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Chapter 1

Gaussian Vectors

1.1 Multivariate Gaussian Distribution

Let us recall the following;

• X is a normal random variable, if

fX(x) =
1

σ
√

2π
e−

1
2σ2 (x−µ)2 ,

where µ is real and σ > 0.

• Notation: X ∈ N(µ, σ2).

• Properties: X ∈ N(µ, σ2) ⇒ E(X) = µ, Var = σ2.

• X ∈ N(µ, σ2), then the moment generating function is

ψX(t) = E
[

etX
]

= etµ+ 1
2 t2σ2

, (1.1)

and the characteristic function is

ϕX(t) = E
[

eitX
]

= eitµ− 1
2 t2σ2

. (1.2)

• X ∈ N(µ, σ2) ⇒ Y = aX + b ∈ N(aµ+ b, a2σ2).

• X ∈ N(µ, σ2) ⇒ Z = X−µ
σ ∈ N(0, 1).

We shall next see that all of these properties are special cases of the correspond-
ing properties of a multivariate normal/Gaussian random variable as defined
below, which bears witness to the statement that the normal distribution is
central in probability theory.
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1.1.1 Notation for Vectors, Mean Vector, Covariance Ma-
trix & Characteristic Functions

An n× 1 random vector or a multivariate random variable is denoted by

X =











X1

X2

...
Xn











= (X1, X2, . . . , Xn)
′

,

where
′

is the vector transpose. A vector in Rn is designated by

x =











x1

x2

...
xn











= (x1, x2, . . . , xn)
′

.

We denote by FX (x) the joint distribution function of X, which means that

FX (x) = P (X ≤ x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) .

The following definitions are natural. We have the mean vector

µX = E [X] =











E [X1]
E [X2]

...
E [Xn]











,

which is a n× 1 column vector of means (=expected values) of the components
of X.
The covariance matrix is a square n× n -matrix

CX := E
[

(X− µX) (X − µX)
′
]

,

where the entry at the position (i, j) is

ci,j
def
= CX(i, j) = E [(Xi − µi) (Xj − µj)] ,

that is the covariance of Xi and Xj . Every covariance matrix, now designated
by C, is by construction symmetric

C = C
′

(1.3)

and nonnegative definite, i.e, for all x ∈ Rn

x
′

Cx ≥ 0. (1.4)

It is shown in linear algebra that nonnegative definiteness is equivalent to
detC ≥ 0. In terms of the entries ci,j of a covariance matrix C = (ci,j)

n,n,
i=1,j=1

there are the following necessary properties.
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1. ci,j = cj,i (symmetry).

2. ci,i = Var (Xi) = σ2
i ≥ 0 (the elements in the main diagonal are the

variances, and thus all elements in the main diagonal are nonnegative).

3. c2i,j ≤ ci,i · cj,j .

Example 1.1.1 The covariance matrix of a bivariate random variable X =

(X1, X2)
′

is often written in the following form

C =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

, (1.5)

where σ2
1 = Var (X1), σ

2
2 = Var (X2) and ρ = Cov(X,Y )/(σ1σ2) is the coeffi-

cient of correlation of X1 and X2. C is invertible (⇒ positive definite) if and
only if ρ2 6= 1.

Linear transformations of random vectors are Borel functions Rn 7→ Rm of
random vectors. The rules for finding the mean vector and the covariance
matrix of a transformed vector are simple.

Proposition 1.1.2 X is a random vector with mean vector µX and covariance
matrix CX. B is a m× n matrix. If Y = BX + b, then

EY = BµX + b (1.6)

CY = BCXB
′

. (1.7)

Proof For simplicity of writing, take b = µ = 0. Then

CY = EYY
′

= EBX (BX)
′

=

= EBXX
′

B
′

= BE
[

XX
′

]

B
′

= BCXB
′

.

We have from [4, def. 4.2 on p. 77].

Definition 1.1.1

φX (s)
def
= E

[

eis
′

X

]

=

∫

Rn

eis
′

xdFX (x) (1.8)

is the characteristic function of the random vector X.

In (1.8) s
′

x is a scalar product in Rn,

s
′

x =

n
∑

i=1

sixi.
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As FX is a joint distribution function on Rn and
∫

Rn is a notation for a multiple
integral over Rn, we know that

∫

Rn

dFX (x) = 1,

which means that φX (0) = 1, where 0 is a n× 1 -vector of zeros.

