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1 Introduction

1.1 MCMC

Markov chain Monte Carlo (MCMC) is an important computational tool
in Bayesian statistics, since it allows inferences to be drawn from complex
posterior distributions, where analytical or numerical integration techniques
cannot be applied. There are other important applications in image analysis,
optimization, bioinformatics and others.

The idea (in Bayesian statistics) is is to generate a Markov chain via ite-
rative Monte Carlo simulation that has, at least in the asymptotic sense, the
desired posterior distribution as its stationary distribution.

Since direct sampling from a posterior distribution may not be possible,
the Metropolis-Hastings algorithm starts by generating candidate draws from
a so-called proposal distribution. These draws are the corrected so that they
behave asymptotically as random observations from the desired stationary
or target distribution.

The MC constructed by the algorithm at each stage is thus built in two
steps: a proposal step and an acceptance step. These two steps are asso-
ciated with the proposal and acceptance distributions, respectively.



1.2 Monte Carlo

Most of the quantities usually computed in applications involving statistical
models are integrals (or values derived from integrals), in a generic form

Elp (X)) = / o (x)dF (z).

A Monte Carlo method for computation of F [p (X)] requires generation
of samples X1, Xo,...,X,,..., from the distribution F' in order to form

%Z@(Xi)‘

The law of large numbers (or the ergodic theorem) implies

> e (X0~ Elp(X)

for large n. A concise early discussion of Monte Carlo methods is in (Frei-
berger & Grenander 1971).

One way of describing MCMC is to say that it is a Monte Carlo method
for computing E [ (X)] applicable to 'difficult® distribution functions F.

1.3 Pseudo-random Numbers

All simulation methods, including MCMC, presuppose the availability of ran-
dom number generators. There are several different algorithms for generating
random numbers, see, e.g., (Freiberger and Grenander 1970, ch. 2). These
algorithms are deterministic, and therefore one often talks about pseudo-
random numbers. Another possibility someone has talked about is to use
certain natural sequences (cosmic radiation, radiactive decay) as generators
of random numbers. It is not known to us how the properties of pseudo-
random number sequences influence the performance of MCMC.



2 Markov chains

First we recall some notation and facts about Markov chains.

2.1 Notation

e S={0,1,...,J}, J < o0, is called a state space. We take here mostly
S C R = the real numbers.

J,1 e S xS,

A discrete time Markov chain (MC) {X,},>0 is a random sequence,
with values in the discrete state space S, such that

P(Xn+1 = ]‘Xn = 2.a)(n—l =ln1,--- >XO = ZO)
= P(Xps1 = j|Xn = 1) = paj-

pi|; is the one-step transition probability.

e State X,, summarizes the past history needed to predict X, for any
n.
[ J
pij; = 0.
[ J

J
7=0

The transition probability matrix is

J.J
P = (pi\j)izo,j:o

Pojo Pojr --- DPolg

Pio P R S1F
p—| " 0

Pjo Pyr --- DPJJ



If J is finite, P is a J + 1 x J + 1 transition matriz. If J is = oo, then the

notation is
Pojo Por --- Polj

Pijo Pip --- P15
P = . . . .

2.2 A Quick Summary of Some Facts

We shall write
{X,} ooy ~ Markov (P, px,),

where
Pxy = (po, cen >pJ)

is the initial distribution.

pilj(n) = P(Xmin = j|Xm =i),n > 1,i,5 € S

are also independent of m. The probabilities p;;(n) are called the n -step
transition probabilitics. We define

1 ifj=1
Pis(0) = { 0 ifj#i.
With these elements we define the matrix

P(n) = (pi\j(n))ies,jes'

The matrix is the n -step transition probability matriz. Then
P(1)=P

where P is the one - step transition probability matrix defined first.
For all m,n>1and 7,57 € S,

pz\] m—+ 71 sz\k pk\] )

This is known as the Chapman - Kolmogorov equation. Using a matrix no-



o m n+m

Figur 1: Chapman - Kolmogorov

tation we can write the Chapman - Kolmogorov equation as the following
matrix multiplication

P(n+m)= P(m)- P(n).
Then we have the proposition.

