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1 Introduction

1.1 Model choice

MCMC methods for (Bayesian) computation have so far in these lectures
been restricted to to cases, where the dimensionality of the domain of the
target distribution has been fixed. There are a number of problems involving
inference about curves, surfaces and/or images, where the dimension of the
object is not fixed. Some examples involve model choice; including

1. variable selection in regression

2. estimation of the number of components in a mixture

3. estimating the order of ARMA(p, q)

4. detecting the number of change points (Gustafsson, 2000, p.246)

In this lecture we study the construction of Markov chain samplers that
jump between the parameter subspaces of differing dimensionality. The te-
chnique is called Reversible jump Markov chain Monte Carlo and is due to
(Green 1995, see also Grenander and Miller 1994). This lecture follows mainly
the tutorial (Waagepetersen and Sorenson, 2001) and (Sorensen and Gianola
2002) adding a few details from (Green 1995).

1



1.2 On the Formalism

The notations in the sequel are slightly involved, since we must take into
account for the fact that parameters in general may change dimension as the
Markov chain jumps from one model to another.

2 Bayesian model choice via a hierarchical

model

2.1 Notation

2.1.1 Models, Nested Models

We look at a countable number of candidate models {Mk, k ∈ K}. The
model Mk has a vector of unknown parameters, denoted by θ(k), which is an
nk-dimensional vector. The dimension of θ(k) may vary from model to model.

For given k
(

k, θ(k)
)

∈ Ck := {k} × Θnk ,

where dim(Θ) = nk, or

(

k, θ(k)
)

∈ Ck := {k} ×Rnk .

Example 2.1 We consider an example with two models K = {1, 2}. C1 =
{1} × R, θ(1) = θ, C2 = {2} × R2, θ(2) = (θ1, θ2).

These might be the constant in noise

M1 : y = θ + ǫ,

where
θ(1) = θ

and the linear regression

M2 : y = θ1 + θ2x+ ǫ, ,

so that
θ(2) = (θ1, θ2) .

The example is to be continued . . .
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Two models Ck and Ck′ are called nested, if

Ck ⊂ Ck′ .

If we take θ ↔ θ1, θ2 = 0 in example 2.1, we can regard M1 as being nested
in M2, linear regression. Another similar case is the estimation of sinusoids
in white Gaussian noise (Andrieu and Doucet, 1999).

2.1.2 Notation for Hierarchic Bayesian Inference

We observe data y. The hierarchical structure is expressed by modelling the
joint distribution of

(

k, θ(k), y
)

as

p
(

k, θ(k), y
)

= l
(

y|θ(k), k
)

ψ
(

θ(k)|k
)

pr (k) , (2.1)

which is the product of likelihood (l), prior on parameters (ψ), and prior (pr)
on the models Ck, respectively.

Bayesian inference is based on the joint posterior

p
(

k, θ(k) | y
)

= p
(

θ(k) | y, k
)

p (k | y) .

We shall now construct a Markov chain {Xn}n≥0 with {p
(

k, θ(k) | y
)

}k∈K as
the target distribution. If k was fixed, we could apply the usual Metropolis-
Hastings algorithm.

The problem in implementing an MCMC algorithm is the need to be able to
move from a model Ck to another model Ck′ , where k < k

′

poses a particular
difficulty.

Let us set
x =

(

k, θ(k)
)

.

The chain is implemented by random choices between available moves at
each transition in order to traverse freely across the combined parameter
space of the model family

C =
⋃

k∈K

Ck,

i.e., x ∈ C. We need a Markov chain that attains the detailed balance condi-
tion within each move type.
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3 The reversible jump sampler

3.1 Notations

Let us introduce
Xn := (Mn, Zn) ,

where Mn assumes values in K. Given Mn = k, Zn takes values in Rnk . We
set

Xn = x⇔
(

Mn = k, Zn = θ(k)
)

.

Then, if A ⊆ Rnk , θ(k) = z

P (Mn = k, Zn ∈ A) = p (k|y)
∫

A

p (z | y, k) dz

= p (k|y)
∫

A

pk (z | y) dz.

