
RISK AND PORTFOLIO ANALYSIS: SOLUTIONS TO EXERCISES IN
CHAPTERS 1-6

HENRIK HULT, FILIP LINDSKOG

ABSTRACT. The current collection of solutions to the exercises in the first part of the
book Risk and Portfolio Analysis: principles and methods is not yet fully complete. Please
inform us if you spot any errors.

CHAPTER 1

Exercise 1.1. (Arbitrage in bond prices)

(a) The cash flow of Bond D can be generated by the portfolio consisting of 106/200
units of Bond C, 6/102 units of Bond B and (6−12/102)/100 units of Bond A. The price
of the portfolio is

0.53186.2 ·98.51+
6

102
·100.71+0.53 ·188.03 = 111.3747,

whereas the price of Bond D is 111.55. Thus, short selling Bond D and buying the above
bond portfolio create a profit of $0.1753

(b) The cash flow of Bond A implies d1 = 0.9851. The cash flow of bond D and linear
interpolation of discount factors provide the equations

111.55 = 6d1 +6d2 +106d3,

d2 = d1 +
d3−d1

t3− t1
(t2− t1)

that can be solved for d2 and d3. The result is d2 = 0.9636 and d3 = 0.9421. Finally, the
cash flow of Bond E provides the equation

198.96 = 4d1 +4d2 +4d3 +204d4

which implies d4 = 0.9186. By Theorem 1.1 (ii) we have proved the absence of arbitrage.

Exercise 1.2. (Put-call parity)

(a) The payoff function f can be written as f (x) = x+(K1−x)+−(x−K2)+. Replacing
x by ST and takeing expectation with respect to the forward probability Q yields the collar
forward price

EQ[ f (ST )] = EQ[ST +(K1−ST )+− (ST −K2)+]

= EQ[ST ]+EQ[(K1−ST )+]−EQ[(ST −K2)+],

where the three expectations above, in the order they appear, correspond to the forward
price of the underlying asset, of the put option payoff and on the call option payoff.

(b) The payoff function of the risk reversal is g(x) = (x−A)+− (B−x)+. If S0 denotes
the current spot price, then the statement that both options are out of the money means that
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S0 < A and S0 > B, i.e. B < A. Set K1 = B and K2 = A and notice that (draw the figure!)
f (x) = x−g(x). In particular, the forward prices are related as

EQ[g(ST )] = EQ[ST ]−EQ[ f (ST )].

Exercise 1.3. (Sports betting)

The best available odds are 4.70 on ‘Everton’, 3.70 on ‘draw’, and 1.95 on ‘Manchester
City’. Using these odds and betting 213 on ‘Everton’, 271 on ‘draw’ and 513 on ‘Manch-
ester City’ is an arbitrage opportunity. Indeed, placing these bets costs 213+271+513 =
997 and pays

213 ·4.70 = 1001.1 if the outcome is ‘Everton’
271 ·3.70 = 1002.7 if the outcome is ‘draw’, and
513 ·1.95 = 1000.35 if the outcome is ‘Manchester City’.

Exercise 1.4. (Lognormal model)

(a) Straightforward computations give

E[eaZI{Z > b}] =
∫

∞

b
eaz e−z2/2
√

2π
dz = ea2/2

∫
∞

b

e−(z−a)2/2
√

2π
dz = ea2/2

∫
∞

b−a

e−w2/2
√

2π
dw

= ea2/2
Φ(a−b),

where in the last step we used the relation Φ(x) = 1−Φ(−x).
(b) From the result in (a) we obtain

E[(R− c)+] = E
[
(eµ+σZ− c)I

{
Z >

logc−µ

σ

}]
= eµ E

[
eσZI

{
Z >

logc−µ

σ

}]
− cΦ

(
µ− logc

σ

)
= eµ+σ2/2

Φ

(
σ +

µ− logc
σ

)
− cΦ

(
µ− logc

σ

)
.

Similarly,

E[(R− c)2
+] = E

[
(e2µ+2σZ−2ceµ+σZ + c2)I

{
Z >

logc−µ

σ

}]
= e2µ+2σ2

Φ

(
2σ +

µ− logc
σ

)
−2ceµ+σ2/2

Φ

(
σ +

µ− logc
σ

)
+ c2

Φ

(
µ− logc

σ

)
.

Combining the expressions for E[(R− c)+] and E[(R− c)2
+] gives

Var((R− c)+) = E[(R− c)2
+]− (E[(R− c)+])2

= e2µ+2σ2
Φ

(
2σ +

µ− logc
σ

)
−2ceµ+σ2/2

Φ

(
σ +

µ− logc
σ

)
+ c2

Φ

(
µ− logc

σ

)
−
(

eµ+σ2/2
Φ

(
σ +

µ− logc
σ

)
− cΦ

(
µ− logc

σ

))2
.
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Similarly,

E[R(R− c)+] = E
[
(e2µ+2σZ− ceµ+σZ)I

{
Z >

logc−µ

σ

}]
= e2µ+2σ2

Φ

(
2σ +

µ− logc
σ

)
− ceµ+σ2/2

Φ

(
σ +

µ− logc
σ

)
which leads to

Cov(R,(R− c)+) = E[R(R− c)+]−E[R]E[(R− c)+]

= e2µ+2σ2
Φ

(
2σ +

µ− logc
σ

)
− ceµ+σ2/2

Φ

(
σ +

µ− logc
σ

)
− eµ+σ2/2

(
eµ+σ2/2

Φ(σ +
µ− logc

σ
)− cΦ

(
µ− logc

σ

))
.

