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1 Probability

1.1 Two inequalities

• A ⊆ B ⇒ P (A) ≤ P (B)

• P (A ∪B) ≤ P (A) + P (B) (Boole’s inequality).
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1.2 Change of variable in a probability density

Let X = (X1, X2, . . . , Xm)T have the probability density fX (x1, x2, . . . , xm).
Define a new random vector Y = (Y1, Y2, . . . , Ym)T by

Yi = gi (X1, . . . , Xm) , i = 1, 2, . . . ,m,

where gi are continuously differentiable and (g1, g2, . . . , gm) is invertible (in
a domain) with

Xi = hi (Y1, . . . , Ym) , i = 1, 2, . . . ,m,

where hi are continuously differentiable. Then the density of Y is (in the
domain of invertibility)

fY (y1, . . . , ym) = fX (h1 (y1, y2, . . . , ym) , . . . , hm (y1, y2, . . . , ym)) | J |,

where J is the Jacobian determinant

J =

∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2
. . . ∂x1

∂ym
∂x2

∂y1

∂x2

∂y2
. . . ∂x2

∂ym

...
... . . .

...
∂xm

∂y1

∂xm

∂y2
. . . ∂xm

∂ym

∣∣∣∣∣∣∣∣∣∣∣
.

Example 1.1 If X has the probability density fX (x), Y = AX + b, and A
is invertible, then Y has the probability density

fY (y) =
1

| detA |
fX
(
A−1 (y − b)

)

2 Continuous bivariate distributions

2.1 Bivariate densities

2.1.1 Definitions

The bivariate vector (X, Y )T has a continuous joint distribution with density
fX,Y (x, y) if

P (X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv.
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where

• fX,Y (x, y) ≥ 0,

•
∫+∞
−∞

∫+∞
−∞ fX,Y (x, y)dxdy = 1

Marginal distribution:

• fX(x) =
∫+∞
−∞ fX,Y (x, y)dy,

• fY (y) =
∫+∞
−∞ fX,Y (x, y)dx.

Distribution function

FX(x) = P (X ≤ x) =
∫ x

−∞
fX(u)du.

P (a < X ≤ b) = FX(b)− FX(a).

Conditional densities:

• X | Y = y,

fX|Y =y(x) :=
fX,Y (x, y)

fY (y)
,

if fY (y) > 0.

• Y | X = x

fY |X=x(y) :=
fX,Y (x, y)

fX(x)
,

if fX(x) > 0.

Bayes’ formula

fX|Y =y(x) =
fY |X=x(y) · fX(x)

fY (y)
=

=
fY |X=x(y) · fX(x)∫+∞

−∞ fY |X=x(y)fX(x)dx
.

fX|Y =y(x) is a a posteriori density for X and fX(x) is a priori density for
X.
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2.1.2 Independence

X and Y are independent iff

fX,Y (x, y) = fX(x) · fY (y) for every (x, y).

2.1.3 Conditional density of X given an event B

fX|B(x) =

{
fX(x)
P (B)

x ∈ B
0 elsewhere

2.1.4 Normal distribution

If X has the density f(x;µ, σ) defined by

fX(x;µ, σ) :=
1√

2πσ2
e−

(x−µ)2

2σ2 ,

then X ∈ N(µ, σ2). X ∈ N(0, 1) is standard normal with density

φ(x) = fX(x; 0, 1).

The cumulative distribution function of X ∈ N(0, 1) is for x > 0

Φ(x) =
∫ x

−∞
φ(t)dt =

1

2
+
∫ x

0
φ(t)dt

and
Φ(−x) = 1− Φ(x).

2.1.5 Numerical computation of Φ(x)

Approximative values of the cumulative distribution function of X ∈ N(0, 1),
Φ(x), can be calculated for x > 0 by

Φ(x) = 1−Q(x), Q(x) =
∫ ∞

x
φ(t)dt,

where we use the following approximation1:

Q(x) ≈

 1(
1− 1

π

)
x+ 1

π

√
x2 + 2π

 1√
2π
e−x2/2.

1P.O. Börjesson and C.E.W. Sundberg: Simple Approximations of the Error Function
Q(x) for Communication Applications. IEEE Transactions on Communications, March
1979, pp. 639−643.
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2.2 Mean and variance

The expectations or means E(X), E(Y ) are defined (if they exist) by

E(X) =
∫ +∞

−∞
xfX(x)dx,

E(Y ) =
∫ +∞

−∞
yfY (y)dy,

respectively. Variances Var(X),Var(Y ) are defined as

Var(X) =
∫ +∞

−∞
(x− E(X))2fX(x)dx,

Var(Y ) =
∫ +∞

−∞
(y − E(Y ))2fY (y)dy,

respectively. We have

Var(X) = E(X2)− (E(X))2.

