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HOME ASSIGNMENT 1, SF2955 COMPUTER INTENSIVE METHODS IN MATHEMATICAL
STATISTICS

Teacher: Johan Westerborn
All MATLAB-files needed are available through the course home page.
The following is to be submitted:

• An email containing two report files (see below), one with names and one anonymous as well
as all your m-files with a file named group_number_HA1_matlab.m that runs your analysis, or
similar depending on your language of choice. This email has to be sent to johawes@kth.se

by Friday 28 April, 13:00:00.

• A report, named group number-HA1-report.pdf, of maximum 7 pages in pdf format with
names of group members, a version of this report named HA1-report.pdf without names
should also be included. The report should provide detailed solutions to all problems. The
presentation should be self-contained and understandable without access to the code. One
printed and stitched copy of the report (with name of group members) is brought to the
lecture on Friday 28 April.

Discussion between groups is permitted, as long as your report reflects your own work.
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A hidden Markov model for mobility tracking

Motion model

Consider a target moving in R2 according to some dynamics described by the model

Xn+1 = ΦXn + ΨzZn + ΨwWn+1, n ∈ N, (1)
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1
n, X

2
n, Ẋ
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– {Zn}n∈N∗ is the driving command modeled by a bivariate Markov chain taking on the values

{(0, 0)ᵀ, (3.5, 0)ᵀ, (0, 3.5)ᵀ, (−3.5, 0)ᵀ, (0,−3.5)ᵀ}. (2)

In the first state in the set (2), the driver does not add any velocity to the target; in the
remaining states, the driver adds velocity to the target by steering in the east, north, west and
south directions, respectively. The chain evolve, independently of everything else, according
to the transition probability matrix

P =
1
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– {Wn}n∈N∗ are bivariate, mutually independent normally distributed noise variables; more
specifically, each Wn is N(02×1, σ

2I)-distributed with σ = .5.

– Φ, Ψz and Ψw are matrices given by
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and Ψ• =

(
Ψ̃• 03×1
03×1 Ψ̃•

)
,

where

Φ̃ =

 1 ∆t ∆2
t/2

0 1 ∆t

0 0 α

 , Ψ̃z =

 ∆2
t/2

∆t

0

 and Ψ̃w =

 ∆2
t/2

∆t

1
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with ∆t = 0.5 (s) being the sampling discretization period and α = .6 the correlation between
subsequent acceleration values. Consequently, the target’s shift in velocity is modeled as the
superposition of the driving command and a random, correlated acceleration.

The initial state vector X0 is assumed to be N(06×1, diag(500, 5, 5, 200, 5, 5))-distributed and the
initial driving command Z0 is supposed to be uniformly distributed over the set (2).

Problem 1

Aquaint yourself with the mobility state model and make sure that you understand the rationale
behind the equation (1). Is {Xn}n∈N a Markov chain? For all n ∈ N, let X̃n = (Xᵀ

n,Z
ᵀ
n)ᵀ; is

{X̃n}n∈N a Markov chain? Implement a MATLAB code simulating a trajectory {(X1
n, X

2
n)}mn=0 of

some arbitrary length m and plot the same. Does it look like a reasonable trajectory of a moving
target?



4

Observation model

As the target is moving, it measures online the pilot signal strenghts (i.e., the received signal
strength indication, RSSI) from the basis stations of a cellular network. The network comprises
s = 6 basis stations (BS), whose positions {π`}s`=1 in the plane are known and found in the file
stations.mat. The RSSI (measured in dB) that the mobile unit receives from the `th BS at time
n ∈ N can be modeled as

Y `
n = υ − 10η log10 ‖(X1

n, X
2
n)ᵀ − π`‖+ V `

n , (4)

where ‖ • ‖ denotes the Euclidean distance, υ = 90 (dB) is the base station transmission power,
η = 3 is the so-called slope index and {V `

n}s`=1 are independent Gaussian noise variables with mean
zero and standard deviation ς = 1.5 (dB). We denote by Yn = (Y 1

n , . . . , Y
s
n )ᵀ the RSSIs received

at time n from all the BSs in the network.

Problem 2

Convince yourself that {(X̃n,Yn)}n∈N forms a hidden Markov model (see Lecture 5) and find the
observation density p(yn | x̃n) of Yn | X̃n.

