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1 Introduction

1.1 MCMC

MCMC is a powerful method for exploring (by simulation) a high-dimensional
distribution. Problems arising in Bayesian inference and other fields frequent-
ly lead to highdimensional distribution that are (absolutely) continuous, i.e.,
have a density. Hastings (1970) suggested the use of the discrete Metropolis-
Hastings algorithm by discretization of the pertinent densities, but we do not
follow his lead in this lecture.

In fact it seems to be natural to base the definition and theoretical analysis
of MCMC on the theory of Markov chains on a general space. In this lecture
we give a brief and informal summary of general Markov chains as expounded
in (Nummelin 1984, Meyn & Tweedie 1993). Our summary follows the outline
in (Robert and Castella 1999, Tierney 1994).

The approach to Markov chain theory in discrete time and on a general
(continuous) state space is to start with a transition kernel, which gives us
P (A]z), the conditional probability distribution of moving from z to a set
A.

A major concern in the theory is to find conditions under which there exists
an invariant distribution for the chain, and conditions which allow iterations



of the transition kernel to converge to this invariant distribution. This is an
important concern for chains defined by the MCMC algorithms, too.

2 Markov Chains with Continuous State Spa-
ce

2.1 Transition kernel

First we introduce some notation and facts about transition kernels of Markov
chains with a general (uncountable) state space S and discrete time. The state
space can be thought of as R"™, the n-dimensional Euclidean space. (In this
case xt € S & x = (x1,...,2,).)

2.2 Notations & Facts

Definition 2.1 [Transition kernel] A transition kernel is a function K
defined on S x B(S) (B(S) = a countably sigma-algebra of subsets of S) with
values in [0, 1] such that

(i) Vo K (z,-) is a probability measure.
(ii) YA € B(S), K(x, A) is measurable.

Thus K (z,-) is a version of the conditional distribution

of X, 41 given X,,. This formulation permits the probability of transition to
be a singleton, a set of the form {y}, to be positive, i.e.,

K(z,{y}) >0

We compound the notations by letting the K (-, -) to denote also the transition
density K (x, ZEI) in the sense that

P(Xpi1 € AIX, = 2) = K (2, A) = / K (2.2) do (2.1)

A

holds for all A € B(S), when the density exists.
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Definition 2.2 [Markov chain | Given a transition kernel K, a sequence
{ X, }n>0 is @ Markov chain, if for any n and any z, ..., x,, the conditional
distribution of X, given X, = z,, X,,_1 = Tp_1,..., Xg = X IS

P(Xn+1 GA‘anxn,Xn_l :xn_l,...,XQZ.To):P(Xn+1 €A|Xn:$n)

=K (z,,A) = /AK(xn,x) dx.

|
The chain is a time-homogeneous, if the transition density does not depend
on n.

Example 2.1 (Random Walk ) Let
Xoir = X + Zn, (2.2)

when Z,, are I.I1.D.,and independent of X,. Then X, is conditionally inde-
pendent of X,,_1,..., X, given X,,, and the ensuing Markov chain {X,,},>0
is called a random walk. Assume that Z,, has the density g(z). Then

P(Xp1<y|Xpn=2)=Px+2,<y|X,=1)

Yy—x
=P(Z,<y—x)= / g(z)dz.
Thus the transition density is
0
K(z,y) = 5-P(Xop1 Sy | Xo=2) = g(y — 2). (2.3)

dy

Example 2.2 [Gaussian Autoregressive Process of Order 1, AR(1)] Let 6 €
R, and let

X1 = 0X + Zo, (2.4)
where Z, ~ N (0,0?), and 1.I.D., and independent of Xy. Then X, is
indeed Gaussian and conditionally independent of X, _q,..., Xy given X,,.
The transition probability density is obtained as in (2.3), and is

1 _w-ex)?
K (z,y) = e 207 . (2.5)
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2.3 Iterates of the transition kernel

We have also

P(X,€e Al Xo=2)= / K <x,.¢17/) dr' = K (x, Ay)
Ay

P((X1,X2) € Ay x Ayl Xp=1x) = K (y, A2) K (x,y) dy
Aq

Xl,XQ,..., )GAl XAH‘X():JI)