Proposition 2.1
P(n)=P".

Proof: This is easily proved by induction. The case n = 1 follows by our
definitions
P(1)=P =P

Assume the claim holds for n, i.e., P(n) = P™. Then by Chapman-Kolmogorov
Pn+1)=P-P(n),
and by induction assumption
=P.p'=p"t!

as was to be proved. "



Chapman - Kolmogorov equation can be written as
Pn+m)=P™.P"
Let the initial distribution of X be denoted by ¢(0). In other words,

¢(0) = (pXo (0) -9 PXo (‘])) :

Let us denote by

the 1 x J + 1 vector of the probabilities that the chain visits state j at time
n. By marginalization

J
p(Xn=4)= puj-p(Xe1=k).
k=1

This we write using a matrix notation as

6(n) = 6(n — 1)P. (2.2)

A Markov chain {X,} 7, may be such that the probability p (X, = j) is
independent of n for all j in the state space. A distribution 7 a stationary
distribution, with

= (mo,...,7g),
if p (Xo = j) = m; for all j implies that p (X; = j) = 7; for all j.
Proposition 2.2 Let {X,} 2, ~ Markov (P, ¢(0)). Every stationary disti-

bution satisfies the equation
T =P

(7 is a row vector) with the constraints

J

Zﬂ'j: 1,7Tj 20

j=1



Proof: Assume first that « is a stationary distribution. Then Z;.Izl =1
and 7; > 0 are clear. Since 7 is stationary , by the definition above we must
have ¢(0) = 7 and ¢(1) = 7. But since by (2.2)

¢(n) = ¢(n— 1P,

we get that
™ =7nP.

Assume now that 7 satisfies 7 = 7P and the other constraints. Let ¢(0) =
7. Then
o(1) = 6(0)P = 7P = 7

and 7 is a stationary distribution. "

Proposition 2.3 FEuxistence of a stationary distribution: Every MC with a
finite state space has at least one stationary distribution

Proof: We give only an outline of the proof. Let p be an arbitrary probability
distribution on S. Set

1
P =~ (p+pP+pP?+ ..+ pP )

This is a sequence of probability distributions, i.e. vectors with components
with values between zero and one. Thus the well known theorem of Bolzano
and Weierstrass shows that we can pick a convergent subsequence p(™) which
converges componentwise to the vector ¢. We can show that ¢ is a probability
distribution. By our construction we have the recursion relations

mi) _ " my L on
b n+ 17 * n+ 1P
and ]
n n n

n—+1 n+1

From the recursion above we get that

and then we get that
T =P,

which proves the claim. "
Is there convergence to a stationary distribution for any ¢(0) ?

7



Proposition 2.4 Let {X,} 7, € Markov (P, ¢(0)). Assume that

lim ¢(n) = a,
where a = (ag, . ..,ay) is a probability distribution. Then a is an stationary

distribution.
Proof: Taking of limits yields
a= lim ¢(n) = lim ¢(n+1) =

n—~o0 n—oo

n—oo n—oo

= lim ($(n)P) = (nm gb(n)) P = aP.

We need some new definitions.

(a) An MC is aperiodic, if there is no state such that return to that state
is possible only after g, 2tq, 3tg ... steps later.

(b) An MC is irreducible means that every state can eventually (observera
att ‘eventuellt’ pa svenska betyder ngt annat) be reached from any
other state, if not in one step, but then after several steps.

Proposition 2.5 If a finite MC is aperiodic and irreducible, then for any
(0)

lim ¢(n) =,

where w 1s a unique probability distribution that satisfies

T =7P.

Proof: Omitted. "

2.3 Time Reversible Markov Chains
{Xn}n>0 ~ Markov (P, ¢(0)) with the state space S. A probability distribu-

tion a on S is said to be reversible for the chain (or for the matrix P), if
for all 7,5 € S x S we have
@;Pi; = AjPj)i (2-3)

The MC is said to be reversible, if there exists a reversible distribution for
it.