Theorem 1.1.3 [Kac’s theorem] X = (X1, X2, · · · , Xn)
′

. The components
X1, X2, · · · , Xn are independent if and only if

φX (s) = E
[

eis
′

X

]

=

n
∏

i=1

φXi
(si),

where φXi
(si) is the characteristic function for Xi.

Proof Assume that X = (X1, X2, · · · , Xn)
′

is a vector with independent Xi,
i = 1, . . . , n, that have, for convenience of writing, a joint density fX (x) we
have in (1.8)

φX (s) =

∫

Rn

eis
′

xfX (x) dx

=

∫ ∞

∞

. . .

∫ ∞

−∞

ei(s1x1+...+snxn)
n

∏

i=1

fXi
(xi) dx1 · · · dxn

(1.9)

=

∫ ∞

∞

eis1x1fX1 (x1) dx1 · · ·
∫ ∞

−∞

eisnxnfXn
(xn) dxn = φX1 (s1) · · ·φXn

(sn),

where φXi
(si) is the characteristic function for Xi. The rest of the proof is

omitted.

1.1.2 Multivariate Normal Distribution

Definition 1.1.2 X has a multivariate normal distribution with mean vector
µ and covariance matrix C, written as X ∈ N (µ,C), if and only if the charac-
teristic function is given as

φX (s) = eis
′

µ− 1
2 s

′

Cs. (1.10)

Theorem 1.1.4 X has a multivariate normal distribution N (µ,C) if and only
of

a
′

X =

n
∑

i=1

aiXi (1.11)

has a normal distribution for all vectors a
′

= (a1, a2, . . . , an).
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Proof Assume that a
′

X has a multivariate normal distribution for all a and
that µ and C are the mean vector and covariance matrix of X, respectively.
Here (1.6) and (1.7) with B = a

′

give

Ea
′

X = a
′

µ,Var
[

a
′

X
]

= a
′

Ca.

Hence, if we set Y = a
′

X, then by assumption Y ∈ N
(

a
′

µ,a
′

Ca
)

and the

characteristic function of Y is by (1.2)

ϕY (t) = eita
′

µ− 1
2 t2a

′

Ca.

The characteristic function of X is by definition

ϕX (s) = Eeis
′

X.

Thus
ϕX (a) = Eeia

′

X = ϕY (1) = eia
′

µ− 1
2a

′

Ca.

Thereby we have established that the characteristic function of X is

ϕX (s) = eis
′

µ− 1
2 s

′

Cs.

In view of definition 1.1.2 this shows that X ∈ N (µ,C). The proof of the state-
ment in the other direction is obvious.

Example 1.1.5 In this example we study a bivariate random variable (X,Y )
′

such that both X and Y have normal marginal distribution but there is a lin-
ear combination (in fact, X + Y ), which does not have a normal distribution.
Therefore (X,Y )

′

is not a bivariate normal random variable.
Let X ∈ N

(

0, σ2
)

. Let U ∈ Be
(

1
2

)

and be independent of X . Define

Y =

{

X if U = 0
−X if U = 1.

Let us find the distribution of Y . We compute the characteristic function by
double expectation

ϕY (t) = E
[

eitY
]

= E
[

E
[

eitY | U
]]

= E
[

eitY | U = 0
]

· 1

2
+ E

[

eitY | U = 1
]

· 1

2

= E
[

eitX | U = 0
]

· 1

2
+ E

[

e−itX | U = 1
]

· 1

2

and since X and U are independent, the independent condition drops out, and
X ∈ N

(

0, σ2
)

,

= E
[

eitX
]

· 1

2
+ E

[

e−itX
]

· 1

2
=

1

2
· e− t2σ2

2 +
1

2
· e− t2σ2

2 = e−
t2σ2

2 ,
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which by uniqueness of characteristic functions says that Y ∈ N
(

0, σ2
)

. Hence
both marginal distributions of the bivariate random variable (X,Y ) are normal
distributions. Yet, the sum

X + Y =

{

2X if U = 0
0 if U = 1

is not a normal random variable. Hence (X,Y ) is according to theorem 1.1.4
not a bivariate Gaussian random variable. Clearly we have

(

X
Y

)

=

(

1 0
0 (−1)U

) (

X
X

)

. (1.12)

Hence we multiply (X,X)
′

once by a random matrix to get (X,Y )
′

and therefore
should not expect (X,Y )

′

to have a joint Gaussian distribution. We take next
a look at the details. If U = 1, then

(

X
Y

)

=

(

1 0
0 −1

) (

X
X

)

= A1

(

X
X

)

and if U = 0,
(

X
Y

)

=

(

1 0
0 1

) (

X
X

)

= A0

(

X
X

)

.