Hence pk (z | y) is posterior density of θ(k) given the model Mk and the
data y, and p (k|y) is the posterior probability of the model Mk given the
data y. Hence

{p (k|y) pk (z|y)}(k,z)∈C

is the target distribution in this context. Next, we get from (2.1)

p (k|y) pk (z|y) = p (k, z | y) =
p (k, z, y)

p(y)

(3.1)

= C−1l (y|z, k)ψ (z|k) pr (k) ,

where

C =
∑

k∈K

pr(k)

∫

ψ (z | k) dz. (3.2)

To see the conceptual difficulties in finding the detailed balance (c.f. previous
lecture) in this setting, let us write

p (x | y) = p
(

k, θ(k) | y
)

, x ∈ C.

Hence, for x 6= x
′

the densities p (x | y) and p
(

x
′ | y

)

may be defined in
spaces of different dimension. Suppose, as in the example 2.1 above,

x =
(

k, θ(1)
)

, x
′

=
(

k
′

, θ(2)
)

, n1 = 1 < n2 = 2.
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Then p (θ | y, k) is a density on R and p
(

θ(1), θ(2) | y, k′
)

is a density on
R2. Technically formulated , when R is imbedded as a subspace in R2, the
density p (θ | y, k) corresponds thus to a measure, which is singular w.r.t. the
measure corresponding to p

(

θ(1), θ(2) | y, k′
)

.

3.2 Dimension Matching Transformation

The proposals are generated by construction of a dimension matching trans-
formation, as explained next. Suppose that the current state is

Xn = (k, z)

and that we consider a move to
(

k
′

, z
′

)

also expressed as
k 7→ k

′

, z 7→ z
′

.

A proposal is written as

Yn+1 =
(

Y ind
n+1, Y

par
n+1

)

, (3.3)

where the superscript ind is a label for the proposed model Mn+1 and par is
a label for the proposal Zn+1.

The proposal is accepted with probability

αk 7→k′

(

z, Y
par
n+1

)

.

The probability αk 7→k′ is derived in section (4.5) below.
It is easy to generate Mn+1 = k

′

by a single component updating. We define
a probability transition matrix

{

pi|j

}

i,j∈K×K
and draw a value k

′

from the

row {pk|j}j∈K.
Given Y ind

n+1 = k
′

, we take a function g1k 7→k′ such that

Y
par
n+1 = g1k 7→k

′ (z, U) ,

where U is a random vector, The dimension of the vector U is denoted by
(the strange symbol) nk 7→k′ . U has a (proposal) density

qk 7→k′ (z, ·) (3.4)

on Rn
k 7→k

′ . The dimension nk 7→k′ is to be adjusted to the dimension required
by the reverse move, which is known as dimension matching.
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3.3 Dimension matching

Consider the move from (k, z) to

(

k
′

, z
′

)

=
(

k
′

, g1k 7→k′ (z, U)
)

,

and a move in the opposite direction from
(

k
′

, z
′
)

to

(k, z) =
(

k
′

, g1k
′
7→k

(

z
′

, U
′

))

,

where U
′

is a random vector, which has a (proposal) density

qk′ 7→k(z
′

, ·) (3.5)

Further it will be assumed that the functions g2k 7→k′ and g2k′ 7→k are such that
the mapping gk 7→k′ given by

(

z
′

, U
′

)

= gk 7→k′(z, U) = (g1k 7→k′(z, U), g2k 7→k′ (z, U)) , (3.6)

is one-to-one (invertible) with

(z, U) = g−1
k 7→k′(z

′

, U
′

)

= gk′ 7→k

(

z
′

, U
′

)

=
(

g1k′ 7→k(z
′

, U
′

), g2k′ 7→k(z
′

, U
′

)
)

, (3.7)

and that gk 7→k
′ is differentiable.

