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Introduction
The purpose of these notes is to give a brief introduction to linear models and

the least squares method.
Linear models are treated in much more detail in the courses Applied Mathe-

matical Statistics SF2950 and Econometrics SF2951.

Notation and Definitions
We observe a number of variables y1 . . . , yN , where we assume that yi is

influenced by some predictive factors xi1, . . . , xin.
More precisely, we take a model mi of of yi as a linear combination of the

x-factors:

mi =
∑n

k=0 xik θk,

where we for notational convenience introduce xi0 = 1. We think that this could
predict the value of yi before it was observed. We set

xi =

 xi0
...

xin

 , i = 1, . . . , N, θ =

 θ0
...

θn

 m =

 m1
...

mN

 .

Thereby we can write

mi = x′iθ, i = 1, . . . , N (1)

where x′i denotes the transpose of the vector xi. We introduce additional matrix
notations: let

X =

 x′1
...

x′N

 =

 x10 · · · x1n
...

. . .
...

xN0 · · · xNn

 =

 1 x11 · · · x1n
...

...
. . .

...
1 xN1 · · · xNn

 .

We can now write (1) compactly as

m = Xθ (2)

Next we introduce the residuals

εi = yi − x′iθ, i = 1, . . . , N
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so that with

ε =

 ε1
...

εN

 , Y =

 y1
...

yN

 ,

we can write
Y = Xθ + ε. (3)

Least Squares Estimation

We want to estimate θ from the data
(
yi,x

′

i

)N

i=1
. We will employ the Least

Squares Estimate (LSE). First we define the least squares optimization criterion
Q (θ). This is nothing but the sum of squared residuals, regarded as a function of
θ. We have using (3)

Q (θ) =
1
2

N∑
i=1

ε2i =
1
2
ε′ε =

1
2

(Y − Xθ)′ (Y − Xθ) . (4)

The LSE is the value of θ̂ that minimizes Q (θ), i.e.,

θ̂ = argminθQ (θ) .

Proposition If (X ′X) is a positive definite matrix, then

θ̂ = (X ′X)−1X ′Y, (5)

Proof : We expand Q (θ) from (4) to obtain

Q (θ) =
1
2

(Y ′Y − Y ′Xθ − θ′X ′Y + θ′X ′Xθ) .

Then we add and subtract Y ′Xθ̂ = Y ′X(X ′X)−1X ′Y inside the parenthesis in
the right hand side. This gives us an opportunity to complete a square, and yields

Q (θ) =
1
2

((
θ − (X ′X)−1X ′Y

)′
(X ′X)

(
θ − (X ′X)−1X ′Y

))

+
1
2

(
Y ′Y − Y ′X(X ′X)−1X ′Y

)
. (6)

The second term in the right hand side does not depend on θ. Hence we can mini-
mize the expression by minimizing the first term, which is a quadratic form. Since
X ′X is a positive definite matrix, the quadratic form is zero if and only if we choose
θ − (X ′X)−1X ′Y to be the zero vector. Hence we have shown the proposition as
claimed.Q.E.D.
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From (6) we see that

Q
(
θ̂
)

=
1
2
Y ′Y − Y ′X(X ′X)−1X ′Y. (7)

Maximum Likelihood Estimation
In order to be able to analyze the properties of the least squares estimate θ̂ we

need to make additional assumptions. We shall assume that there is a “true” value
θ∗ (unknown to us) so that residuals εi are independent and N(0, σ2) distributed
random variables, or

Y = Xθ∗ + ε, ε ∈ N(0, σ2IN ), (8)

where σ is unknown, too.
This is of course a very strong assumption: we assume both normality and

homoscedasticity, i.e., that the residuals εi all have the same variance. (Situations
when these assumptions do not hold are treated in the econometrics course, for
instance.)

Then by (Gut Theorem 3.1 p. 124) the distribution of the random vector Y
is

Y ∈ N(Xθ∗, σ
2IN ).

(When reading the text by Gut at this point one has to note the differences in
notation. We must take b in Gut loc.cit. as = Xθ∗ and X in Gut loc.cit as ε,
Λ as σ2IN .) Then the probability density of Y exists and the likelihood function
L (θ) for θ becomes

L (θ) =
1

(2π)N/2σN
e−

Q(θ)
σ2 ,

where Q(θ) is defined in (3). The Maximum Likelihood Estimate is defined as
the value of θ that maximizes L (θ). But clearly maximization of L (θ) is equivalent
to minimization of Q(θ). Hence the ML-estimator of θ coincides with the LSE in
the current context.

Properties of the LSE
We continue with the statistical model in (8). Employing (5) and (8), we see

that

θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′(Xθ∗ + ε) = θ∗ + (X ′X)−1X ′ε (9).

From this we see that θ̂ is an unbiased estimator of θ, i.e. the mean vector of θ̂
is

E
[
θ̂
]

= θ∗ + (X ′X)−1X ′E [ε] = θ∗.
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The covariance matrix of θ̂ is using (9) (and theorem 2.2 in Gut p. 122)

Cov(θ̂) = E

[(
θ̂ − θ∗

) (
θ̂ − θ∗

)′]
= (X ′X)−1X ′ Cov(ε)X(X ′X)−1

= (X ′X)−1X ′(σ2IN )X(X ′X)−1

= σ2(X ′X)−1

. (10)

Hence, we see by (9) that

θ̂ ∈ N(θ∗, σ2(X ′X)−1). (11)

In order to use this distribution for statistical purposes (e.g. testing of hy-
potheses on θ∗), we obviously need an estimate for σ, which is typically unknown.
Before addressing this, we need to point out some facts from matrix calculus.

