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Problem 1

(a) Let dk, k = 1, 2, 3, be the discount factors. We know that the price P
at t = 0 of a bond with coupons ck, face value F and maturity time n is
given by

P =

n∑
k=1

ckdk + Fdn.

If we know dk, we can get the zero rates from the relation

dk = e−rkk ⇔ rk = −1

k
ln dk.

Using the given bond information we can calculate d1, d2 and d3. Hence,
the zero rates we can calculate are r1, r2 and r3. We have 5d1 + 5d2 + 105d3 = 104

100d1 = 98
2d1 + 102d2 = 100,

and the solution to this system of equations is

d1 = 0.980, d2 = 0.961 and d3 = 0.898.

Using this we get the zero rates

r1 = 2.02% r2 = 1.98% and r3 = 3.58%.

(b) The arbitrage free price P of a stream of cash flows ck is in general given
by

P =

n∑
k=1

ckdk.

Using the dk’s from (a) we get the following price of our given cash flow:

P = 50 · 0.980 + 20 · 0.961 + 75 · 0.898 = 135.5765 ≈ 135.6.

(c) For a stream of cash flows (c1, . . . , cn) with price P , the IRR r0 is the rate
fulfilling

P =

n∑
k=1

cke
−r0·k.



Let d = e−r0 . Then the previous equation can be written

P =

n∑
k=1

ckd
k.

In our case we get
135.6 = 50d+ 20d2 + 75d3.

The solution to this eqution is

d = 0.9694,

and we get
r0 = − ln d = 3.11%.

Problem 2

(a) Set L = SβT . We want to find the payoff A in the set{
A
∣∣∣A = h0 + hST , (h0, h) ∈ R2

}
that minimizes E

[
(L−A)2

]
. We know that the optimal (h0, h) is given

by

h =
Cov(L, ST )

Var(ST )
and h0 = E [L]− hE [ST ] .

We can write
ln(ST /S0) = µT + σ

√
TZ,

where Z ∼ N(0, 1), or

ST = S0e
µT+σ

√
TZ .

When ST is lognormally distributed as here, we have

E [SaT ] = E
[(
S0e

µT+σ
√
TZ
)a]

= Sa0E
[
eaµT+aσ

√
TZ
]

= Sa0 e
aµT+a2σ2T/2. (?)

Now

Cov(L, ST ) = Cov(SβT , ST )

= E
[
SβTST

]
− E

[
SβT

]
E [ST ]

= E
[
Sβ+1
T

]
− E

[
SβT

]
E [ST ]

= {Use (?)}
= Sβ+1

0 e(β+1)µT+(β+1)2σ2T/2 − Sβ0 eβµT+β2σ2T/2 · S0e
µT+σ2T/2

= Sβ+1
0 e(β+1)µT+(β2+1)σ2T/2

[
eβσ

2T − 1
]
,
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Var(ST ) = E
[
S2
T

]
− E [ST ]

2

= {Use (?)}

= S2
0e

2µT+2σ2T −
(
S0e

µT+σ2T/2
)2

= S2
0e

2µT+2σ2T − S2
0e

2µT+σ2T

= S2
0e

2µT+σ2T
[
eσ

2T − 1
]

and finally, using (?) again,

E
[
SβT

]
= Sβ0 e

βµT+β2σ2T/2.

We now get

h =
Cov(SβT , ST )

Var(ST )

= Sβ−10 e(β−1)µT+(β2−1)σ2T/2 e
βσ2T − 1

eσ2T − 1

and

h0 = E
[
SβT

]
− hE [ST ]

= Sβ0 e
βµT+β2σ2T/2 − Sβ−10 e(β−1)µT+(β2−1)σ2T/2 e

βσ2T − 1

eσ2T − 1
S0e

µT+σ2T/2

= Sβ0 e
βµT+β2σ2T/2

[
1− eβσ

2T − 1

eσ2T − 1

]

= Sβ0 e
βµT+β2σ2T/2 · e

σ2T − eβσ2T

eσ2T − 1
.

(b) The hedging error is given by Â − L, where Â is the payoff when we use
the optimal portfolio (h0, h) from (a). We get

Var(Â− L) = Var(Â)− 2Cov(Â, L) + Var(L)

= h2Var(ST )− 2hCov(ST , L) + Var(L)

=
Cov(ST , L)2

Var(ST )2
Var(ST )− 2

Cov(ST , L)

Var(ST )
Cov(ST , L) + Var(L)

= −
Cov(ST , S

β
T )2

Var(ST )
+ Var(SβT )

Using results from (a) we get

−
Cov(ST , S

β
T )2

Var(ST )
= −S2β

0 e2βµT+β2σ2T

(
eβσ

2T − 1
)2

eσ2T − 1
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and
Var(SβT ) = S2β

0 e2βµT+β2σ2T
(
eβ

2σ2T − 1
)
.