The covariance matrix of (X,X)
′

is clearly

CX = σ2

(

1 1
1 1

)

.

We set

C1 =

(

1 −1
−1 1

)

, C0 =

(

1 1
1 1

)

.

One can verify , c.f. (1.7), that σ2C1 = A1CXA
′

1 and σ2C0 = A0CXA
′

0. Hence
σ2C1 is the covariance matrix of (X,Y ), if U = 1, and σ2C0 is the covariance
matrix of (X,Y ), if U = 0.

It is clear by the above that the joint distribution FX,Y should actually be

a mixture of two distributions F
(1)
X,Y and F

(0)
X,Y with mixture coefficients

(

1
2 ,

1
2

)

,

FX,Y (x, y) =
1

2
· F (1)

X,Y (x, y) +
1

2
· F (0)

X,Y (x, y).

We understand this as follows. We draw first a value u from Be
(

1
2

)

, which

points out one of the distributions, F
(u)
X,Y , and then draw a sample of (X,Y )

from F
(u)
X,Y . We can explore these facts further.

Additional properties are:
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1. Theorem 1.1.6 If Y = BX + b, and X ∈ N (µ,C), then

Y ∈ N
(

Bµ+ b, BCB
′

)

.

Proof We check the characteristic function of Y; some linear algebra gives

ϕY (s) = E
[

eis
′

Y

]

= E
[

eis
′

(b+BX)
]

=

= eis
′

bE
[

eis
′

BX

]

= eis
′

bE

[

e
i
“

B
′

s

”′

X

]

or

ϕY (s) = eis
′

bE

[

e
i
“

B
′

s

”′

X

]

. (1.13)

Here

E

[

e
i
“

B
′

s

”′

X

]

= ϕX

(

B
′

s
)

.

Furthermore

ϕX

(

B
′

s
)

= e
i
“

B
′

s

”′

µ− 1
2

“

B
′

s

”′

C

“

B
′

s

”

.

Since
(

B
′

s
)

′

µ = s
′

Bµ,
(

B
′

s
)

′

C
(

B
′

s
)

= s
′

BCB
′

s,

we get

e
i
“

B
′

s

”′

µ− 1
2

“

B
′

s

”′

C

“

B
′

s

”

= eis
′

Bµ− 1
2 s

′

BCB
′

s.

Therefore

ϕX

(

B
′

s
)

= eis
′

Bµ− 1
2 s

′

BCB
′

s (1.14)

and by (1.14) and (1.13) above we get

ϕY (s) = eis
′

bϕX

(

B
′

s
)

= eis
′

beis
′

Bµ− 1
2 s

′

BCB
′

s

= eis
′

(b+Bµ)− 1
2 s

′

BCB
′

s,

which by uniqueness of characteristic functions proves the claim as as-
serted.

2. Theorem 1.1.7 A Gaussian multivariate random variable has indepen-
dent components if and only if the covariance matrix is diagonal.
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Proof Let Λ be a diagonal covariance matrix with λis on the main diag-
onal, i.e.,

Λ =















λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0

0
. . .

... . . . 0
0 0 0 . . . λn















.

Then
ϕX (t) = eit

′

µ− 1
2 t

′

Λt =

= ei
Pn

i=1 µiti−
1
2

Pn
i=1 λit

2
i

= eiµ1t1−
1
2λ1t21eiµ2t2−

1
2λ2t22 · · · eiµntn− 1

2λnt2n

is the product of the characteristic functions of Xi ∈ N (µi, λi), which are
by theorem 1.1.3 seen to be independent.

3. Theorem 1.1.8 If C is positive definite ( ⇒ detC > 0), then it can be
shown that there is a simultaneous density of the form

fX (x) =
1

(2π)n/2
√

detC
e−

1
2 (x−µX)

′

C
−1(x−µX). (1.15)

Proof It can be checked by a lengthy but straightforward computation
that

eis
′

µ− 1
2 s

′

Cs =

∫

Rn

eis
′

x
1

(2π)n/2
√

det(C)
e−

1
2 (x−µ)

′

C
−1(x−µ)dx.

