Sequential MC problems

4 Examples of SMC problems

What's next?

Computer Intensive Methods in Mathematical Statistics

Johan Westerborn

Department of mathematics KTH Royal Institute of Technology johawes@kth.se

Lecture 5 Sequential Monte Carlo methods I 31 March 2017

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (1

Plan of today's lecture

- 1 Variance reduction revisited
- 2 Sequential MC problems
- 3 4 Examples of SMC problems
 - Prelude: three slides on general Markov chains
 - Example 1: estimation in general HMMs
 - Example 2: simulation of extreme events
 - Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Johan Westerborn

Outline

1 Variance reduction revisited

- 2 Sequential MC problems
- 3 4 Examples of SMC problems
 - Prelude: three slides on general Markov chains
 - Example 1: estimation in general HMMs
 - Example 2: simulation of extreme events
 - Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Johan Westerborn

4 Examples of SMC problems

What's next?

Last time: variance reduction

- Last time we discussed how to reduce the variance of the standard MC sampler by introducing some auxiliary variables correlating with X. More specifically, we used
 - 1 a control variate Y such that $\mathbb{E}(Y) = m$ is known and considered

$$Z = \phi(X) + \alpha(Y - m),$$

where α was tuned optimally to $\alpha_* = -\mathbb{C}(\phi(X), Y)/\mathbb{V}(Y)$. antithetic variables V and V' such that $\mathbb{E}(V) = \mathbb{E}(V') = \tau$ and $\mathbb{C}(V, V') < 0$ and considered

$$W=\frac{V+V'}{2}.$$

KTH Royal Institute of Technology

Computer Intensive Methods (4)

4 Examples of SMC problems

Last time: antithetic sampling

The following theorem turned out to be useful when constructing antithetic variables.

Theorem

Let U be a random variable and let $\varphi : \mathbb{R} \to \mathbb{R}$ be a monotone function. Moreover, assume that there exists a non-increasing transform $T : \mathbb{R} \to \mathbb{R}$ such that $U \stackrel{d}{=} T(U)$. Then $V = \varphi(U)$ and $V' = \varphi(T(U))$ are identically distributed and

$$\mathbb{C}(V, V') = \mathbb{C}(\varphi(U), \varphi(T(U))) \leq 0.$$

《 口 》 《 伊 》 《 문 》 《 문 》 문 》 문 · · · · 오 (KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (5)

What's next?

Last time: antithetic sampling (cont.)

As any distribution function *F*, and, consequently, its inverse *F*⁻¹ is non-decreasing, the previous result can be naturally applied as follows.

• Letting
$$\begin{cases} U \sim U(0,1) \\ T(u) = 1 - u \\ \varphi = F^{-1} \end{cases}$$
 yields for
$$\begin{cases} X = F^{-1}(U) \\ X' = F^{-1}(1 - U) \end{cases}$$

 $X \stackrel{\text{d.}}{=} X'$ (with distribution function *F*) and $\mathbb{C}(X, X') \leq 0$.

This yields a rather generic way of generating negatively correlated random variables in the case where F⁻¹ is known.

What's next?

Last time: antithetic sampling (cont.)

As any distribution function *F*, and, consequently, its inverse *F*⁻¹ is non-decreasing, the previous result can be naturally applied as follows.

• Letting
$$\begin{cases} U \sim U(0,1) \\ T(u) = 1 - u \\ \varphi = F^{-1} \end{cases}$$
 yields for
$$\begin{cases} X = F^{-1}(U) \\ X' = F^{-1}(1-U) \end{cases}$$

 $X \stackrel{d.}{=} X'$ (with distribution function F) and $\mathbb{C}(X, X') \leq 0$.

This yields a rather generic way of generating negatively correlated random variables in the case where F⁻¹ is known.

What's next?

Last time: antithetic sampling (cont.)

As any distribution function *F*, and, consequently, its inverse *F*⁻¹ is non-decreasing, the previous result can be naturally applied as follows.

• Letting
$$\begin{cases} U \sim U(0,1) \\ T(u) = 1 - u \\ \varphi = F^{-1} \end{cases}$$
 yields for
$$\begin{cases} X = F^{-1}(U) \\ X' = F^{-1}(1-U) \end{cases}$$

 $X \stackrel{d.}{=} X'$ (with distribution function F) and $\mathbb{C}(X, X') \leq 0$.

This yields a rather generic way of generating negatively correlated random variables in the case where F⁻¹ is known.

Sequential MC problems

4 Examples of SMC problems

What's next?