Finally,

E[(R− c)+(R−d)+] = E
[
(R2− (c+d)R+ cd)I

{
Z >

logd−µ

σ

}]
= e2µ+2σ2

Φ

(
2σ +

µ− logd
σ

)
− (c+d)eµ+σ2/2

Φ

(
σ +

µ− logd
σ

)
+ cdΦ

(
µ− logd

σ

)
.

This leads to

Cov((R− c)+,(R−d)+) = E[(R− c)+(R−d)+]−E[(R− c)+]E[(R−d)+]

= e2µ+2σ2
Φ

(
2σ +

µ− logd
σ

)
− (c+d)eµ+σ2/2

Φ

(
σ +

µ− logd
σ

)
+ cdΦ

(
µ− logd

σ

)
−
(

eµ+σ2/2
Φ

(
σ +

µ− logc
σ

)
− cΦ

(
µ− logc

σ

))
×
(

eµ+σ2/2
Φ

(
σ +

µ− logd
σ

)
−dΦ

(
µ− logd

σ

))
Exercise 1.5. (Risky bonds)

(a) We obtain the risk-free rates from the cash flows of bonds A and B by solving

98 = 100e−r1 , 104 = 5e−r1 +105e−2r2 .

The discount factors are d1 = e−r1 = 0.98 and d2 = e−2r2 ≈ 0.9438095 and the zero rates
are r1 ≈ 0.02020271 and r2 ≈ 0.02891545. The credit spreads are obtained by solving

93 = 100e−(r1+s1), 98 = 10e−(r1+s1)+110e−2(r2+s2)

for s1 and s2. We find that s1 ≈ 0.05236799 and s2 ≈ 0.07869478.
Let I1 and I2 denote the default indicators for the risky bank over a one- and two-year

period, respectively. Denote the corresponding unknown default probabilities by q1 and q2
and solve

93 = 100e−r1(1−q1), 98 = 10e−r1(1−q1)+110e−2r2(1−q2)

for q1 and q2. We find that q1 = 5/98≈ 0.05102041 and q2 ≈ 0.1456288.
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(b) For the investor it only makes sense to invest in Bond C and Bond D (since the
investor believes that they cannot default and, hence, are underpriced). Let w ∈ [0,104] be
the amount invested in Bond C. Notice that at time 1 the investor invests any cash flow in
Bond D which at that time is a 1-year bond with the random price 110e−(r+s), where r and
s are independent and normally distributed. Given the assumption of no defaults the cash
flow at time 1 is

w
100
93

+(104−w)
10
98

and the random cash flow at time 2 is

w
100
93

er+s +(104−w)
(10

98
er+s +110

)
.

Since r+ s is normally distributed with mean 0.16 and variance 0.012+0.032 the expected
value of er+s is e0.1605. The expected cash flow at time 2 can be written c0 + c1w with
0 < c1 ≈ 0.02021585. In particular, the expected cash flow is maximized by choosing
w = 104: all money goes into Bond C.

(c) Here it is assumed that the investor has a correct view of how the market will price
Bond D at time 1 but is wrong in assuming that the bonds are non-defaultable. The default
probabilities provided by the market prices at time 0 are correct.

Investing everything in Bond C at time 0 and, at time 1, re-investing everything in Bond
D gives that cash flow 104(1− I1)100/93 at time 1 and 104(1− I2)er+s100/93 at time 2,
where r and s are independent and independent of the default indicators. Plot the corre-
sponding distribution function and simulate from the distribution of (I2,r,s) to produce a
histogram illustration the distribution of the terminal value of the investors strategy under
the above assumptions.

CHAPTER 3

Exercise 3.1. (Annuity)

(a) Let τ be the random year of death of the policy holder, where τ = 1 means death of
the policy holder within one year from today. The annuity contract gives the policy holder
the cash flow {Ck}k≥1, where

Ck =

 0 k < y,
c k ≥ y,τ > k,
0 k ≥ y,τ ≤ k.

The value today V0 of the annuity cash flow is

V0 = E
[ ∞

∑
k=y

ce−krk I{τ > k}
]
= c

∞

∑
k=y

e−krk P(τ > k).

