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Learning/inference from data

By learning/inference from data one often means the process of inferring a
general law or principle from the observations of particular instances. The
general law is a piece of knowledge about the mechanism of nature that
generates the data.
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Learning from data

The intended learning is done by use of ’MODELS’, which serve as the
language in which the constraints predicated on the data can be described.
We deal here with parametric statistical models.
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Parametric statistical model

x is an observation of a random variable (X ).

x ∈ f (x |θ)

f (x |θ) is a probability density on Rp. f (x |θ) is a known function of x and
θ.
θ is an unknown parameter.
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Parametric statistical model

x can be of the form x (n) = (x1, . . . , xn). x can be continuous or discrete
variate or a mix thereof.
θ is an unknown parameter ∈ Θ = a vector space of finite dimension.
Hence we exclude, e.g., non-parametric statistics.
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Parametric statistical model

x ∈ f (x |θ)

x is distributed according to f ,

x is an observation from the distribution f .

An outcome x of a random variable (r.v.) X .
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Parametric statistical model: Examples; Normal
distribution

θ =
(
µ, σ2

)
∈ Θ = R × (0, ∞) .

f (x |θ) =
1

σ
√

2π
e
− 1

σ2 (x−µ)2 ,−∞ < x < ∞.

We say that x is an observation from the normal distribution N
(
µ, σ2

)
.
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Parametric statistical model: Examples; Bernoulli
Distribution

Consider r.v. X with values 0, 1, 0 < θ < 1 and

x = 1 x = 0
f (x | θ) θ 1 − θ

then we say x is distributed according to the Bernoulli distribution with the
parameter θ.

X = x ∈ Be(θ),
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Parametric statistical model

f (x |θ) is a probabilistic mechanism of generating data, characterizes the
behaviour of future observations conditional on θ.
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Learning/inference from data: Inversion

Retrieve the parameters of the probabilistic generating mechanism using x .
f (x |θ) is a probabilistic generating mechanism of data, characterizes the
behaviour of future observations conditional on θ, but in inference the
roles of x and θ are inverted.
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Inversion and Bayes’ Rule

Since
p(A | E ) · p(E ) = p(E | A) · p(A)

we have in a formal way Bayes’ Rule of inversion

p(A | E ) =
p(E | A) · p(A)

p(E )
.

p(E ) = p(E | A)p(A) + p (E | Ac) p (Ac ) .

Ac is the complement set of A.
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Bayes’ rule

Bayes’ rule extended to continuous random variables:

g (y |x) =
f (x |y ) · g (y )∫
f (x |y ) · g (y ) dy

,

Due to the standardization g (y |x) is a probability density; g (y |x) ≥ 0,∫
g (y |x) dy = 1.
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Bayes’ rule: parametric model

π (θ|x) =
f (x | θ) · π (θ)∫

Θ
f (x | θ) · π (θ) dθ

Terminology for Bayes’ Rule:

π (θ) : prior distribution on Θ.

π (θ|x) : posterior distribution on Θ.

m(x) =
∫

Θ
f (x | θ) · π (θ) dθ : marginal distribution of x .
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Uncertainty

Uncertainty about the unknown θ is modeled by a probability distribution
π (θ), and π (θ|x) expresses the uncertainty about the unknown θ after
the observation of x .
We use probability as tool for all parts of our analysis. This is called
coherence.
Mathematically: the unknown θ becomes a random variable. (x , θ) will
have a joint distribution.
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Distributions

π (θ|x) =
f (x | θ) · π (θ)

m(x)
,

Terminology:

m(x) =
∫

Θ
f (x | θ) · π (θ) dθ

φ (x , θ) : joint distribution of (x , θ).

