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Peer review form for project reports

weak satisfactory strong comments
Contents (cover-
ing, relevance)
Presentation
(guiding the
reader, flow of
ideas, typesetting
and spelling)
Evidence (cred-
ibility, correct-
ness)
Overall effective-
ness
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Peer review (cont.)

The review form (in LATEX) is available through the course
home page.
For identifiability, start each review by quoting a part of the
first sentence of the corresponding report.
Provide at least three substantial comments for each item
(contents, presentation, etc.)
The peer review is performed group-wise, i.e., the
members of a group do not write seperate reports.
Email your reviews to the lecturer (johawes@kth.se) by
Tuesday 9 May, 23:59.
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The Gibbs sampler

Assume that the space X can be divided into m blocks, i.e.
x = (x1, . . . , xm) ∈ X, where each block may be itself
vector-valued.
Assume that we want to sample a multivariate distribution f
on X.
Denote by xk the k th component of x and by
x−k = (x`) 6̀=k the set of remaining components.
Denote by fk (xk | x−k ) = f (x)/

∫
f (x) dxk the conditional

distribution of X k given the other components X−k = x−k .
Assume that it is easy to simulate from fk (xk | x−k ) for all
k = 1, . . . ,m.
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The Gibbs sampler (cont.)

The Gibbs sampler simulates a sequence (Xk ) of values
forming a Markov chain on X using with the following
mechanism: given Xk ,

draw X 1
k+1 ∼ f1(x1|X 2

k , . . . ,X
m
k ),

draw X 2
k+1 ∼ f2(x2|X 1

k+1,X
3
k , . . . ,X

m
k ),

draw X 3
k+1 ∼ f3(x3|X 1

k+1,X
2
k+1,X

4
k , . . . ,X

m
k ),

. . .
draw X m

k+1 ∼ fm(xm|X 1
k+1,X

2
k+1, . . . ,X

m−1
k+1 ).

In other words, at the `th round of the cycle generating
Xk+1, the `th component of Xk+1 is updated by simulation
from its conditional distribution given all other components.
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Convergence of the Gibbs sampler

As for the MH algorithm, the following holds true.

Theorem
The chain (Xk ) generated by the Gibbs sampler has f as
stationary distribution.

In addition, one may prove, under weak assumptions, that
the Gibbs sampler is also geometrically ergodic, implying
that

τMCMC
N =

1
N

N∑
k=1

φ(Xk )→ τ as N →∞.
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Variance of MCMC estimators

As mentioned, the MH and Gibbs samplers are
geometrically ergodic, implying an LLN in each case.
In addition, one may establish the following CLT. Let

r(`) = lim
n→∞

C(φ(Xn+`), φ(Xn))

be the covariance function of (Xk ) at stationarity.

Theorem
Assume that

σ2 = r(0) + 2
∞∑
`=1

r(`) <∞.

Then √
N(τMCMC

N − τ)
d.−→ N(0, σ2) as N →∞.
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Estimating asymptotic variance using blocking

Use N = nK samples and write

τMCMC
N =

1
N

N∑
k=1

φ(Xk ) =
1
n

n∑
`=1

T`,

where

T`
def
=

1
K

`K∑
m=(`−1)K+1

φ(Xm), ` = 1,2, . . . ,n.

If the blocks are large enough we can view these as close
to independent and identically distributed.
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Estimating asymptotic variance using blocking (cont.)

We may thus expect the standard CLT to hold at least
approximately, implying that

V(τMCMC
N ) = V

(
1
n

n∑
`=1

T`

)
≈ V(T1)

n
,

where V(T1) can be estimated using the standard
estimator

V(T1) ≈ 1
n − 1

n∑
m=1

(Tm − T n)2,

with T n =
∑n

m=1 Tm/n denoting the sample mean. The
latter is easily computed using MATLAB’s var function.
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Example: A tricky bivariate distribution (again)

We let again (X ,Y ) have bivariate distribution

f (x , y) ∝ n!