Proposition 2.6 {X,},>0 ~ Markov (P, ¢(0)) with the state space S. Assu-
me that a on S is reversible for the chain. Then a is a stationary distribution
for the chain.

Proof: By (2.1)

a; = a4 Zpi\j = Zaipi\ja

jes jes
and by (2.3)
= api,
jes
~
a=aP.
Here we regard a as a 1 x J row vector. .

3 Basics of MCMC for Discrete One-Dimensional
Distributions

3.1 Introduction

The preceding part of these lectures has discussed the problem of finding the
stationary distribution for a given transition matrix. Next we are concerned
with a kind of converse task, here called the Metropolis problem.

3.2 The Metropolis Problem

Let f = {f;}jes be an arbitrary probability mass function, target distribu-
tion, on a discrete subset S of R, i.e.,

o f;>0.
i Zj:ofj = 1.

The Metropolis problem is to give a Markov chain such that f is its stationary
distribution. We shall next show that it is always possible to solve the stated
problem by constructing an appropriate transition probability matrix. In fact
there are infinitely many solutions to the stated problem.

9



3.3 A Solution of the Metropolis Problem
Let Q = (),

i=0,j=
the matrix Q is symmetric, i.e.,

, be a probability transition matrix on S. Assume that

Gilj = Gjli»  forall 4,5 € .5 % S. (3.1)

We want to construct an MC {X,, },>¢ with the state space S and the sta-
tionary distribution f. We use the following rules of transition.
Suppose that X,, = i. We propose a value

Yn+1 = ]

drawn from the (row) distribution {g;;}7_, independently of Xy, ..., X1,
Then let us accept j with the probability

@, j :=min {1, %} : (3.2)

whereby acceptance means that the chain moves to 7, X,,.1 = 7. We reject
the proposed value j with probability

1- Qg5 (33)

whereby rejection means that the chain stays at ¢, X,,y; = i. The procedure
is to be visualized /implemented in terms of an independent random toss of
coin with the probability mass function (1 — o, a; ;).

We shall now find the transition probabilities p;; of the chain thus defined.
Let {ta} denote the event that the proposed transition is accepted, and let
{ta}® denote the complement. Then, if ¢ # j,

pijj = P (Xoy1 = j| X = 1) = P (Yo = j, ta| X, = i)
by definition of proposal and acceptance moves. It follows by the chain rule
=P (Y1 =7, ta, X, =1i) P(tal X, =1),
and since proposal is generated independently of acceptance, given X,,,

=P (Yn+1 = j|Xn = ’L) Q; j.

10



In other words we have obtained for i # j that

Pilj = Gijj - min {L %} = Qifj * O j- (3.4)
On the diagonal 7 = 7 we have
pili = P (Xpp1 = 1|X,, = 1) = P (Yo = i, ta|l X, = 9)+P (Y4 # i, ta%| X, = i)
and as above
=P (Yo =14X,=1) P(talX,, =1i) + P (Y41 # 1| X, =) P (ta’| X,, = 1)

=P (Yo =14X, =19 o, + Z P (Yo =X, =1) (1 — i)

i
= )i T Z P (Yo =j1Xn =14) (1 — ay)
i
=qi t Z Gijj (1 — i) .
JF

Thereby we have defined a legitimate transition probability matrix P.

We need to prove that f is a stationary distribution for Markov chain
{X, }n>0 ~ Markov (P, ¢(0)), where ¢(0) is an arbitrary initial distribution.
We will show that the reversibility condition (2.3) holds w.r.t. f.

For this purpose we consider ¢ # j and assume that

fi < fj-
Then due to (3.4), and the assumed symmetry of Q,

fz’pz‘\j = fiQi|jmin{1>%}
= fiQi|j

. fi}
= @ min< 1, — 5 f;
y { il
= ¢i%if;

= it

(3.5)

11



In case we have
fj < fia
we start with

fjpj\i = qj)i min {17 %} fj

and continue analogously. Hence the reversibility condition (2.3) holds for all
1,7, and we have in view of proposition 2.6 solved the Metropolis problem.