From the Gompertz-Makeham formula for the mortality rate, µ0(x+u) = A+Reα(x+u), at
age x+u of an age-x policy holder we find that

P(τ > k) = exp
{
−
∫ k

0

(
A+Reα(x+u)du

)}
= exp

{
−Ak− Reαx

α

(
eαk−1

)}
.
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(b) Here, c = 5000, y = 1, rk = 0.04 for all k, x = 65, A = 0.002, R = e−12, and α = 0.12.
Inserting the numerical values into

V0(n) = c
n

∑
k=y

e−krk exp
{
−Ak− Reαx

α

(
eαk−1

)}
.

gives V0(200) ≈ $51,067 and V0(30) ≈ $51,051. The corresponding values of the trun-
cated, at n = 200 and n = 30, annuity payments to a hypothetical immortal policy holder
are approximately $122,476 and $85,615, respectively. Notice the effect of the mortality
rate and that possible annuity payments beyond the age of 95 for the (mortal) 65-year-old
policy holder do not affect the current price of the annuity.

Exercise 3.2. (Hedging with index futures)

(a) If the day-to-day interest is deterministic and rt−1,t = r0,1 for all t, then

100/B0 = er0,1+···+rt−1,t = e365r0,1 ,

from which r0,1 =−(1/365) log(B0/100) follows. With Y0 = 100/B0, the leverage of the
futures strategy that corresponds to the quadratic hedge is

h =
Cov((ST −K)+,STY0)

Var(STY0)
=

Cov((ST −K)+,ST )

Y0 Var(ST )
.

Since ST = exp{log100+ 0.035+ 0.1W}, the solution to Exercise 1.4 gives formulas for
Cov((ST −K)+,ST ) and Var(ST ). Inserting numerical values gives h = 0.3156. The vari-
ance of the hedging error is

Var((ST −K)+−hY0ST ) = Var((ST −K)+)
(

1−Cor((ST −K)+,ST )
2
)
.

We can compute the correlation

Cor((ST −K)+,ST ) =
Cov((ST −K)+,ST )√

Var((ST −K)+)Var(ST )

by inserting the expressions obtained in the solution to Exercise 1.4. The computations
result in the value 2.933 for the standard deviation of the hedging error.

The quadratic hedge implies a bond position that pays

h0 = E[(ST −K)+]−hY0 E[ST ]

at time T (in one year). Equivalently, w0 = h0/Y0 is the investment in the risk-free bond
that corresponds to the quadratic hedge. Again using the expressions from the solution of
Exercise 1.4 to compute h0 and w0 gives h0 and w0 =−30.9587.

(b) With h and h0 from (a), the hedging error is

h
100
97

ST +h0− (ST −110)+, ST = 100e0.035+0.1W ,

where W is standard normally distributed. Therefore, a sample {W1, . . . ,Wn} from N(0,1)
is easily transformed into a sample from the distribution of the hedging error.

(c) Now the time-T value of the long futures strategy with unit leverage is Y ST , where
Y = e0.0292+0.05Z and ST = 100e0.035+0.1W with Z and W being independent and standard
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normally distributed. Moreover, the money market account is included as a hedging instru-
ment. From the independence of Y and ST we find that

Cov((ST −K)+,Y ST ) = E[Y ]Cov((ST −K)+,ST ),

Cov(Y ST ,ST ) = E[Y ]Var(ST ),

Var(Y ST ) = Var(Y )Var(ST )+Var(Y )E[ST ]
2 +Var(ST )E[Y ]2.

So the covariance matrix of the hedging instruments (Y ST ,ST ) is

ΣZ =

(
Var(Y ST ) Cov(Y ST ,Y )

Cov(Y ST ,Y ) Var(Y )

)
≈
(

144.46 0.2762
0.2762 0.00266

)
Similarly, the covariances between liability and hedging instruments are

ΣLZ =

(
Cov((ST −K)+,Y ST )

Cov((ST −K)+,Y )

)
≈
(

36.47
0

)
.

Using Proposition 3.2 we get the positions in the stochastic hedging instruments:

(h1,h2) = (0.3152,−32.805),

where the first hedging instrument is the futures strategy with unit leverage and the second
instrument is on dollar invested in the money market account. The standard deviation of
the hedging error is 2.9375 (only slightly higher than before). The position in the zero
coupon bond is 0.02 number of bonds (with face value 100).

Exercise 3.3. (Leverage and margin calls)

(a) An arbitrage portfolio is obtained by adopting the following strategy:
(1) At time 0 take a short position in h forward contracts and a long position in h

futures contracts. The net payment is 0.
(2) At t = 1 you receive h(F1−F0) from the futures contract. Put this into the money

market account (with zero interest rate). If it is negative you borrow the same
amount. The net cash flow is then again zero.

(3) At t = 2 the forward contracts gives h(G0− S2), the futures contract h(S2−F1)
and the money market account h(F1−F0). Thus the total payoff is

h(G0−F0)> 0.

(b) If h(F1−F0) < −K you have to borrow at the high interest rate R. Then you need to
pay back the interest at t = 2, which is [h(F0−F1)−K](eR−1). Thus, the total payoff at
t = 2 is

V2 = h(G0−F0)− [h(F0−F1)−K](eR−1)I{h(F1−F0)<−K}
= h(G0−F0)− [h(F0−F1)−K]+(eR−1)

(c) The expected value of V2 is given by

E[V2] = h(G0−F0)−h(eR−1)E[(F0−K/h−F1)+].