The function of a random variable g(X), the law of the unconscious
statistician,

E(g(X)) =
∫ +∞

−∞
g(x)fX(x)dx.

2.3 Chebyshev,s inequality

P (| X − E(X) |> ε) ≤ Var(X)

ε2
.

2.4 Conditional expectations

The conditional expectations of X given Y = y is

E(X|Y = y) :=
∫ +∞

−∞
xfX|Y =y(x)dx.

This can be seen as y 7−→ E(X|Y = y), as a function of Y .

E(X) = E(E(X|Y )),

Var(X) = Var(E(X|Y )) + E(Var(X|Y )).

E
[
(Y − g(X))2

]
= E [Var [Y |X]] + E

[
(E [Y |X]− g(X))2

]
.
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2.5 Covariance

Cov(X,Y) := E(XY )− E(X) · E(Y ) =

= E([X − E(X)] [Y − E(Y )])

=
∫ +∞

−∞

∫ +∞

−∞
(x− E(X))(y − E(Y ))fX,Y (x, y)dxdy.

We have

Var(
n∑

i=1

aiXi) =
n∑

i=1

a2
i Var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

aiajCov(Xi, Xj),

Cov(
n∑

i=1

aiXi,
m∑

j=1

bjXj) =
n∑

i=1

m∑
j=1

aibjCov(Xi, Xj).

2.6 Coefficient of correlation

Coefficient of correlation between X and Y is defined as

ρ := ρX,Y :=
Cov(X,Y )√

Var(X) · Var(Y )
.

3 Best linear prediction

α and β that minimize
E [Y − (α+ βX)]2

are given by

α = µY −
σXY

σ2
X

µX = µY − ρ
σY

σX

µX

β =
σXY

σ2
X

= ρ
σY

σX

where µY = E [Y ], µX = E [X], σ2
Y = Var [Y ], σ2

X = Var [X], σXY =
Cov(X, Y ), ρ = σXY

σXσY
.
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4 Conditional Expectation w.r.t to a Sigma-

Field

a and b are real numbers, E [| Y |] < ∞, E [| Z |] < ∞, E [| X |] < ∞ and
H, G F are sigma fields, G ⊂ F , H ⊂ F .

1. Linearity:

E [aX + bY | G] = aE [X | G] + bE [Y | G]

2. Double expectation :

E [E [Y | G]] = E [Y ]

3. Taking out what is known: If Z is G -measurable, and E [| ZY |] <
∞

E [ZY | G] = ZE [Y | G]

4. An independent condition drops out: If Y is independent of G,

E [Y | G] = E [Y ]

5. Tower Property : If H ⊂ G,

E [E [Y | G] | H] = E [Y | H]

6. Positivity: If Y ≥ 0,
E [Y | G] ≥ 0.

5 Covariance matrix

5.1 Definition

Covariance matrix

CX := E
[
(X− µX) (X− µX)T

]
where the entry in position (i, j)

CX(i, j) = E [(Xi − µi) (Xj − µj)]

is the covariance between Xi and Xj.
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• Covariance matrix is nonnegative definite, i.e., for all x 6= 0 we have

xTCXx ≥ 0

Hence
detCX ≥ 0.

• The covariance matrix is symmetric

CX = CT
X

5.2 2 × 2 Covariance Matrix

The covariance matrix of a bivariate random variable X = (X1, X2)
T .

CX =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where ρ is the coefficient of correlation of X1 and X2, and σ2
1 = Var (X1),

σ2
2 = Var (X2). CX is invertible iff ρ2 6= 1, then the inverse is

C−1
X =

1

σ2
1σ

2
1(1− ρ2)

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
.

6 Discrete Random Variables

X is a (discrete) random variable that assumes values in X and Y is a
(discrete) random variable that assumes values in Y .

Remark 6.1 These are measurable maps X(ω), ω ∈ Ω, from a basic pro-
bability space (Ω,F , P ) (= outcomes, a sigma field of of subsets of Ω and
probability measure P on F), to X .

X and Y are two discrete state spaces, whose generic elements are called
values or instantiations and denoted by xi and yj, respectively.

