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EXAMINATION IN SF2942 PORTFOLIO THEORY AND RISK MANAGEMENT,
2012-10-19.

Examiner: Henrik Hult, tel. 790 6911, e-mail: hult@kth.se

Allowed technical aids: calculator.

Any notation introduced must be explained and defined. Arguments and computa-

tions must be detailed so that they are easy to follow.

GoOD LUckK!

e All interest rates are given as yearly interest rate with continuous
compounding.

e Black’s formula for European call options:
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Problem 1

Let V4 and V; denote the value of a portfolio at times 0 and 1, respectively, and R,
be the return of a risk free asset. Let X = V; — ViR be the future net worth of
the portfolio. For a monetary risk measure p the risk p(X) can be interpreted as
the amount of capital that needs to be added to the portfolio and invested in the
risk free asset at time 0 to make the portfolio acceptable. Define, in mathematical
terms, the following properties of a risk measure. In addition you should give a brief
interpretation in words of each property. The properties are:

a) Translation invariance

(
(b

Monotonicity

)
)
(c¢) Convexity
(d) Positive homogeneity
)

(e) Subadditivity
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Bond A B C
Price (SEK) 1035573 1055748 1061677
Maturity (months) 8 20 44
Annual coupon (%) 4.25 4.00 3.25
Face value (SEK) 1000000 1000000 1000000

Table 1: Bonds.

(10 p)

Problem 2

The bootstraping procedure is useful for determining the zero rates (the zero-rate
curve) from prices of traded bonds. Explain how the bootstrapping procedure works
and illustrate it by deriving the zero rates for the maturity times 8, 20, 32, 44 months,
using the bonds listed in Table 1. The bonds pay an annual coupon. (10 p)

Problem 3

Consider a futures contract and a forward contract on the value X of one barrel of
crude oil at time T'. Suppose there is a known interest rate that applies to any loans
and deposits until time 7.

Derive the delta hedge of a European put option on X with maturity 7" in terms of
an amount on a risk-free bank account and a position in a futures contract on X.
Use Black’s formula. (10 p)

Problem 4

An expected-utility-maximizing investor has the opportunity to invest a capital of
$100 in the following digital options written on the value of the five-month zero
rate in three months from now, r3g. In other words e~"5(/12) is the price, in three
months from now, of a zero-coupon bond with face value 1 maturing in eight months
from now. All the digital options mature in three months from now and pays $100
if 735 lies in the indicated range. The prices and ranges of the digital options are
given in Table 2. The current price of a zero-coupon bond with maturity in three
months and face value 1 is 0.9975.

The investor believes that rsg follows a normal distribution with mean 1.00% and
standard deviation 0.25%. Determine the investor’s optimal portfolio if the investor
uses a HARA utility with 7 = 0 and v = 4. Recall that the HARA utility function
can be written as:

1

— 1-1/v
@) = —{r+ 30"

A table of the normal distribution is given at the end of the exam. (10 p)
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Option name | Price ($) Range
A 6.64 URES S 0.7
B| 4925 05<rys< 1.0
C| 7728 0.7<rss <12
D| 3405 1.0<rys<12
E 4926 1.0 <rzg <15
F 1583 1.2<ryg

Table 2: Digital options.

Problem 5

A large Swedish bank lends 1.75 - 10° SEK to Swedish home owners. The lending
rate that the home owners pay is usually changed every three months. Therefore
the banks costs for financing the loans are usually determined on a three months
horizon. To finance the loans the bank issues (sells) the bonds A and B in Table 1.
This problem is to find out how much of each bond A and B to sell.

Let By, k > 1, be the price today of a zero-coupon bond with face value 1 which
matures in £ months from today. Let R; be the three-month return associated with
the ¢ month zero-rate. That is, if 7334, is the ¢-months zero-rate in three months,
then

e~ T3,3+1(t/12)

R, =
t B,

Suppose the vector (Rs, Ri7)T has covariance matrix

2.59 2.55

-5

10 ( 2.55 3.09 ) ’

Determine the amounts of bonds of type A and B to be sold to minimize the variance

of the resulting portfolio subject to the constraint that the bank must sell bonds for
at least 1.75 - 10° SEK.
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TABLE A; STANDARD NORMAL PROBABILITIES (CONTINUED)

Figure 1: Standard Normal distribution
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