Last time: antithetic sampling

As an example we estimated
$$\tau = \int_0^{\pi/2} \exp(\cos^2(x)) dx$$

with
$$\begin{cases} X \sim U(0, \pi/2) \\ V = \frac{\pi}{2} \exp(\cos^2(X)), \\ V' = \frac{\pi}{2} \exp(\sin^2(X)), \\ W = \frac{V+V'}{2}. \end{cases}$$
with antithetic sampling

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (7)

KTH Royal Institute of Technology

Control variates reconsidered

A problem with the control variate approach is that the optimal α , i.e.,

$$\alpha_* = -\frac{\mathbb{C}(\phi(X), Y)}{\mathbb{V}(Y)},$$

is generally not known explicitly.

- Thus, it was suggested to
 - 1 draw $(X^i)_{i=1}^N$, 2 draw $(Y^i)_{i=1}^N$,

 - 3 estimate, via MC, α_* using the drawn samples, and
 - 4 use this to construct optimally $(Z^i)_{i=1}^N$.

This yields a so-called batch estimator of α_* . However, this procedure is, computationally, somewhat involved.

An online approach to optimal control variates

The estimators

$$C_N \stackrel{\text{\tiny def}}{=} rac{1}{N} \sum_{i=1}^N \phi(X^i)(Y^i - m) \quad ext{and} \quad V_N \stackrel{\text{\tiny def}}{=} rac{1}{N} \sum_{i=1}^N (Y^i - m)^2$$

of $\mathbb{C}(\phi(X), Y)$ and $\mathbb{V}(\phi(X))$, respectively, can however be implemented recursively according to

$$C_{\ell+1} = \frac{\ell}{\ell+1}C_{\ell} + \frac{1}{\ell+1}\phi(X^{\ell+1})(Y^{\ell+1} - m)$$
$$V_{\ell+1} = \frac{\ell}{\ell+1}V_{\ell} + \frac{1}{\ell+1}(Y^{\ell+1} - m)^2$$

with
$$C_0 = V_0 = 0$$
.

Johan Westerborn

Computer Intensive Methods (9)

An online approach to optimal control variates (cont.)

Inspired by this we set for $\ell = 0, 1, 2, \dots, N-1$,

$$Z_{\ell+1} = \phi(X^{\ell+1}) + \alpha_{\ell}(Y^{\ell+1} - m),$$

$$\tau_{\ell+1} = \frac{\ell}{\ell+1}\tau_{\ell} + \frac{1}{\ell+1}Z_{\ell+1},$$
(*)

where $\alpha_0 \stackrel{\text{def}}{=} 1$, $\alpha_\ell \stackrel{\text{def}}{=} -C_\ell / V_\ell$ for $\ell > 0$, and $\tau_0 \stackrel{\text{def}}{=} 0$ yielding an online estimator.

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (10)

An online approach to optimal control variates (cont.)

One may then establish the following (using martingale convergence results).

Theorem

Let τ_N be obtained through (*). Then, as $N \to \infty$,

(i)
$$\tau_N \rightarrow \tau$$
 (a.s.),

(ii)
$$\sqrt{N}(\tau_N - \tau) \stackrel{d.}{\longrightarrow} N(0, \sigma_*^2)$$
,

where $\sigma_*^2 \stackrel{\text{\tiny def}}{=} \mathbb{V}(\phi(X)) \{1 - \rho(\phi(X), Y)^2\}$ is the optimal variance.

Johan Westerborn

Computer Intensive Methods (11

KTH Royal Institute of Technology

Example: the tricky integral again

Last time we estimated

$$\tau = \int_0^{\pi/2} \exp(\cos^2(x)) \, dx = \int_0^{\pi/2} \underbrace{\frac{\pi}{2} \exp(\cos^2(x))}_{=\phi(x)} \underbrace{\frac{2}{\pi}}_{=f(x)} \, dx$$
$$= \mathbb{E}_f(\phi(X))$$

using

$$Z = \phi(X) + \alpha^*(Y - m),$$

where $Y = \cos^2(X)$ is a control variate with m = 1/2.

However, the optimal coefficient α* is not known explicitly. We implement the online learning strategy!

Johan Westerborn

Computer Intensive Methods (12)

KTH Royal Institute of Technology

Example: the tricky integral again, MATLAB code

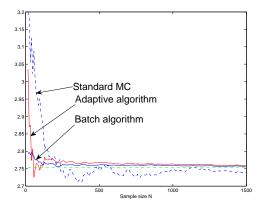
```
\cos 2 = \mathcal{Q}(\mathbf{x}) \cos(\mathbf{x}) \cdot 2;
phi = Q(x) (pi/2) * exp(cos2(x));
m = 1/2:
X = (pi/2) * rand;
Y = cos2(X):
c = phi(X) * (Y - m);
v = (Y - m)^{2};
tau_CV = phi(X) + (Y - m);
alpha = - c/v;
for k = 2:N.
    X = (pi/2) * rand;
    Y = cos2(X);
     Z = phi(X) + alpha * (Y - m);
    tau_CV = (k - 1) * tau_CV/k + Z/k;
     c = (k - 1) * c/k + phi(X) * (Y - m)/k;
     v = (k - 1) * v/k + (Y - m)^{2/k};
     alpha = - c/v;
end
```

Sequential MC problems

4 Examples of SMC problems

What's next?

