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Last time: variance reduction

Last time we discussed how to reduce the variance of the
standard MC sampler by introducing some auxiliary
variables correlating with X . More specifically, we used

1 a control variate Y such that E(Y ) = m is known and
considered

Z = φ(X ) + α(Y −m),

where α was tuned optimally to α∗ = −C(φ(X ),Y )/V(Y ).
2 antithetic variables V and V ′ such that E(V ) = E(V ′) = τ

and C(V ,V ′) < 0 and considered

W =
V + V ′

2
.
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Last time: antithetic sampling

The following theorem turned out to be useful when
constructing antithetic variables.

Theorem
Let U be a random variable and let ϕ : R→ R be a monotone
function. Moreover, assume that there exists a non-increasing
transform T : R→ R such that U d.

= T (U). Then V = ϕ(U) and
V ′ = ϕ(T (U)) are identically distributed and

C(V ,V ′) = C(ϕ(U), ϕ(T (U))) ≤ 0.

Johan Westerborn KTH Royal Institute of Technology
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Last time: antithetic sampling (cont.)

As any distribution function F , and, consequently, its
inverse F−1 is non-decreasing, the previous result can be
naturally applied as follows.

Letting


U ∼ U(0,1)
T (u) = 1− u
ϕ = F−1

yields for

{
X = F−1(U)

X ′ = F−1(1− U)
,

X d.
= X ′ (with distribution function F ) and C(X ,X ′) ≤ 0.

This yields a rather generic way of generating negatively
correlated random variables in the case where F−1 is
known.

Johan Westerborn KTH Royal Institute of Technology
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Last time: antithetic sampling

As an example we estimated τ =
∫ π/2

0 exp(cos2(x))dx

with


X ∼ U(0, π/2)
V = π

2 exp(cos2(X )),

V ′ = π
2 exp(sin2(X )),

W = V+V ′

2 .
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Control variates reconsidered

A problem with the control variate approach is that the
optimal α, i.e.,

α∗ = −
C(φ(X ),Y )

V(Y )
,

is generally not known explicitly.
Thus, it was suggested to

1 draw (X i)N
i=1,

2 draw (Y i)N
i=1,

3 estimate, via MC, α∗ using the drawn samples, and
4 use this to construct optimally (Z i)N

i=1.

This yields a so-called batch estimator of α∗. However, this
procedure is, computationally, somewhat involved.

Johan Westerborn KTH Royal Institute of Technology
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An online approach to optimal control variates

The estimators

CN
def
=

1
N

N∑
i=1

φ(X i)(Y i −m) and VN
def
=

1
N

N∑
i=1

(Y i −m)2

of C(φ(X ),Y ) and V(φ(X )), respectively, can however be
implemented recursively according to

C`+1 =
`

`+ 1
C` +

1
`+ 1

φ(X `+1)(Y `+1 −m)

V`+1 =
`

`+ 1
V` +

1
`+ 1

(Y `+1 −m)2

with C0 = V0 = 0.

Johan Westerborn KTH Royal Institute of Technology
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An online approach to optimal control variates (cont.)

Inspired by this we set for ` = 0,1,2, . . . ,N − 1,

Z`+1 = φ(X `+1) + α`(Y `+1 −m),

τ`+1 =
`

`+ 1
τ` +

1
`+ 1

Z`+1,
(∗)

where α0
def
= 1, α`

def
= −C`/V` for ` > 0, and τ0

def
= 0 yielding

an online estimator.
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An online approach to optimal control variates (cont.)

One may then establish the following (using martingale
convergence results).

Theorem
Let τN be obtained through (∗). Then, as N →∞,

(i) τN → τ (a.s.),

(ii)
√

N(τN − τ)
d.−→ N(0, σ2

∗),

where σ2
∗

def
= V(φ(X )){1− ρ(φ(X ),Y )2} is the optimal variance.
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Example: the tricky integral again

Last time we estimated

τ =

∫ π/2

0
exp(cos2(x))dx =

∫ π/2

0

π

2
exp(cos2(x))︸ ︷︷ ︸

=φ(x)

2
π︸︷︷︸

=f (x)

dx

= Ef (φ(X ))

using
Z = φ(X ) + α∗(Y −m),

where Y = cos2(X ) is a control variate with m = 1/2.
However, the optimal coefficient α∗ is not known explicitly.
We implement the online learning strategy!