Finally we get

Var(Â− L) = S2β
0 e2βµT+β2σ2T

eβ2σ2T − 1−

(
eβσ

2T − 1
)2

eσ2T − 1


(c) The certainty equivalent C in general satisfies

u(C) = E [u(X)] ,

and here
X = SβT and u(x) = lnx.

We get

lnC = E
[
ln
(
SβT
)]

= βE [lnST ] = β(lnS0 + µT ),

and hence
C = Sβ0 e

βµT .

Problem 3

(a) The coefficient of absolute risk aversion is given by

A(x) = −u
′′(x)

u′(x)
= −
− 3

4x
−5/2

1
2x
−3/2 =

3

2
· 1

x
.

(b) The problem we want to solve is[
max E [u (

∑n
k=1 wkθkXk)]

s.t.
∑n
k=1 wk = V0,

where

u(x) = − 1√
x
, n = 3, θ1 = 2.5, θ2 = 3.25, θ3 = 2.85, V0 = 50

and Xk = 1 if horse k wins, and 0 otherwise.

We can write the objective function as

n∑
k=1

pku(wkθk),

where pk = 1/3, k = 1, 2, 3. The Lagrangian is

L =

n∑
k=1

pku(wkθk) + λ

(
V0 −

n∑
k=1

wk

)
,
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and the first order conditions are

∂L

∂wk
= pkθku

′(wkθk)− λ = 0, k = 1, 2, 3

∂L

∂λ
= V0 −

n∑
k=1

= 0.

Using these conditions, we get

wk =
1

θk
(u′)−1

(
λ

1

pkθk

)
, k = 1, 2, 3,

and

V0 =

n∑
k=1

1

θk
(u′)−1

(
λ

1

pkθk

)
.

Now

u′(x) =
1

2
· 1

x3/2
and (u′)−1(x) =

(
1

2x

)2/3

.

It follows that

wk =
1

θk

(
pkθk
2λ

)2/3

=
p
2/3
k

θ
1/3
k

·
(

1

2λ

)2/3

, k = 1, 2, 3,

and

V0 =

3∑
k=1

wk =

(
1

2λ

)2/3 3∑
k=1

p
2/3
k

θ
1/3
k

.

Hence

wk = V0 ·

p
2/3
k

θ
1/3
k∑3

i=1
p
2/3
i

θ
1/3
i

,

and with the given parameter values we get

(w1, w2, w3) = (17.40, 15.94, 16.66).

(c) The Arrow-Debreu prices are given by

q1 = 1/θ1 = 0.400, q2 = 1/θ2 = 0.308 and q3 = 1/θ3 = 0.351.

If we short sell qk of outcome k for k = 1, 2, 3, then we get

q1 + q2 + q3 = 1.059 > 1

at time 0. This money is put into the bank account, and hence the total
cash flow today is zero. After the match we have 1.059 in the bank, and
need to pay out 1 unit irrespectivley of the outcome of the match, leaving
us with the cash flow 0.059 with certainty after the match. This is an
arbitrage opportunity.
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Problem 4

Here we assume that all returns are net returns. You could assume that the
returns are gross returns, as in the course book, and then you will get a different
answer to some of the questions.

(a) We want to solve the problem[
min 1

2w
TΣw

s.t. wT1 = V0,

where V0 = 100. The Lagrangian is

L =
1

2
wTΣw + λ(V0 − wT1),

and the first order conditions are

∇L = Σw − λ1 = 0
∂L

∂λ
= V0 − wT1 = 0.

from which we get
w = λΣ−11

and
V0 = λ1TΣ−11.

Hence

w =
V0

1TΣ−11
Σ−11.

Now

Σ−1 =

[
16.67 −2.778
−2.778 11.57

]
and we get

w =
100

22.69

[
13.89
8.796

]
=

[
61.2
38.8

]
.

(b) The mean and variance of the portfolio from (a) is given by

µmvp = wTµ = 11.9

and
σ2
mvp = wTΣw = 440.8

respectively.
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(c) Now the problem is  min 1
2w

TΣw
s.t. wTµ = µ0V0

wT1 = V0,

Remark. The first condition can be replaced with

wT (1 + µ) = (1 + µ0)V0

and (in view if the second condition) we will still get the same answer.