Example: the tricky integral again



KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (14)

Sequential MC problems

4 Examples of SMC problems

Outline

1 Variance reduction revisited

2 Sequential MC problems

3 4 Examples of SMC problems

- Prelude: three slides on general Markov chains
- Example 1: estimation in general HMMs
- Example 2: simulation of extreme events
- Example 3: global maximization
- Example 4: estimation of SAWs

4 What's next?

Johan Westerborn

Sequential MC problems

We will now (and for the coming two lectures) extend the principal aim to the problem of estimating sequentially sequences (τ_n)_{n≥0} of expectations

$$\tau_n = \mathbb{E}_{f_n}(\phi(X_{0:n})) = \int_{X_n} \phi(x_{0:n}) f_n(x_{0:n}) \, dx_{0:n}$$

over spaces X_n of increasing dimension.

The densities $(f_n)_{n\geq 0}$ are supposed to be known up to normalizing constants only; i.e., for every $n \geq 0$,

$$f(x_{0:n})=\frac{Z_n(x_{0:n})}{c_n},$$

where c_n is an unknown constant and z_n is a known positive function on X_n .

Johan Westerborn

Computer Intensive Methods (16)

Sequential MC problems

We will now (and for the coming two lectures) extend the principal aim to the problem of estimating sequentially sequences (τ_n)_{n≥0} of expectations

$$\tau_n = \mathbb{E}_{f_n}(\phi(X_{0:n})) = \int_{X_n} \phi(x_{0:n}) f_n(x_{0:n}) \, dx_{0:n}$$

over spaces X_n of increasing dimension.

■ The densities (f_n)_{n≥0} are supposed to be known up to normalizing constants only; i.e., for every n ≥ 0,

$$f(x_{0:n})=\frac{z_n(x_{0:n})}{c_n},$$

where c_n is an unknown constant and z_n is a known positive function on X_n .

Johan Westerborn

Computer Intensive Methods (16)

Outline

1 Variance reduction revisited

2 Sequential MC problems

3 4 Examples of SMC problems

- Prelude: three slides on general Markov chains
- Example 1: estimation in general HMMs
- Example 2: simulation of extreme events
- Example 3: global maximization
- Example 4: estimation of SAWs

4 What's next?

Sequential MC problems

4 Examples of SMC problems

What's next?

Prelude: three slides on general Markov chains

Outline

1 Variance reduction revisited

- 2 Sequential MC problems
- 3 4 Examples of SMC problems
 - Prelude: three slides on general Markov chains
 - Example 1: estimation in general HMMs
 - Example 2: simulation of extreme events
 - Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Sequential MC problems

4 Examples of SMC problems

Image: A matrix

What's next?

Prelude: three slides on general Markov chains

Prelude: Markov chains

A Markov chain on $X \subseteq \mathbb{R}^d$ is a family of random variables (= stochastic process) $(X_k)_{k\geq 0}$ taking values in X such that

$$\mathbb{P}(X_{k+1} \in \mathsf{A} \mid X_0, X_1, \dots, X_k) = \mathbb{P}(X_{k+1} \in \mathsf{A} \mid X_k)$$

for all $A \subseteq X$. We call the chain time homogeneous if the conditional distribution of X_{k+1} given X_k does not depend on k.

The distribution of X_{k+1} given X_k = x determines completely the dynamics of the process, and the density q of this distribution is called the transition density of (X_k). Consequently,

$$\mathbb{P}(X_{k+1} \in \mathsf{A} \mid X_k = x_k) = \int_{\mathsf{A}} q(x_{k+1} \mid x_k) \, dx_{k+1}.$$

Sequential MC problems

4 Examples of SMC problems

What's next?

Prelude: three slides on general Markov chains

Prelude: Markov chains

A Markov chain on $X \subseteq \mathbb{R}^d$ is a family of random variables (= stochastic process) $(X_k)_{k\geq 0}$ taking values in X such that

$$\mathbb{P}(X_{k+1} \in \mathsf{A} \mid X_0, X_1, \dots, X_k) = \mathbb{P}(X_{k+1} \in \mathsf{A} \mid X_k)$$

for all $A \subseteq X$. We call the chain time homogeneous if the conditional distribution of X_{k+1} given X_k does not depend on k.

The distribution of X_{k+1} given X_k = x determines completely the dynamics of the process, and the density q of this distribution is called the transition density of (X_k). Consequently,

$$\mathbb{P}(X_{k+1} \in \mathsf{A} \mid X_k = x_k) = \int_\mathsf{A} q(x_{k+1} \mid x_k) \, dx_{k+1}.$$

Sequential MC problems

4 Examples of SMC problems

What's next?

