considered here are finite.
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6.1 Joint Probability Distributions

A two dimensional joint (simultaneous) probability distribution is a proba-
bility defined on X x )

p(xi,y;) = P(X =z;,Y =y;). (6.1)

Hence 0 < p(x;,y;) and S5, Zlep(xi,yj) =1
Marginal distribution for X:

J
plai) = plwiy;). (6.2)
j=1
Marginal distribution for Y:
L
p(y;) = D_p(=i,y;)- (6.3)
i=1

These notions can be extended to define the joint (simultaneous) probability
distribution and the marginal distributions of n random variables.

6.2 Conditional Probability Distributions
The conditional probability for X = z; given Y = y; is

p(Ti,y;)
P x; | Yj) = . 6.4
The conditional probability for Y = y; given X = ; is
P\Y; | Xi) ‘= . 6.5

Here we assume p(y;) > 0 and p(z;) > 0. If for example p(z;) = 0, we
can make the definition of p(y; | z;) arbitrarily through p(x;) - p(y; | ;) =
p(xi,y;). In other words

prob. for the event {X = z;,Y = y,}
p(y; | i) = —_—
prob. for the event {X = z;}

Hence
L

> oplwily;) =1

i=1



Next
Px(A) :== > p(x;) (6.6)

;€A
is the probability of the event that X assumes a value in A, a subset of X.
From (6.6) one easily finds the complement rule

Px (A%) = 1= Px(A), (6.7)

where A€ is the complement of A, i.e., those outcomes which do not lie in A.
Also
Px (AU B) = Px(A) + Px(B) — Px(AN B), (6.8)

is immediate.

6.3 Conditional Probability Given an Event

The conditional probability for X = z; given X € A is denoted by Px (z; | A)
and given by

Px(zi) s ..
Px<$l|A):{PX(A) lfoEA

0 otherwise.

(6.9)

6.4 Independence

X and Y are independent random variables if and only if

p(xi,y5) = p(xi) - p(y;) (6.10)

for all pairs (z;,y;) in X x Y. In other words all events {X = z;} and {Y = y;}
are to be independent. We say that X;, X, ..., X,, are independent random
variables if and only if the joint distribution

le,XQ 77777 Xn(xilaxiz"wxin):P(Xl :xi1aX2:xi27~~-7Xn:xin) (611)

DX, Xoo X (Tiys Tig - - T4,) = Pxy (Tiy) - Pxo (@) - - - Px, (T4, (6.12)

for every wz;,, %, ...,x;,, € X" We are here assuming for simplicity that
X1, Xo, ..., X, take values in the same alphabet.
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6.5 A Chain Rule

Let Z be a (discrete) random variable that assumes values in Z = {z; }/;.
If p(zx) > 0,
p(xiu Y, Zk)
P,y | 2) = =52
R TEY
Then we obtain as an identity

p(l'i, Yj, Zk) . p<yj7 Zk)
p<yj7zk) p(Zk)

P(ﬂ%?/j ! Zk) =

and again by definition of conditional probability the right hand side is equal
to

(s | Y5, 2e) - p(Y5 | 2e).

In other words,

pX,Y\Z(l’z‘;yj | 26) = (i | yj, 26) - P(Y5 | 21)- (6.13)

6.6 Conditional Independence

The random variables X and Y are called conditionally independent given Z
if

p(@i,yslzr) = paslze) - py;l2r) (6.14)
for all triples (zj, z;,y;) € Z2 x X x Y (cf. (6.13)).

7 Miscellaneous

7.1 A Marginalization Formula

Let Y be discrete and X be continuous, and let their joint distribution be
PY =k X <z) :/ PY = k| X = u) fx(u)du.

—0o0

Then 9
P(sz:):/ S P(Y =k X <) du
J—oco U

:/_O:OP(Y:MX:x)fX(x)dx.
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7.2 Factorial Moments

X is an integer-valued discrete R.V.,
def
iy & EIX(X = 1)+ (X = 1)) =

= > (el@—-1)-(z—r+1)) fx(@).

x:integer

is called the r:th factorial moment.

7.3 Binomial Moments

X is an integer-valued discrete R.V..

E(f):E[X(X_1).-.(X—r+1)]/r!

is called the binomial moment.

8 Transforms

8.1 Probability Generating Function
8.1.1 Definition
Let X have values k =0,1,2,.....

gx(t) = B () = S t* fx ()
k=0
is called the probability generating function.

8.1.2 Prob. Gen. Fnct: Properties

°
d

%gx(l) = kz::1 Kt fxe (k) Jie

— E[X]



T

p = EX(X = 1) (X =r+ D] = —gx(1)

Var[X] = jtzgx(l) + ;ltgx(l) - (jth(l)>

8.1.3 Prob. Gen. Fnct: Properties
Z =X+Y, X and Y non negative integer valued, independent,

gz(t) = E (%) =
E(#) =E () E () = gx(t) - or(0).
8.1.4 Prob. Gen. Fnct: Examples

e X € Be(p)
gx(t) =1 —p+pt.

e Y € Bin(n,p)
gv(t) = (L =p+pt)"

e Z € Po(N) o
gz(t) = Y

8.1.5 Sum of a Random Number of Random Variables

X;., i = 1,...,n LLD. non negative integer valued, and N non negative
integer valued and independent of the Xs.