4. Theorem 1.1.9 (X1, X2)
′

is a bivariate Gaussian random variable. The
conditional distribution for X2 given X1 = x1 is

N

(

µ2 + ρ · σ2

σ1
(x1 − µ1), σ

2
2(1 − ρ2)

)

, (1.16)

where µ2 = E(X2), µ1 = E (X2), σ2 =
√

Var (X2), σ1 =
√

Var (X1) and
ρ = Cov(X1, X2)/ (σ1 · σ2) .

Proof is done by an explicit evaluation of (1.15) followed by an explicit
evaluation of the pertinent conditional density and is deferred to Appendix
1.4.

Definition 1.1.3 Z ∈ N (0, I) is a standard Gaussian vector, where I is n× n
identity matrix.
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Let X ∈ N (µX,C). Then, if C is positive definite, we can factorize C as

C = AA
′

,

for n × n matrix A, where A is lower triangular. Actually we can always de-
compose

C = LDL′,

where L is a unique n×n lower triangular, D is diagonal with positive elements
on the main diagonal, and we write A = L

√
D. Then A−1 is lower triangular.

Then

Z = A−1 (X− µX)

is a standard Gaussian vector. In some applications, like, e.g., in time series
analysis and signal processing, one refers to A−1 as a whitening matrix. It can
be shown that A−1 is lower triangular, thus we have obtained Z by a causal
operation, in the sense that Zi is a function of X1, . . . , Xi. Z is known as the
innovations of X. Conversely, one goes from the innovations to X through
another causal operation by X = AZ + b, and then

X = N
(

b, AA
′

)

.

Example 1.1.10 (Factorization of a 2 × 2 Covariance Matrix) Let

(

X1

X2

)

∈ N (µ,C) .

Let Z1 och Z2 be independent N(0, 1). We consider the lower triangular matrix

B =

(

σ1 0

ρσ2 σ2

√

1 − ρ2

)

, (1.17)

which clearly has an inverse, as soon as ρ 6= ±1. Moreover, one verifies that
C = B ·B′

, when we write C as in (1.5). Then we get

(

X1

X2

)

= µ+ B

(

Z1

Z2

)

, (1.18)

where, of course,

(

Z1

Z2

)

∈ N

((

0
0

)

,

(

1 0
0 1

))

.
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1.2 Partitioned Covariance Matrices

Assume that X, n× 1, is partitioned as

X = (X1,X2)
′

,

where X1 is p× 1 and X2 is q × 1, n = q + p. Let the covariance matrix C be
partitioned in the sense that

C =

(

Σ11 Σ12

Σ21 Σ22

)

, (1.19)

where Σ11 is p× p, Σ22 is q × q e.t.c.. The mean is partitioned correspondingly
as

µ :=

(

µ1

µ2

)

. (1.20)

Let X ∈ Nn (µ,C), where Nn refers to a normal distribution in n variables, C
and µ are partitioned as in (1.19)-(1.20). Then the marginal distribution of X2

is
X2 ∈ Nq (µ2,Σ22) ,

if Σ22 is invertible. Let X ∈ Nn (µ,C), where C and µ are partitioned as
in (1.19)-(1.20). Assume that the inverse Σ−1

22 exists. Then the conditional
distribution of X1 given X2 = x2 is normal, or,

X1 | X2 = x2 ∈ Np

(

µ
1|2
,Σ1|2

)

, (1.21)

where
µ

1|2
= µ1 + Σ12Σ

−1
22 (x2 − µ2) (1.22)

and
Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

By virtue of (1.21) and (1.22) the best estimator in the mean square sense
and the best linear estimator in the mean square sense are one and the
same random variable.

1.3 Appendix: Symmetric Matrices & Orthog-

onal Diagonalization & Gaussian Vectors

We quote some results from [1, chapter 7.2] or, from any textbook in linear
algebra. An n × n matrix A is orthogonally diagonalizable, if there is an
orthogonal matrix P (i.e., P

′

P =PP
′

= I) such that

P
′

AP = Λ,

where Λ is a diagonal matrix. Then we have
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Theorem 1.3.1 If A is an n× n matrix, then the following are equivalent:

(i) A is orthogonally diagonalizable.