X = {x1, · · · , xL},Y = {y1, · · · , yJ}.

| X | (:= the number of elements in X ) = L ≤ ∞, | Y |= J ≤ ∞. Unless
otherwise stated the alphabets considered here are finite.
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6.1 Joint Probability Distributions

A two dimensional joint (simultaneous) probability distribution is a proba-
bility defined on X × Y

p(xi, yj) := P (X = xi, Y = yj). (6.1)

Hence 0 ≤ p(xi, yj) and
∑L

i=1

∑L
j=1 p(xi, yj) = 1.

Marginal distribution for X:

p(xi) =
J∑

j=1

p(xi, yj). (6.2)

Marginal distribution for Y :

p(yj) =
L∑

i=1

p(xi, yj). (6.3)

These notions can be extended to define the joint (simultaneous) probability
distribution and the marginal distributions of n random variables.

6.2 Conditional Probability Distributions

The conditional probability for X = xi given Y = yj is

p(xi | yj) :=
p(xi, yj)

p(yj)
. (6.4)

The conditional probability for Y = yj given X = xi is

p(yj | xi) :=
p(xi, yj)

p(xi)
. (6.5)

Here we assume p(yj) > 0 and p(xi) > 0. If for example p(xi) = 0, we
can make the definition of p(yj | xi) arbitrarily through p(xi) · p(yj | xi) =
p(xi, yj). In other words

p(yj | xi) =
prob. for the event {X = xi, Y = yj}

prob. for the event {X = xi}
.

Hence
L∑

i=1

p(xi | yj) = 1.
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Next
PX(A) :=

∑
xi∈A

p(xi) (6.6)

is the probability of the event that X assumes a value in A, a subset of X .
From (6.6) one easily finds the complement rule

PX (Ac) = 1− PX(A), (6.7)

where Ac is the complement of A, i.e., those outcomes which do not lie in A.
Also

PX (A ∪B) = PX(A) + PX(B)− PX(A ∩B), (6.8)

is immediate.

6.3 Conditional Probability Given an Event

The conditional probability forX = xi givenX ∈ A is denoted by PX (xi | A)
and given by

PX (xi | A) =

{
PX(xi)
PX(A)

if xi ∈ A
0 otherwise.

(6.9)

6.4 Independence

X and Y are independent random variables if and only if

p(xi, yj) = p(xi) · p(yj) (6.10)

for all pairs (xi, yj) in X×Y . In other words all events {X = xi} and {Y = yj}
are to be independent. We say thatX1, X2, . . . , Xn are independent random
variables if and only if the joint distribution

pX1,X2,...,Xn(xi1 , xi2 . . . , xin) = P (X1 = xi1 , X2 = xi2 , . . . , Xn = xin) (6.11)

equals

pX1,X2,...,Xn(xi1 , xi2 . . . , xin) = pX1(xi1) · pX2(xi2) · · · pXn(xin) (6.12)

for every xi1 , xi2 . . . , xin ∈ X n. We are here assuming for simplicity that
X1, X2, . . . , Xn take values in the same alphabet.
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6.5 A Chain Rule

Let Z be a (discrete) random variable that assumes values in Z = {zk}K
k=1.

If p(zk) > 0,

p(xi, yj | zk) =
p(xi, yj, zk)

p(zk)
.

Then we obtain as an identity

p(xi, yj | zk) =
p(xi, yj, zk)

p(yj, zk)
· p(yj, zk)

p(zk)

and again by definition of conditional probability the right hand side is equal
to

p(xi | yj, zk) · p(yj | zk).

In other words,

pX,Y |Z(xi, yj | zk) = p(xi | yj, zk) · p(yj | zk). (6.13)

6.6 Conditional Independence

The random variables X and Y are called conditionally independent given Z
if

p(xi, yj|zk) = p(xi|zk) · p(yj|zk) (6.14)

for all triples (zk, xi, yj) ∈ Z × X × Y (cf. (6.13)).

7 Miscellaneous

7.1 A Marginalization Formula

Let Y be discrete and X be continuous, and let their joint distribution be

P (Y = k,X ≤ x) =
∫ x

−∞
P (Y = k | X = u) fX(u)du.

Then

P (Y = k) =
∫ ∞

−∞

∂

∂u
P (Y = k,X ≤ u) du

=
∫ ∞

−∞
P (Y = k | X = x) fX(x)dx.