N
SN - ZXZ
i=1

Then the probability generating function of Sy is

gsy (t) = gn (gx (1)) .
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8.2 Moment Generating Functions
8.2.1 Definition

Moment generating function, for some h > 0,

Ux(t) Y E {etx} |t < h.

Wx(t) = Zzi eifx(z;) X discrete
X 120 e fx(x)dr X continuous

8.2.2 Moment Gen. Fnctn: Properties

d
£¢X(0) =F [X]

¥x(0) =1
dF &
%%((O) =L [X } :
S, =X1+Xo+ ...+ X,, X; independent.
Vs, (t) = E () =

B (et(X1+X2+...+Xn)> —E (etXletXQ o etXn) _

E (etX1> E (etX2> .. E (etxn) = Ux, (t) - ¥x, (1) - - - ¥x, (1)
X, 11D,
s, (s) = (Vx(t)".

8.2.3 Moment Gen. Fnctn: Examples
o X €N(p,0?)

Px(t) = ererio
e Y € Exp(a)
1
¢Y<S) = m, at < 1.
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8.2.4 Characteristic function

Characteristic function ‘
ex(t)=F {e”X} :

exists for all ¢.

8.3 Moment generating function, characteristic func-
tion of a vector random variable

Moment generating function of X (n x 1 vector) is defined as

def T
wX (t) del Eet X _ E€t1X1+t2X2+ +tnXn

Characteristic function of X is defined as

def itT i
SOX (t) é Eelt X — Eel(t1X1+t2X2+ +tan)

9  Multivariate normal distribution

An n x 1 random vector X has a normal distribution iff for every n x 1-
vector a the one-dimensional random vector a’ X has a normal distribution.

When vector X = (X1, Xy, -+, X,,)T has a multivariate normal distribu-
tion we write

X € N (1,C). (9.1)

The moment generating function is
U (s) = 1O (92)

LT LT, 1T
@X(t):Eelt Xzezt u—5t Ct‘

is the characteristic function of X € N (u, C).
Let X € N ( 4, C) and
Y =a+ BX.

for an arbitrary m x n -matrix B and arbitrary m X 1 vector a. Then

Y € N (a+ Bu, BCB"). (9.3)
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9.1 Four product rule
(X1, X3, X3, X,)T € N (0,C).Then

E[X1X:X3X,] = E[X, X0 E [ X3 X4+ E [X1.X3] E [Xo X4+ E [X1 X)) E [X2X;3]

9.2 Conditional distributions for bivariate normal ran-
dom variables

(X, Y)' € N (H> C). The conditional distribution for Y given X = =z is
gaussian (normal)

Oy
N <uy +p- a(x — px), 03 (1 = pz)) ,

where uy = E(Y), ux = E(X), oy = /Var(Y), ox = {/Var(Y) and

_ Cov(X,Y)
\/Var(X) - Var(Y)

Zy1 och Zy are independent N(0,1).

01 0

H1
= B = :
. <M2> (M 02v1—/)2>

If
X\ Z1
(v )=ee( %),
then
X
(Y ) €N (1.C)
with
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10 Stochastic Processes

A stochastic process X = {X(t) | t € T'}. The mean function pux(t) of the
process is

de
px(t) € B(X (1)
and the autocorrelation function is
def
Rx(t,s) = E(X(t)- X(s)).
The autocovariance function is

Covx(t,s) < B((X(t) = p(t)) - (X(s) = u(s)))

and we have
Covx(t, s)(t,s) = Rx(t,s) — px (t)px(s).

A stochastic process X = {X(t) | t € T =| — 00, 00[} is called (weakly)
stationary if

1. The mean function pux(t) is a constant function of ¢, ux(t) = p.

2. The autocorrelation function Rx(t,s) is a function of (¢t — s), so that

Rx(t,s) = Rx(h) = Rx(—h), h=(t—s).

10.1 Mean Square Integrals

n b
SOX ()t — i) > / X (t)dt, (10.4)
i=1 a

where a =ty <t; <...<t, 1 <t,=0band max;|t; —t;_1| — 0 as n — o0.

The mean square integral [° X (t)dt of {X (t)|t € T} exists over [a,b] C T
if and only if the double integral

/ab /ab E[X ()X ()] dtdu

exists as an integral in Riemann’s sense. We have also

E VbX(t)dt] - /b px (£)dt (10.5)
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and

Var l/abX(t)dt = /ab /ab Covx(t,u)dtdu. (10.6)

= {X(t)|t € T} is a stochastic process. Then the process is mean
square continuous if, when t +7 € T,

E[(X(t+7) = X()"] =0

as 7 — 0.

