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Hybrid MCMC samplers

It is often very convenient to consider hybrids between
Gibbs and MH:

Divide the space into blocks and aim for Gibbs sampling.
If it is possible to sample directly from the conditional
distribution of a block, update according to Gibbs.
If it is not, just insert a local MH step instead!

The resulting chain satisfies still global balance and is thus
a valid MCMC sampler (referred to as the hybrid sampler
or Metropolis-within-Gibbs).
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Hybrid MCMC samplers (cont.)

More specifically, assume that q` is some Markov transition
density allowing f`(x` | x−`) (i.e., the conditional density of
the `th block) as a stationary distribution. The density q`
may depend on x−`.
For instance, q` may be an MH kernel for f`(x` | x−`) based
on some proposal density r`.
In the particular case where r` is the independent proposal
f`(x` | x−`) the acceptance probability becomes identically
one, and we are back at a standard—ideal—Gibbs
sub-step!
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Hybrid MCMC samplers (cont.)

We may now consider the generalized Gibbs scheme with
one iteration (sweep) given by
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In order to show that one full iteration Xk → Xk+1 allows f
as a stationary distribution it is enough to show that each
sub-step allows f as a stationary distribution (see E4,
Problem 3).
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Hybrid MCMC samplers (cont.)

The `th sub-step follows the transition q`(x̃` | x`)δx−`(x̃−`).
This transition density allows indeed f as a stationary
distribution, as∫

f (x)q`(x̃` | x`)δx−`(x̃−`) dx

=

∫ [∫
f`(x` | x−`)q`(x̃` | x`) dx`

]
f (x−`)δx−`(x̃−`) dx−`

=

∫
f`(x̃` | x−`)f (x−`)δx−`(x̃−`) dx−`

=

∫
f (x̃`, x−`)δx−`(x̃−`) dx−`

= f (x̃).
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Last time: the frequentist approach

Data y is viewed as an observation of a random variable Y
with distribution P0, which most often is assumed to be a
member of an exponential family

P = {Pθ; θ ∈ Θ}.

Estimates θ̂(y) are realizations of random variables.
The point estimate is often equipped with a confidence
bound on level, say, 95%.
Hypothesis testing is done by rejecting a hypothesis H0 if
P(data y‖H0) is small.
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Last time: the Bayesian approach

The uncertainty concerning θ is modeled by viewing θ as a
random variable, and inference is based completely on the
posterior distribution f (θ | y).
It is possible to incorporate prior information via the prior
distribution f (θ).
A 95% credible or posterior probability interval contains θ
with a probability of 95% given the observations.
Hypothesis tests are done by studying P(H0‖data y).
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Example: change point detection

We have measured the waiting times in a system and
suspect that the expected waiting time changed during the
monitoring period.
The observations (yi)

n
i=1 are assumed to follow exponential

distributions with parameter θ1 for i ∈ {1, . . . ,nb} and
parameter θ2 for i ∈ {nb + 1, . . . ,n}.
Further, we put a Gamma prior on θk , θk ∼ Γ(a,b), with
a = 40 and b = 4, and a uniform prior on nb
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Example: change point detection (cont.)

Thus, we have unknown parameters (θ1, θ2,nb) and data
Y = (y1, . . . , yn). The posterior becomes

f (nb, θ1, θ2 | y1, . . . , yn)

∝ f (θ1)f (θ2)f (nb)
n∏

i=1

f (yi | nb, θ1, θ2)

= θnb+a−1
1 exp

(
−θ1

(
b +

nb∑
i=1

yi

))

× θn−nb+a−1
2 exp

−θ2

b +
n∑

i=nb+1

yi

 .

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (13)



logga

Last Time MCMC for Bayesian computation Prior distributions Interlude: Mixing of MCMC samplers HA2

Example: change point detection (cont.)

This posterior is complicated . . .
However, the conditional distributions of θ1 and θ2 are
easily calculated according to

θ1 | nb, y1, . . . , yn ∼ Γ

(
nb + a,b +

nb∑
i=1

yi

)
,

θ2 | nb, y1, . . . , yn ∼ Γ

n − nb + a,b +
n∑

i=nb+1

yi

 .

The conditional distribution of nb is however more
complicated. Thus, we draw nb by inserting an MH step in
the Gibbs sampler, yielding a hybrid sampler.
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Example: change point detection (cont.)

The MH step is as follows.
Given nb, we propose a candidate n∗b uniformly on the
integers {nb − R, . . . ,nb, . . . ,nb + R}, for some R. This
forms a symmetric proposal on {1, . . . ,n}.
Thus, the acceptance probability for the MH step becomes

α(nb,n∗b )

= 1 ∧
θ

n∗
b

1 θ
−n∗

b
2 exp(−θ1

∑n∗
b

i=1 yi) exp(−θ2
∑n

i=n∗
b +1 yi)

θnb
1 θ
−nb
2 exp(−θ1

∑nb
i=1 yi) exp(−θ2

∑n
i=nb+1 yi)

.
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Example: change point detection (cont.)