11



7.2 Factorial Moments

X is an integer-valued discrete R.V.,

µ[r]
def
= E [X(X − 1) · · · (X − r + 1)] =

=
∑

x:integer

(x(x− 1) · · · (x− r + 1)) fX(x).

is called the r:th factorial moment.

7.3 Binomial Moments

X is an integer-valued discrete R.V..

E

(
X
r

)
= E [X(X − 1) · · · (X − r + 1)] /r!

is called the binomial moment.

8 Transforms

8.1 Probability Generating Function

8.1.1 Definition

Let X have values k = 0, 1, 2, . . . ,.

gX(t) = E
(
tX
)

=
∞∑

k=0

tkfX(k)

is called the probability generating function.

8.1.2 Prob. Gen. Fnct: Properties

•
d

dt
gX(1) =

∞∑
k=1

ktk−1fX(k) |t=1

= E [X]
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•
µ[r] = E [X(X − 1) · · · (X − r + 1)] =

dr

dtr
gX(1)

Var[X] =
d2

dt2
gX(1) +

d

dt
gX(1)−

(
d

dt
gX(1)

)2

8.1.3 Prob. Gen. Fnct: Properties

Z = X + Y , X and Y non negative integer valued, independent,

•
gZ(t) = E

(
tZ
)

=

E
(
tX+Y

)
= E

(
tX
)
· E

(
tY
)

= gX(t) · gY (t).

8.1.4 Prob. Gen. Fnct: Examples

• X ∈ Be(p)
gX(t) = 1− p+ pt.

• Y ∈ Bin(n, p)
gY (t) = (1− p+ pt)n

• Z ∈ Po (λ)
gZ(t) = eλ·(t−1)

8.1.5 Sum of a Random Number of Random Variables

Xi., i = 1, . . . , n I.I.D. non negative integer valued, and N non negative
integer valued and independent of the Xis.

SN =
N∑

i=1

Xi.

Then the probability generating function of SN is

gSN
(t) = gN (gX(t)) .
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8.2 Moment Generating Functions

8.2.1 Definition

Moment generating function, for some h > 0,

ψX(t)
def
= E

[
etX

]
, |t| < h.

ψX(t) =

{ ∑
xi
etxifX(xi) X discrete∫∞

−∞ etxfX(x)dx X continuous

8.2.2 Moment Gen. Fnctn: Properties

•
d

dt
ψX(0) = E [X]

•
ψX(0) = 1

dk

dtk
ψX(0) = E

[
Xk
]
.

Sn = X1 +X2 + . . .+Xn, Xi independent.

ψSn(t) = E
(
etSn

)
=

E
(
et(X1+X2+...+Xn)

)
= E

(
etX1etX2 · · · etXn

)
=

E
(
etX1

)
E
(
etX2

)
· · ·E

(
etXn

)
= ψX1(t) · ψX2(t) · · ·ψXn(t)

Xi I.I.D.,
ψSn(s) = (ψX(t))n .

8.2.3 Moment Gen. Fnctn: Examples

• X ∈ N (µ, σ2)

ψX(t) = eµt+ 1
2
σ2t2

• Y ∈ Exp (a)

ψY (s) =
1

1− at
, at < 1.
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8.2.4 Characteristic function

Characteristic function
ϕX(t) = E

[
eitX

]
.

exists for all t.

8.3 Moment generating function, characteristic func-
tion of a vector random variable

Moment generating function of X (n× 1 vector) is defined as

ψX (t)
def
= Eet

T X = Eet1X1+t2X2+···+tnXn

Characteristic function of X is defined as

ϕX (t)
def
= EeitT X = Eei(t1X1+t2X2+···+tnXn)

9 Multivariate normal distribution

An n × 1 random vector X has a normal distribution iff for every n × 1-
vector a the one-dimensional random vector aTX has a normal distribution.