The transformations (3.6) and (3.7) are possible, if we can construct the
mappings gk 7→k′ and gk′ 7→k to be one-to-one; a necessary condition for the
existence of a one-to-one mapping is that the vectors

(z, U)

and
(

z
′

, U
′

)

must have the same dimension. This imposes the dimension matching

condition

nk + nk 7→k′ = nk′ + nk′ 7→k. (3.8)

With regard to dimension matching we can distinquish three types of

moves depending on the dimension of U . Let us assume nk < nk
′ .
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a) nk 7→k
′ = nk

′ − nk

b) nk′ − nk < nk 7→k′ < nk′

c) nk′ < nk 7→k′

The class a) moves are most commonly used for transitions between nested
models, where we add or delete parameters from the current model to the
next.

If nk 7→k
′ , or nk

′
7→k, or both are equal to zero, then we talk about determi-

nistic moves between models.

Example 3.1 [Example 2.1 continued] We choose to move from C1 = {1}×
R to C2 = {2} ×R2 by the map

(θ1, θ2) = g17→2 (θ, U) = (θ − U, θ + U) ,

where U is a real random variable. Equivalently

g17→2 (θ, U) = (g117→2 (θ, U) , g217→2 (θ, U)) .

We move from C2 = {2} ×R2 to C1 = {1} ×R by

θ =
1

2
(θ1 + θ2) ,

which is clearly a deterministic move. We can express this as

(θ, U) = g27→1 (θ1, θ2) =

(

1

2
(θ1 + θ2) ,

1

2
(θ2 − θ1)

)

⇔
g27→1

(

θ
′

, U
′

)

=
(

g127→1

(

θ
′

, U
′

)

, g227→1

(

θ
′

, U
′

))

.

The dimension matching criterion is thus

nk + nk 7→k′ = n1 + n17→2

= 1 + 1 (3.9)

= 2 + 0 = n2 + n27→1 = nk′ + nk′ 7→k. (3.10)

We can write the preceding as
(

θ1
θ2

)

=

(

1 −1
1 1

)(

θ

U

)

= A

(

θ

U

)

(3.11)
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and
(

θ

U

)

=

(

1
2

1
2

−1
2

1
2

)(

θ1
θ2

)

= A−1

(

θ1
θ2

)

In this example gk 7→k′ (= g17→2) and gk′ 7→k (= g27→1) are linear, invertible, and
differentiable. The example is to be continued.

3.4 The proposal kernel

We define in general the proposal kernel using (3.4) as

Qk 7→k
′ (z, Bk

′ ) := P
(

Y ind
n+1 = k

′

, Y
par
n+1 ∈ Bk

′ |Xn = (k, z)
)

(3.12)

= pk|k′

∫

{u|g
1k 7→k

′ (z,u)∈B
k
′ }

qk 7→k′(z, u)du,

and with (3.5)

Qk′ 7→k

(

z
′

, Ak

)

:= P
(

Y ind
n+1 = k, Y

par
n+1 ∈ Ak|Xn = (k

′

, z
′

)
)

(3.13)

= pk
′
|k

∫

{u′ |g
1k

′
7→k

(z′ ,u′)∈Ak}

qk′
7→k(z

′

, u
′

)du
′

.

Example 3.2 [Example 3.1 continued, more on dimension matching] In this
example we have in (3.12) with B2 ⊂ R2

Q17→2 (θ, B2) = p1|2

∫

{u|(θ−u,θ+u)∈B2}

q17→2(θ, u)du.

The reverse move is deterministic, so that in (3.13) for A1 ⊂ R,

Q27→1 ((θ1, θ2) , A1) =

{

p2|1 if θ1+θ2

2
∈ A1

0 otherwise.
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4 Reversibility and the acceptance probabi-

lity

4.1 An Outline

The derivation of the acceptance probability of moves between spaces is pre-
sented by starting from the reversibility condition.

• We express the transition kernel in terms of a proposal kernel and an
acceptance probability, and find the condition for detailed balance.

• Second, a change of variable is performed that allows both sides of
the detailed balance to be expressed in terms of the same parame-
ters. This requires monotonity of the transformations (gk 7→k′ and gk′ 7→k

) between the parameters, or that the dimension matching condition
holds. Identification of the conditions for equality between the proba-
bility of opposite moves, and for detailed balance to hold, leads to the
final step.