Prelude: three slides on general Markov chains

Markov chains (cont.)

Let $f_n(x_0, x_1, \ldots, x_n)$ be the joint density of X_0, X_1, \ldots, X_n .

Theorem

Let (X_k) be Markov with initial distribution χ and transition density q. Then

(i)
$$f_n(x_0, x_1, \ldots, x_n) = \chi(x_0) \prod_{k=0}^{n-1} q(x_{k+1} \mid x_k) \quad (n \ge 0),$$

(ii)
$$f_n(x_n \mid x_0) = \int \cdots \int \prod_{k=0}^{n-1} q(x_{k+1} \mid x_k) dx_1 \cdots dx_{n-1} \quad (n > 0).$$

Equation (ii) is referred to as the Chapman-Kolmogorov equation.

Johan Westerborn

Computer Intensive Methods (20)

KTH Royal Institute of Technology

Sequential MC problem

4 Examples of SMC problems

What's next?

Prelude: three slides on general Markov chains

Example: The AR(1) process

As a first example we consider a first order autoregressive process (AR(1)) in ℝ. Set

$$X_0 = 0, \quad X_{k+1} = \alpha X_k + \epsilon_{k+1},$$

where α is a constant and the variables (ε_k)_{k≥1} of the noise sequence are i.i.d. with density function *f*.
In this case.

 $\mathbb{P}(X_{k+1} \le x_{k+1} \mid X_k = x_k) = \mathbb{P}(\alpha X_k + \epsilon_{k+1} \le x_{k+1} \mid X_k = x_k) \\ = \mathbb{P}(\epsilon_{k+1} \le x_{k+1} - \alpha x_k \mid X_k = x_k) = \mathbb{P}(\epsilon_{k+1} \le x_{k+1} - \alpha x_k),$

implying that

$$q(x_{k+1} \mid x_k) = \frac{\partial}{\partial x_{k+1}} \mathbb{P}(\epsilon_{k+1} \le x_{k+1} - \alpha x_k) = f(x_{k+1} - \alpha x_k).$$

Johan Westerborn

KTH Royal Institute of Technology

Computer Intensive Methods (21)

Sequential MC problem

4 Examples of SMC problems

What's next?

Prelude: three slides on general Markov chains

Example: The AR(1) process

As a first example we consider a first order autoregressive process (AR(1)) in ℝ. Set

$$X_0 = 0, \quad X_{k+1} = \alpha X_k + \epsilon_{k+1},$$

where α is a constant and the variables (ε_k)_{k≥1} of the noise sequence are i.i.d. with density function *f*.
In this case,

$$\mathbb{P}(X_{k+1} \leq x_{k+1} \mid X_k = x_k) = \mathbb{P}(\alpha X_k + \epsilon_{k+1} \leq x_{k+1} \mid X_k = x_k)$$
$$= \mathbb{P}(\epsilon_{k+1} \leq x_{k+1} - \alpha x_k \mid X_k = x_k) = \mathbb{P}(\epsilon_{k+1} \leq x_{k+1} - \alpha x_k),$$

implying that

$$q(x_{k+1} \mid x_k) = \frac{\partial}{\partial x_{k+1}} \mathbb{P}(\epsilon_{k+1} \le x_{k+1} - \alpha x_k) = f(x_{k+1} - \alpha x_k).$$

Johan Westerborn

KTH Royal Institute of Technology

Computer Intensive Methods (21)

Sequential MC problems

4 Examples of SMC problems

Example 1: estimation in general HMMs

Outline

- 1 Variance reduction revisited
- 2 Sequential MC problems
- 3 4 Examples of SMC problems
 Prelude: three slides on general Markov chains
 Example 1: extination in general UNMA
 - Example 1: estimation in general HMMs
 - Example 2: simulation of extreme events
 - Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

General hidden Markov models (HMMs)

A hidden Markov model (HMM) comprises
 a Markov chain (X_k)_{k>0} with transition density q, i.e.

$$X_{k+1} \mid X_k = x_k \sim q(x_{k+1} \mid x_k),$$

which is hidden away from us but partially observed through an observation process $(Y_k)_{k\geq 0}$ such that conditionally on

the chain $(X_k)_{k\geq 0}$,

- (i) the Y_k 's are independent with
- (ii) conditional distribution of each Y_k depending on the corresponding X_k only.

The density of the conditional distribution $Y_k \mid (X_k)_{k \ge 0} \stackrel{\text{d.}}{=} Y_k \mid X_k$ will be denoted by $p(y_k \mid x_k)$.