When vector X = (X1, X2, · · · , Xn)T has a multivariate normal distribu-
tion we write

X ∈ N (µ,C) . (9.1)

The moment generating function is

ψX (s) = es
T µ+ 1

2
sT Cs (9.2)

ϕX (t) = EeitT X = eitT µ− 1
2
tT Ct.

is the characteristic function of X ∈ N (µ,C).
Let X ∈ N ( µ,C) and

Y = a +BX.

for an arbitrary m× n -matrix B and arbitrary m× 1 vector a. Then

Y ∈ N
(
a +Bµ,BCBT

)
. (9.3)
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9.1 Four product rule

(X1, X2, X3, X4)
T ∈ N (0,C).Then

E [X1X2X3X4] = E [X1X2]·E [X3X4]+E [X1X3]·E [X2X4]+E [X1X4]·E [X2X3]

9.2 Conditional distributions for bivariate normal ran-
dom variables

(X, Y )T ∈ N
(
µ,C

)
. The conditional distribution for Y given X = x is

gaussian (normal)

N
(
µY + ρ · σY

σX

(x− µX), σ2
Y (1− ρ2)

)
,

where µY = E(Y ), µX = E(X), σY =
√

Var(Y ), σX =
√

Var(Y ) and

ρ =
Cov(X, Y )√

Var(X) · Var(Y )
.

Z1 och Z2 are independent N(0, 1).

µ =

(
µ1

µ2

)
,B =

(
σ1 0
ρσ2 σ2

√
1− ρ2

)
.

If (
X
Y

)
= µ+B

(
Z1

Z2

)
,

then (
X
Y

)
∈ N

(
µ,C

)
with

C =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.
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10 Stochastic Processes

A stochastic process X = {X(t) | t ∈ T}. The mean function µX(t) of the
process is

µX(t)
def
= E(X(t))

and the autocorrelation function is

RX(t, s)
def
= E (X(t) ·X(s)) .

The autocovariance function is

CovX(t, s)
def
= E ((X(t)− µ(t)) · (X(s)− µ(s)))

and we have
CovX(t, s)(t, s) = RX(t, s)− µX(t)µX(s).

A stochastic process X = {X(t) | t ∈ T =]−∞,∞[} is called (weakly)
stationary if

1. The mean function µX(t) is a constant function of t, µX(t) = µ.

2. The autocorrelation function RX(t, s) is a function of (t− s), so that

RX(t, s) = RX(h) = RX(−h), h = (t− s).

10.1 Mean Square Integrals
n∑

i=1

X(ti)(ti − ti−1)
2→
∫ b

a
X(t)dt, (10.4)

where a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0 as n→∞.
The mean square integral

∫ b
a X(t)dt of {X(t)|t ∈ T} exists over [a, b] ⊆ T

if and only if the double integral∫ b

a

∫ b

a
E [X(t)X(u)] dtdu

exists as an integral in Riemann’s sense. We have also

E

[∫ b

a
X(t)dt

]
=
∫ b

a
µX(t)dt (10.5)
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and

V ar

[∫ b

a
X(t)dt

]
=
∫ b

a

∫ b

a
CovX(t, u)dtdu. (10.6)

X = {X(t)|t ∈ T} is a stochastic process. Then the process is mean
square continuous if, when t+ τ ∈ T ,

E
[
(X(t+ τ)−X(t))2

]
→ 0

as τ → 0.

10.2 Gaussian stochastic processes

A stochastic process X = {X(t) | −∞ ≤ t ≤ ∞} is Gaussian, if every ran-
dom n-vector (X(t1), X(t2), · · · , X(tn)) is a multivariate normal vector.

10.3 Wiener process

A Wiener process W is a Gaussian process such that W (0) = 0, µW(t) = 0
for all t ≥ 0 and

E [W (t) ·W (s)] = min(t, s).

1) W (0) = 0.

2) The sample paths t 7→ W (t) are almost surely continuous.

3) {W (t) | t ≥ 0} has stationary and independent increments.

4) W (t)−W (s) ∈ N(0, t− s) for t > s.

10.4 Wiener Integrals

f(t) is a function such that
∫ b
a f

2(t)dt < ∞, where −∞ ≤ a < b ≤ +∞.
The mean square integral with respect to the Wiener process or the Wiener
integral

∫ b
a f(t)dW (t) is the mean square limit

n∑
i=1

f(ti−1) (W (ti)−W (ti−1))
2→
∫ b

a
f(t)dW (t), (10.7)

a = t0 < t1 < . . . < tn−1 < tn = b and maxi |ti − ti−1| → 0 as n→∞.
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•
E

[∫ b

a
f(t)dW (t)

]
= 0. (10.8)

•
Var

[∫ b

a
f(t)dW (t)

]
=
∫ b

a
f 2(t)dt (10.9)

• ∫ b

a
f(t)dW (t) ∈ N

(
0,
∫ b

a
f 2(t)dt

)
. (10.10)

• If
∫ b
a f

2(t)dt <∞ and
∫ b
a g

2(t)dt <∞,

E

[∫ b

a
f(t)dW (t)

∫ b

a
g(t)dW (t)

]
=
∫ b

a
f(t)g(t)dt. (10.11)

•
Y (t) =

∫ t

0
h(s)dW (s).

