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ON THE BOOTSTRAP HYPOTHESIS AND BOOTSTRAP
CONSISTENCY

Timo Koski

1 Preliminaries

Let X be a random variable and let a distribution function F on the real line
be defined as

F (x) = P (X ≤ x) , −∞ < x < ∞.

We assume that the true distribution function is a member of a class of
distribution functions M. Let θ, the quantity of interest, be

θ = T (F ).

Let x1, . . . , xn be a sample of X1, . . . , Xn, I.I.D. with the distribution F . The
empirical (cumulative) distribution function is

F̂n(x) =
1

n
× ( the number of Xi ≤ x) .

The plug-in estimator θ̂n of θ = T (F ) on basis of X1, . . . , Xn is defined by

θ̂n = T
(
F̂n

)
= θ̂ (X1, . . . , Xn) . (1.1)

Let X∗

1
, . . . , X∗

n be the bootstrap random variables based on x1, . . . , xn, i.e.,
P
(
X∗

j = xi

)
= 1

n
for any j and i. Then

θ̂∗n = θ̂ (X∗

1 , . . . , X
∗

n) . (1.2)

is the plug-in estimator in terms of the the bootstrap random variables.
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Example 1.1 The Mean Let θ = E [X]. Then

θ̂n =
1

n

n∑

i=1

Xi = X, (1.3)

and thus

θ̂∗n =
1

n

n∑

i=1

X∗

i = X∗, (1.4)

2 The Bootstrap Hypothesis

For many statistical problems we are interested in finding the distribution
function

Fbθn
(x) = PF

(
θ̂n − θ ≤ x

)
, −∞ < x < ∞.

This may be difficult or impossible to find analytically without some simp-
lifying assumptions. The idea in bootstrapping is to study Fbθn

by using the
bootstrap distribution

Fbθ∗n
(x) = P bFn

(
θ̂∗n − θ̂n ≤ x

)
.

Definition 2.1 Bootstrap Hypothesis We think that

Fbθn
(x) ≈ Fbθ∗n

(x)

with high probability for large n and and uniformly in x.

One has to note that in this Fbθ∗n
is a random variable as it is ultimately a

function of X1, . . . , Xn.
We can make the statement of the bootstrap hypothesis precise by consi-

dering the quantity

K
(
Fbθn

, Fbθ∗n

)
def
= sup

x∈R
| Fbθn

(x) − Fbθ∗n
(x) | .

In any given situation we should show, of course, that

lim
n→∞

K
(
Fbθn

, Fbθ∗n

)
a.s
= 0,

as n → ∞.

2



3 The Bootstrap Hypothesis for Estimating

the Mean

We shall consider the case in the example 1.1 above, or, estimator (1.3) of
θ = E [X], when σ2 = V [X]. We observe (recall) the following.

1.
EF

[
θ̂n

]
= θ (3.1)

2.

VF

[
θ̂n

]
=

σ2

n
. (3.2)

3.

E bFn

[
θ̂∗n

]
=

1

n

n∑

i=1

E bFn
[X∗

i ] = E bFn
[X∗

1
] =

1

n

n∑

i=1

xi = x. (3.3)

4.

V bFn

[
θ̂∗n

]
=

1

n2

n∑

i=1

V bFn
[X∗

i ]

=
1

n
V bFn

[X∗

1
]

(3.4)

=
1

n
E bFn

[(
X∗

1
− E bFn

[X∗

1
]
)2]

=
1

n
E bFn

[
(X∗

1
− x)2

]

=
1

n2

n∑

i=1

(xi − x)2 =
σ̂2

n
.

Here we have the plug-in estimate of σ2,

σ̂2 =
1

n

n∑

i=1

(xi − x)2 . (3.5)

For study of bootstrap hypothesis we will consider the two sequences of
random variables

Hn =
√

n
(
θ̂n − θ

)
(3.6)
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and
H∗

n =
√

n
(
θ̂∗n − X

)
. (3.7)

We set

Kn
def
= sup

x∈R
| PF

(
Hn

σ
≤ x

σ

)
− P bFn

(
H∗

n

σ̂
≤ x

σ̂

)
|

and use Φ(t), the cumulative distribution function of N(0, 1), in the identity

= sup
x∈R

| PF

(
Hn

σ
≤ x

σ

)
− Φ

(x

σ

)

+Φ
(x

σ

)
− Φ

(x

σ̂

)

+Φ
(x

σ̂

)
− P bFn

(
H∗

n

σ̂
≤ x

σ̂

)
| .