Mobility tracking using SMC methods

The file RSSI-measurements.mat contains a stream y0:m = (y0, . . . ,ym), m = 500, of RSSI mea-
surements on a moving target with an unknown trajectory. Our aim is to estimate, by processing
the measurements in succession, the positions of the target by means of optimal filtering. This
means that we wish to estimate sequentially the expectated positions

τ 1n = E
[
X1

n | Y0:n = y0:n

]
and τ 2n = E

[
X2

n | Y0:n = y0:n

]
for n = 0, 1, 2, . . . Since the model is nonlinear, we will in this project apply sequential Monte Carlo
(SMC) methods for this purpose. More specifically, we will evolve a particle sample {(X̃i

0:n, ω
i
n)}Ni=1

targeting sequentially, as new measurements appear for n = 0, 1, 2, . . ., the densities

f(x̃0:n | y0:n) =
f(x̃0:n,y0:n)

f(y0:n)
=
q(x̃0)p(y0 | x̃0)

∏n
k=1 p(yk | x̃k)q(x̃k | x̃k−1)

f(y0:n)
(5)

of the smoothing distributions X̃0:n | Y0:n, where q(x̃k | x̃k−1) and q(x̃0) denote the transition densi-
ty and initial distribution of {X̃n}n∈N, respectively. The denominator f(y0:n) in (5) is intractable.1

In other words, we will solve a larger problem, as the positions (X1
n, X

2
n) of interest consitute only

a part of the vector X̃n. Then, since

τ 1n =

∫
x1nf(x1n | y0:n) dx1n,

where the filter density f(x1n | y0:n) is the marginal of (5) w.r.t. the x1n component, we may use the
components {X1,i

n }Ni=1 of the last particle generation {X̃i
n}Ni=1 for approximating τ 1n (and similarly

for τ 2n).

1Note that f(y0:n) is given by the integral (w.r.t. x̃0:n) of the numerator of (5).
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Problem 3

Implement the sequential importance sampling (SIS) algorithm for sampling from f(x̃n | y0:n),
n = 0, 1, . . . ,m, for the observation stream in RSSI-measurements.mat and provide estimates of
{(τ 1n, τ 2n)}mn=0.

2 Use the prior dynamics q(x̃n | x̃n−1) as proposal kernel. Plot the estimates in the
plane together with the locations of the basis stations. In order to keep the computational time at
a minimum, you should vectorize the algorithm as far as possible. In particular, since you should
be able to run the algorithm for a large particle sample size, say, N = 10,000, you should avoid
any for-loop on the particle level. Plot histograms of the importance weights and compute the
efficient sample sizes at some selected time points. Conclusion?

Problem 4

Implement the sequential importance sampling with resampling (SISR) algorithm for sampling
from the same flow of densities by adding a selection step to the algorithm designed in Problem 3.
Provide again, using at least N = 10,000 particles, a plot of the estimated expected positions
{(τ 1n, τ 2n)}mn=0 for the given data stream. Also this implementation should be vectorized as far as
possible. Conclusion?

SMC-based model calibration

In a more realistic scenario, the parameters of the model are unknown and needs to be estimated
(the standard deviation in the observation noise). In this problem we assume that all paramters
except ς has been previously calibrated. The file RSSI-measurements-unknown-sigma.mat con-
tains another RSSI data stream y0:m, with again m = 500, measured on a target with unknown
ς ∈ (0, 3). In that case, one way of calibrating the ς is to maximize the normalized log-likelihood
function ς 7→ `m(ς,y0:m) = m−1 lnLm(ς,y0:m), where the likelihood Lm(ς,y0:m) = fς(y0:m) is the
normalizing constant of the smoothing distribution (5). However, for the complicated model under
consideration, Lm(ς,y0:m), and thus `m(ς,y0:m), is intractable.

Problem 5

Perform approximative maximum likelihood estimation of ς on the bases of the RSSI data re-
cord y0:m given in RSSI-measurements-unknown-sigma.mat by, first, computing using your SISR
algorithm in Problem 4, pointwise Monte Carlo estimates `Nm(ςj) of the log-likelihood over a well-
designed grid {ςj} in the parameter space (0, 3) and, second, maximizing the approximate log-
likelihood by picking the ςj corresponding to the largest `Nm(ςj). Note that the pointwise estimates
are obtained by running, for the given data input y0:m, the SISR algorithm for each of the different
ς values of the grid and estimating the log-likelihood for each run. Denote by ς̂m the approximate
maximum likelihood estimate obtained in this way. Finally, report ς̂m as well as the estimated
expected positions {(τ 1n, τ 2n)}mn=0 produced under ς̂m.

Good luck!

2When solving this problem, you are highly recommended to work initially on an artificial data record Y0:m =
y0:m generated by yourself and for which you know the corresponding true states X̃0:n exactly; in this way you are
able to check the correctness of your algorithm.


