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SKEW-NORMAL DISTRIBUTIONS/ Timo Koski

A random variable X is said to have a skew-normal distribution, if it has
the density
flz;A) = 2¢(2)P(A\x), —o0 <z < 00,

where —oo < A < oo and ¢(x) is the probability density of the standard
normal distribution N (0, 1), or

and ®(z) is the distribution function ®(z) = [*_ ¢(u)du. We write X €
SN ()A) and note that SN (0) = N(0,1). We have two plots of f(x; A) in figure
1.

Next we write down a brief list of some of the first properties of skew-
normal distributions.

1 Properties of SN ()

1. It is to be checked that
/ flz; N)dx =1 for all \.

A hint: define ¥ (X) := [*_ f(z;A)dz. Then we have ¥ (0) = 1 and
4 (X) = 0 for all X (check this) and thus the claim is proved.



Figur 1: The densities of SN (—3) (the left hand function graph) and SN (3)
(the right hand function graph).

2. If A — oo, then f(x;\) converges pointwise to

[ 26(z) itx>0
f(x)_{o if # <0,

which is a folded normal distribution. If A — —oo, then f(x; \) conver-

ges pointwise to
0 ifz>0
fla) = { 20(z) ifz <0,

which is another folded normal distribution.

X% e xi.
This can be seen by computing
P(X*<t)

and differentiating.



2 A
E[X]:\/;ﬁ.

To see this, introduce a new auxiliary function ¥ (A) := [* xf(z; \)dx

and find
d > 1
Lo\ ==
nr W \/;(1 AR

B[X] :/@WCM%—C.

and constant of integration C' can be determined from ¥ (0) = 0.

Then

2 )2

VIXI=1-797%

This is easily find by noting that
VIX] =B X°] - (B[X]).
and the fact that £ [X?] =1, as X? € x?1.

. Skewness of a random variable X is a measure of symmetry, or more
precisely, the lack of symmetry of its distribution. A distribution (or
data set) is symmetric if it looks the same to the left and right of the
center point. Skewness x; is mathematically defined as

k1 =F [W] E(Xg) - 3E(X)(72 — (E(X))3

o3 o3

The skewness of X € SN () is found to be

= (57)) <(vE %)/

Hence A = 0 implies k1 = 0.

. Kurtosis is a measure of whether the distribution of X is peaked or
flat relative to a normal distribution. High kurtosis (a.k.a. leptokurtosis)
tends to have a distinct peak near the mean, decline rather rapidly, and
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have heavy tails. Data sets with low kurtosis (a.k.a. platykurtosis) tend
to have a flat top near the mean rather than a sharp peak. A uniform

distribution would be the extreme case. Kurtosis ko is mathematically

defined as
oy = F {w} |

ot

If X € N (m,c?), then the kurtosis is computed to be = 3. Kurtosis
can in this sense be used to measure how much a distribution differs
from the normal distribution. The kurtosis of X € SN () is calculated
to be

(£ [X])*

(V [X])?

. Theorem 1.1 let X € N(0,1) and Y € N(0,1) and X and Y be
independent. Take a real number \. Set

,_ Y. iaw=X
— ) -V, if\Y < X.

/4,2:2(7T—3)'

Then Z € SN (A).

Obviously this gives a simple way of simulating random samples of
SN ()\) using, e.g., Matlab®.

Proof: The distribution function Fy(z) is
Fz(2) =P(Z < 2)

and by construction of Z we get that the event Z < z is the
union of two disjoint events and thus

P(Z<2)=P{Y <z}n{X <AY}H+P({-Y <z} n{X > AY}).
(1.1)
We consider the first term in the right hand side and get

z

P({Ygz}m{x<m>:/ P(X <My |Y =) fr(y)dy

—00

and since X och Y are independent

- / P (X < M) iy (y)dy =

oo



-/ Z ( ¢<u>du) Ry = [ "8 Ow) fr(w)dy,

[e.e] [e.e] [e.e]

where ®(y) is the distribution function of X € N(0,1). We
write this as

= /_ D (\y) o(y)dy,

where ¢(y) is the probability density of Y € N(0,1).
For the second term in the right hand side of (1.1) we have
that

PH{-Y <z}n{X>XY})=P{Y > -z} n{X > \Y}).

As in the first case we get

oo

P({Y > —z}m{sznz/ P(X >\ | Y =) fr(y)dy

—z

- [Pz oty
- [Ca-rec<aotin= [ a-o 0ot

The change of variable y = —u yields

_ _/_00(1 — & (<)) $—u)du = / B (\ut) (1) d,

—00

where we used an elementary rule of intergration, the sym-
metry ¢(—u) = ¢(u) and the formula & (—Au) =1 — & (Au).
By inserting this in (1.1) we get thus

P(Z<2)= / & (\y) o(y)dy + / & (M) d(u)du =

—00 —00

z

dvs.
—2 / B (\y) 6(y)dy.

When we differentiate this w.r.t. z we get the density

F2(2) = LRy(2) = P (Z < 2) = 20(2)B (A2)

as was claimed. =



2 Estimation of )\

The maximum likelihood estimate of A can be found numerically for inde-
pendent samples x1, Ta, ..., Ty.

We evoke the method of moment estimation using the expectation. The
moment estimator is found by setting the empirical (= arithmetic) mean
equal to the population mean, i.e.,

R v

and then solving w.r.t. A\. This gives

ij

3o

This is a plug-in estimator. For the estimator to be defined it is required that

the samples are such that
_ 2
‘ x |< )
T

and when this is not true, then we need to use some other estimator. When
bootstrapping | A | we simply discard those bootstrap samples, where the
condition is not satisfied.

We are in the computer demonstrations mostly taking A\ > 0, and then
make

~ ~ j2
)\:)\(xlax27"'7xn) =

_j2

3

The questions of standard error and distribution of X are hard to answer
using exact analysis. Clearly, these can be addressed by bootstrapping. For
this see the slide on the accompanying attachment on the course page for
current information.