By the triangle inequality we get the upper bound

Kn ≤ An + Bn + Cn,

where

An = sup
x∈R

| PF

(
Hn

σ
≤ x

σ

)
− Φ

(x

σ

)
| (3.8)

Bn = sup
x∈R

| Φ
(x

σ

)
− Φ

(x

σ̂

)
| (3.9)

Cn = sup
x∈R

| P bFn

(
H∗

n

σ̂
≤ x

σ̂

)
− Φ

(x

σ̂

)
| . (3.10)

We shall now show that each of these sequences will converge to zero, as
n → ∞.

4 Proof of The Bootstrap Hypothesis for

Estimating the Mean

We have derived the inequality

Kn ≤ An + Bn + Cn,

Here An is a non-random quantity, which is shown to converge to zero by the
famous Berry-Esseen bound. Then we shall show that Bn converges to zero

4



almost surely by the fact that σ̂2 converges (consistency of estimation) to σ2

in view of the law of large numbers. Finally we use Berry-Esseen again to
find a random upper bound for the nonnegative random variable Cn. Then
it is established that this upper bound converges to zero by invoking the
Zygmund -Marcinkiewicz strong law of large numbers.

4.1 The Berry-Esseen bound, An → 0

We write by (1.3)
Hn

σ
=

(
∑n

i=1
Xi − nθ)√
nσ

so that

An = sup
x∈R

| PF

(
(
∑n

i=1
Xi − nθ)√
nσ

≤ x

σ

)
− Φ

(x

σ

)
| .

The central limit theorem tells that

(
∑n

i=1
Xi − nθ)√
nσ

d→ N(0, 1),

as n → ∞. But we know and need even more, we have the following inequality
giving a kind of speed of convergence, see A. Gut: An Intermediate Course

in Probability. 2nd Ed. p. 165, eq. (5.4),

sup
x∈R

| F(P

n
i=1

Xi−nθ)
√

nσ

(x) − Φ (x) |

≤ c

σ3

EF [| X1 − θ |3]√
n

. (4.1)

Clearly we require also that EF

[
|X1 − θ|3

]
< ∞. The inequality in (4.1)

is known as the Berry-Esseen bound, c.f. Esseen 1944. c is a universal
constant (one can take c = 0.8, sharper bounds have been found recently)
that does not depend on n. But clearly this shows that An → 0, as n → ∞.

4.2 Bn → 0

This is the simple case. In view of (3.5)

σ̂2 =
1

n

n∑

i=1

(
Xi − X

)2
,
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we get by an algebraic identity that

σ̂2 =
1

n

n∑

i=1

X2

i − 2X
1

n

n∑

i=1

Xi + X
2

The strong law of large numbers gives, as n → ∞, that

1

n

n∑

i=1

X2

i
a.s.→ EF

[
X2
]
,

and

X =
1

n

n∑

i=1

Xi
a.s.→ θ

and thus
σ̂2 a.s.→ EF

[
X2
]
− 2θ2 + θ2 = EF

[
X2
]
− θ2 = σ2. (4.2)

In other words, σ̂2 is a consistent estimator of σ2. Thus

Φ
(x

σ̂

)
a.s.→ Φ

(x

σ

)
,

for every x, as n → ∞, as Φ (x) is a continuous function. However, for the
desired conclusion to hold we need that Φ (x) is a uniformly continuous

function 1. Then, by (3.9)
Bn

a.s.→ 0.

1Uniform continuity: We have by mean value theorem of differential calculus that

Φ (x + h) − Φ (x) = Φ
′

(ξ)h

where ξ = (1 − λ)x + λ(x + h) = x + λh, 0 < λ < 1. Since

Φ
′

(ξ) = φ (ξ) ≤ φ (0)

where φ (x) = 1
√

2π
e−x2/2, we get

| Φ (x + h) − Φ (x) |≤ φ (0) · |h|.

Let us now fix an arbitrary ǫ > 0. Hence, for |h| < ǫ
φ(0)

| Φ (x + h) − Φ (x) |≤ ǫ,

and this bound is the same for all x for a given arbitrary ǫ > 0.

6



4.3 The Berry-Esseen bound, Cn → 0

Let us first condition on X1 = x1, . . . , Xn = xn. Then E bFn

[
θ̂∗n

]
= x and we

consider in (3.7) the bootstrap random variable

H∗

n =
√

n
(
θ̂∗n − x

)
. (4.3)

Then we can write as in the preceding case

H∗

n

σ̂
=

∑n
i=1

X∗

i − nx√
nσ̂

.