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

General hidden Markov models (HMMs)

A hidden Markov model (HMM) comprises
 a Markov chain (X_k)_{k>0} with transition density q, i.e.

$$X_{k+1} \mid X_k = x_k \sim q(x_{k+1} \mid x_k),$$

which is hidden away from us but partially observed through

- 2 an observation process $(Y_k)_{k\geq 0}$ such that conditionally on the chain $(X_k)_{k\geq 0}$,
 - (i) the Y_k 's are independent with
 - (ii) conditional distribution of each Y_k depending on the corresponding X_k only.
- The density of the conditional distribution

 $Y_k \mid (X_k)_{k \ge 0} \stackrel{\text{d.}}{=} Y_k \mid X_k$ will be denoted by $p(y_k \mid x_k)$.

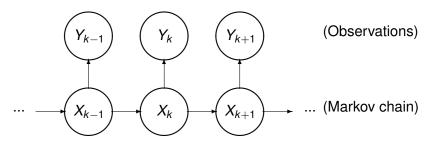
Sequential MC problems

4 Examples of SMC problems

Example 1: estimation in general HMMs

General HMMs (cont.)

Graphically:



$$Y_k \mid X_k = x_k \sim p(y_k \mid x_k)$$
(Observation density) $X_{k+1} \mid X_k = x_k \sim q(x_{k+1} \mid x_k)$ (Transition density) $X_0 \sim \chi(x_0)$ (Initial distribution)

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (24)

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

A brief look at the S&P500 index

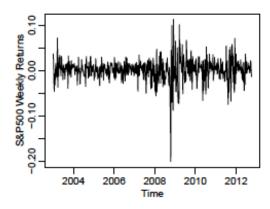


Figure: Weekly log-returns of S&P500 from January 2, 2003 to September 28, 2012.

Johan Westerborn

Computer Intensive Methods (25)

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

Example HMM: stochastic volatility

The following dynamical system is used in financial economy (see e.g. Jacuquier *et al.*, 1994). Let

$$\begin{cases} X_{k+1} = \alpha X_k + \sigma \epsilon_{k+1}, \\ Y_k = \beta \exp\left(\frac{X_k}{2}\right) \varepsilon_k, \end{cases}$$

where $\alpha \in (0, 1)$, $\sigma > 0$, and $\beta > 0$ are constants and $(\epsilon_k)_{k \ge 1}$ and $(\varepsilon_k)_{k \ge 0}$ are sequences of i.i.d. standard normal-distributed noise variables.

Johan Westerborn

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

Example HMM: stochastic volatility

In this model,

- the values of the observation process (Y_k) are observed daily log-returns and
- the hidden chain (X_k) is the unobserved log-volatility (modeled by a stationary AR(1) process).

The strength of the model is that it allows for volatility clustering.

Johan Westerborn

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

Example HMM: stochastic volatility

In this model,

- the values of the observation process (Y_k) are observed daily log-returns and
- the hidden chain (X_k) is the unobserved log-volatility (modeled by a stationary AR(1) process).
- The strength of the model is that it allows for volatility clustering.

KTH Royal Institute of Technology

Sequential MC problems

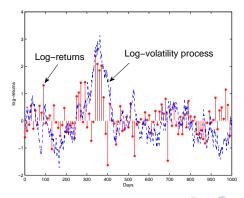
4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

Example HMM: stochastic volatility (cont.)

• A typical realization of the the model looks like follows (here $\alpha = 0.975$, $\sigma = 0.16$, and $\beta = 0.63$).



KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (28)

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 1: estimation in general HMMs

Smoothing of hidden states

When operating on HMMs, one is most often interested in the smoothing distribution f_n(x_{0:n} | y_{0:n}), i.e. the conditional distribution of a set X_{0:n} of hidden states given Y_{0:n} = y_{0:n}.

Theorem (smoothing distribution)

$$f_n(x_{0:n} \mid y_{0:n}) = \frac{\chi(x_0)p(y_0 \mid x_0)\prod_{k=1}^n p(y_k \mid x_k)q(x_k \mid x_{k-1})}{L_n(y_{0:n})},$$

where $L_n(y_{0:n})$ is the likelihood function given by

$$L_n(y_{0:n}) = \int \chi(x_0) p(y_0 \mid x_0) \prod_{k=1}^n p(y_k \mid x_k) q(x_k \mid x_{k-1}) \, dx_{0:n}.$$

Johan Westerborn

Sequential MC problems

What's next?