Johan Westerborn KTH Royal Institute of Technology
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Example: the tricky integral again, MATLAB code
cos2 = @(x) cos(x).^2;
phi = @(x) (pi/2)*exp(cos2(x));
m = 1/2;
X = (pi/2)*rand;
Y = cos2(X);
c = phi(X)*(Y - m);
v = (Y - m)^2;
tau_CV = phi(X) + (Y - m);
alpha = - c/v;
for k = 2:N,

X = (pi/2)*rand;
Y = cos2(X);
Z = phi(X) + alpha*(Y - m);
tau_CV = (k - 1)*tau_CV/k + Z/k;
c = (k - 1)*c/k + phi(X)*(Y - m)/k;
v = (k - 1)*v/k + (Y - m)^2/k;
alpha = - c/v;

end
Johan Westerborn KTH Royal Institute of Technology
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Example: the tricky integral again
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Sequential MC problems

We will now (and for the coming two lectures) extend the
principal aim to the problem of estimating sequentially
sequences (τn)n≥0 of expectations

τn = Efn(φ(X0:n)) =

∫
Xn

φ(x0:n)fn(x0:n)dx0:n

over spaces Xn of increasing dimension.
The densities (fn)n≥0 are supposed to be known up to
normalizing constants only; i.e., for every n ≥ 0,

f (x0:n) =
zn(x0:n)

cn
,

where cn is an unknown constant and zn is a known
positive function on Xn.

Johan Westerborn KTH Royal Institute of Technology
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Prelude: three slides on general Markov chains

Prelude: Markov chains

A Markov chain on X ⊆ Rd is a family of random variables
(= stochastic process) (Xk )k≥0 taking values in X such that

P(Xk+1 ∈ A | X0,X1, . . . ,Xk ) = P(Xk+1 ∈ A | Xk )

for all A ⊆ X. We call the chain time homogeneous if the
conditional distribution of Xk+1 given Xk does not depend
on k .
The distribution of Xk+1 given Xk = x determines
completely the dynamics of the process, and the density q
of this distribution is called the transition density of (Xk ).
Consequently,

P(Xk+1 ∈ A | Xk = xk ) =

∫
A

q(xk+1 | xk )dxk+1.

Johan Westerborn KTH Royal Institute of Technology
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Prelude: three slides on general Markov chains

Markov chains (cont.)

Let fn(x0, x1, . . . , xn) be the joint density of X0,X1, . . . ,Xn.

Theorem
Let (Xk ) be Markov with initial distribution χ and transition
density q. Then

(i) fn(x0, x1, . . . , xn) = χ(x0)
n−1∏
k=0

q(xk+1 | xk ) (n ≥ 0),

(ii) fn(xn | x0) =

∫
· · ·
∫ n−1∏

k=0

q(xk+1 | xk )dx1 · · · dxn−1 (n > 0).

Equation (ii) is referred to as the Chapman-Kolmogorov
equation.

Johan Westerborn KTH Royal Institute of Technology
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Prelude: three slides on general Markov chains

Example: The AR(1) process

As a first example we consider a first order autoregressive
process (AR(1)) in R. Set

X0 = 0, Xk+1 = αXk + εk+1,

where α is a constant and the variables (εk )k≥1 of the
noise sequence are i.i.d. with density function f .
In this case,

P(Xk+1 ≤ xk+1 | Xk = xk ) = P(αXk+εk+1 ≤ xk+1 | Xk = xk )

= P(εk+1 ≤ xk+1−αxk | Xk = xk ) = P(εk+1 ≤ xk+1−αxk ),

implying that

q(xk+1 | xk ) =
∂

∂xk+1
P(εk+1 ≤ xk+1−αxk ) = f (xk+1−αxk ).

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

General hidden Markov models (HMMs)

A hidden Markov model (HMM) comprises
1 a Markov chain (Xk )k≥0 with transition density q, i.e.

Xk+1 | Xk = xk ∼ q(xk+1 | xk ),

which is hidden away from us but partially observed through
2 an observation process (Yk )k≥0 such that conditionally on

the chain (Xk )k≥0,
(i) the Yk ’s are independent with
(ii) conditional distribution of each Yk depending on the

corresponding Xk only.

The density of the conditional distribution
Yk | (Xk )k≥0

d.
= Yk | Xk will be denoted by p(yk | xk ).