Now we apply the Berry-Esseen bound (4.1) again on the distribution of the
variable in the right hand side, since the means and variances are given in
(3.3) and (3.5), respectively, w.r.t F̂n are fixed. Thus

sup
x∈R

| P bFn

(
H∗

n

σ̂
≤ x

)
− Φ (x) |

≤ c∗

σ̂3

E bFn
[| X∗

1
− x |3]

√
n

.

We have, as above,

E bFn

[
| X∗

1
− θ |3

]
=

∫
∞

−∞

| x − x |3 dF̂n(x) =
1

n

n∑

i=1

| xi − x |3 .

Thus we have obtained

sup
x∈R

| P bFn

(
H∗

n

σ̂
≤ x

)
− Φ (x) |≤ c

σ̂3

1

n3/2

n∑

i=1

| xi − x |3 . (4.4)

We need an auxiliary inequality, or

n∑

i=1

| xi − x |3≤ 23

(
n∑

i=1

| xi − θ |3 +n | θ − x |3
)

. (4.5)

Thus we get in the right hand side of the inequality (4.4) that

c

σ̂3

1

n3/2

n∑

i=1

| xi − x |3≤ c23

σ̂3

(
1

n3/2

n∑

i=1

| xi − θ |3 +
1

n1/2
| θ − x |3

)

(4.6)
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Then, we recall that we obtained this by fixing the outcomes X1 = x1, . . . , Xn =
xn. When we consider the upper bound (4.6) as a random variable, we get
an inequality between two stochastic variables as

Cn ≤ c23

σ̂3

(
1

n3/2

n∑

i=1

| Xi − θ |3 +
1

n1/2
| θ − X |3

)
. (4.7)

Here the researcher has needed to dig deep in the reservoirs of knowledge
about probability theory. There one finds the Zygmund -Marcinkiewicz

strong law of large numbers, as given in the next lemma.

Lemma 4.1 Let Y1, . . . , Yn, . . . be I.I.D. random variables with distribution
F . Suppose that for some 0 < δ < 1 it holds that E

[
| Y |δ

]
< ∞. Then it

holds that
1

n1/δ

n∑

i=1

Yi
a.s→ 0,

as n → ∞.

A proof may be found on p. 122 in Y.S. Chow and H. Teicher:Probability The-

ory. Independence. Interchageanbility. Martingales. Springer-Verlag, 1978.
Let us now apply this to

Yi =| Xi − θ |3

and take δ = 2/3. Thus

E
[
| Y |δ

]
= E

[
| Xi − θ |2

]
= σ2 < ∞.

Hence we get in the right hand side of (4.6), where 3/2 = 1/δ, that

1

n3/2

n∑

i=1

| Xi − θ |3= 1

n1/δ

n∑

i=1

Yi
a.s→ 0

as n → ∞. As has been shown in (4.2), σ̂2 a.s.→ σ2. In addition, the law of
large numbers entails that

| θ − X |a.s.→ 0,

and therefore
1

n1/2
| θ − X |3a.s.→ 0.

Hence we have proved that the two terms in the right hand side of (4.7)
converge to zero almost surely. This completes the proof of Cn → 0.
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5 Bootstrapping, Failures of Bootstrap, Berry-

Esseen

In summary, we have in other words established that the bootstrap hypothesis
holds for

PF

(
Hn

σ
≤ x

σ

)
− P bFn

(
H∗

n

σ̂
≤ x

σ̂

)
.

The case under study, X as estimator of θ = E [X], is as such of no great
particular interest as an application of bootstrapping, which is designed for
analysis of more complicated estimators.

However, in a way the proof above indicates that P bFn

(
H∗

n

bσ
≤ x

bσ

)
is a better

approximation of PF

(
Hn

σ
≤ x

σ

)
than Φ(x).

Babu & Rao (1993) state that bootsrap may fail to be consistent for

• extreme value statistics.

• when E [X2

1 ] = +∞, bootstrap distribution does not converge to any
probability distribution.

For more on the Berry-Esseen bound one can study
http://en.wikipedia.org/wiki/Berry−Esseen theorem

and
http://sv.wikipedia.org/wiki/Carl−Gustav Esseen

6 Additional Sources
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2008.

• C-G. Esseen: Fourier Analysis of Distribution Functions. A Mathema-
tical Study of Laplace-Gaussian Law. Inaugural Dissertation, October

14th, 1944, Almqvist & Wiksells Boktryckeri, Uppsala, 1944.
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