1111
f:(171767§)’

Example 3.1 Let

and
1 1 1 1
S A
Q=| 115
S
2 6 3
Then the acceptance probabilities are
1 1 0.6667 1
o — 1 1 0.6667 1
1 1 1 0|’
0.75 0.75 0 1

and the desired transition matrix is

0.2222 0.1667 0.1111 0.5
0.1667 0.5556 0.1111 0.1667
0.1667 0.1667 0.667 0
0.3750 0.125 0 0.5

The computations above have been done using the MATLAB® function in
appendix 8.1.

12



4 The One Dimensional Discrete Metropolis
Algorithm

The solution of the Metropolis problem, as established above, can be used
to simulate a Markov chain {X,},>o that has the target distribution as the
preassigned stationary distribution f. The pertinent simulation algorithm is
known as the Metropolis algorithm. When S C R, this is an algorithm
for simulating one dimensional Markov chains.

Definition 4.1 (Metropolis Algorithm) Q = (Qilj);-]i)j
transition probability matrix. Given that X,, =i

_o 18 a symmetric

1. Generate Y11 ~ {qi; }1—o-
2. Take

Yo Y,+1  with probability a;y,_,
(O with probability 1 — oy, ,,

= min{l,%}.

The distributions {g;; }3-7:0 are called proposal distributions.

where

5 The One Dimensional Discrete Metropolis-
Hastings Algorithm

5.1 The Algorithm

In Hastings (1970) the algorithm of Metropolis was generalized by relax-
ing the requirement that the matrix of proposal distributions Q be sym-
metric. The more general simulation algorithm is known as the Metropolis-
Hastings algorithm.

J,J .
S a

Definition 5.1 (Metropolis-Hastings Algorithm) Q = (qﬂj)z‘:o ol

transition probability matrix. Given that X,, =1

13



1. Generate Y11 ~ {qi; }/—o-

2. Take
[ Y,+1 with probability afyn —
[ ) with probability 1 — Oéfjlyn+17
where f
ol :min{l, ]q]'l}. (5.1)
’ f idi|j

The distributions {g;;}]_, are called proposal distributions.

5.2 Burn-In

A relevant point of discussion is the determination of the convergence of the
chain, or more precisely, the determination of how close the marginal dis-
tribution at iteration n is to the targeted stationary distribution. There are
theoretical bounds for the total variation distances between these distribu-
tions. More of this will (hopefully) be said later in this course (Haggstrom
2000, ch. 8, ch. 10).

10

L L L L L
o 200 400 600 800 1000 1200

Figur 2: Burn-in
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In pragmatic terms, chain values in the initial stage are far from the sta-
tionary distribution and should be discarded. This period is referred to as
the burn-in period. The phenomenon is illustrated in figure 2. A very simple
informal way to do this is to monitor convergence by looking at the simulated
path of the chain.

5.3 Examples

The examples in this subsection deal with target distributions on integers.
The algorithms are based on taking Q as a transition matrix of a suitable
simple random walk, as defined in Appendix A. The first example, where the
target distribution is a Poisson distribution, is of no salient importance as
an application of Metropolis-Hastings, since a Poisson distribution can be
simulated simpler by other means (e.g, by using exponentially distributed
pseudorandom numbers (Gamerman 1997, ch. 1), in view of the theoretical
properties of a Poisson process).

Example 5.1 [ Poisson Distribution as the Target Distribution]/ Consider f
as the Poisson distribution with intensity A > 0, or,

fi:e—N—', i=0,1,2,... (5.2)
1.