The Lagrangian is

L =
1

2
wTΣw + λ1

(
µ0V0 − wTµ

)
+ λ2

(
V0 − wT1

)
,

and the first order conditions are

∇L = Σw − λ1µ− λ21 = 0

∂L

∂λ1
= µ0V0 − wTµ = 0

∂L

∂λ2
= V0 − wT1 = 0

The optimal portfolio is

w = λ1Σ−1µ+ λ2Σ−11,

and the multipliers are determined by[
µTΣ−1µ µTΣ−11
1TΣ−1µ 1TΣ−11

] [
λ1
λ2

]
=

[
µ0V0
V0

]
.

Here µ0 = 0.20 (another interpretation of the formulation in the problem
is that (1 + µ0)V0 = 0.20) and V0 = 100. We get

λ1 = 197.5 and λ2 = −21.375.

It follows that

w = 395

[
16.67 −2.778
−2.778 11.57

] [
0.10
0.15

]
+(−42.75)

[
16.67 −2.778
−2.778 11.57

] [
1
1

]
=

[
−100
200

]
Remark. There is a quicker way to arrive at the solution here. There
are two constraints, and two free variables. The feasible set only consists
of one point, namely the portfolio determined by

wT1 = V0

wTµ = µ0V0
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and the solution to this system of equations is

w =

[
−100
200.

]
(d) In this case the problem is min 1

2w
TΣw

s.t. w0r0 + wTµ = µ0V0
w0 + wT1 = V0,

and the Lagrangian is

L =
1

2
wTΣw + λ1(µ0V0 − w0r0 − wTµ) + λ2(V0 − w0 − wT1).

The first order conditions are

∇L = Σw − λ1µ− λ21 = 0

∂L

∂w0
= −λ1r0 − λ2 = 0 (?)

∂L

∂λ1
= µ0V0 − w0r0 − wTµ = 0

∂L

∂λ2
= V0 − w0 − wT1 = 0 (??)

We get
w = λ1Σ−1µ+ λ2Σ−11.

Using (?) we can write

w = λ1Σ−1(µ− r01).

Inserting this in (??) and (? ? ?) yields[
1 1TΣ−1(µ− r01)
r0 µTΣ−1(µ− r01)

] [
w0

λ1

]
=

[
V0
µ0V0

]
.

Using the given numerical values we get

w0 = −82.1 and λ1 = 115.7,

and with this λ1

w =

[
64.3
117.9

]
.

Problem 5

(a) For a random variable X and α ∈ (0, 1) we have

ESα(X) =
1

α

∫ α

0

VaRu(X)du.
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(b) VaRα(X) is defined by

VaRα(X) = min{m |P (mR0 +X < 0) ≤ α}.

Here R0 = 1 and X has a continuous distribution, so

P (mR0 +X < 0) = P (X < −m) = P (X ≤ −m) = FX(−m).

If x < 0, then

FX(x) =

∫ x

−∞
fX(t)dt =

∫ x

−∞

1

2a
et/adt =

1

2a

[
aet/a

]x
−∞

=
1

2
ex/a,

and if x ≥ 0

FX(x) =

∫ 0

−∞
fX(t)dt+

∫ x

0

fX(t)dt =
1

2
+

1

2a

[
−ae−t/a

]x
0

= 1− 1

2
e−x/a.

FX is a strictly increasing function, and thus for every α ∈ (0, 1) VaRα(X)
satisfies

α = FX(−VaRα).

To calculate ES0.05 we need the Value-at-risk for α ∈ (0, 0.05], and this
means that we need the distribution function for x < 0. It follows that

α =
1

2
e−VaRα(x)/a

for any α ∈ (0, 1/2], and from this that

VaRα(X) = −a ln(2α).

We get

ES0.05(X) =
1

0.05

∫ 0.05

0

VaRudu

= 20

∫ 0.05

0

(
− a ln(2u)

)
du

= −20a

∫ 0.05

0

(ln 2 + lnu)du

= −a ln 2− 20a

∫ 0.05

0

lnu du

=

{∫ x

0

ln t dt = x lnx− x for x > 0

}
= −a ln 2− 20a(0.05 ln 0.05− 0.05)

= −a ln 2− a log 0.05 + a

= 3.303a.

Note that
ES0.05(X) = VaR0.05(X) + a.
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(c) When R0 = 1, the discounted loss L = −X and we have

VaR0.01(X) = F−1L (1− 0.01) = F−1L (0.99).

The loss has distribution function

L =


−100 with probability 0.9350

100 with probability 0.05
500 with probabiity 0.01

1 000 with probability 0.005

and inverse

F−1L (p) =


−100 if p ≤ 0.9350

100 if 0.9350 < p ≤ 0.9850
500 if 0.9859 < p ≤ 0.9950

1000 if p > 0.9950

-
−100

b

r0.9350

100

br0.9850

500

br0.9950

1000

br1.000

0.99

We see that
VaR0.01(X) = F−1L (0.99) = 500.
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