Example 1: estimation in general HMMs

Estimation of smoothed expectations

Being a high-dimensional (say *n* ≈ 10,000) integral over complicated integrands, *L_n(y_{0:n})* is in general unknown.
 However by writing

$$\begin{aligned} \tau_n &= \mathbb{E}(\phi(X_{0:n}) \mid Y_{0:n} = y_{0:n}) = \int \phi(x_{0:n}) f_n(x_{0:n} \mid y_{0:n}) \, dx_{0:n} \\ &= \int \phi(x_{0:n}) \frac{z_n(x_{0:n})}{c_n} \, dx_{0:n}, \end{aligned}$$

with $\begin{cases} z_n(x_{0:n}) = \chi(x_0)p(y_0 \mid x_0) \prod_{k=1}^n p(y_k \mid x_k)q(x_k \mid x_{k-1}), \\ c_n = L_n(y_{0:n}), \end{cases}$ we may cast the problem of computing τ_n into the framework of SMC problems.

Johan Westerborn

Computer Intensive Methods (30)

Sequential MC problems

What's next?

Example 1: estimation in general HMMs

Estimation of smoothed expectations

Being a high-dimensional (say *n* ≈ 10,000) integral over complicated integrands, *L_n(y_{0:n})* is in general unknown.
 However by writing

$$\begin{aligned} \tau_n &= \mathbb{E}(\phi(X_{0:n}) \mid Y_{0:n} = y_{0:n}) = \int \phi(x_{0:n}) f_n(x_{0:n} \mid y_{0:n}) \, dx_{0:n} \\ &= \int \phi(x_{0:n}) \frac{z_n(x_{0:n})}{c_n} \, dx_{0:n}, \end{aligned}$$

with $\begin{cases} z_n(x_{0:n}) = \chi(x_0)p(y_0 \mid x_0) \prod_{k=1}^n p(y_k \mid x_k)q(x_k \mid x_{k-1}), \\ c_n = L_n(y_{0:n}), \end{cases}$

we may cast the problem of computing τ_n into the framework of SMC problems.

What's next?

Example 1: estimation in general HMMs

Estimation of smoothed expectations

- In particular we would like to update the approximation sequentially in n, i.e. online, as new data (Y_k) become available.
- Of particular interest is the filter distribution, which is the marginal of the smoothing distribution with respect to the current state X_n:

$$\tau_n = \mathbb{E}(\phi(X_n) \mid Y_{0:n} = y_{0:n}) = \int \phi(x_n) f_n(x_{0:n} \mid y_{0:n}) \, dx_{0:n}.$$

Computing the smoothing/filtering distributions is essential when calibrating the model parameters (inference) as well as using the model for prediction.

What's next?

Example 1: estimation in general HMMs

Estimation of smoothed expectations

- In particular we would like to update the approximation sequentially in n, i.e. online, as new data (Y_k) become available.
- Of particular interest is the filter distribution, which is the marginal of the smoothing distribution with respect to the current state X_n:

$$\tau_n = \mathbb{E}(\phi(X_n) \mid Y_{0:n} = y_{0:n}) = \int \phi(x_n) f_n(x_{0:n} \mid y_{0:n}) \, dx_{0:n}.$$

Computing the smoothing/filtering distributions is essential when calibrating the model parameters (inference) as well as using the model for prediction.

Sequential MC problems

4 Examples of SMC problems

Example 2: simulation of extreme events

Outline

1 Variance reduction revisited

- 2 Sequential MC problems
- 3 4 Examples of SMC problems
 Prelude: three slides on general Markov chains
 Example 1: estimation in general HMMs
 Example 2: simulation of extreme events
 - Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Sequential MC problems

Example 2: simulation of extreme events

Simulation of rare events for Markov chains

- Let (X_k) be a Markov chain on X = \mathbb{R} and consider some rectangle A = A₀ × A₁ × ··· A_n ⊆ \mathbb{R}^n , where A_ℓ = $(a_ℓ, b_ℓ)$. Here A can be a possibly rare event.
- Here the unknown probability $c_n = \mathbb{P}(X_{0:n} \in A)$ of the rare event A is often the quantity of interest.
- Let $f_{n|A}$ be the conditional density of the states $X_{0:n} = (X_0, X_2, ..., X_n)$ given $X_{0:n} \in A$ and consider

$$\tau_{n} = \mathbb{E}_{f_{n}}(\phi(X_{0:n}) \mid X_{0:n} \in \mathsf{A}) = \mathbb{E}_{f_{n|\mathsf{A}}}(\phi(X_{0:n}))$$
$$= \int_{\mathsf{A}} \phi(x_{0:n}) \underbrace{\frac{f(x_{0:n})}{\mathbb{P}(X_{0:n} \in \mathsf{A})}}_{=f_{n|\mathsf{A}}(x_{0:n}) = z_{n}(x_{0:n})/c_{n}} dx_{0:n}.$$

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (33)