Hastings (1970) suggests as Q the transition matrix of a reflecting (simple)
random walk on the non-negative integers, or

1 1
QO|0—27QO\1—27
and
g J=i-1
Gy=9g3 J=1+tl
0 otherwise.
This gives
% % (l) 0O 0 0
3 050 0 0
Q= 0 % 0 % 0 O
0 0 % 0 % 0

15



Hence Q is in fact symmetric, and the algorithm reduces to that of Metro-
polis. Then in (5.1),

- min {1, % j=i-1
R X L
B 0o E'mm{lvm} j=1+1
=iy - ol = . 5.3
Pig = @i+ Vs L= piji-1 = Pifitr J =1 (53)
0 otherwise.
Fori=10 L ,
3 min (1., A) le
poy =4 1—35min(L,A) j=0
0 otherwise.

A chain like the one obtained here is often called a birth and death process
(with reflection). Some more facts are found in Appendix A below.

We should, of course, convince ourselves of the fact that the MC with this
transition probability is aperiodic and irreducible. This topic is commented
in Appendix A, and in the section Exercises 6.

In practice, if A\ is small, this choice of Q seems to work fairly well and
fast to approximate f, since it suffices that the chain visits only the first few
integers. If \ is large, then a more general random walk with larger steps will
be needed to give a proposal distribution in order that more states will be
visited in a reasonably short sample path.

For example, if A = 0.2, the target distribution in (5.2) has the values

fo = 0.8187, f; = 0.1637, f, = 0.0164, f; = 0.0011, f, = 0.0001, f5 = 0.0000.

0.1 j=1
poj =4 09 j=0
0 otherwise.

Furthermore, for ¢ > 1 and A = 0.2

: j=i—1

py o) Loiof =
"J u j=i+1
0 otherwise.

In figure 3 one compares for A = 0.2 the empirical relative frequencies, as
obtained after the ‘burn-in’ phase of a simulated path with 10 000 samples
partly depicted in figure 4, with the target distribution.

16
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Figur 3: Probability mass function Po(0.2) depicted by * and a simulated
empirical relative frequency depicted by o. The scale in z-axis should be
shifted by one step to the right.

|
The second example shows a more interesting case, i.e., a more difficult dis-
tribution. In this situation the standard technique of using the cumulative
distribution function for simulation, see (Haggstrom 2002, p. 19, Gamerman
1997, ch. 1) is not straightforward, since the normalization constant of the
distribution poses a problem.

Example 5.2 [ A Difficult Target Distribution] Let the state space be S =
oo, —2,—1,0,1,2,...,. The target distribution is

4
) e llcos?(i), i€s. (5.4)



0 20 40 60 80 100 120 140 160 180 200

Figur 4: A (portion of a) simulated path of the MC with Po(0.2) as the target
distribution.

Here 1
C = (5.5)

S (i 3) e il cos?(i)
which seems to have no explicit expression. We need to construct the proposal
distributions. Again, we take as Q the transition matrix of a simple random
walk, see Appendix A, by

T o j=i-1
=1 1 =i
0 otherwise.

18



forall i,5 € S x .S. Then we get for j =7 —1or j =17+ 1.

Qij = min{l, quj”}
fiqz‘\j
10. (i —
= min{l, 21 (].
30 (i

T RE P ([ Yo

e COS

= min{l7 (]. 2) (])}
/l_

( %)4 el cos2(1)

Note that C has cancelled out, so that «;; does not depend on C. The
expression for a;; in (5.6) can be readily computed using Matlab® or any
other numerical software.

In figure 5 there is shown the histogram, as obtained from the simulated
path with 10 000 samples partly depicted in figure 6 simulated by Metropolis-
Hastings with the target distribution in (5.4).

= [N

)4 el cos2(1)

)" el cos?(j) }

6 Exercises

1. Prove that the Metropolis-Hastings algorithm defines a Markov chain
with the desired target distribution as the stationary distribution.

2. In Barker’s algorithm for MCMC one takes the acceptance probability

as
o = _Ji
it Sy
Show that a Metropolis-Hastings algorithm with this acceptance pro-
bability generates an MC with the target distribution as stationary
distribution under a certain condition (which 7) on Q.