The last expectation is identified as the (forward) price of a put option on F1 with strike
F0−K/h which can be written as P0(F0−K/h), where

P0(x) = xΦ(−d2)−F0Φ(−d1),

with

d1 =
log(F0/x)+σ2∆/2

σ
√

∆
, d2 = d1−σ

√
∆.
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The maximum expected value is reached for h = 455 number of forward contracts.

Exercise 3.4. (Immunization)

The discount factors corresponding to the cash flow times 0.5,1,1.5 and 2 years from
today are determined as the solution to the equation system (equation (1.3) on page 9)

98.51 = 100d0.5

100.71 = 2d0.5 +102d1

111.55 = 6d0.5 +6d1 +106d1.5

198.96 = 4d0.5 +4d1 +4d1.5 +204d2.

The solution is (d0.5,d1,d1.5,d2) ≈ (0.9851,0.9680,0.9418,0.9185). The relation rt =
−(logdt)/t transforms the discount factors are transformed into the zero-rates

(r0.5,r1,r1.5,r2)≈ (0.03002,0.03248,0.03997,0.04249).

Other zero-rates are assumed to be given by linear interpolation from those above. In
particular, the 20-month rate is

r5/3 = r1.5 +
r2− r1.5

2−1.5
(5/3−1.5)≈ 0.04081.

It follows from Remark 3.1 on page 72 that it is sufficient to use to bonds to make the
aggregate position immune against parallel shift in the zero-rate curve, as long as one of
the bonds has a duration shorter than that of the liability, D = 5/3, and the other has a
duration longer than that of the liability. Here,

DC =
1

PC
(0.5 ·6 ·d0.5 +1 ·6 ·d1 +1.5 ·106 ·d1.5)≈ 1.42098

DD =
1

PC
(0.5 ·4 ·d0.5 +1 ·4 ·d1 +1.5 ·4 ·d1.5 +2 ·204 ·d2)≈ 1.941363.

A solution to the immunization problem is therefore(
hC
hD

)
=

1
PCPD(DD−DC)

(
PDP(DD−D)
PPC(D−DC)

)
≈
(

442.0994
221.6932

)
,

where P = 105e−r5/35/3 ≈ 93424.24.

Exercise 3.5. (Delta hedging with futures)

CHAPTER 4

Exercise 4.2. (Sports betting)

The initial capital is V0 = 100 British pounds and the prices of the contracts paying 1
pound if the gamblers selected result were to happen are q1 = 1/2.50, qx = 1/3.25 and
q2 = 1/2.70, respectively. The gambler believes p1 = px = p2 = 1/3.

Buying one contract of each type costs q1 +qx +q2 = 1.078 > 1 and pays 1 at maturity
whatever happens: a synthetic risk-free bond. Here, this amounts to a guaranteed loss.
Anyway, we have a risk-free asset with return R0 = 1/(q1 +qx +q2)< 1. The three risky
assets have returns

R1 = q−1
1 I{’Chelsea’}, Rx = q−1

x I{’draw’}, R2 = q−1
2 I{’Liverpool’}.

However, the risky returns are linearly dependent: one of them can be expressed as a a
constant minus a linear combination of the other two. In particular, the covariance matrix
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of the return vector is not invertible. Therefore we select two of the three risky assets
as our risky assets and consider the trade-off problem with the above risk-free asset (the
investment problem (4.7) on page 92).

Set

µ
′ =

(
µ ′1
µ ′2

)
, Σ

′ =

(
Σ′1,1 Σ′1,2
Σ′2,1 Σ′2,2

)
,

where

µ
′
1 = E[Rx] = px/qx, µ

′
2 = E[R2] = p2/q2,

Σ
′
1,1 = Var(Rx) = px(1− px)/q2

x , Σ
′
2,2 = Var(R2) = p2(1− p2)/q2

2,

Σ
′
1,2 = Cov(Rx,R2) =−px p2/(qxq2), Σ

′
2,1 = Σ

′
1,2.

The solution w′ and w′0, where w′ = (w′1,w
′
2)

T, to the trade-off problem (4.7) with trade-off
parameter c is (see (4.8) on page 92)

w′ =
V0

c
Σ
′−1

(µ ′−R01), w′0 =V0−w′T1.

Since we have chosen Rx and R2 as risky returns, the solution in terms of the capital in-
vested in the outcomes ’Chelsea’, ’draw’ and ’Liverpool’ is

w1 = w′0
q1

q1 +qx +q2
,

wx = w′0
qx

q1 +qx +q2
+w′1,

w2 = w′0
q2

q1 +qx +q2
+w′2.

The numerical values are(
w′1
w′2

)
=

1
c

(
7.903724
3.053794

)
, w′0 = 100− 1

c
10.95752.

In particular, for c= 1, (w1,wx,w2)≈ (33.04,33.32,33.64). As c→∞ (highly risk-averse),
(w1,wx,w2) ≈ (37.10,28.54,34.36). For c = 1/10.95752 (smallest trade-off parameter
that corresponds to long positions), (w1,wx,w2)≈ (0,72.13,27.87).