π (θ|x) m(x) = φ (x , θ) = f (x |θ) π (θ)
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Notation

The notation ∫

Θ

f (x | θ) · π (θ) dθ

is imprecise by intent, as it can mean both a single integral and a multiple
integral.
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Bayesian Parametric Statistical Model

A Bayesian parametric statistical model consists of

a parametric model
x ∈ f (x |θ)

a prior distribution
θ ∈ π(θ)

The quantity of interest

θ|x ∈ π (θ|x)
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Prior Density

Any function π(·) such that

π (θ) ≥ 0,

and ∫

Θ

π (θ) dθ = 1,

can serve as a prior distribution.
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Improper Prior Densities

But even functions with the properties

π (θ) ≥ 0,

and ∫

Θ

π (θ) dθ = ∞,

are also invoked as priors, and are called improper priors.
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An Example

Xi | M = m ∈ N
(
m, σ2

0

)
, M ∈ N

(
µ, s2

)
. x (n) = (x1, . . . , xn) a sample of

I.I.D. Xi , x = 1
n ∑

n
i=1 xi .

M | (X1, . . . , Xn) ∈ N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)

i.e., π
(
m|x (n)

)
is the density of this normal distribution. Here µ and s2

are hyperparameters.
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Confidence interval

P (a(x) ≤ θ ≤ b(x)) =
∫ b(x)
a(x) π (θ|x) dθ

P (a(x) ≤ θ ≤ b(x))︸ ︷︷ ︸
This is a probability, not a degree of confidence
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Confidence interval: Example

Take the example above

N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)

Let s → ∞ (the prior becomes improper). Then

N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)
→ N

(
x ,

σ2
0

n

)

But then the Bayesian confidence interval P (a(x) ≤ θ ≤ b(x)) = 0.95
becomes the familiar x ± λ0.025

σ0√
n
, and the common mistaken but natural

interpretation of the confidence interval is correct !
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General Aspects of Bayesian Inference

inference is based on the observed x , not on an unobserved sample
space.

π (θ|x) is the only quantity evaluated for inference about θ.

On the other hand , evaluation of π (θ|x) is not in general possible by
explicit means of integral calculus. This is where statistical inference needs
Markov chain Monte Carlo (McMC).
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Likelihood

The distribution f (x | θ) regarded as a function of θ is known as the
likelihood function

l (x ; θ) = f (x | θ) .

The likelihood function l (θ|x) thus compares the plausibilities of different
parameter values for given x .
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Log likelihood

ll (x ; θ) = − log l (x ; θ) .

is called the log likelihood function.
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Likelihood Principle

The information brought by x about θ is entirely contained in the
likelihood function l (θ | x).
If x1 and x2 are two observations depending on the same parameter θ such
that there exists a constant c such that

l1 (x1; θ) = c · l2 (x2; θ)

for every θ, then they bring the same information about θ and must lead
to identical inferences.
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Likelihood Principle

Conditions for the likelihood principle:

inference should be about the same parameter set

θ should include every unknown factor in the model.
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Bayes’ rule & likelihood

π (θ|x) =
f (x | θ) · π (θ)∫

Θ
f (x | θ) · π (θ) dθ

,

=
l (x ; θ) · π (θ)∫

Θ
l (x | θ) · π (θ) dθ

Hence Likelihood Principle is satisfied by Bayesian inference. There are
ways of implementing the likelihood principle: MLE and MAP ⇒
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The Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate MLE, θ̂ML of θ, is defined by

θ̂ML = argmaxθ∈Θf (x | θ)

= argminθ∈Θll (x ; θ)

MLE is a parameter value that gives the observed x the highest possible

probability.
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The Maximum A Posterior Estimate (MAP)

The maximum a posterior estimate MAP θ̂MAP of θ is defined by

θ̂MAP = argmaxθ∈Θπ (θ | x)
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Definition: Conjugate Family of Priors

A family F of probability distributions on Θ is said to be conjugate or
closed under sampling for a likelihood function

l (x ; θ) = f (x | θ) .

if for every π ∈ F , the posterior distribution π (θ|x) also belongs to
π ∈ F .
Above we have seen an example with normal prior density on the mean.
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Definition: Conjugate Family of Priors

An intuitive way of understanding conjugate priors is that with conjugate
priors the prior knowledge can be translated into equivalent sample
information. See, e.g.,

N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)
.

