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Sf 2955: Computer intensive methods :

SKEW-NORMAL DISTRIBUTIONS/ Timo Koski

A random variable X is said to have a skew-normal distribution, if it has
the density

f(x; λ) = 2φ(x)Φ(λx), −∞ < x < ∞,

where −∞ < λ < ∞ and φ(x) is the probability density of the standard
normal distribution N(0, 1), or

φ(x) =
1√
2π

e−x2/2,

and Φ(x) is the distribution function Φ(x) =
∫ x

−∞
φ(u)du. We write X ∈

SN (λ) and note that SN (0) = N(0, 1). We have two plots of f(x; λ) in figure
1.

Next we write down a brief list of some of the first properties of skew-
normal distributions.

1 Properties of SN (λ)

1. It is to be checked that
∫

∞

−∞

f(x; λ)dx = 1 for all λ.

A hint: define Ψ (λ) :=
∫
∞

−∞
f(x; λ)dx. Then we have Ψ (0) = 1 and

d
dλ

Ψ (λ) = 0 for all λ (check this) and thus the claim is proved.
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Figur 1: The densities of SN (−3) (the left hand function graph) and SN (3)
(the right hand function graph).

2. If λ → ∞, then f(x; λ) converges pointwise to

f(x) =

{
2φ(x) if x ≥ 0
0 if x < 0,

which is a folded normal distribution. If λ → −∞, then f(x; λ) conver-
ges pointwise to

f(x) =

{
0 if x ≥ 0
2φ(x) if x < 0,

which is another folded normal distribution.

3.
X2 ∈ χ2

1
.

This can be seen by computing

P
(
X2 ≤ t

)

and differentiating.
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4.

E [X] =

√
2

π

λ√
1 + λ2

.

To see this, introduce a new auxiliary function Ψ (λ) :=
∫

∞

−∞
xf(x; λ)dx

and find
d

dλ
Ψ (λ) =

√
2

π

1

(1 + λ2)3/2
.

Then

E [X] =

∫ √
2

π

1

(1 + λ2)3/2
dλ + C.

and constant of integration C can be determined from Ψ (0) = 0.

5.

V [X] = 1 − 2

π

λ2

1 + λ2

This is easily find by noting that

V [X] = E
[
X2

]
− (E [X])2

.

and the fact that E [X2] = 1, as X2 ∈ χ2

1
.

6. Skewness of a random variable X is a measure of symmetry, or more
precisely, the lack of symmetry of its distribution. A distribution (or
data set) is symmetric if it looks the same to the left and right of the
center point. Skewness κ1 is mathematically defined as

κ1 = E

[
(X − E(X))3

σ3

]
=

E(X3) − 3E(X)σ2 − (E(X))3

σ3

The skewness of X ∈ SN (λ) is found to be

κ1 =

(
4 − π

2

)
· (E [X])3

(V [X])3/2
.

Hence λ = 0 implies κ1 = 0.

7. Kurtosis is a measure of whether the distribution of X is peaked or
flat relative to a normal distribution. High kurtosis (a.k.a. leptokurtosis)
tends to have a distinct peak near the mean, decline rather rapidly, and
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have heavy tails. Data sets with low kurtosis (a.k.a. platykurtosis) tend
to have a flat top near the mean rather than a sharp peak. A uniform
distribution would be the extreme case. Kurtosis κ2 is mathematically
defined as

κ2 = E

[
(X − E(X))4

σ4

]
.

If X ∈ N (m, σ2), then the kurtosis is computed to be = 3. Kurtosis
can in this sense be used to measure how much a distribution differs
from the normal distribution. The kurtosis of X ∈ SN (λ) is calculated
to be

κ2 = 2 (π − 3) · (E [X])4

(V [X])2
.

8. Theorem 1.1 let X ∈ N(0, 1) and Y ∈ N(0, 1) and X and Y be

independent. Take a real number λ. Set

Z =

{
Y, if λY ≥ X

−Y, if λY < X.

Then Z ∈ SN (λ).

Obviously this gives a simple way of simulating random samples of
SN (λ) using, e.g., MatlabR.

Proof: The distribution function FZ(z) is

FZ(z) = P (Z ≤ z)

and by construction of Z we get that the event Z ≤ z is the
union of two disjoint events and thus

P (Z ≤ z) = P ({Y ≤ z} ∩ {X < λY })+P ({−Y ≤ z} ∩ {X ≥ λY }) .

(1.1)
We consider the first term in the right hand side and get

P ({Y ≤ z} ∩ {X < λY }) =

∫ z

−∞

P (X < λy | Y = y) fY (y)dy

and since X och Y are independent

=

∫ z

−∞

P (X < λy) fY (y)dy =
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=

∫ z

−∞

(∫ λy

−∞

φ(u)du

)
fY (y)dy =

∫ z

−∞

Φ (λy) fY (y)dy,

where Φ(y) is the distribution function of X ∈ N(0, 1). We
write this as

=

∫ z

−∞

Φ (λy)φ(y)dy,

where φ(y) is the probability density of Y ∈ N(0, 1).

For the second term in the right hand side of (1.1) we have
that

P ({−Y ≤ z} ∩ {X ≥ λY }) = P ({Y ≥ −z} ∩ {X ≥ λY }) .

As in the first case we get

P ({Y ≥ −z} ∩ {X ≥ λY }) =

∫
∞

−z

P (X ≥ λy | Y = y) fY (y)dy

=

∫
∞

−z

P (X ≥ λy)φ(y)dy

=

∫
∞

−z

(1 − P (X < λy)) φ(y)dy =

∫
∞

−z

(1 − Φ (λy))φ(y)dy.

The change of variable y = −u yields

= −
∫

−∞

z

(1 − Φ (−λu))φ(−u)du =

∫ z

−∞

Φ (λu)φ(u)du,

where we used an elementary rule of intergration, the sym-
metry φ(−u) = φ(u) and the formula Φ (−λu) = 1−Φ (λu).
By inserting this in (1.1) we get thus

P (Z ≤ z) =

∫ z

−∞

Φ (λy)φ(y)dy +

∫ z

−∞

Φ (λu)φ(u)du =

dvs.

= 2

∫ z

−∞

Φ (λy)φ(y)dy.

When we differentiate this w.r.t. z we get the density

fZ(z) =
d

dz
FZ(z) =

d

dz
P (Z ≤ z) = 2φ(z)Φ (λz)

as was claimed.
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2 Estimation of λ

The maximum likelihood estimate of λ can be found numerically for inde-
pendent samples x1, x2, . . . , xn.

We evoke the method of moment estimation using the expectation. The
moment estimator is found by setting the empirical (= arithmetic) mean
equal to the population mean, i.e.,

x̄ =
1

n

n∑

i=1

xi =

√
2

π

λ√
1 + λ2

and then solving w.r.t. λ. This gives

| λ̂ |=
√

x̄2

2

π
− x̄2

.

This is a plug-in estimator. For the estimator to be defined it is required that
the samples are such that

| x̄ |<
√

2

π
,

and when this is not true, then we need to use some other estimator. When
bootstrapping | λ̂ | we simply discard those bootstrap samples, where the
condition is not satisfied.

We are in the computer demonstrations mostly taking λ > 0, and then
make

λ̂ = λ̂ (x1, x2, . . . , xn) =

√
x̄2

2

π
− x̄2

.

The questions of standard error and distribution of λ̂ are hard to answer
using exact analysis. Clearly, these can be addressed by bootstrapping. For
this see the slide on the accompanying attachment on the course page for
current information.
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