3. Give and implement, e.g., with Matlab® functions, c.f. Appendix B
below, a Metropolis-Hastings algorithm for simulating the target dis-
tribution

f=1(1/3,1/5,2/15,1/3)

19
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Figur 5: The histogram for the MC with (5.4) as the target distribution.

Show a histogram of the distribution from your simulations. Take into
account the burn-in period, by discarding a suitable portion of samples
used in computing your histogram.

4. (a) Explain why a birth and death chain with reflection (Appendix A)
is aperiodic and irreducible.

(b) Show that the quantities 7; defined in (A.7), i.e.,
™ = O’UZ',i 2 1,7T0 =C

constitute in fact the stationary distribution for a birth and death
chain with reflection at origin.

5. Let the target distribution be
fi=C-e?' j=...,-2-1,0,1,2,...,.

20
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Figur 6: A (portion of a) simulated path of the MC with (5.4) as the target
distribution.

(a) Give the Metropolis-Hastings algorithm for this target distribu-
tion, when the proposal distribution is given by a simple random
walk (Appendix A) with p = i.

(b) Write a code, e.g., with Matlab® functions, for the pertinent al-
gorithm to simulate samples from this distribution, and show the
histograms of the distribution from your simulations. Take into
account the burn-in period, by discarding a suitable portion of
samples used in computing your histogram.

6. Consider the Metropolis-Hastings algorithm in example 5.1 with the
Po (\) as the target distribution.

(a) Show that the chain defined by the algorithm is recurrent using

21



the criterion in (A.5).
(b) Check that the stationary distribution defined by means of (A.6)
is in fact the Poisson distribution Po()), like it should.

. Write a code for, e.g., with Matlab® functions, for the Metropolis-
Hastings algorithm in example 5.1 with the Po ()\) as the target distri-
bution, when
(a) A=0.1.
(b) A=3.2.
Show empirical histograms of your simulations. Take into account the

burn-in period by discarding a suitable portion of samples used in com-
puting your histograms.
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7 Appendix A: Random Walks & Birth and
Death Chains

7.1 Simple Random Walk

Let for {Z; }i>1 be a sequence of .I.D. random variables with values in {—1, 1}
and with

o 1 with probability p
Zi = { —1 with probability g =1 — p. (A1)
We take Yy = h, h is an integer. Let
n+1
Yo =h+ Y Zi=Y,+ Zys. (A.2)

i=1

This is called a simple random walk. If p = g = 1/2, we refer to the classical
simple random walk. This is thought of as a random motion of a particle that
inhabits one of the integer points of the real line. The graphic representation
of an outcome of the sequence {(n,Y,)|n =,1,...,}, is called a path of the
particle, see figure 7, where h = 0.

™, Y

?5 ~_

Figur 7: A path of a simple random walk
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Lemma 7.1 The simple random walk is spatially homogeneous, that is
PY,=j|Yo=h)=P Y, =j+b|Yo=h+b).
Proof:
P(Yn:j|Y0:h):P<ZH:ZZ-:j—h>.
i=1

On the other hand

P(Yn:j+b|Y0:h+b):P(ZZ-zj—h).
=1

Lemma 7.2 The simple random walk is temporally homogeneous, that is
P(Y,=j|Yo=h)=PYoim=J|Ym=n).
Proof:

P(Yn:jli/o:h):P(ZZi:j—h>
=1

and since Z; are [.I.D.,

m+n
:P(Z Zi:j—h>:P(Yn+m:j\Ym:h).

i=m+1

Lemma 7.3 The simple random walk has the Markov property, that is,
P(Yn+1 :] ‘ Ybava"-aYn) :P(Yn+1 :] ‘ Yn)

Proof:
P(Yn+1:]"Y0>Y1>~‘7Yn=CL)=
=P(Zp=j—a)=P(Zpp=j—a|Yy=a)=PYou=j|Y,=a)

Hence {Y},}n>0 ~ Markov (Q, ;) with the integers as state space, where Jj

24



is the unit mass at h, and the transition probability matrix, Q, of the simple
random walk has the entries

P ifj=i+1
G =4 ¢=1—p ifj=i-1
0 otherwise.