(ii) A has an orthonormal set of eigenvectors.

(iii) A is symmetric.

Since covariance matrices are symmetric, we have by the theorem above that
all covariance matrices are orthogonally diagonalizable.

Theorem 1.3.2 If A is a symmetric matrix, then

(i) Eigenvalues of A are all real numbers.

(ii) Eigenvectors from different eigenspaces are orthogonal.

That is, all eigenvalues of a covariance matrix are real. Hence we have
for any covariance matrix the spectral decomposition

C =

n
∑

i=1

λieie
′

i, (1.23)

where Cei = λiei. Since C is nonnegative definite, and its eigenvectors are
orthonormal,

0 ≤ e
′

iCei = λie
′

iei = λi,

and thus the eigenvalues of a covariance matrix are nonnegative.

Let now P be an orthogonal matrix such that

P
′

CXP = Λ,

and X ∈ N (0,CX), i.e., CX is a covariance matrix and Λ is diagonal (with
the eigenvalues of CX on the main diagonal). Then if Y = P

′

X, we have by
theorem 1.1.6 that

Y ∈ N (0,Λ) .

In other words, Y is a Gaussian vector and has by theorem 1.1.7 independent
components. This method of producing independent Gaussians has several im-
portant applications. One of these is the principal component analysis. In
addition, the operation is invertible, as

X = PY

recreates X ∈ N (0,CX) from Y.
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1.4 Appendix: Proof of (1.16)

Let X = (X1, X2)
′

∈ N(µX, C), µX =

(

µ1

µ2

)

and C in (1.5) with ρ2 6= 1. The

inverse of C in (1.5) is

C−1 =
1

σ2
1σ

2
1(1 − ρ2)

(

σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)

.

Then we get by straightforward evaluation in (1.15)

fX (x) =
1

2π
√

detC
e−

1
2 (x−µX)

′

C−1(x−µX)

=
1

2πσ1σ2

√

1 − ρ2
e−

1
2Q(x1,x2), (1.24)

where
Q(x1, x2) =

1

(1 − ρ2)
·
[

(

x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(

x2 − µ2

σ2

)2
]

.

Now we claim that

fX2|X1=x1
(x2) =

1

σ̃2

√
2π
e
− 1

2σ̃2
2

(x2−µ̃2(x1))
2

,

a density of a Gaussian random variable X2|X1 = x1 with the (conditional)
expectation µ̃2(x1) and the (conditional) variance σ̃2

µ̃2(x1) = µ2 + ρ
σ2

σ1
(x1 − µ1), σ̃2 = σ2

√

1 − ρ2.

To prove these assertions about fX2|X1=x1
(x2) we set

fX1(x1) =
1

σ1

√
2π
e
− 1

2σ2
1
(x1−µ1)

2

, (1.25)

and compute the ratio
fX1,X2(x1,x2)

fX (x1)
. We get from the above by (1.24) and (1.25)

that
fX1,X2(x1, x2)

fX(x1)
=

σ1

√
2π

2πσ1σ2

√

1 − ρ2
e
− 1

2Q(x1,x2)+
1

2σ2
1
(x1−µ1)2

,

which we organize, for clarity, by introducing the auxiliary function H(x1, x2)
by

−1

2
H(x1, x2)

def
= −1

2
Q(x1, x2) +

1

2σ2
1

(x1 − µ1)
2.

Here we have
H(x1, x2) =
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1

(1 − ρ2)
·
[

(

x− µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(

x2 − µ2

σ2

)2
]

−
(

x1 − µ1

σ1

)2

=
ρ2

(1 − ρ2)

(

x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2(1 − ρ2)
+

(

x2 − µ2

σ2
2(1 − ρ2)

)2

.

Evidently we have now shown

H(x1, x2) =

(

x2 − µ2 − ρσ2

σ1
(x1 − µ1)

)2

σ2
2(1 − ρ2)

.

Hence we have found that

fX1,X2(x1, x2)

fX(x1)
=

1
√

1 − ρ2σ2

√
2π
e
− 1

2

(x2−µ2−ρ
σ2
σ1

(x1−µ1))
2

σ2
2(1−ρ2) .