(n − x)!x!
yx+α−1(1− y)n−x+β−1

on {0,1,2, . . . ,n} × (0,1) and estimate the marginal
expectation

τ = E(Y )

using the output (Xk ,Yk ) of the Gibbs sampler.
In addition, we construct a 95% confidence bound on τ
using the blocking method.
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Example: A tricky bivariate distribution (again)

In MATLAB:

K = 50; % block size
n = N/K; % number of blocks
T = zeros(1,n);
for k = 1:n, % take means over n blocks

T(k) = mean(Y((burn_in + (k - 1)*K + 1):(burn_in + K*k)));
end
LB = tau - norminv(0.975)*std(T)/sqrt(n); % confidence bound
UB = tau + norminv(0.975)*std(T)/sqrt(n);
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Example: A tricky bivariate distribution (again)
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Hybrid MCMC samplers

It is often very convenient to consider hybrids between
Gibbs and MH:

Divide the space into blocks and aim for Gibbs sampling.
If it is possible to sample directly from the conditional
distribution of a block, update according to Gibbs.
If it is not, just insert a local MH step instead!

The resulting chain satisfies still global balance and is thus
a valid MCMC sampler (referred to as the hybrid sampler
or Metropolis-within-Gibbs).
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Hybrid MCMC samplers (cont.)

More specifically, assume that q` is some Markov transition
density allowing f`(x` | x−`) (i.e., the conditional density of
the `th block) as a stationary distribution. The density q`
may depend on x−`.
For instance, q` may be an MH kernel for f`(x` | x−`) based
on some proposal density r`.
In the particular case where r` is the independent proposal
f`(x` | x−`) the acceptance probability becomes identically
one, and we are back at a standard—ideal—Gibbs
sub-step!
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Hybrid MCMC samplers (cont.)

We may now consider the generalized Gibbs scheme with
one iteration (sweep) given by

X 1
k

X 2
k

X 3
k
...

X m
k


q1−→


X 1

k+1
X 2

k
X 3

k
...

X m
k


q2−→


X 1

k+1
X 2

k+1
X 3

k
...

X m
k


q3−→ · · · qm−→


X 1

k+1
X 2

k+1
X 3

k+1
...

X m
k+1

 .

In order to show that one full iteration Xk → Xk+1 allows f
as a stationary distribution it is enough to show that each
sub-step allows f as a stationary distribution (see E4,
Problem 3).
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Hybrid MCMC samplers (cont.)

The `th sub-step follows the transition q`(x̃` | x`)δx−`(x̃−`).
This transition density allows indeed f as a stationary
distribution, as∫

f (x)q`(x̃` | x`)δx−`(x̃−`) dx

=

∫ [∫
f`(x` | x−`)q`(x̃` | x`) dx`

]
f (x−`)δx−`(x̃−`) dx−`

=

∫
f`(x̃` | x−`)f (x−`)δx−`(x̃−`) dx−`

=

∫
f (x̃`, x−`)δx−`(x̃−`) dx−`

= f (x̃).
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Part II

MC methods for statistical inference
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Statistical inference: data⇒ knowledge

”Inference is the problem of turning data into knowledge,
where knowledge often is expressed in terms of entities
that are not present in the data per se but are present in
models that one uses to interpret the data.”

Committee on the Analysis of Massive Data: Frontiers in
Massive Data Analysis. The National Academies Press,
Washington D.C., 2013, p.3.
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Overview

We will consider
some literature,
stochastic modeling,
frequentist vs. Bayesian statistics
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Alternative literature

MCMC:
Markov Chain Monte Carlo in Practice,
Gilks, Richardson & Spiegelhalter, 1996.
Monte Carlo Statistical Methods,
Robert & Casella, 2005.

Bayesian statistics:
The Bayesian Choice,
Robert, 2001.

Bootstrap (to be discussed on Friday and next week):
Bootstrap Methods and Their Application,
Davison & Hinkley, 1997.
An Introduction to the Bootstrap,
Efron & Tibshirani, 1994.
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Stochastic modeling: frequentist approach

In the frequentist approach to stochastic modeling, the
setup is as follows.
We observe data y .
The data y is assumed to be an observation of a (typically
multivariate) random variable Y with distribution P0.
A statistical model is a set P of probability distributions that
is assumed to contain P0.
The largest possible model would be

P = {all possible distributions P that could generate y}.

An inference problem refers to the problem of selecting a
distribution from P that fits the observed data y .

Johan Westerborn KTH Royal Institute of Technology
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Stochastic modeling: frequentist approach (cont.)

Commonly we restrict the set of distributions to a come
from a parametric family

P = {Pθ : θ ∈ Θ},

where Θ is called the parameter space.
For instance,

P = {all normal distributions with mean θ and variance 1}.