Sequential MC problems

Example 2: simulation of extreme events

Simulation of rare events for Markov chains

- Let (X_k) be a Markov chain on X = \mathbb{R} and consider some rectangle A = A₀ × A₁ × ··· A_n ⊆ \mathbb{R}^n , where A_ℓ = $(a_ℓ, b_ℓ)$. Here A can be a possibly rare event.
- Here the unknown probability c_n = P(X_{0:n} ∈ A) of the rare event A is often the quantity of interest.
- Let $f_{n|A}$ be the conditional density of the states $X_{0:n} = (X_0, X_2, ..., X_n)$ given $X_{0:n} \in A$ and consider

$$\tau_{n} = \mathbb{E}_{f_{n}}(\phi(X_{0:n}) \mid X_{0:n} \in \mathsf{A}) = \mathbb{E}_{f_{n|\mathsf{A}}}(\phi(X_{0:n}))$$
$$= \int_{\mathsf{A}} \phi(x_{0:n}) \underbrace{\frac{f(x_{0:n})}{\mathbb{P}(X_{0:n} \in \mathsf{A})}}_{=f_{n|\mathsf{A}}(x_{0:n}) = z_{n}(x_{0:n})/c_{n}} dx_{0:n}.$$

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (33)

Sequential MC problems

Example 2: simulation of extreme events

Simulation of rare events for Markov chains (cont.)

As

$$c_n = \mathbb{P}(X_{0:n} \in \mathsf{A}) = \int \mathbb{1}_{\mathsf{A}}(x_{0:n}) f(x_{0:n}) \, dx_{0:n}$$

a first—naive—approach could of course be to use standard MC and simply

1 simulate the Markov chain N times, yielding $(X_{0:n}^i)_{i=1}^N$,

3 estimate *c_n* using the standard MC estimator

$$c_n^N = \frac{1}{N}\sum_{i=1}^N \mathbb{1}_A(X_{0:n}^i) = \frac{N_A}{N}.$$

- Problem: if c_n = 10⁻⁹ we may expect to produce a billion draws before obtaining a single draw belonging to A S.
 SMC methods save the day!
- Johan Westerborn

Sequential MC problems

Example 2: simulation of extreme events

Simulation of rare events for Markov chains (cont.)

As

$$c_n = \mathbb{P}(X_{0:n} \in \mathsf{A}) = \int \mathbb{1}_{\mathsf{A}}(x_{0:n}) f(x_{0:n}) \, dx_{0:n}$$

a first—naive—approach could of course be to use standard MC and simply

1 simulate the Markov chain N times, yielding $(X_{0:n}^{i})_{i=1}^{N}$,

3 estimate *c_n* using the standard MC estimator

$$c_n^N = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_A(X_{0:n}^i) = \frac{N_A}{N}.$$

- Problem: if $c_n = 10^{-9}$ we may expect to produce a billion draws before obtaining a single draw belonging to A \odot .
- SMC methods save the day!

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 3: global maximization

Outline

1 Variance reduction revisited

- 2 Sequential MC problems
- 4 Examples of SMC problems
 Prelude: three slides on general Markov chains
 Example 1: estimation in general HMMs
 Example 2: simulation of extreme events
 Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Johan Westerborn

4 Examples of SMC problems

Example 3: global maximization

Generalized SMC problems

- Interestingly, it is generally not required that the spaces (X_n) are of increasing dimension.
- Indeed, a sequence of arbitrary densities f^{*}_n(x_n), defined on arbitrary spaces E_n and known up to normalizing constants, can typically be extended to a sequence of densities

$$f_n(x_{1:n}) = f_n^*(x_n) \prod_{k=1}^{n-1} r_k(x_k \mid x_{k+1}), \quad n > 0,$$

defined on the augmented spaces $X_n = E_1 \times \cdots \times E_n$ via auxiliary Markov transition densities (r_k) .

- In this construction, $f_n^*(x_n)$ is the marginal of $f_n(x_{1:n})$ w.r.t.
 - x_n.

Johan Westerborn

KTH Royal Institute of Technology

Image: A matrix

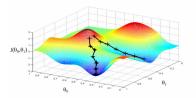
Sequential MC problems

4 Examples of SMC problems

What's next?

Example 3: global maximization

Example: global maximisation



When finding the global maximum of f(x) over some space E, consider the Boltzmann distributions

$$f_n^*(x_n) = \frac{1}{c_n} \operatorname{e}^{f(x_n)/T_n}$$

on E_n = E, where the 'temperatures' (*T_n*) vanish with *n*.
■ Optimization of *f*(*x*) can now be performed by sampling from the sequence (*f_n*^{*}(*x_n*)).