The expected value and the variance of the optimal portfolio are

E[V1] = w′0R0 +w′Tµ
′, Var(V1) = w′Tw′.

Plotting the pairs (
√

Var(V1),E[V1]) for c > 1/10.95752 illustrates the efficient portfolio
frontier.

Exercise 4.3. (Uncorrelated returns)

The investment problem and its solution are given by (4.9) and (4.11), respectively,
with R0 = 1, V0 = 10,000 and σ0V0 = 30. The matrix Σ is a diagonal matrix with diagonal
entries Σk,k = σ2

k . The numerical solution is (approximately)

(w0,w1,w2,w3,w4,w5)≈ (8468,671,335,224,168,134).

Exercise 4.4. (Hedging a zero-coupon bond)

(a) The portfolio value in six months is V6 =wR+w0−L, where L= $10,000, w+w0≤
V0 = $9,700 and

R =
10,000
9,510

e−(µ+σZ)/4,
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where µ = 0.06, σ = 0.015 and Z is standard normally distributed. Since E[V6] can be
increased by increasing w0 without increasing Var(V6), w+w0 =V0 for the optimal invest-
ment. Therefore, the hedging problem amounts to

minimize w2 Var(R),

subject to wE[R]+V0−w−L≥ 0.

Since

E[R] =
10,000
9,510

e−µ/4+(σ/4)2/2 = 1.035877

the constraint is equivalent to w ≥ (L−V0)/(E[R]− 1) = 8361.943 and w is chosen as
w = (L−V0)/(E[R]−1) = 8361.943 in order to minimize the portfolio variance.

(b) For a lognormal random variable ea+bZ , E[ea+bZ ] = ea+b2/2 and E[e2(a+bZ)] = e2a+2b2

and therefore Var(ea+bZ) = e2a+b(eb − 1). Here, this gives Var(R) = 1.508974 · 10−5

and
√

Var(R) = 0.003884552. The efficient frontier is illustrated by plotting the pairs
(w
√

Var(R),w(E[R]−1)+V0−L) for varying values of w.

Exercise 4.5. (Hedging stocks with options)

Exercise 4.6. (Credit rating migration)

(a) Let w1 and w2 = V0−w1, w1 ∈ [0,V0], be the amounts invested in the two bonds,
where V0 = $10,000. The value of the bond portfolio in one year is

V1 = w1
100

83.68
e−0.06−s1+0.012Z +(10,000−w1)

100
87.50

e−0.06−s2+0.012Z

= 100e−0.06+0.012Z
( w1

83.68
e−s1 +

10,000−w1

87.50
e−s2

)
,

where (s1,s2) is independent of the standard normal Z and has a distribution specified
by Table 4.1. The expected value E[V1] and variance E[V 2

1 ]−E[V1]
2 of the portfolio are

computed from

E[V1] = 100e−0.06+0.0122/2
4

∑
i, j=1

( w1

83.68
e−ri +

10,000−w1

87.50
e−r j

)
P((s1,s2) = (ri,r j))

and

E[V 2
1 ] = 1002e−0.12+0.0242/2

4

∑
i, j=1

( w1

83.68
e−ri +

10,000−w1

87.50
e−r j

)2
P((s1,s2) = (ri,r j)),

where (ri,r j) denotes the (i, j) entry in Table 4.1.

Exercise 4.7. (Insurer’s asset allocation)

We want the solution to a convex optimization problem of the type (2.1): here

f (w) =
1
2
(wT

Σw+σ
2
L −2wT

ΣL,R),

g1(w)−g1,0 =−wT
µ +1.3E[L],

g2(w)−g2,0 = wT1−1.2E[L].
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The sufficient conditions for an optimal solution in Proposition 2.1 translate into

w = Σ
−1(ΣL,R +λ1µ−λ21),

1Tw = 1T
Σ
−1

ΣL,R +λ11T
Σ
−1

µ−λ21T
Σ
−11 = 1.2E[L],

µ
Tw = µ

T
Σ
−1

ΣL,R +λ1µ
T

Σ
−1

µ−λ2µ
T

Σ
−11 = 1.3E[L]

so, with a = µTΣ
−1

µ , b = µTΣ
−11 and c = 1TΣ

−11,(
b −c
a −b

)(
λ1
λ2

)
=

(
1.2E[L]−1TΣ

−1
ΣL,R

1.3E[L]−µTΣ
−1

ΣL,R

)
which gives (λ1,λ2)≈ (232941.2,242882.4). Since the λks are positive we have obtained
an optimal solution to the optimisation problem without any constraints on long/short po-
sitions. However, the solution is w1

w2
w3

≈
 117647.1

400000.0
682352.9


which shows that the solution (luckily) corresponds to an optimal solution to the optimisa-
tion problem with a requirement of only long positions.

If the first asset is uncorrelated with the liability, then ΣL,R = 0, and again we obtain
positive λks, (λ1,λ2)≈ (231176.5,240852.9), and the solution w1

w2
w3

≈
 47058.8

400000.0
752941.2

 .

In particular, the first asset becomes less attractive when it cannot be used to hedge the
liability.