Next we reconsider another problem with a conjugate family of priors.
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Bayes’ Billiard Ball
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Bayes’ Billiard Ball

A billiard ball W is rolled on a line of length one, with a uniform
probability of stopping anywhere. It stops at p, not disclosed to us. A
second ball O is rolled n times under the same assumptions and X denotes
the number of times O stops to the left of W . Given X = x , what
inference can we make on p ?
(In the figure above x ↔ p.)
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Modeling and Learning for Bayes’ Billiard Ball

We let P be a random variable, whose values are denoted by p, 0 ≤ p ≤ 1.
Parametric statistical model for rolls of Bayes’ Billiard Ball O:

Conditional on P = p, the rolls are outcomes of I.I.D Be(p) R.V’s.
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Modeling and Learning for Bayes’ Billiard Ball

Hence for x = 0, 1, 2, . . . , n,

f (x |p) = P (X = x | P = p)

=

(
n

x

)
px · (1 − p)n−x ,

(the Binomial distribution)
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The Posterior Density

Bayes’ rule

π (p | x) =
f (x | p) · π (p)

∫ 1
0 f (x | p) · π (p) dp

, 0 ≤ p ≤ 1

and zero elsewhere. The marginal distribution of x is

m(x) =

∫ 1

0
f (x | p) · π (p) dp.
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The Posterior Density

The posterior π (p | x) expresses our updated uncertainty of the ’true‘
position of W given the data X = x .
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The Posterior Density

One way to get further from here is to use an explicit expression for π (p).
There are many possible choices (some more systematic choices outlined
below), some have straightforward analytical advantages. Laplace assumed
that p ∈ R(0, 1). i.e.,

π (p) =

{
1 0 ≤ p ≤ 1
0 elsewhere,
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The marginal distribution of x : uniform prior

m(x) =

∫ 1

0
f (x | p) · π (p) dp

=

(
n

x

)∫ 1

0
px · (1− p)n−x

dp.

We use the Beta integral:
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The Beta Integral

∫ 1

0
pα−1(1 − p)β−1dp =

Γ(α)Γ(β)

Γ(α + β)
.

Recall also that Γ(x + 1) = x !, if x is a positive integer. α = β = 1 gives
the distribution R(0, 1). We set

B (α, β) :=
Γ(α)Γ(β)

Γ(α + β)
.
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The Beta Density

π(p) =

{
Γ(α+β)

Γ(α)Γ(β)p
α−1(1 − p)β−1 0 < p < 1

0 elsewhere.

is a probability density Beta(α, β). α > 0 and β > 0 are hyperparameters.
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The marginal distribution of x : uniform prior

m(x) =

∫ 1

0
f (x | p) · π (p) dp

=

(
n

x

)
x !(n − x)!

(n + 1)!
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The marginal distribution of x , p ∈ U(0, 1)

m(x) =

∫ 1

0
f (x | p) · dp =

(
n

x

)
x !(n − x)!

(n + 1)!

=
n!

x !(n − x)!

x !(n − x)!

(n + 1)!
=

1

(n + 1)

There is an interpretation of Bayes’ work claiming that the problem really
attacked and solved by Bayes was: What should π(p) be so that

∫ 1

0
f (x | p) · π(p)dp =

1

(n + 1)

holds for the Billiard Balls.
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The Posterior Density for n rolls of Bayes’ Orange Ball

π (p | x) =

(
n

x

)
px · (1− p)n−x

m(x)

=

{
(n+1)!

x !(n−x)! · pk (1− p)n−k 0 ≤ p ≤ 1

0 elsewhere.

This is again a Beta density, i.e., we have used a conjugate family of priors.
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The Posterior Density for n rolls of Bayes’ Orange Ball

(n + 1)!

x !(n − x)!
=

Γ(n + 2)

Γ(x + 1)Γ(n − x + 1)
=

1

B(x + 1, n − x + 1)
.
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The Posterior Density for n rolls of Bayes’ Orange Ball
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The
densities in the picture do not have the proper constants.
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The Posterior Density with n rolls of Bayes Ball,
p ∈ Beta(α, β)

π (p | x) =

{
1

B(x+α,n−x+β) · px+α−1 (1− p)β+n−x−1 0 ≤ p ≤ 1

0 elsewhere.