This establishes the properties of bivariate normal random variables claimed in
(1.16) above.
As an additional exercise on the use of (1.16) (and conditional expectation) we
make the following check of correctness of our formulas.

Theorem 1.4.1 X = (X1, X2)
′

∈ N

((

µ1

µ2

)

, C

)

⇒ ρ = ρX1,X2 .

Proof We compute by double expectation

E [(X1 − µ1)(X2 − µ2)] = E(E([(X1 − µ1)(X2 − µ2)] |X1)

and by taking out what is known,

= E((X1 − µ1)E [X2 − µ2] |X1)) = E(X1 − µ1) [E(X2|X1) − µ2]

and by (1.16)

= E((X1 − µ1)

[

µ2 + ρ
σ2

σ1
(X1 − µ1) − µ2

]

= ρ
σ2

σ1
E(X1 − µ1)((X1 − µ1))

= ρ
σ2

σ1
E(X1 − µ1)

2 = ρ
σ2

σ1
σ2

1 = ρσ2σ1.

In other words, we have established that

ρ =
E [(X1 − µ1)(X2 − µ2)]

σ2σ1
,

which says that ρ is the coefficient of correlation of (X1, X2)
′

.
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1.5 Exercises

1.5.1 The Rice Method

1. X ∈ N(0, σ2). Show that

E [cos(X)] = e
σ2

2 .

1.5.2 Bivariate Gaussian Variables

1. Let (X1, X2)
′ ∈ N (µ,C), where

µ =

(

0
0

)

and

C =

(

1 ρ
ρ 1

)

.

(a) Set Y = X1 −X2. Show that Y ∈ N(0, 2 − 2ρ).

(b) Show that

P (|Y | ≤ ε) → 1,

if ρ ↑ 1.

4. (X1, X2)
′ ∈ N (0,C), where 0 = (0, 0)

′

.

(a) Show that

Cov
(

X2
1 , X

2
2

)

= 2 (Cov (X1, X2))
2

(1.26)

(b) Find the mean vector and the covariance matrix of
(

X2
1 , X

2
2

)
′

.

7. In the mathematical theory of communication one introduces the mutual
information I(X,Y ) between two continuous random variables X and Y
by

I(X,Y )
def
=

∫ ∞

−∞

∫ ∞

−∞

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
dxdy, (1.27)

where fX,Y (x, y) is the joint density of (X,Y ), fX(x) and fY (y) are the
marginal densities of X and Y , respectively. I(X,Y ) is in fact a measure
of dependence between random variables, and is theoretically speaking
superior to correlation, as we measure with I(X,Y ) more than the mere
degree of linear dependence between X and Y .

Assume now that (X,Y ) ∈ N

((

0
0

)

,

(

σ2 ρσ2

ρσ2 σ2

))

. Check that

I(X,Y ) = −1

2
log

(

1 − ρ2
)

. (1.28)
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Aid: The following steps solution are in a sense instructive, as they rely
on the explicit conditional distribution of Y | X = x, and provide an
interesting decomposition of I(X,Y ) as an intermediate step. Someone
may prefer other ways. Use

fX,Y (x, y)

fX(x)fY (y)
=
fY |X=x(y)

fY (y)
,

and then

I(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞

fX,Y (x, y) log fY |X=x(y)dxdy

−
∫ ∞

−∞

∫ ∞

−∞

fX,Y (x, y) log fY (y)dxdy.

Then one inserts in the first term on the right hand side

fX,Y (x, y) = fY |X=x(y) · fX(x).

Observe that the conditional distribution of Y | X = x is here

N
(

ρx, σ2(1 − ρ2)
)

,

and take into account the marginal distributions of X and Y .

Interpret the result in (1.28) by considering ρ = 0, ρ = ±1. Note also that
I(X,Y ) ≥ 0.

8. (From [5]) The matrix

Q =

(

cos(θ) − sin(θ)
− sin(θ) cos(θ)

)

(1.29)

is known as the rotation matrix. Let
(

X1

X2

)

∈ N

((

0
0

)

,

(

σ2
1 0
0 σ2

2

))

and let
(

Y1

Y2

)

= Q

(

X1

X2

)

and σ2
2 ≥ σ2

1 .

(i) Find Cov(Y1, Y2) and show that Y1 and Y2 are independent for all θ
if and only if σ2

2 = σ2
1 .