4.2 Reversibility Condition

We need to investigate the consequences of the condition

P
(

Mn = k, Zn ∈ Ak,Mn+1 = k
′

, Zn+1 ∈ Bk
′

)

(4.1)

= P
(

Mn = k
′

, Zn ∈ Bk′ ,Mn+1 = k, Zn+1 ∈ Ak

)

for all k,= k
′

and Ak, Bk′ . We write the left hand side of (4.1) as

P
(

Mn = k, Zn ∈ Ak,Mn+1 = k
′

, Zn+1 ∈ Bk
′

)

= p (k|y)
∫

Ak

P
(

Mn+1 = k
′

, Zn+1 ∈ Bk′ |Mn = k, Zn = z
)

pk (z|y) dz, (4.2)

since p (k|y) pk (z|y) is the target density on C, and therefore plays the role
of an invariant density. Here

P
(

Mn+1 = k
′

, Zn+1 ∈ Bk
′ |Mn = k, Zn = z

)
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is the transition kernel, to be derived next.
We define first

Qa

k 7→k′ (z, Bk′ ) := P
(

Y ind
n+1 = k

′

, Y
par
n+1 ∈ Bk′ , and Yn+1 is accepted |Xn = (k, z)

)

.

We introduce also

sk(z) = P (Yn+1 is rejected |Xn = (k, z)) ,

as the conditional probability of rejecting the proposal given thatXn = (k, z).
Then the transition kernel is written, like in the preceding lecture, as

P
(

Mn+1 = k
′

, Zn+1 ∈ Bk′ |Mn = k, Zn = z
)

=

= Qa

k 7→k′ (z, Bk′ ) + Ik′ ,B
k
′
(k, z)sk(z).

Note that it can happen that Zn+1 ∈ Bk
′ even if the proposal was rejected,

in case k = k
′

and z ∈ Bk′ .
When we insert this in (4.2) we get

p (k|y)
∫

Ak

P
(

Mn+1 = k
′

, Zn+1 ∈ Bk′ |Mn = k, Zn = z
)

pk (z|y) dz

= p (k|y)
∫

Ak

Qa

k 7→k′ (z, Bk′ ) pk (z|y) dz

(4.3)

+p (k|y)
∫

Ak

Ik′ ,B
k
′
(k, z)sk(z)pk (z|y) dz.

By symmetry, the right hand side of (4.1) equals

= p
(

k
′ |y
)

∫

B
k
′

Qa

k′ 7→k

(

z
′

, Ak

)

pk

(

z
′ |y
)

dz
′

(4.4)

+p (k|y)
∫

B
k
′

Ik′
,Ak

(k
′

, z
′

)sk
′ (z

′

)pk

(

z
′ |y
)

dz
′

.

Here, we compare the last terms in (4.3) and (4.4)

p (k|y)
∫

Ak

Ik′ ,B
k
′
(k, z)sk(z)pk (z|y) dz
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= p (k|y)
∫

B
k
′

Ik′ ,Ak
(k

′

, z
′

)sk′ (z
′

)pk

(

z
′ |y
)

dz
′

,

since if k 6= k
′

, the indicator fuctions are both equal to zero, and if k = k
′

,
the move is inside the same model, and the expressions are identical.

Therefore, from (4.3) and (4.4), if

p (k|y)
∫

Ak

Qa

k 7→k
′ (z, Bk

′ ) pk (z|y) dz

= p
(

k
′ |y
)

∫

B
k
′

Qa

k′ 7→k

(

z
′

, Ak

)

pk′

(

z
′ |y
)

dz
′

(4.5)

then the desired reversibility property holds.

4.3 A More Detailed Expression

We shall write the equation (4.5) in a more explicit form. Let us recall that

a) Y ind
m+1 is drawn from pk|k

′

b) Y par
m+1 is generated in Ck′ and belongs to Bk′

⇔ g1k 7→k′ (z, U) = z
′ ∈ Bk′ .

c) Yn+1 is accepted with probability αk 7→k′ (z, g1k 7→k′(z, U)), or

αk 7→k′ (z, g1k 7→k′ (z, U)) = αk 7→k′

(

z, z
′

)

,

and
U ∼ qk 7→k′(z, ·). (4.6)

Taking a) - c) above into account, we get

Qa

k 7→k′ (z, Bk′ ) =

= pk|k
′

∫

IB
k
′

(

z
′

)

αk 7→k
′

(

z, z
′

)

qk 7→k
′ (z, u)du.