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

General HMMs (cont.)

Graphically:

"!
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# 
"!
# 

"!
# 
"!
# 
"!
# 

Yk−1 Yk Yk+1

Xk−1 Xk Xk+1- - - -

6 6 6

... ... (Markov chain)

(Observations)

Yk | Xk = xk ∼ p(yk | xk ) (Observation density)
Xk+1 | Xk = xk ∼ q(xk+1 | xk ) (Transition density)

X0 ∼ χ(x0) (Initial distribution)

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (24)



logga

Variance reduction revisited Sequential MC problems 4 Examples of SMC problems What’s next?

Example 1: estimation in general HMMs

A brief look at the S&P500 index

Figure: Weekly log-returns of S&P500 from January 2, 2003 to
September 28, 2012.

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

Example HMM: stochastic volatility

The following dynamical system is used in financial
economy (see e.g. Jacuquier et al., 1994). Let{

Xk+1 = αXk + σεk+1,

Yk = β exp
(

Xk
2

)
εk ,

where α ∈ (0,1), σ > 0, and β > 0 are constants and
(εk )k≥1 and (εk )k≥0 are sequences of i.i.d. standard
normal-distributed noise variables.

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

Example HMM: stochastic volatility

In this model,
the values of the observation process (Yk ) are observed
daily log-returns and
the hidden chain (Xk ) is the unobserved log-volatility
(modeled by a stationary AR(1) process).

The strength of the model is that it allows for volatility
clustering.

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

Example HMM: stochastic volatility (cont.)

A typical realization of the the model looks like follows
(here α = 0.975, σ = 0.16, and β = 0.63).

0 100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

Days

lo
g−

re
tu

rn
s

Log−volatility processLog−returns

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (28)



logga

Variance reduction revisited Sequential MC problems 4 Examples of SMC problems What’s next?

Example 1: estimation in general HMMs

Smoothing of hidden states

When operating on HMMs, one is most often interested in
the smoothing distribution fn(x0:n | y0:n), i.e. the conditional
distribution of a set X0:n of hidden states given Y0:n = y0:n.

Theorem (smoothing distribution)

fn(x0:n | y0:n) =
χ(x0)p(y0 | x0)

∏n
k=1 p(yk | xk )q(xk | xk−1)

Ln(y0:n)
,

where Ln(y0:n) is the likelihood function given by

Ln(y0:n) =

∫
χ(x0)p(y0 | x0)

n∏
k=1

p(yk | xk )q(xk | xk−1)dx0:n.

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

Estimation of smoothed expectations

Being a high-dimensional (say n ≈ 10,000) integral over
complicated integrands, Ln(y0:n) is in general unknown.
However by writing

τn = E(φ(X0:n) | Y0:n = y0:n) =

∫
φ(x0:n)fn(x0:n | y0:n)dx0:n

=

∫
φ(x0:n)

zn(x0:n)

cn
dx0:n,

with{
zn(x0:n) = χ(x0)p(y0 | x0)

∏n
k=1 p(yk | xk )q(xk | xk−1),

cn = Ln(y0:n),

we may cast the problem of computing τn into the
framework of SMC problems.

Johan Westerborn KTH Royal Institute of Technology
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Example 1: estimation in general HMMs

Estimation of smoothed expectations

In particular we would like to update the approximation
sequentially in n, i.e. online, as new data (Yk ) become
available.
Of particular interest is the filter distribution, which is the
marginal of the smoothing distribution with respect to the
current state Xn:

τn = E(φ(Xn) | Y0:n = y0:n) =

∫
φ(xn)fn(x0:n | y0:n)dx0:n.

Computing the smoothing/filtering distributions is essential
when calibrating the model parameters (inference) as well
as using the model for prediction.

Johan Westerborn KTH Royal Institute of Technology
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marginal of the smoothing distribution with respect to the
current state Xn:

τn = E(φ(Xn) | Y0:n = y0:n) =

∫
φ(xn)fn(x0:n | y0:n)dx0:n.

Computing the smoothing/filtering distributions is essential
when calibrating the model parameters (inference) as well
as using the model for prediction.

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (31)



logga

Variance reduction revisited Sequential MC problems 4 Examples of SMC problems What’s next?