(ii) Supppose σ2
2 > σ2

1 . For which values of θ are Y1 and Y2 are indepen-
dent ?
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9. (From [5]) Let
(

Y1

Y2

)

∈ N

((

0
0

)

,

(

1 + ρ 0
0 1 − ρ

))

.

Set
(

X1

X2

)

= Q

(

Y1

Y2

)

,

where Q is the rotation matrix (1.29) with θ = π
4 . Show that

(

X1

X2

)

∈ N

((

0
0

)

,

(

1 ρ
ρ 1

))

.

Hence we see that by rotating two independent Gaussian variables with
variances 1 + ρ and 1 − ρ, ρ 6= 0, with 45 degrees, we get a bivariate
Gaussian vector, where covariance of the two variables is equal to ρ.

1.5.3 Covariance Matrices & The Four Product Rule

1. C is a positive definite covariance matrix. Show that C−1 is a covariance
matrix.

2. C1 and C2 are two n× n covariance matrices. Show that

(a) C1 + C2 is a covariance matrix.

(b) C1 ·C2 is a covariance matrix.

Aid: The symmetry of C2 ·C1 is immediate. The difficulty is
to show that C1 ·C2 is nonnegative definite. We need a piece
of linear algebra here, c.f. appendix 1.3. Any symmetric and
nonnegative definite matrix can written using the spectal
decomposition, see (1.23),

C =

n
∑

i=1

λieie
′

i,

where ei is a real (i.e., has no complex numbers as elements)
n×1 eigenvector, i.e., Cei = λiei and λi ≥ 0. The set {ei}n

i=1

is a complete orthonormal basis in Rn, which amongst other
things implies that every x ∈ Rn can be written as

x =

n
∑

i=1

(x
′

ei)ei,

where the number x
′

ei is the coordinate of x w.r.t. the
basis vector ei. In addition, orthonormality is recalled as
the property

e
′

jei =

{

1 i = j
0 i 6= j.

(1.30)
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We make initially the simplifying assumption that C1 and
C2 have the same eigenvectors, so that C1ei = λiei, C2ei =
µiei. Then we can diagonalize the quadratic form x

′

C2C1x
as follows.

C1x =

n
∑

i=1

(x
′

ei)C1ei =

n
∑

i=1

λi(x
′

ei)ei

=
n

∑

i=1

λi(x
′

ei)ei. (1.31)

Also, since C2 is symmetric

x
′

C2 = (C2x)
′

=





n
∑

j=1

(x
′

ej)C2ej





′

or

x
′

C2 =

n
∑

j=1

µj(x
′

ej)e
′

j . (1.32)

Then for any x ∈ Rn we get from (1.31) and (1.32) that

x
′

C2C1x =

n
∑

j=1

n
∑

i=1

µjλi(x
′

ej)(x
′

ei)e
′

jei

and because of (1.30)

=

n
∑

i=1

µjλi

(

x
′

ei

)2

.

But since µj ≥ 0 and λi ≥ 0, we see that

n
∑

i=1

µjλi

(

x
′

ei

)2

≥ 0,

or, for any x ∈ Rn,

x
′

C2C1x ≥ 0.

One may use the preceding approach to handle the general
case, see, e.g., [2, p.8]. The remaining work is left for the
interested reader.

(c) C is a covariance matrix. Show that eC is a covariance matrix.
Aid: Use a limiting procedure based on that for any square matrix
A

eA def
=

∞
∑

k=0

1

k!
An.

(see, e.g., [2, p.9]). Do not forget to prove symmetry.



20

2. Four product rule Let (X1, X2, X3, X4)
′ ∈ N (0,C). Show that

E [X1X2X3X4] =

E [X1X2] ·E [X3X4] +E [X1X3] ·E [X2X4]+E [X1X4] ·E [X2X3] (1.33)

The result is a special case of Isserli’s theorem.
Aid : Take the characteristic function of (X1, X2, X3, X4)

′

. Then use

E [X1X2X3X4] =
∂4

∂s1∂s2∂s3∂s4
φ(X1,X2,X3,X4) (s) |s=0.

As an additional aid one may say that this requires a lot of handwork.
Note also that we have

∂k

∂sk
i

φX (s) |s=0 = ikE
[

Xk
i

]

, i = 1, 2, . . . , n. (1.34)
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