/ / / K (z,p1) .- K (Yn—2,Yn-1) K (Yn-1, An) dy1 . . . dyp_1.
Ay J Az An_1

If we set K' (z, A) = K (x, A), the kernel for n transitions is given by
P (X, € AlXo = 1) = K" (5. 4) = | K" (1 A) K (2.0)dy.
S

We get with this notation the Chapman-Kolmogorov equation

Lemma 2.3 Foralln,me N x N,z € S, A € B(S),

P (X € A | Xo = 1) = K™ (2, A) = / K™ (y, A) K™ (2, y) dy.
S

2.4 Stopping times

One of the most important tools of probability calculus is the notion of a
stopping time.

Definition 2.3 [Stopping time] Take A € B(S), and
Ta =min{n > 1] X, € A}. (2.6)

and
TA = +OO,

if X,, ¢ A for any n.



u
In words, 74 is the first time the chain enters A, and is called the stopping
time at A. We define also

na=Y Ia(X,), (2.7)

which is the number of visits of the chain in A.
We will be invoking the quantitities

E [7714] ’
or the average number of visits in A, and
P (TA < OO) ,

which is the probability of return to A in a finite number of steps.

2.5 Classification of states

2.5.1 Irreducibility

The chain is called irreducible, if all states communicate,
Ve,y e S xS, P (1, <400 | Xg=2x)>0.

where 7,, the first time y is visited, when the chain starts in z, is defined as
in (2.6).

This is not a good definition of irreducibility, and has to be corrected by
the following.

Definition 2.4 [p-irreducibility] Given a measure ¢, the Markov chain
{X,}n>o with transition kernel K(z,y) is ¢-irreducible, if for every A €
B(S) with ¢ (A) > 0 there exists an n = n (z, A) such that

K"(z,A)>0foral z e S

& P (14 < 00| Xy =2x)>0.

The literature cited invokes at this stage the existence of a maximal ¢
-measure, and formulates much of the results in terms of the maximal irre-
ducibilty measure, but we refrain from doing so here.
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2.5.2 Transience and Recurrence

From an algorithmic point of view a Markov chain must have stability pro-
perties. Irreducibility ensures that every set A will be visited by the MC
{X.}n>0, but this property is too weak to ensure that the sample path of
{X, }n>o will enter A often enough. The literature cited introduces here also
the Harris recurrence, which we skip here.

Definition 2.5 /Recurrence] A Markov chain {X, },>¢ is recurrent, if
e there is a measure ¢ such that {X, },>0 is ¢-irreducible, and

e for every A € B(S) such that ¢ (A) > 0 and
E [na] = +oo for every = € A,

where 7, is defined in (2.7)

Definition 2.6 [Transience] A Markov chain {X,},>¢ is transient, if
e there is a measure ¢ such that {X,,},>0 is ¢-irreducible, and

e there exist A; € B(S) such that ¢ (A;) > 0 and
E [na,] < M, for every z € A,

where 7y, is defined in (2.7), and

S:U&.

7

We have the following theorem.

Proposition 2.4 A ¢-irreducible chain is either recurrent or transient.



2.6 Invariant measure

Definition 2.7 [Invariant measure]| A o-finite measure is invariant for
the transition kernel K (z,y), and for the associated Markov chain, if

ﬂwyzékmumﬁu@ VB € B(S). (2.8)

u
If the density (again denoted by m) exists, the definition of an invariant
measure can be stated as

w@:éK@wﬂ@m (2.9)

When there exists an invariant probability measure for a ¢-irreducible chain,
the chain is called positive. Recurrent chains that do not allow for a finite
measure are called null recurrent.