This is the Beta density Beta(α + x , β + n − x) .
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End of Example

The example of Bayes’ Billiard Balls W and O is discontinued for the
moment, but will be reconsidered later.
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Joint probability

The probability distribution φ (x , y ) is a joint distribution of (x , y ).
We assume a parametric model (x , y , θ) ∈ φ (x , y , θ) so that:

φ (x , y ) =

∫
φ (x , y , θ) dθ.

Timo Koski () sf2955 April 29, 2009 51 / 87



Predictive Distribution (1) (General)

The predictive distribution g(y |x) of y conditional on x , denoted by
g (y |x) is

g (y |x) =
φ(x , y )

m(x)
=

∫
φ (x , y , θ) dθ

m(x)

φ(x , y )

m(x)
=

∫
φ (x , y , θ) dθ

m(x)
=

∫
g (y |x , θ) φ (x , θ) dθ

m(x)

=

∫
g (y |x , θ) f (x |θ) π (θ) dθ

m(x)
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Predictive Distribution (2)

i.e.,

g (y |x) =

∫
g (y |x , θ) f (x |θ) π (θ) dθ

m(x)

=

∫
g (y |x , θ) f (x |θ) π (θ) dθ∫

f (x | θ) · π (θ) dθ

=

∫
g (y |x , θ)

f (x |θ) π (θ)∫
f (x | θ) · π (θ) dθ

dθ
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Predictive Distribution (3)

The predictive distribution g (y |x) is thus

g (y |x) =

∫
g (y |x , θ) π (θ | x) dθ.
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Predictive Distribution (4)

If y and x are conditionally independent given θ, then

g (y |x , θ) = g (y |θ)

and

g (y |x) =

∫
g (y |θ) π (θ | x) dθ.
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Predictive Distribution (5)

Introduce order (e.g., in time). x = x (n) = (x1, . . . , xn) y = xn+1.

g
(
xn+1|x (n)

)
=

∫
g
(
xn+1|x (n), θ

)
π
(

θ | x (n)
)

dθ.

We assume conditional independence

φ (x , y |θ) = φ
(
x (n), xn+1|θ

)
= (f (x1|θ) · · · f (xn|θ)) · f (xn+1|θ)

= φ
(
x (n)|θ

)
· f (xn+1|θ)
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Predictive Distribution (6)

φ
(
x (n), xn+1 | θ

)
= φ

(
x (n)|θ

)
· f (xn+1|θ)

Then

g
(
xn+1|x (n), θ

)
=

φ
(
x (n), xn+1 | θ

)

φ
(
x (n)|θ

) = f (xn+1|θ)

and

g
(
xn+1|x (n)

)
=

∫
f (xn+1|θ) π

(
θ | x (n)

)
dθ
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Predictive Distribution (7)

g
(
xn+1|x (n)

)
=

∫
f (xn+1|θ) π

(
θ | x (n)

)
dθ

We often need to update g
(
xn+1|x (n)

)
for new observations. We need

clearly only to update π
(
θ | x (n)

)
.
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Up-date of Posterior Distribution (1)

π
(

θ | x (n+1)
)

=
f
(
x (n+1)|θ

)
π (θ)∫

f
(
x (n+1) | θ

)
· π (θ) dθ

=
f (xn+1|θ) f (x1|θ) · · · f (xn|θ) π (θ)∫

f (xn+1|θ) f (x1|θ) · · · f (xn|θ) · π (θ) dθ

=
f (xn+1|θ) f (x1|θ)···f (xn|θ)π(θ)

m(x (n))
∫

f (xn+1|θ) f (x1 |θ)···f (xn |θ)π(θ)

m(x (n))
dθ

=
f (xn+1|θ) π

(
θ|x (n)