10.2 Gaussian stochastic processes

A stochastic process X = {X(t) | —oo <t < oo} is Gaussian, if every ran-
dom n-vector (X (t1), X (t2),- -+, X(¢,)) is a multivariate normal vector. =

10.3 Wiener process

A Wiener process W is a Gaussian process such that W(0) = 0, uW(t) =0
for all t > 0 and
E W (t)- W (s)] = min(t, s).

1) W(0) =

)

2) The sample paths ¢ — W (t) are almost surely continuous.

3) {W(t) |t >0} has stationary and independent increments.
)

4) W(t)— W(s) € N(0,t — s) for t > s.

10.4 Wiener Integrals

f(t) is a function such that [° f2(t)dt < oo, where —0o0 < a < b < +o0.
The mean square integral with respect to the Wiener process or the Wiener
integral [ f(t)dW (t) is the mean square limit

n

S flt) V() - W) 2 [ feaw, (o)

i=1

a=ty <t <...<ty,1<t,=0band max;|t; —t;_1| — 0 as n — oo.
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E Vabf(t)dW(t)] —0. (10.8)
Var [ / ’ f(t)dW(t)] - / "t (10.9)
. /abf(t)dW(t) eN (o,/ab fQ(t)dt> . (10.10)

If [7 f2(t)dt < oo and [° g*(t)dt < oo,

E [ / " A ) / ' g(t)dW(t)} — / " F)g(t)dt. (10.11)

E[Y(1)-Y(s)] = /0 " 2 du (10.12)

11  Poisson process

N(t) = number of occurrences of some event in in (0, ¢].

Definition 11.1 {N(¢) | t > 0} is a Poisson process with parameter A > 0,
if
1) N(0)=0.

2) The increments N (t) — N(t;_1) are independent stochastic variables
1<k<n 0<ty<t; <ty <...<t,.1<t,and all n.

3) N(t) — N(s) € Po(A(t—3s)), 0<s<t.

T;. = the time of occurrence of the kth event. T, = 0. We have
{Th <t} ={N({) = k}
T = T — Tk,
is the kth interoccurrence time. 74,75 ..., 7 ... are independent and identi-

cally distributed, 7; € Exp (%)
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12 Convergence

12.1 Definitions

We say that
X, EN X, asn— o0

if for all e > 0
P(|X,—X|>¢€)—0, asn— o0

We say that
X, 5 X
if
E|X,—X’—=0, asn— oo
We say that
X, N X, asn— o
if

Fx, (x) = Fx(x), asn — oo

for all z, where Fx(x) is continuous.

12.2 Relations between convergences
X, L x=x,5X
X, HXx=Xx,%X
as n — oo. If ¢ is a constant,
P d

X,—ce X, —c

as n — 0.
If px, (t) are the characteristic functions of X,,, then

X 5 X = px,(t) = x(t)
If px(t) is a characteristic function continuous at ¢t = 0, then

ox, (t) — ox(t) = X, L X
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12.3 Law of Large Numbers

Xi, Xa, ... are independent, identically distributed (i.i.d.) random variables
with finite expectation . We set

Sy=X1+Xo+...+X,, n>1

Then

Sn P
— — W, as n — oQ.
n

12.4 Borel-Cantelli lemmas

E= U 4.
n=1k=n
ie.,
E = { Ay occurs infinitely often }
H=1J ) 4
n=1k=n

Lemma 12.1 Let {Ag}r>1 be arbitrary events. If >0° | P(A,) < oo, then it
holds that P(E) = P(A, i.0) = 0, ie., with probability one finitely many of
A,, occur.

Lemma 12.2 Let {Aj}r>1 be independent events. If Y°° | P(A,,) = oo, then
it holds that P(E) = P(A, i.0) = 1, ie., with probability one infinitely many
of A,, occur.

12.5 Central Limit Theorem

X1, Xs, ... are independent, identically distributed (i.i.d.) random variables
with finite expectation p and finite variance 0. We set

Then g
n —NU d
—FF — N(0,1 .
o — N(0,1), asn— o0
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13 Series Expansions and Integrals

13.1 Exponential Function
[ J

O gk
Z— -0 <z < 00.
o !

13.2 Geometric Series

1 o
=Y 2"z <1l
T k=0

1 N
(1_$)2:ka .z < L
k=0

n 1 _ l,n—&—l

, x# 1.

1—2
13.3 Logarithm function
—In(1 —x) Z% —-1<z<l1.

13.4 Euler Gamma Function
['(t) = /OO o le " dr, t>0
0

I'(n) = (n—1)! nis a nonnegative integer.

o0 Lt+1)
t —Az _ —
/0 r'e Mdr = N A>0,t>—1
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13.5 A formula (with a probabilistic proof)

S L ()
)\k k—1 f/\:cd — —At
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