Example 2.5 [Invariant density for AR(1)] Assume that | 6 |< 1 in
Xpi1 = 0X,, + Zn, (2.10)

where Z,, ~ N (0,0?), and LI.D., and independent of Xj. In example 2.2 we
found that

1 _woe?
K (z,y) = 5 ¢ 27 . (2.11)
Thus (2.9) becomes
<l _weew?
7(y) = \/ﬂae 27 7 (x)dx. (2.12)

It can be checked that the invariant distribution, the density of which satisfies
(2.12), is N (o o? )

) 1—-92

If Xg ~ m, then X,, ~ 7 for all n, and if 7 is finite measure, then the chain
is called stationary.

Proposition 2.6 If the chain {X,,},>0 is positive, then it is recurrent.



2.7 Reversible Markov Chains
{X.}n>0 is an MC with the kernel K(z,y).

Definition 2.8 If for any A and B in B(S) and any n > 0
P(X,€eA X,p1€B)=P(X,€B,X,11€A4), (2.13)
then we say that the Markov chain {X,,},> is reversible.

|
It turns out that this is equivalent to the detailed balance condition, i.e.,
there is a function f satisfying

K (y,z) f(y) = (@)K (z,y) (2.14)
for every (z,y) € S x S.

Proposition 2.7 Suppose that a Markov chain with the transition kernel
K(x,y) satisfies the detailed balance condition (2.14) with f, which is a
probability density function. Then

1) The density f is the invariant density of the chain.
2) The chain is reversible.
Proof:
1)
[ KBt = [ [ K () sty

:LLK@@%MMy

= [ 1@ [ K @oydgas = [ s,
since [o K (x,y)dy = 1.



2) To prove the reversibility from the detailed balance condition (2.14) we
note that

P(X, €A X\ € B) = / F(@)P (Xni1 € BIX, = ) da
A

//f K (z,y) dyds
//f x) dydx

// F)K (g, 2) dedy = P (X, € B, X1 € A).
where we used also Fubini’s theorem.

|
In fact (2.14) and (2.13) are equivalent, when densities exist; from (2.13) we
obtain (2.14) by selecting A and B suitably and by differentiating.

3 MCMC for Continuous Spaces

3.1 Introduction

The MCMC theory turns the preceding around: the invariant distribution
is known, perhaps up to a constant multiple, it is the target density from
which samples are desired, and the problem is find the desired transition
kernel. But we should be able to check that the Markov chain obtained is a
positive chain, as we may want to compute various integrals by Monte Carlo.

3.2 The Metropolis Problem Again

Let f be an arbitrary probability density function, target density, on S,
ie.,

o f(r)>0forallz e Ss.
.fS x)dr = 1.

The Metropolis problem is to give a Markov chain {X,,},>¢, i.e., the asso-
ciated kernel, such that f is its invariant density (distribution).
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3.3 Metropolis-Hastings Algorithm

Let
q (ylz)

be a conditional density function, i.e.,

e g(ylr) >0forall z,y € S xS.

L4 fS Q(y‘x>dy =1

The various factors influencing selection of ¢ (y|z) are discussed below in

section 5.

Definition 3.1 /Metropolis-Hastings Algorithm/ ¢ (y|z) is a conditio-

nal probability density. Given that X,, = x,
1. Generate Y11 ~ ¢ (y|x,).
2. Take

P Y,.+1  with probability p(x,, Y1)
T with probability 1 — p (2, Yni1),

where

fW)a(zly) } '

p(z,y) = min {1’ F@)alo)

3. X1 +— x, and return to 1.

The distribution ¢ is called the proposal distribution.

3.3.1 Comments on the Metropolis-Hastings Algorithm

e The calculation of p(x,y) does not require the knowledge of the nor-

malizing constant in the target distribution.

e in case ¢(y|x) is symmetric (Metropolis Algorithm), the probability of
acceptance depends only on the ratio f(y)/f(z). If f(y) > f(x), the
chain moves to y; otherwise it moves to with the probability given by
f(y)/f(z). Hence, if the jump goes "uphill’, it is always accepted, if it

goes downhill, it is accepted with a non-zero probability.
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3.3.2 Properties of the Metropolis-Hastings Algorithm

Let us next add a technical assumption, the formulation of which will require
a definition. Let & = the support of f, the & smallest closed set that
contains all = such that f(x) > 0,

Er=c{z € S| f(z) > 0}.