E [Y (t) · Y (s)] =
∫ min(t,s)

0
h2(u)du. (10.12)

11 Poisson process

N(t) = number of occurrences of some event in in (0, t].

Definition 11.1 {N(t) | t ≥ 0} is a Poisson process with parameter λ > 0,
if

1) N(0) = 0.

2) The increments N(tk) − N(tk−1) are independent stochastic variables
1 ≤ k ≤ n, 0 ≤ t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ tn and all n.

3) N(t)−N(s) ∈ Po(λ(t− s)), 0 ≤ s < t.

Tk = the time of occurrence of the kth event. T0 = 0. We have

{Tk ≤ t} = {N(t) ≥ k}

τk = Tk − Tk−1,

is the kth interoccurrence time. τ1, τ2 . . . , τk . . . are independent and identi-
cally distributed, τi ∈ Exp

(
1
λ

)
.
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12 Convergence

12.1 Definitions

We say that

Xn
P→ X, as n→∞

if for all ε > 0
P (| Xn −X |> ε)→0, as n→∞

We say that
Xn

q→ X

if
E |Xn −X|2→0, as n→∞

We say that

Xn
d→ X, as n→∞

if
FXn(x) → FX(x), as n→∞

for all x, where FX(x) is continuous.

12.2 Relations between convergences

Xn
q→ X ⇒ Xn

P→ X

Xn
P→ X ⇒ Xn

d→ X

as n→∞. If c is a constant,

Xn
P→ c⇔ Xn

d→ c

as n→∞.
If ϕXn(t) are the characteristic functions of Xn, then

Xn
d→ X ⇒ ϕXn(t) → ϕX(t)

If ϕX(t) is a characteristic function continuous at t = 0, then

ϕXn(t) → ϕX(t) ⇒ Xn
d→ X
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12.3 Law of Large Numbers

X1, X2, . . . are independent, identically distributed (i.i.d.) random variables
with finite expectation µ. We set

Sn = X1 +X2 + . . .+Xn, n ≥ 1.

Then
Sn

n
P→ µ, as n→∞.

12.4 Borel-Cantelli lemmas

E =
∞⋂

n=1

∞⋃
k=n

Ak.

i.e.,
E = { Ak occurs infinitely often }

H =
∞⋃

n=1

∞⋂
k=n

Ak

Lemma 12.1 Let {Ak}k≥1 be arbitrary events. If
∑∞

n=1 P (An) <∞, then it
holds that P (E) = P (An i.o) = 0, ie., with probability one finitely many of
An occur.

Lemma 12.2 Let {Ak}k≥1 be independent events. If
∑∞

n=1 P (An) = ∞, then
it holds that P (E) = P (An i.o) = 1, ie., with probability one infinitely many
of An occur.

12.5 Central Limit Theorem

X1, X2, . . . are independent, identically distributed (i.i.d.) random variables
with finite expectation µ and finite variance σ2. We set

Sn = X1 +X2 + . . .+Xn, n ≥ 1.

Then
Sn − nµ

σ
√
n

d→ N(0, 1), as n→∞.
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13 Series Expansions and Integrals

13.1 Exponential Function

•
ex =

∞∑
k=0

xk

k!
−∞ < x <∞.

•
cn → c⇒

(
1 +

cn
n

)n

→ ec.

13.2 Geometric Series

1

1− x
=

∞∑
k=0

xk, |x| < 1.

1

(1− x)2
=

∞∑
k=0

kxk−1, |x| < 1.

n∑
k=0

xk =
1− xn+1

1− x
, x 6= 1.

13.3 Logarithm function

− ln(1− x) =
∞∑

k=1

xk

k
, −1 ≤ x < 1.

13.4 Euler Gamma Function

Γ(t) =
∫ ∞

0
xt−1e−xdx, t > 0

Γ
(

1

2

)
=
√
π

Γ(n) = (n− 1)! n is a nonnegative integer.∫ ∞

0
xte−λxdx =

Γ(t+ 1)

λt+1
, λ > 0, t > −1
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13.5 A formula (with a probabilistic proof)∫ ∞

t

1

Γ(k)
λkxk−1e−λxdx =

k−1∑
j=0

e−λt (λt)
j

j!
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