)
∫

f (xn+1|θ) π
(
θ|x (n)

)
dθ

Timo Koski () sf2955 April 29, 2009 59 / 87



Up-date of Posterior Distribution (2)

π
(

θ | x (n+1)
)

=
f (xn+1|θ) π

(
θ|x (n)

)
∫

f (xn+1|θ) π
(
θ|x (n)

)
dθ

Hence, under the assumptions made, we can update posterior distribution
in a sequential manner. Or, we can use the posterior of π

(
θ|x (n)

)
as a

new prior for computing π
(
θ | x (n+1)

)
.
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Fundamental Task of Statistical Inference

The fundamental task of statistical inference is to pass from one set of
observations x to express an opinion about another, as yet unobserved set
y .
We have above accomplished this in terms of the predictive distribution

g (y |x) =

∫
f (y |θ) π (θ | x) dθ,

which shows the role of learning about parameters in accomplishing this
task
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An Example f (x | θ) ↔ N
(
µ, σ2

)

f (x | θ) ↔ N
(
µ, σ2

)
(x), the mean µ and variance σ2 are unknown, i.e.,

θ = (µ, σ2). The (improper) prior density is taken as

π (θ) ∝ dµ
1

σ
dσ.

Let x = xn =
(
x (1), . . . , x (n)

)
, x (i ) ∈ N

(
µ, σ2

)
. We have the estimates µ̂

= 1
n ∑

n
i=1 x (i ), and s2 = 1

n−1 ∑
n
i=1

(
x (i ) − µ̂

)2
.
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An Example of Bayesian prediction f (x | θ) ↔ N
(
µ, σ2

)

π (θ) ∝ dµ 1
σ
dσ

The predictive density is

g
(
x (n+1)|xn

)
=

√
n

(n2 − 1)π
· Γ

(
n
2

)

Γ
(

1
2 (n − 1)s

) ·
(

1 +
n
(
x (n+1) − µ̂

)2

(n2 − 1)s2

)−n/2
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a t-like distribution

The predictive density

√
n

(n2 − 1)π
· Γ

(
n
2

)

Γ
(

1
2 (n − 1)s

) ·
(

1 +
n
(
x (n+1) − µ̂

)2

(n2 − 1)s2

)−n/2

is known in Bayesian statistics as ’t-like distribution’1.

1J.M. Dickey (1968): Three Multidimensional-Integral Identities with Bayesian
Applications. The Annals of Mathematical Statistics, 39, pp. 1615−1628.
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Predictive Distribution for the next m rolls of Bayes’
Orange Ball

The predictive distribution of y positions of O left of W in m additional
rolls is

g (y |x) =

∫ 1

0
f (y |p) π (p | x) dp

=

(
m

y

)∫ 1

0
py · (1− p)m−y π (p | x) dp

y = 0, 1, . . . , m
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Predictive Distribution for the next m rolls of Bayes’ Ball

∫ 1

0
py · (1 − p)m−y π (p | x) dp =

∫ 1

0
py · (1− p)m−y 1

B(x + 1, n − x + 1)
· px (1− p)n−x

dp =

=
1

B(x + 1, n − x + 1)

∫ 1

0
py+x · (1− p)m+n−y−x

dp =

=
B(y + x + 1, m + n − x − y + 1)

B(x + 1, n − x + 1)
.

by the Beta integral.
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Predictive Distribution for the next m rolls of Bayes’ Ball

g(y |x ; m) =

(
m

y

) ∫ 1

0
py · (1− p)m−y π (p | x) dp

=

(
m

y

)
B(y + x + 1, m + n − x − y + 1)

B(x + 1, n − x + 1)
.

=
m!

(m − y )!y !