We are going to assume that &; is connected. Connectedness means that
for any two points x and y in £ there is a path connecting x and y that is
included inside £.

Proposition 3.1 Let ¢(y|z) be any conditional distribution, the support of
which, &;, contains the support & of f, where £y is assumed to be connected.
Then the Markov chain {X,},>0 produced by the Metropolis-Hastings algo-
rithm in definition 3.1 above has the density f as the density of the invariant
distribution.

Proof: The proof is given in Appendix A. .

Let
= / f(z)dz (3.2)
A

We say that an MC is f - irreducible, if it is ¢-reducible for the measure ¢
defined in (3.2).

Proposition 3.2 Suppose that the Markov chain {X,, },>0 produced by the
Metropolis-Hastings algorithm in definition 3.1 is f-irreducible. Then

lim l h / h(z
n—oo n

as soon as [ h(z)f(x)dr < oco.

Lemma 3.3 Suppose that f is bounded and positive on every compact sub-
set of its support ;. If there are positive numbers € and § such that

q(y | z) >e for|z—y| <9,

then the Metropolis-Hastings Markov chain is f-irreducible and aperiodic.
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4 Examples

4.1 Simulating the Standard Normal Distribution

This a formal demonstration of the Metropolis-Hastings algorithm. Our tar-

get distribution is
I a2
r)=—€ 2.

We are going to use a proposal random walk, where
Yn+1 = Xn + Zn+1>

and Z,, is L.ID. ~ U (—a,a). This gives us

1

dtole) = {

lzr -yl <a
otherwise.

Cleary here the conditions of proposition 3.1 are violated, since the support of
q is actually included in the support of f, not vice versa as in proposition3.1.

This is a symmetric proposal density. Hence the algorithm here is a Metro-
polis algorithm, where the acceptance probability only depends on the ratio
f(y)/f(x). Formally this is verified as follows:

] F@a(zly) _
play) =14 [1’ f(w)q(ylx)} [z —y|<a
0 otherwise

_92
min {1,6 T} lz -yl <a

0 otherwise

min |:1,6_ P )} lr—y| <a
0 otherwise.

This is impelemnted in the following Matlab® code:
function x=metropolisgauss(antal,a,start);
Xx=start;

last=start;

for i=1:antal

y= last-atrand*2x*a;

12



alfa= min(1, exp(0.5 *(last"2-y"2)));

if rand(1)< alfa

x=[x yl;

last=y;

else,

x=[x last];

end,

end,

The results are here clearly influenced by the choice of a, as examined in the
Figures 1-6.
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Figur 1: Histogram for the Metropolis MC with N(0,1) as the target distri-
bution and with a = 0.5
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1
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Figur 2: A simulated path of the Metropolis MC with N(0,1) as the target
distribution and with a = 0.5.

4.2 Sampling from a Posterior Density for the Para-
meters of a Weibull distribution

This is example 6.3.2 in (Robert 2001, p. 305). We are dealing with the
Weibull! distribution with the parameters

0= (04,77)

in the density 2
I(x|0) = anx®te ™" x> 0. (4.1)

'W.A. Weibull:A  Statistical Theory of the Strength of Materials. In-
genjorsvetenskapsakademiens Handlingar No 153, Stockholm, 1939
2The standard representation is I(x|) = aA\*z® le~ ()",
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Figur 3: Histogram for the Metropolis MC with N(0,1) as the target distri-
bution and with a = 2

This the density of the Weibull distribution We(«, ) and does not belong to
the exponential family, and hence there is no explicit posterior density for 6.
Let us take the prior density as

8(6) = Cyeon e
For n I.I.D. samples 1, ..., x, ~ We(a,n) in (4.1) the posterior is
¢ 0|z, ... x,) = Coa™n" H g0 lem Xim mingmap =l o=tn (4.2)
i=1
where Cy is the numerator given by

1
ST, Wil 0)6 (6) do’

15
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o

Figur 4: A simulated path of the Metropolis MC with N(0,1) as the target
distribution and with a = 2.