7.2 Birth-Death Chains With Reflection at Origin

Let us consider a Markov chain {X,,},>o with the non-negative integers as
the state space, and with the transition matrix P with the arrays for i > 1,
c.f., figure 8,

G Jj=i—1
pi Jj=i+1
Dilj = =i (A.3)

0  otherwise.

where r; = 1 — q; — p;, ¢; > 0, p; > 0. By reflection at origin we mean the
folowing boundary condition at i = 0

Po Jj=1
poy =4 ro=1—po J=
0 otherwise.

This is a rudimentary model for statistics of population sizes, where during
each period only one new individual, or none, is born or dies. The reflection
at origin means that the population does not die out, but obtains a new
founding member, as it were. We call this a birth and death chain with
reflection, with the acronym BDC(r).

It is not difficult to argue that a BDC is irreducible and aperiodic, this is
left as an exercise (section 6). Let us set

Yo=1,7= 71_[2:1 qz,i > 1. (A.4)
Hz:1 b

It has been shown that the BDC(r) is recurrent, if and only if

3 i = +oo. (A.5)
=1
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Figur 8: Birth-Death Chain Transitions

The tools given in these lectures are not well-suited for proving this assertion.
Let us also set

i1
vo=1,0; = =0 > (A.6)
lel qi
In the same vein it can be shown that the stationary distribution of the
BDC(r) is given by
T = CUZ', (A7)

where C' is 1 the normalization constant. An exercise in section 6 checks this
w.r.t. example 5.1.

8 Appendix B: Some Relevant Matlab Func-
tions

8.1 A Matlab® function for P

The next Matlab® function (Englund 2000) delivers a matrix alpha with
the probabilities of acceptance, and the corresponding transition probability
matrix P.

function [P,alphal=pmatris(f,Q)

26



s=size(f);

n=s(2);

P=zeros(n,n);

for i=1:n,

for j=1:m,
alpha(i,j)=min(£(j)*Q(j,1i) /max(£f(i)*Q(i,j),eps),1);
if jv=i,
P(i,j)=alpha(i,j)*Q(i,j);
end,

end,

end,

for i=1:n,

su=sum(P’) ;
P(i,i)=1-su(i);

end;

8.2 A Matlab” function for the discrete Metropolis-
Hastings algorithm

This is a Matlab® function that implements the Metropolis-Hastings algo-
rithm for target distributions on finite subsets of positive integers. It uses as
subroutines the function pmatris above and the update function generate
implemented using (Haggstrom (2002) p. 20), but not shown here.
function x=metropolis(f,Q,n,start);

[P,alpha]=pmatris(f,Q);
X=start;
last=start;
for i=1:n
y=generate(1,Q(last,:));
if rand(1)< alpha(last,y)
x=[x yl;
last=y;
else,
x=[x last];
end,
end,
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8.3 A Matlab” function for the discrete Metropolis-
Hastings algorithm in example 5.2

First we give a function for the acceptance probabilities.

function alpha=alphaexempel(last,y)

a=(y-(1/2))" (4)* exp(-3*abs(y))*(cos(y)"(2));
b=(last-(1/2))" (4)* exp(-3*abs(last))*(cos(last)” (2));
alpha=min(1, a/b);

In the next function the variable p represents the probability of a simple
random walk taking the step up. Hence Z; in (A.1) are implemented as z=
-sign(u-p) , where u are pseudorandom numbers simulating samples of
U(0,1).

function x=metropolisexempel(n,start,p);

x=start;

last=start;

for i=1:n

u=rand (1) ;

z= -sign(u-p)

y= last +z;

if rand(1)< alphaexempel(last,y)

x=[x yl;

last=y;

else,

x=[x last];

end,

end,
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