Example 2: simulation of extreme events

Outline

1 Variance reduction revisited

2 Sequential MC problems

3 4 Examples of SMC problems
Prelude: three slides on general Markov chains
Example 1: estimation in general HMMs
Example 2: simulation of extreme events
Example 3: global maximization
Example 4: estimation of SAWs

4 What’s next?

Johan Westerborn KTH Royal Institute of Technology

Computer Intensive Methods (32)



logga

Variance reduction revisited Sequential MC problems 4 Examples of SMC problems What’s next?

Example 2: simulation of extreme events

Simulation of rare events for Markov chains

Let (Xk ) be a Markov chain on X = R and consider some
rectangle A = A0 × A1 × · · ·An ⊆ Rn, where A` = (a`,b`).
Here A can be a possibly rare event.
Here the unknown probability cn = P(X0:n ∈ A) of the rare
event A is often the quantity of interest.
Let fn|A be the conditional density of the states
X0:n = (X0,X2, . . . ,Xn) given X0:n ∈ A and consider

τn = Efn(φ(X0:n) | X0:n ∈ A) = Efn|A(φ(X0:n))

=

∫
A
φ(x0:n)

f (x0:n)

P(X0:n ∈ A)︸ ︷︷ ︸
=fn|A(x0:n)=zn(x0:n)/cn

dx0:n.
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Example 2: simulation of extreme events

Simulation of rare events for Markov chains (cont.)

As
cn = P(X0:n ∈ A) =

∫
1A(x0:n)f (x0:n)dx0:n

a first—naive—approach could of course be to use
standard MC and simply

1 simulate the Markov chain N times, yielding (X i
0:n)

N
i=1,

2 count the number NA of trajectories that fall into A, and
3 estimate cn using the standard MC estimator

cN
n =

1
N

N∑
i=1

1A(X i
0:n) =

NA

N
.

Problem: if cn = 10−9 we may expect to produce a billion
draws before obtaining a single draw belonging to A /.
SMC methods save the day!
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Generalized SMC problems

Interestingly, it is generally not required that the spaces
(Xn) are of increasing dimension.
Indeed, a sequence of arbitrary densities f ∗n (xn), defined
on arbitrary spaces En and known up to normalizing
constants, can typically be extended to a sequence of
densities

fn(x1:n) = f ∗n (xn)
n−1∏
k=1

rk (xk | xk+1), n > 0,

defined on the augmented spaces Xn = E1 × · · · × En via
auxiliary Markov transition densities (rk ).
In this construction, f ∗n (xn) is the marginal of fn(x1:n) w.r.t.
xn.
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Example: global maximisation

When finding the global maximum of f (x) over some space
E, consider the Boltzmann distributions

f ∗n (xn) =
1
cn

ef (xn)/Tn

on En = E, where the ‘temperatures’ (Tn) vanish with n.
Optimization of f (x) can now be performed by sampling
from the sequence (f ∗n (xn)).
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Example 4: estimation of SAWs

Self-avoiding walks (SAWs)

Let Sn
def
= {x0:n ∈ (Z2)n : x0 = 0, |xk+1 − xk | = 1, xk 6=

x`,∀0 ≤ ` < k ≤ n} be the set of n-step self-avoiding walks
in Z2.
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A self−avoiding walk of length 50
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Example 4: estimation of SAWs

Application of SAWs

In addition, let

cn = |Sn| = The number of possible SAWs of length n.

SAWs are used in, e.g.,
polymer science for describing long chain polymers, with
the self-avoidance condition modeling the excluded volume
effect.
statistical mechanics and the theory of critical phenomena
in equilibrium.

However, computing cn (and in analyzing how cn depends
on n) is known to be a very challenging (NP-hard)
combinatoric problem!
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Example 4: estimation of SAWs

An MC approach to SAWs

Diabolic trick: let fn(x0:n) be the uniform distribution on Sn:

fn(x0:n) =
1
cn

1Sn(x0:n)︸ ︷︷ ︸
=z(x0:n)

, x0:n ∈ (Z2)n.

We may now cast the problem of computing the number cn
(= the normalizing constant of fn) into the framework of
SMC problems.
In addition, solving this problem for
n = 1,2,3, . . . ,508,509, . . . calls for sequential
implementation of IS.
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Next week

The coming two lectures will be devoted completely to
SMC methods.
The last of these two lectures launches HA1.
Next week, E2 deals with

asymptotic properties of importance sampling estimators
and
antithetic sampling.
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