Γ(n + 2)Γ(y + x + 1)Γ(m + n − x − y + 1)

Γ(x + 1)Γ(n − x + 1)Γ(m + n + 2)
.
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Predictive Distribution for y = 1 in the next m = 1 roll of
Bayes’ Ball

g(1|x ; 1) =
Γ(x + 2)Γ(n − x + 1)Γ(n + 2)

Γ(x + 1)Γ(n − x + 1)Γ(n + 3)

=
(x + 1)!(n − x)!(n + 1)!

x !(n − x)!(n + 2)!
=

x + 1

n + 2

A famous predictive probability, known as Laplace
′
s rule of succession,

x + 1

n + 2
=

x + 1

(n + 1) + 1

The prior knowledge can be translated into equivalent sample information.
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The Maximum Likelihood Estimate of p in Bayes’ Billiard

p̂ML = argmin0≤p≤1ll (p | x)

= argmin0≤p≤1

[
− log

(
n

x

)
− x log p − (n − x) log (1− p)

]
.

= argmin0≤p≤1 (−x log p − (n − x) log (1− p)) .

⇒
p̂ML =

x

n

If you observed x = 0, would you belive in the estimate p̂ = 0 for all future
purposes ?
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MLE and Predictive Probability in Bayes’ Billiard

The predictive probability found above

x + 1

n + 2
=

x + 1

(n + 1) + 1

is a maximum likelihood estimate of p when n + 1 rolls of the ball O and
the first roll of the ball W are included in the data.
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Q: How do we choose π (θ) ?

Assessment (by Questionnaries)

Conjugate prior

Non-informative or reference prior

Laplace’s prior
Jeffreys’ prior

Maximum entropy prior
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Assessment of prior knowledge

(One form of) Bayesian statistics relies upon a personalistic theory of

probability for quantification of prior knowledge. In such a theory

probability measures the confidence that a particular individual (assessor)
has in the truth of a particular proposition

no attempt is made to specify which assessments are correct

personal probabilities should satisfy certain postulates of coherence.
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Choice of prior distributions: questionnaires

R.L.Winkler (work published in

Robert L. Winkler: The Assessment of Prior Distributions in Bayesian
Analysis
Journal of the American Statistical Association, Vol. 62, No. 319.
(Sep., 1967), pp. 776-800.)

devises questionnaires (or interviews) to elicit information to write down a
prior distribution. Students of Univ. of Chigago were asked to, e.g., assess
the uncertainty about the probability of a randomly chosen student of
Univ. of Chigago being Roman Catholic using a probability distribution.
The assessment was done by four different methods, like giving fractiles,
making bets, assessing impact of additional data, drawing graphs. One
interesting finding is that the assessments by the same person using
different methods may be conflicting.
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Diffuse/Non-diffuse prior distributions by assessment

The priors in Winkler’s study are not diffuse: the students of Univ. of
Chigago have, since they have been around, an idea about the number of
Roman Catholics at the campus of of Univ. of Chigago.
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Assessing Priors: Conjugate Prior

The interviews by Winkler were mathematically speaking all concerned
with assessing the prior of θ in a Bernoulli Be (θ) − I.I.D. process. Winkler
claims a sensitivity analysis (loc.cit p. 791) showing that the prior
distributions assessed by the interviews yielded posterior distributions that
were ‘only little’ different (by a test of goodness-of-fit) from those
obtained from Beta densities on θ.
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Choice of prior distributions by elicitation

A. O
′
Hagan: Eliciting Expert Beliefs in Substantial Practical

Applications. The Statistician , 47, pp. 21−35, 1998.

Not only priors are elicited in

R.L. Keeney & D. von Winterfeldt: Eliciting Probabilities in Complex
Technical Problems. IEEE Transactions on Engineering Management,
38, pp.191−201, 1991.
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Choice of prior distributions by assessment

But this line of study can evolve rapidly to a topic of research in
psychology or (economic) behaviour, c.f.,

C-A. S. Stael von Holstein: Assessment and Evaluation of Subjective

Probability Distributions. 1970, Stockholm School of Economics.