If we insert this in the left hand side of (4.5), we have

p (k|y)
∫

Ak

Qa

k 7→k′ (z, Bk′ ) pk (z|y) dz
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= p (k|y)
∫

Ak

pk|k′

∫

IB
k
′

(

z
′

)

αk 7→k′

(

z, z
′

)

qk 7→k′(z, u)dupk (z|y) dz

= p (k|y)
∫

pk|k′

∫

IAk,B
k
′

(

z, z
′

)

αk 7→k′

(

z, z
′

)

qk 7→k′(z, u)pk (z|y) dudz.

By symmetry, we have in the right hand side of (4.5),

p
(

k
′|y
)

∫

B
k
′

Qa

k′ 7→k

(

z
′

, Ak

)

pk′

(

z
′ |y
)

dz
′

= p
(

k
′ |y
)

∫ ∫

IB
k
′ ,Ak

(

z
′

, z
)

pk
′
|kαk

′
7→k

(

z
′

, z
)

qk′
7→k(z

′

, u
′

)pk
′

(

z
′ |y
)

dz
′

du
′

.

4.4 Change of Variable

Hence we require the following equality to hold

p (k|y)
∫

pk|k′

∫

IAk,B
k
′

(

z, z
′

)

αk 7→k′

(

z, z
′

)

qk 7→k′ (z, u)pk (z|y) dzdu

= (4.7)

p
(

k
′|y
)

∫ ∫

IB
k
′ ,Ak

(

z
′

, z
)

pk
′
|kαk

′
7→k

(

z
′

, z
)

qk′
7→k(z

′

, u
′

)pk
′

(

z
′ |y
)

dz
′

du
′

.

Because the maps gk 7→k′ and gk′ 7→k in (3.6 ) and (3.7) are invertible, we may
make the change of variable

(

z
′

, u
′

)

= gk 7→k′(z, u).

The Jacobian of the transformation is

| det
∂gk 7→k′ (z, u)

∂(z, u)
|.

Then the standard rule of transformation of variables in a multiple integral
yields in the right hand side of (4.7)

p
(

k
′ |y
)

∫ ∫

IB
k
′ ,Ak

(

z
′

, z
)

pk′ |kαk′ 7→k

(

z
′

, z
)

qk′ 7→k(z
′

, u
′

)pk′

(

z
′ |y
)

dz
′

du
′

= (4.8)

p
(

k
′|y
)

∫ ∫

IB
k
′ ,Ak

(

z
′

, z
)

pk′ |kαk′ 7→k

(

z
′

, z
)

qk′ 7→k(z
′

, u)pk′

(

z
′ |y
)

| det
∂gk 7→k′(z, u)

∂(z, u)
|dzdu.
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Thus there is an inequality between the left hand side of (4.7) and the ex-
pression in the right hand side of (4.8), if

p (k|y) pk|k′αk 7→k′

(

z, z
′

)

qk 7→k′(z, u)pk (z|y)

= (4.9)

p
(

k
′|y
)

pk′ |kαk′ 7→k

(

z
′

, z
)

qk′ 7→k

(

z
′

, u
′

)

pk′

(

z
′ |y
)

| det
∂gk 7→k′ (z, u)

∂(z, u)
|.

4.5 Acceptance Probability

Clearly, the last equality in (4.9) above holds if

αk 7→k′

(

z, z
′

)

=

(4.10)

min

(

1,
p
(

k
′ |y
)

pk′ |kqk′ 7→k

(

z
′

, u
′
)

pk′

(

z
′ |y
)

p (k|y) pk|k′qk 7→k′ (z, u)pk (z|y) | det
∂gk 7→k′ (z, u)

∂(z, u)
|
)

.