Running this Gibbs sampler with R = 75 gives an
acceptance rate of 33%.
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Example: change point detection (cont.)

The resulting histograms of the parameters are as follows:
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Selecting priors

Recall that the posterior is computed via Bayes’s formula

f (θ | y) =
f (y | θ)f (θ)∫

f (y | θ′)f (θ′) dθ′
∝ f (y | θ)f (θ).

In Bayesian modeling there is always an interplay between
the prior and the data:

The posterior is drawn away from the data towards the
prior. How far depends on the strength of the prior.
However, enough data will most likely overwhelm the prior.

Two common prior-types are
conjugate priors.
improper (flat) priors.
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Conjugate priors

Conjugate priors
are such that the prior and the posterior belong to the same
distribution class for a given likelihood.
allow for straightforward theoretical calculations and Gibbs
sampling.
are sometimes criticized since we select priors for ease of
calculation.
may be hard to derive for complex models.
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Conjugate priors

Conjugate priors for θ for some common likelihoods. All
parameters except θ are assumed fixed and known and
data (yi)

n
i=1 are assumed to be conditionally independent

given θ.

Likelihood Prior Posterior
Bin(n, θ) Beta(α, β) Beta(α + y , β + n − y)
Ge(θ) Beta(α, β) Beta(α + n, β +

∑n
i=1 yi − n)

NegBin(n, θ) Beta(α, β) Beta(α + n, β + y − n)
Γ(k , θ) Γ(α, β) Γ(α + nk , β +

∑n
i=1 yi)

Po(θ) Γ(α, β) Γ(α +
∑n

i=1 yi , β + n)

N(µ, θ−1) Γ(α, β) Γ
(
α + n

2 , β + 1
2
∑n

i=1(yi − µ)2)
N(θ, σ2) N(m, s2) N

(
m/s2+nȳ/σ2

1/s2+n/σ2 ,
1

1/s2+n/σ2

)
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Improper priors

Improper, or flat, priors are used when prior information is
deficient.
For instance, if θ ∈ R, f (θ) ∝ 1 is an improper prior since it
is not integrable; however, we allow this as long as the
posterior is a well-defined density.
For instance, let y be an observation from Y ∼ N(θ,1),
where θ ∈ R. Since we do not have any prior information
concerning θ we put f (θ) ∝ 1 for all θ ∈ R. After this we
proceed, formally, like

f (θ | y) =
f (y | θ)f (θ)∫

f (y | θ′)f (θ′) dθ′
=

N(y ; θ,1) · 1∫
N(y ; θ′,1) · 1 dθ′

symm.
=

N(θ; y ,1) · 1∫
N(θ′; y ,1) · 1 dθ′

= N(θ; y ,1).
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Mixing of MCMC samplers

We recall that the asymptotic variance of τMCMC
N is given by

σ2 = r(0)+2
∞∑
`=1

r(`) with r(`) = lim
n→∞

C(φ(Xn+`), φ(Xn)).

Consequently, in order to obtain a low variance of τMCMC
N ,

the covariance function r(`) should decrease rapidly with `.
For geometrically ergodic chains r(`) tends to zero
geometrically fast.
The speed of which r(`) tends to zero is typically described
using the term “mixing”.

Strong mixing = fast forgetting = rapidly decreasing r(`).
Bad mixing = slow forgetting = slowly decreasing r(`).
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Why is good mixing important?

Bad choices of proposal distributions may lead to bad
mixing, which causes problems for the MCMC algorithm in
the sense that it may

need a very long time to converge.
exhibit high autocorrelation, implying high variance and the
need of a large MC sample size to ensure good estimates.
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Optimal mixing for the MH algorithm

When designing a random walk proposal, X ∗k = Xk + ε with
ε ∼ N(0, sΣ), two things effect the acceptance rate:

1 how well Σ captures the dependence structure of the target
distribution,

2 how appropriate the scaling s > 0 is.

One way to obtain a covariance matrix Σ that captures well
the dependence structure of the target distribution f (x) is
to let

Σij =
2.38

d

−∂2 log f (x)

∂xi∂xj

∣∣∣∣∣
x=xmode

−1

.

Rule of thumb: a good acceptance rate is around 30%
(23%–44%)!
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Mixing—Random walk proposal

Using symmetric normal proposal with three different
values for s (small, medium, large, respectively) yields
typically trajectories of the following form:
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Mixing—Random walk proposal

Correlation function for the three chains:
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HA2: MCMC and bootstrap

HA2 comprises
one problem aiming at detecting change points in cole mine
data using hybrid MCMC samplers and
one problem aiming at estimating the 100-year north
Atlantic wave using parametric bootstrap (to be discussed).

Submission:
A written report in PDF format.
An email containing all your m-files. With a file that runs
your analysis.
Follow the same instructions as for HA1.
Deadline: Thursday 18 May, 13:00:00.
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