CHAPTER 5

Exercise 5.1. (Credit Default Swap)

(a) First observe that buying the defaultable bond and the CDS results in a risk-free
payoff of $100 in 6 months which costs of $98. Therefore, a rational investor would not
invest in the risk-free bond which costs $99.

Let w1 and w2 be the amounts invested in the defaultable bond and in the CDS, respec-
tively. The problem to solve is

maximize E
[
u(w1R1 +w2R2)

]
subject to w1 +w2 ≤ 100,

w1,w2 ≥ 0,

where R1 = 100(1− I)/96 and R2 = 100I/2 with

I =
{

1 if the bond issuer defaults,
0 otherwise.

Since u(x) =
√

x and P(I = 1) = 0.02,

E
[
u(w1R1 +w2R2)

]
=

98
100

√
w1

100
96

+
2

100

√
w2

100
2

.
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Since E
[
u(w1R1 +w2R2)

]
is increasing in both w1 and w2, w1 +w2 = 100 for the optimal

solution. Therefore the problem to solve simplifies into

maximize
98

100

√
w1

100
96

+
2

100

√
(100−w1)

100
2

subject to w1 ∈ [0,100]

which gives w1 = $(982 ·100)/(2 ·96+982)≈ $98.04 (and w2 ≈ $1.96).
(b) Exercise 5.1 (b) does not make sense. It may read as follows instead:

Another investor is an expected-utility maximizer with utility function u(x) = xβ for β ∈
(0,1), and invests $100 in long positions in the defaultable bond and the risk-free bond.
Also this investor believes that the default probability is 0.02 and decides to invest less than
$50 dollars in the defaultable bond. What can be said about β?

Here, let w1 and w2 denote the amounts invested in the defaultable bond and in the
risk-free bond, respectively. Notice that

E[u(w1R1 +w2R2)] =
98

100

(
w1

100
96

+w2
100
99

)β

+
2

100

(
w2

100
99

)β

.

Since E[u(w1R1 +w2R2)] is increasing in both w1 and w2, w1 +w2 = 100 for the optimal
solution. Therefore the problem to solve simplifies into

maximize
98
100

(
w1

100
96

+(100−w1)
100
99

)β

+
2

100

(
(100−w1)

100
99

)β

subject to w1 ∈ [0,100]

Denoting the above objective function by g(w1), setting g′(w1) = 0 and solving for w1
yield

w∗1(β ) = 100
1− (49/32)1/(β−1)

1+(49/32)1/(β−1)/32
.

Observe that w∗1(β ) is increasing in β ∈ (0,1) with limβ→1 w∗1(β )= 100 and limβ→0 w∗1(β )=
17/49. Setting w∗1(β ) = 50 and solving for β gives

β
∗ = 1+

log(49/32)
log(32/65)

= 0.398739.

We conclude that the parameter β of the investor’s utility function satisfies β < β ∗.

Exercise 5.2. (Bets on credit rating)

Introduce indicator variables X1,X2,X3,X4 with X1 = 1 if the rating is ‘Excellent’ in 6
months and zero otherwise, and similarly for X2, X3 and X4 if the rating is ‘Good’, ‘Poor’
or ‘Default’, respectively. We have four contracts with current and future values given by

S1
0 = 1,150 S1

6 = 10,000X1,
S2

0 = 8100 S2
6 = 10,000X2,

S3
0 = 700 S3

6 = 10,000X3,
S4

0 = 50 S4
6 = 10,000X4.

Let qk = Sk
0/10,000 denote the reciprocal odds of outcome k. The optimization problem

to solve can be formulated as follows.

maximize E[u(w1q−1
1 X1 +w2q−1

2 X2 +w3q−1
3 X3 +w4q−1

4 X4)]

subject to w1 +w2 +w3 +w4 ≤ 10,000,
w1,w2,w3,w4 ≥ 0,
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where u(x) = (γx)1−1/γ/(γ − 1) with γ = 2.5. We identify the investment problem as the
“Horse race problem” (5.12) on page 139 and therefore the solution is given by (5.13) on
page 140, i.e.

wk = 10,000
qk(pk/qk)

2.5

∑
4
j=1 q j(p j/q j)2.5

with p1 = 0.11, p2 = 0.80, p3 = 0.08, p4 = 0.01. Inserting the numerical values of the pks
and qks gives (in dollars)

w1 ≈ 100.1, w2 ≈ 763.8, w3 ≈ 108.6, w4 ≈ 27.5.

Exercise 5.3. (Hedging with electricity futures)

Exercise 5.4. (Optimal payoff function)

The optimal payoff is given by, see (5.16),

h(x) = (u′)−1
(

λ
q(x)
p(x)

)
,

where λ is such that
V0

B0
=
∫
(u′)−1

(
λ

q(x)
p(x)

)
q(x)dx.

Here (u′)−1(y) = (y−γ − τ)/γ . Since q(x)/p(x) = exp{Λ(θ)− θx}, λ must satisfy the
equation

V0

B0
=
∫

γ
−1(

λ
−γ e−γ(Λ(θ)−θx)− τ

)
q(x)dx

=
1
γ

[
λ
−γ e−γΛ(θ)

∫
eγθxq(x)dx− τ

]
=

1
γ

[
λ
−γ e−γΛ(θ)+Λ(θγ)− τ

]
.