Some Matrix Relations
Let A be a square matrix. The trace TrA of A is the sum of the entries in

main diagonal:

Tr

 a11 · · · a1k
...

. . .
...

ak1 · · · akk

 =
∑k

1 ajj

The following facts are easily established; the proofs are left as exercises:
1. If A is a k × n-matrix, and B an n × k-matrix, then Tr(AB) = Tr(BA)
2. In particular, if a is a column-vector, then a′a = Tr(aa′).
3. Tr(C + D) = TrC + TrD

4. Let A be a k×n-matrix (of full rank) where n < k. Define P = A(A′A)−1A′.
Then
• P is symmetric (i.e., P ′ = P.)
• P 2 = P

• TrP = n

Let us prove the last statement:

TrP = Tr A(A′A)−1A′ = (by 1.) = Tr A′A(A′A)−1 = Tr In = n.
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Estimation of σ, cont.
We now estimate σ2. Let us denote by

ε̂
def= Y − Xθ̂

the observed residuals under the LSE-prediction. Then

ε̂ = Xθ∗ + ε − Xθ̂

= Xθ∗ + ε − X(θ∗ + (X ′X)−1X ′ε)

=
(
IN − X(X ′X)−1X ′)ε

=
(
IN − P

)
ε,

where P
def= X(X ′X)−1X ′.

Note that P , by the previous section, is symmetric, P 2 = P and TrP = n + 1.
Hence

E
[∑N

i=1 ε̂2i
]

= E[ε̂′ε̂]

= Tr E[ε̂ε̂′]

= Tr
(
(IN − P )E[εε′](IN − P )

)
= Tr

(
(IN − P )

(
σ2IN

)
(IN − P )

)
= σ2 Tr

(
IN − P

)
= σ2

(
Tr IN − TrP ) = σ2(N − n − 1)

Our unbiased estimate of σ2 is thus

σ̂2 = 1
N−n−1

∑N
i=1 ε̂2i

Clearly it also holds that

σ̂2 = 2
N−n−1Q

(
θ̂
)

.

In summary:

Y = Xθ∗ + ε, ε ∈ N(0, σ2IN )

θ̂ = (X ′X)−1X ′Y

θ̂ ∈ N(θ∗, σ2(X ′X)−1).

σ̂2 =
1

N − n − 1

N∑
i=1

ε̂2i
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On the Model
We can also think of the variables in X as outcomes of random variables (e.g.,

normal r.v.’s) jointly distributed with Y . The statistical model in the preceding
would then be rewritten with a conditional statement,

Y | X1 = x1, . . . ,XN = xN ε ∈ N(Xθ∗, σ
2IN ).

The rest of the properties of LSE are the same, when conditioned on the observed
values of the predictor variables.

Prediction
A common situation is that we want to forecast a new value of yN+1 based

on the values of the x-parameters. If we have estimated θ to θ̂, then an unbiased
prediction is

ŷN+1 = x′N+1θ̂, where x′N+1 = (1, xN+11, . . . , xN+1n)

We can think of prediction in real time. We have observed the variables y1 . . . , yN ,
up to time N and wish to predict the next value, yN+1. We assume, of course,
that the underlying “true” mechanism generating data is unchanged in the sense
that

yN+1 = x′N+1θ∗ + εN+1.

Note that εN+1 is assumed to be independent of ε1 . . . , εN ,.
In order to simplify writing (and to accomodate to other possible cases of

prediction) we set

y = yN+1, ŷ = ŷN+1,x = xN+1, e = εN+1, y = x′θ∗ + e.

We now proceed to calculate the prediction error y− ŷ applying (9) from the above

y − ŷ = x′θ∗ + e − x′θ̂ = x′(θ∗ − θ̂) + e = −x′(X ′X)−1X ′ε + e

Here ε and e are, as said, independent, so the mean squared (prediction) error
MSE =
E[(y − ŷ)2] is (by Theorem 2.2 in Gut p. 122)

MSE = x′(X ′X)−1X ′E[σ2IN ]X(X ′X)−1x + σ2 = σ2
(
x′(X ′X)−1x + 1

)
Since we have to use an estimate of σ2, the approximate MSE is

MSE = σ̂2
(
x′(X ′X)−1x + 1

)
.

The estimated root mean squared error RMSE =
√

E[(y − ŷ)2] is thus

RMSE = σ̂
√

x′(X ′X)−1x + 1
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It is appropriate to assume that the prediction error is a Normal random variable
with variance MSE, although the “true” distribution is a t-distribution, due to
the estimate of σ. However, there is already in practice an approximation in the
specification of the error term being Normally distributed, so why bother about
t-distributions.

Hypothesis Testing
Another common situation is that we want to assess the values of θ∗, and test

a hypothesis on their values. We know that θ̂ − θ∗ ∈ N
(
0, σ2(X ′X)−1

)
. If R is

some k × n-matrix, it follows that R(θ̂ − θ∗) ∈ N
(
0, σ2R(X ′X)−1R′)

We can now employ Theorem 9.1 on p. 139 in Gut and get:

σ−2(θ̂ − θ∗)′R′(R(X ′X)−1R′)−1
R(θ̂ − θ∗) ∈ χ2(k)

and hence approximately,

σ̂−2(θ̂ − θ∗)′R′(R(X ′X)−1R′)−1
R(θ̂ − θ∗) ∈ χ2(k). (12)

The difference is that we have replaced σ2 by σ̂2. The strictly mathematically
correct distribution is now an F (k, N −n−1)-distribution, but again, why bother,
considering the unavoidable specification error. The fact in (12) can now be used
in obvious ways to test hypotheses about the true values of the parameters θ.
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