Example 4.1 [Example 3.1 continued] In the example 3.1 we have

| det
∂g17→2(θ, u)

∂(θ, u)
| = detA = 2,

where the matrix A is given in (3.11), and

| det
∂g27→1 (θ1, θ2)

∂ (θ1, θ2)
| = detA−1 =

1

2
.

After having glanced at (4.10), let us make three remarks:

1. Note that if the move is inside a model, i.e., k = k
′

, the acceptance
probability above reduces to

min

(

1,
qk′ 7→k

(

z
′

, u
′
)

pk′

(

z
′ |y
)

qk 7→k′ (z, u)pk (z|y)

)

,

which is the acceptance probability in a Metropolis-Hastings chain
(Hastings 1970).
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2. In view of (3.1) we have that

p (k|y) pk (z|y) = C−1l (y|z, k)ψ (z|k) pr (k) .

Thus we do not need to know the constant C in (3.2) to implement the
reversible jump sampler. However, the normalizing constant in ψ may
depend on k, and will then have to be known.

3. The crucial problem in reversible jump MCMC is to find a transfor-
mation gk 7→k

′ , which is invertible and differentiable, as well as to find
the the proposal density qk 7→k′ . Rules for these efforts are developed in
(Brooks et.al. 2003).

An additional problem is to compute the Jacobian1.

5 Stochastic Stability

Finally, we should prove that the reversible jump Markov chain as construc-
ted above is aperiodic, and φ-irreducible, and that it converges to the in-
variant distribution. Here the general theory of Markov chains is needed.
One such proof is presented in (Andrieu and Doucet, 1999) for the choice of
sinusoids in white Gaussian noise.

6 An Exercise

This exercise is concerned with model choice between a gamma distributed
distribution and a lognormal distribution. The gamma distribution is defined
by the probability density

l (y|α, β, k = 1) =
1

Γ (α)
yα−1e−y/β , 0 < y <∞, α > 0, β > 0. (6.11)

The lognormal distribution is defined by the the probability density

l
(

y|µ, σ2, k = 2
)

=
1

y
√

2πσ
e−(ln y−µ)2/σ2

, 0 < y <∞,−∞ < µ <∞, σ > 0.

(6.12)

1To quote Robert and Casella (1999, p. 261): ..nothing is so easy as to write down the

wrong Jacobian..
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In this case both models have the same number of parameters, and thus
dimension matching allows us to use deterministic moves, if we so desire.

Then the posterior probability for the gamma model is

p (1, α, β | y) ∝ l (y|α, β, k = 1)ψ (α, β|1) pr (1) .

where ψ (α, β|1) is a prior density for the parameters of the gamma density.
For the lognormal model we have

p (2, µ, σ | y) ∝ l
(

y|µ, σ2, k = 2
)

ψ
(

µ, σ2|2
)

pr (2) .

where ψ (µ, σ2|2) is a prior density for the parameters of the lognormal den-
sity.

To accomodate with our notations above we set

(k, z) = (1, (α, β))

and
(k

′

, z
′

) =
(

2,
(

µ, σ2
))

,

and we consider the move from (k, z) to (k
′

, z
′

). One way to propose values
for (µ, σ2) would be to equate the first and second order moments under
gamma and lognormal models to each other. This is a deterministic move,
and yields

µ = ln





αβ
√

1 + 1
α





(6.13)

σ2 = ln

(

1 +
1

α

)

.

These equations define in other words
(

µ, σ2
)

= g17→2 (α, β) .

The homework assignments are:

a) Derive the equations in (6.13).

b) Find
(α, β) = g27→1

(

µ, σ2
)

.
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3) Show that

| det
∂g17→2 (α, β)

∂ (α, β)
| =

1

αβ(α+ 1)
,

4) Implement a reversible jump MCMC for choice between gamma and
lognormal models using pseudo-random numbers y drawn from a gam-
ma distribution. One way to do the simulation is to use gamrnd in
MatlabR Statistics Toolbox. Show the posterior density (in some way).

7 An Optional Exercise

Explain in a concise manner, how Andrieu, and Doucet (1999) establish the
acceptance probabilities for their reversible jump MCMC.
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