Sequential MC problems

4 Examples of SMC problems

Example 4: estimation of SAWs

Outline

1 Variance reduction revisited

2 Sequential MC problems

3 4 Examples of SMC problems

- Prelude: three slides on general Markov chains
- Example 1: estimation in general HMMs
- Example 2: simulation of extreme events
- Example 3: global maximization
- Example 4: estimation of SAWs

4 What's next?

Johan Westerborn

Computer Intensive Methods (38)

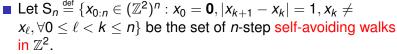
Sequential MC problems

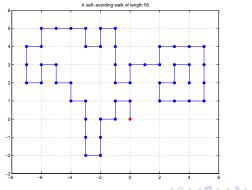
4 Examples of SMC problems

What's next?

Example 4: estimation of SAWs

Self-avoiding walks (SAWs)





Johan Westerborn

KTH Royal Institute of Technology

Computer Intensive Methods (39)

Sequential MC problems

4 Examples of SMC problems

Example 4: estimation of SAWs

Application of SAWs

In addition, let

 $c_n = |S_n|$ = The number of possible SAWs of length *n*.

SAWs are used in, e.g.,

- polymer science for describing long chain polymers, with the self-avoidance condition modeling the excluded volume effect.
- statistical mechanics and the theory of critical phenomena in equilibrium.
- However, computing c_n (and in analyzing how c_n depends on n) is known to be a very challenging (NP-hard) combinatoric problem!

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 4: estimation of SAWs

Application of SAWs

In addition, let

 $c_n = |S_n|$ = The number of possible SAWs of length *n*.

SAWs are used in, e.g.,

- polymer science for describing long chain polymers, with the self-avoidance condition modeling the excluded volume effect.
- statistical mechanics and the theory of critical phenomena in equilibrium.
- However, computing c_n (and in analyzing how c_n depends on n) is known to be a very challenging (NP-hard) combinatoric problem!

Sequential MC problems

4 Examples of SMC problems

Image: A matrix

Example 4: estimation of SAWs

Application of SAWs

In addition, let

 $c_n = |S_n| =$ The number of possible SAWs of length *n*.

SAWs are used in, e.g.,

- polymer science for describing long chain polymers, with the self-avoidance condition modeling the excluded volume effect.
- statistical mechanics and the theory of critical phenomena in equilibrium.
- However, computing c_n (and in analyzing how c_n depends on n) is known to be a very challenging (NP-hard) combinatoric problem!

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 4: estimation of SAWs

An MC approach to SAWs

Diabolic trick: let $f_n(x_{0:n})$ be the uniform distribution on S_n :

$$f_n(x_{0:n}) = \frac{1}{c_n} \underbrace{\mathbb{1}_{S_n}(x_{0:n})}_{=z(x_{0:n})}, \quad x_{0:n} \in (\mathbb{Z}^2)^n.$$

We may now cast the problem of computing the number c_n (= the normalizing constant of f_n) into the framework of SMC problems.

In addition, solving this problem for n = 1, 2, 3, ..., 508, 509, ... calls for sequential implementation of IS.

Johan Westerborn

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 4: estimation of SAWs

An MC approach to SAWs

Diabolic trick: let $f_n(x_{0:n})$ be the uniform distribution on S_n :

$$f_n(x_{0:n}) = \frac{1}{c_n} \underbrace{\mathbb{1}_{S_n}(x_{0:n})}_{=z(x_{0:n})}, \quad x_{0:n} \in (\mathbb{Z}^2)^n.$$

We may now cast the problem of computing the number c_n (= the normalizing constant of f_n) into the framework of SMC problems.

In addition, solving this problem for n = 1, 2, 3, ..., 508, 509, ... calls for sequential implementation of IS.

Johan Westerborn

Sequential MC problems

4 Examples of SMC problems

What's next?

Example 4: estimation of SAWs

An MC approach to SAWs

Diabolic trick: let $f_n(x_{0:n})$ be the uniform distribution on S_n :

$$f_n(x_{0:n}) = \frac{1}{c_n} \underbrace{\mathbb{1}_{S_n}(x_{0:n})}_{=z(x_{0:n})}, \quad x_{0:n} \in (\mathbb{Z}^2)^n.$$

- We may now cast the problem of computing the number c_n (= the normalizing constant of f_n) into the framework of SMC problems.
- In addition, solving this problem for n = 1, 2, 3, ..., 508, 509, ... calls for sequential implementation of IS.

Johan Westerborn

Outline

- 1 Variance reduction revisited
- 2 Sequential MC problems
- 3 4 Examples of SMC problems
 - Prelude: three slides on general Markov chains
 - Example 1: estimation in general HMMs
 - Example 2: simulation of extreme events
 - Example 3: global maximization
 - Example 4: estimation of SAWs

4 What's next?

Next week

- The coming two lectures will be devoted completely to SMC methods.
- The last of these two lectures launches HA1.
- Next week, E2 deals with
 - asymptotic properties of importance sampling estimators and
 - antithetic sampling.

KTH Royal Institute of Technology

Johan Westerborn

Computer Intensive Methods (43)