Therefore,

λ
−γ =

[V0

B0
γ + τ

]
eγΛ(θ)−Λ(θγ)

and the resulting optimal payoff is

h(x) =
1
γ

[(V0

B0
γ + τ

)
eγΛ(θ)−Λ(θγ)−γΛ(θ)+γθx− τ

]
=

1
γ

[(V0

B0
γ + τ

)
eγθx−Λ(θγ)− τ

]
.

CHAPTER 6

Exercise 6.1. (Convexity and subadditivity)

Subadditivity and positive homogeneity imply that, for any λ ∈ [0,1],

ρ(λX1 +(1−λ )X2)≤ ρ(λX1)+ρ((1−λ )X2) = λρ(X1)+(1−λ )ρ(X2).

Positive homogeneity and convexity imply that

ρ(X1 +X2) = ρ

(
2
(1

2
X1 +

1
2

X2

))
= 2ρ

(1
2

X1 +
1
2

X2

)
≤ ρ(X1)+ρ(X2).

Exercise 6.2. (Stop-loss reinsurance)
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Since L=min(S,F−1
S (0.95))+ p we find that FL(F−1

S (0.95)+ p)= 1 and FL(F−1
S (0.95)+

p− ε)< 0.95 for ε > 0. In particular,

F−1
L (0.99) = min{m : FL(m)≥ 0.99}= F−1

S (0.95)+ p.

We conclude that p = F−1
S (0.99)−F−1

S (0.95) gives F−1
L (0.99) = F−1

S (0.99).

Exercise 6.3. (Quantile bound)

Exercise 6.4. (Tail conditional median)

Exercise 6.5. (Production planning)

Exercise 6.6. (Risky bonds)

(a) Let I1 and I2 be the default indicators for the two issuers. They are assumed to be in-
dependent and identically distributed, I1 = 1 with probability p and I1 = 0 with probability
1− p.

The returns of the two bonds are then given by

Rk =
105

Pk
(1− Ik) =

R0

1−q
(1− Ik), k = 1,2.

The expected value of Rk is

µ = E[Rk] =
R0

1−q
(1−E[Ik]) =

R0

1−q
(1− p) = 1.051, k = 1,2,

and the variance is

σ
2 =V (Rk) =V

( R0

1−q
(1− Ik)

)
=

R2
0

(1−q)2 p(1− p) = 0.02717.

Since the default indicators are independent, so are the returns R1 and R2, which implies
Cov(R1,R2) = 0.

Let µT = (µ,µ) be the mean vector of (R1,R2)
T and Σ be the covariance matrix given

by

Σ =

(
σ2 0
0 σ2

)
.

Let w0 be the amount invested in the risk-free bond and wT =(w1,w2) the amounts invested
in the two defaultable bonds, respectively. The objective is to solve

maximize w0R0 +wTµ,
subject to wTΣw≤V 2

0 σ2
0 ,

w0 +wT1≤V0,
w0 ≥ 0,w1 ≥ 0,w2 ≥ 0.

Here V0 = 106 is the initial capital and V0σ0 = 25000.
If we, for now, ignore the short-selling constraints, then the sufficient conditions for

optimality are

(1) R0−λ2 = 0 and −µ +λ1Σw+λ21 = 0,
(2) wTΣw≤V 2

0 σ2
0 and w0 +wT1≤V0

(3) λ1 ≥ 0 and λ2 ≥ 0,
(4) λ1(wTΣw−V 2

0 σ2
0 ) = 0 and λ2(w0 +wT1−V0) = 0.
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Assuming λ1 > 0 and λ2 > 0 leads to λ2 = R0,

w =
1
λ1

Σ
−1(µ−R01),

by (1) and using the first condition in (4) gives

V 2
0 σ

2
0 =

1
λ 2

1
(µ−R01)T

Σ
−1(µ−R01).

Then we solve for λ1 which gives

λ1 =
1

V0σ0

(
(µ−R01)T

Σ
−1(µ−R01)

)1/2

and

w =
V0σ0(

(µ−R01)TΣ−1(µ−R01)
)1/2 Σ

−1(µ−R01),

w0 =V0−w1−w2.

We can compute

Σ
−1 =

(
1/σ2 0

0 1/σ2

)
,

and putting in the numerical values gives

w1 = w2 = 107253.1, w0 = 785493.8.

Since the solution to the optimization problem without short-selling constraints actually
satisfies the short-selling constraints we conclude that this is the optimal solution to the
problem.

(b) The mean and standard deviation of the optimal portfolio are given by

w0R0 +(w1 +w2)µ = 1050231,
√

wTΣw = 25000.

(c) Let X =V1−V0R0 be the net worth. Then the discounted loss is

L =−X/R0

=− 1
R0

(
w0R0 +w1(R1 +R2)−1000000R0

)
= (106−w0)−

w1

R0
(R1 +R2)

= (106−w0)−
w1R0

R0(1−q)
((1− I1)+(1− I2))

=
(

106−w0−
2w1

1−q

)
+

w1

1−q
(I1 + I2).