and cannot be given an explicit expression.
We want to explore ¢ (0|z1, ..., x,) by generating samples. Robert (loc.cit.)
suggests the proposal kernel

q <9/|9> = ée‘i . %e_n. (4.3)

Here
0= (a,n)

0 = <o/, 77/>

is the proposed value. The proposal kernel in (4.3) is a product of two expo-

is current value and
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Figur 5: Histogram for the Metropolis MC with N(0,1) as the target distri-
bution and with a = 0.1

nential densities. Pseudorandom numbers drawn from an exponential distri-
bution are obtained, e.g., by means of exprnd in Matlab Statistics Toolbox.
We can compute a as follows® view of (3.1).

N~ i ¢ (0'|z1, ..., m0) q (0]0)
000 = {1’ & @lr. o) g (0]6) }

B
7
n

Q\|Q

/
(@) ) Ty g e St e g te sl e
/

NAn n a—1_—5S" 2% ,—a,8—1,—En_L1 -
arn Lo 2 e Yimrine-api-le 5770”76 «

=min\g 1,

’
_n
n

31t seems like there are typing errors in this on loc.cit..
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Figur 6: A simulated path of the Metropolis MC with N(0,1) as the target
distribution and with a = 0.1.

%
(0%
=1 l

n /N n—1 '\ B—2+n , , , ’ "
. I (6% _ _ n _n s S =/ I - T/
= min 1, | | &~ (—) (7]—) e 5(77 77) ezz’:1 D e (a 01)6 o o T alm

Here the inextricable constant C is cancelled and the acceptance probability
is easily implemented using some software platform like Matlab®.

5 Implementation Issues

5.1 Various proposal densities

In order to implement the Metropolis-Hastings algorithm it is necessary to
Specify a suitable proposal distribution. Typically this distribution is selected
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from a family of distributions that requires the tuning of such parameters as
location and scale.

One family of proposal distributions appeared already in the work of Met-
ropolis. Then

q(ylz) = g1(ly — =[])

where g; is a multivariate density and ||-|| is the Euclidean norm. The proposal
is thus drawn according to the random walk

Yn :Xn+Zna

where the I.I.D. sequence Z, ~ g;. Possible choices of g; are here the multi-
variate normal density and the multivariate t -density, where the parameters
are tuned as discussed below. Another well known choice is

q(ylz) = g2(y)

where ¢ is a multivariate density. In other words, the proposals are drawn
independently of the current state, and the resulting chain is called the in-
dependence chain. As above, g can be multivariate normal or ¢.

A third alternative is to use information about f(x), if available (see Chib
and Greenberg (1995)).

A fourth alternative is the autoregressive chain, (see Chib and Greenberg
(1995)).

5.2 Tuning of the scale

The critical issue is the selection of the scale or the spread of the proposal
distribution. This is an important matter that has consequences for the ef-
ficiency of the algorithm. The spread of the proposal density affects the the
behaviour of the algorithm in at least two respects: one is acceptance rate
(the percentage of times a move to a new point is made), and the other is
the region of the sample space that is covered the chain.

To explain this, assume that the chain has converged, and the density is
being sampled around its mode. Then, if the spread is very large, there are
proposed candidates that will be very far from the current value, and will
therefore have a low value of being accepted (because f(y) << f(z)). But if
the spread is chosen too low, the chain will no longer traverse the support of
the density, and low probability regions will be under-sampled.
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6 Exercises

1.

(a)

n LLD. samples x,...,x, of a Weibull distribution can, e.g.,
be obtained by using the Matlab® Statistics Toolbox function
weibrnd. Note the discrepancies w.r.t. the parameters in section
4.2 above and those in Matlab® Statistics Toolbox.

Explore the posterior density in section 4.2 by Metropolis-Hastings
using the prior density and proposal kernel in loc.cit. Use k inde-

pendent realizations xgl), e ,xnl), [ =1,...,k of the Metropolis-

Hastinsg chain, retain the final state 2 and compute the histo-

gram with these.