A. G. Wilson: Cognitive factors affecting subjective probability

assessments.
ISDS Discussion Paper # 94-02,
http://www.isds.duke.edu/

so it feels safe to leave the matter at rest here.
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Parametric Statistical Model, n I.I.D. |θ rv’s

xi |θ ∈ f (x |θ) , I.I.D. ,

or independent, identically, distributed conditional on θ

x (n) = (x1, x2, . . . , xn) ∈ X n

f (x |θ) is a probability density on Rp. f (x |θ) is a known function of x and
θ. θ is an unknown parameter ∈ Θ = a vector space of finite dimension.
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Asymptotic Shape of the Posterior

Let us assume that f (x |θ) is a density with a scalar parameter (for
simplicity of notation) , and that f (x |θ) is some k ≥ 2 times differentiable
in θ. We let θ̂ML be the maximum likelihood estimate of θ. We expand the
log likelihood function around θ̂ML

log f
(
x (n)|θ

)
=

log f
(
x (n)|θ̂ML

)
+
(

θ − θ̂ML

) d

dθ
log f

(
x (n)|θ̂ML

)

+
1

2

(
θ − θ̂ML

)2 d2

dθ2
log f

(
x (n)|θ̂ML

)
+ Rn (θ)
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Asymptotic Shape of the Posterior

But here θ̂ML is a solution of the equation

d

dθ
log f

(
x (n)|θ̂ML

)
= 0

Hence
log f

(
x (n)|θ

)
=

log f
(
x (n)|θ̂ML

)
+

1

2

(
θ − θ̂ML

)2 d2

dθ2
log f

(
x (n)|θ̂ML

)
+ Rn (θ)
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Asymptotic Shape of the Posterior: Law of Large Numbers

We have by assumption of I.I.D. data

d2

dθ2
log f

(
x (n)|θ

)
=

n

∑
l=1

d2

dθ2
log f (xl |θ)

We set Yl = d2

dθ2 log f (xl |θ). Then the Law of Large Numbers says that

1

n

n

∑
l=1

Yl → E [Y ] , n → ∞

where

E [Y ] =

∫

X

d2

dθ2
log f (x |θ) f (x | θ) dx
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Asymptotic Shape of the Posterior: Fisher Information

The integral

I (θ) = −
∫

X

d2

dθ2
log f (x |θ) f (x | θ) dx

is called Fisher information.
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Asymptotic Shape of the Posterior: Fisher Information

Then we may feel inclined to believe that

d2

dθ2
log f

(
x (n)|θ̂ML

)
=

n

∑
l=1

d2

dθ2
log f

(
xl |θ̂ML

)
≈ −n · I

(
θ̂ML

)

Note that even θ̂ML depends on n.
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Asymptotic Shape of the Posterior

This gives

log f
(
x (n)|θ

)
≈

log f
(
x (n)|θ̂ML

)
− 1

2

(
θ − θ̂ML

)2
n · I

(
θ̂ML

)

The first term does not involve θ.
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Asymptotic Shape of the Posterior

Then

f
(
x (n)|θ

)
≈ e−

n
2 (θ−θ̂ML)

2·I(θ̂ML)

The interpretation of the relation is that the likelihood function can be for
large n be approximated by a normal density for which the mean is θ̂ML

and the variance is 1
nI(θ̂ML)

.
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Finally: Jeffreys
′
prior

Let I (θ) be the Fisher information of a parametric model. Take the prior
density as

π(θ)
def
=

√
I (θ)

∫ √
I (θ)dθ

,

assuming the integral exists. This choice of prior is known as Jeffreys
′

prior. This prior is invariant to monotonous transformations of θ.
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Finally: Jeffreys
′
prior

It turns out that Jeffreys
′
prior for a binomial likelihood

is obtained by α = 1/2 and β = 1/2 in

π(p) =

{
Γ(α+β)

Γ(α)Γ(β)p
α−1(1 − p)β−1 0 < p < 1

0 elsewhere.

and with Γ(1/2 + 1/2) = 1, Γ(1/2) =
√

π,

πJeffreys (p) =

{
1
π p−1/2(1− p)−1/2 0 < p < 1

0 elsewhere.
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