The distribution of I1 + I2 is given by

P(I1 + I2 = 0) = (1− p)2,

P(I1 + I2 = 1) = 2p(1− p),

P(I1 + I2 = 2) = p2,
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and the quantile function is therefore given by

F−1
I1+I2(1−u) =


0, if 1−u≤ (1− p)2,
1, if (1− p)2 < 1−u≤ 1− p2,
2, if 1− p2 < 1−u.

The Value-at-Risk is then given by

VaRu(X) = F−1
L (1−u)

=
(

106−w0−
2w1

1−q

)
+

w1

1−q
F−1

I1+I2(1−u)

=
(

106−w0−
2w1

1−q

)
+

w1

1−q
·


0, if 1− (1− p)2 ≤ u,
1, if p2 ≤ u < 1− (1− p)2,
2, if u < p2.

With u= 0.05 and p= 0.024 we have 1−(1− p)2 = 0.04742< 0.05 and p2 = 0.000576
and therefore

VaR0.05(X) =
(

106−w0−
2w1

1−q

)
=−5500

The Expected Shortfall can be computed as

ES0.05(X) =
1

0.05

∫ 0.05

0
VaRu(X)du

=
(

106−w0−
2w1

1−q

)
+

2w1

0.05(1−q)

(
2(p2−0)+1(1− (1− p)2− p2))

= 100103.

(d) Let I1 = 1 with probability p1 = 0.91 and I2 unchanged. Then

P(I1 + I2 = 0) = (1− p1)(1− p) = 0.08784,

P(I1 + I2 = 1) = p1(1− p)+(1− p1)p = 0.89032,

P(I1 + I2 = 2) = p1 p = 0.02184,

and

F−1
I1+I2(1−u) =

 0, if 1−u≤ (1− p1)(1− p),
1, if (1− p1)(1− p)< 1−u≤ 1− p1 p,
2, if 1− p1 p < 1−u.

The Value-at-Risk is then given by

VaRu(X) = F−1
L (1−u)

=
(

106−w0−
2w1

1−q

)
+

w1

1−q
F−1

I1+I2(1−u)

=
(

106−w0−
2w1

1−q

)
+

w1

1−q
·

 0, if 1− (1− p1)(1− p)≤ u,
1, if p1 p≤ u < (1− p1)(1− p),
2, if u < p1 p.

In particular, with u = 0.05,

VaR0.05(X) =
(

106−w0−
2w1

1−q

)
+

w1

1−q
= 104503.
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The Expected Shortfall is given by

ES0.05(X) =
1

0.05

∫ 0.05

0
VaRu(X)du

= 106−w0−2∗w1/(1−q)+
w1

0.05(1−q)

(
2(p1 p−0)+1(0.05− p1 p)

)
= 152552

Exercise 6.7. (Leverage and margin calls)

(a) Recall from the solution to Exercise 3.3 that

V2 = h(G0−F0)− [h(F0−F1)−K](eR−1)I{h(F1−F0)<−K}
= h(G0−F0)− [h(F0−F1)−K]+(eR−1),

where

F1 = F0 exp
{
− σ2

2
∆+σ

√
∆Z
}

with Z standard normal, F0 = 99.95, G0 = 100, σ = 0.6, ∆ = 1/12, R = 0.24, K = 104 and
h = 455. We find that P(h(F0−F1)−K > 0)≈ 0.089. For p≤ P(h(F0−F1)−K > 0),

VaRp(V2) = F−1
−V2

(1− p)

= (eR−1)F−1
h(F0−F1)−K(1− p)−h(G0−F0)

= (eR−1)(hF−1
F0−F1

(1− p)−K)−h(G0−F0)

= (eR−1)(h(F0 +F−1
−F1

(1− p))−K)−h(G0−F0)

= (eR−1)(h(F0 +F−1
F1

(p))−K)−h(G0−F0),

where

F−1
F1

(p) = F0 exp
{
− σ2

2
∆+σ

√
∆Φ
−1(p)

}
.

Summing up, we have found that, for p≤ 0.05,

VaRp(V2) = a0 +a1F−1
F1

(p),

where

a0 = (eR−1)(hF0−K)−h(G0−F0), a1 = (eR−1)h.

(b) Since ESp(V2)= p−1 ∫ p
0 VaRu(V2)du and F−1

F1
(p)= exp{m+sΦ−1(p)}with m= log(F0)−

σ2∆/2 and s = σ
√

∆, Example 6.15 yields, for p≤ 0.05,

ESp(V2) = a0 +a1Φ(Φ−1(p)− s)em+s2/2

= a0 +a1F0Φ(Φ−1(p)−σ
√

∆)

with coefficients a0 and a1 as in part (a).

Exercise 6.8. (Risk and diversification)

See Figure 1.
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FIGURE 1. Plots of n 7→ VaR0.05(V1(n)−V0) and n 7→ ES0.05(V1(n)−V0).