In this case, Θ = R and the true parameter θ0 is seen as
having an unknown but fixed value.
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Stochastic modeling: frequentist approach (cont’d)

An estimate of θ0 is formed using a function θ̂(y) of the
data. The function θ̂(y) is called estimator. The estimate
θ̂(y) (i.e. the value taken by the estimator) should be close
to θ0.
Since y is a random sample from P0, the estimate θ̂(y) is a
realization of the random variable θ̂(Y ).
A common estimator is the maximum likelihood estimator
(MLE), which is obtained as the parameter θ̂(y)
maximizing the maximum likelihood function

θ 7→ f (y | θ),

where y is the given observed data.
The point estimate is often equipped with a 95%
confidence interval.
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Stochastic modeling: Bayesian approach

In Bayesian inference, the setup is the following.
Our uncertainty concerning the parameters θ is modeled
by letting the parameters be random variables.
Thus, a Bayesian model is the joint distribution f (y , θ) of Y
and θ. By Bayes’s formula,

f (y , θ) = f (y | θ)f (θ).

f (y | θ) is the likelihood that describes how the data Y
behaves conditionally on the parameters θ.
f (θ) is called the prior distribution and summarizes our
prior belief about θ before observing Y .

Johan Westerborn KTH Royal Institute of Technology
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Stochastic modeling: Bayesian approach (cont.)

Since θ is viewed as a random variable, inference is based
on the posterior (or a posteriori) distribution f (θ | y), i.e.,
the distribution of the parameters given the observed data.
By Bayes’s Formula:

f (θ | y) =
f (y , θ)

f (y)
=

f (y | θ)f (θ)∫
f (y | θ′)f (θ′) dθ′

∝ f (y | θ)f (θ).
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Bayesian vs. frequentist statistics

Bayesian inference is done using the posterior f (θ | y).
Frequentist inference uses the likelihood f (y | θ).
A Bayesian makes statements about the relative evidence
for parameter values given a dataset.
A Frequentist compare the relative chance of datasets
given a parameter value.
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Example: methicillin-resistant Staphylococcus aureus

Suppose a hospital has around 200 beds occupied each
day and that we want to know the underlying risk that a
patient will be infected by MRSA (methicillin-resistant
Staphylococcus aureus).
Looking back at the first six months of the year, we count
y = 20 infections in 40,000 bed-days.
Let θ be the expected number of infections per 10,000
bed-days. A reasonable model is that y is an observation
of Y ∼ Po(4θ).
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Example: MRSA (cont.)

Frequentist approach:
MLE: θ̂(y) = y/4 = 20/4 = 5.
An approximate confidence interval based on a normal
approximation is given by

θ̂(y)± λα/2

√
θ̂(y)

4
= (2.81,7.19).

A hypothesis test of H0 : θ = 4 vs. H1 : θ > 4 can be
carried through using the direct method. This gives

P (get what we got or worse under H0‖H0 true)

= P(Y ≥ 20‖Y ∼ Po(16)) = 0.188.
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Example: MRSA (cont.)

Bayesian approach:
However, additional information about the underlying risk
may exist, such as previous years’ rates or rates in similar
hospitals. Suppose this additional information, on its own,
suggests plausible values of θ of around 10 per 10,000,
with 95% of the support for θ lying between 5 and 17.
This can be expressed through the prior

θ ∼ Γ(a,b), a = 10, b = 1.

The posterior distribution is now

f (θ | y) ∝ f (y | θ)f (θ) ∝ θy e−4θθa−1e−bθ ∝ θy+a−1e−θ(4+b).

⇒ θ | Y = y ∼ Γ(y + a,4 + b).

Johan Westerborn KTH Royal Institute of Technology
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Example: MRSA (cont.)

Thus, the posterior is θ | Y = y ∼ Γ(y + a,4 + b).
If we want a point estimate of θ, one may use Bayes’s
estimator

θ̂ = E(θ | Y = y) =

∫
θ′f (θ′ | y) dθ′ =

y + a
4 + b

=
20 + 10

4 + 1
= 6.

A credible or posterior probability interval can be found
using the quantiles of the posterior distribution.
A hypothesis test of H0 : θ = 4 vs. H1 : θ > 4 can be
carried through by computing P(θ ≥ 4 | Y = y) = 0.978,
which indicates strong evidence against H0.
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Next Week

Using MCMC for Bayesian computation.
Prior distributions.
Mixing of MCMC samplers.
This leads to HA2 which will cover Bayesian Inference
using MCMC and the Bootstrap method.
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