The function weibfit gives you the ML-estimate of the parame-
ters using xy,...,x,. Compare MLE with your histogram of the
posterior. (Keep in mind the discrepancies in parametric represen-
tations in section 4.2 above and in Matlab® Statistics Toolbox.)

Exercise 6.2.1 d. p.325 Robert (2001)

Exercise 6.2.6 b. & c. p.326 Robert (2001) (implement the algorithm
and do simulations, the mathematics in part a. are beyond the level of
attention in this course. )
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7 Appendix A: A Proof of Proposition 3.1

For any B € B(S) the proposal kernel is given by

Qa.B) = P (Yo € BIXu = 1) = [ alylo)dy
B
We define also

Q*(x,B) = P (Y,11 € B, Y41 is accepted |X,, = )

= /Bq(y\x)p(fﬂ, y)dy. (A1)

which is the conditional probability that Y, .; is in B and Y, is accepted,
given that X,, = x. We introduce also

s(x) = P (Y41 is rejected | X, = x)

as the conditional probability of rejecting the proposal given that X,, = x.
We shall next derive the transition kernel P (X, € B|X,, = x). By the
law of total probability

P(X,11 € BIX,=2) =
= P (X,41 € B,Y,41 is accepted | X, = z) +
P (X,41 € B,Y, 41 is rejected and = € B |X,, = z)
= Q*(z, B) + Ip(z)s(x), (A.2)

where Ig(x) is the indicator function of B.

Now we show that the density f(x) is the density of the invariant distri-
bution with respect the kernel in (A.2) above. We show that the detailed
balance condition holds via checking (2.13). We have

P(X, €A Xpi1 € B) = / f(2)P (Xps1 € B|X,, = z) da

and from (A.2) and (A.1) we get

/f andeJr/f Vg (2)5(2)da
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./f (/ yh::x@@&dx+AMBﬂﬁm@Mx (A3)

Let us now define for any x € A

B(z) = {y € Blf(y)q(zly) > f(z)q(y|x)}.

We have
= B(z)| J B(x)
By (3.1 ) we have in B(z) that
Faln) > F@)alyle) < ple,y) = win {1, FOLIIL 1
We have
/f (/ (ylz)p xydy) /f </B q(ylx)p xydy)

In the first integral on the right hand side

/f (/ q(y|x)p xw@)m—/f </@)@@@)m.

But under (A.4) we have also

Fatole) = Fately) min {1, LD
= F(W)alzly)p(y, =),

so that we get

/f / yu@@_// FW)a(l)p(y, 2)dydz. (A6

In the second integral in (A.5) we get

/f </ yu(xw@)m
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= [ ([ o i) o
= [ steliay) as
= [ sotelnots oy ) i

since in B(z)¢ we have that

o(y.2) = min {1’ f(x)Q(yle)} _1

F@)a(xly)
Therefore we get in view of (A.5) that

/ fa ( / (ylo) )dy)der [ s @A
-/ ( / f(y)q(xw)p(y,x)dy) dot [ fastn (A8)

Then we have

[ ([ sontetint.wiiv) e = [ 5w [ ateliins. yisa

We have
/ e / (aly)ply, 2)dedy = / FQ, Adr. (A9)

The second term in (A.3) is

f(2)s(x)de = / La(a) f(2)s(x)dz = / La() () s(y)dy

ANB B

by the change of variable x — y, the Jacobian of which is 1. By insertion of
this and (A.9) in (A.3) we get

P(X, € A, X, € B) = / F(0)Q(y, Ay + / Ta(y)F()s(y)dy
=P(X,€B,X,41 €4),
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which establishes, in view of (A.2), the reversibility condition (2.13) in the
case (A.4). Therefore, due to proposition 2.7, f is the invariant density of
the Metropolis-Hastings chain.

The assumption about the inclusion of pertinent supports are brodaly spe-
aking needed in order to guarantee that, e.g., an integral like

/Af(x) (/B Q(y\x)p(x,y)dy) da

does not vanish over a set B, where the target density is positive. "
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