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1 Functionals of Distribution Functions

Let X be a random variable and let a distribution function £’ on the real line
be defined as
Flz)=P(X <z), —oco<z<o

and we assume that the true distribution function is a member of a class of
distribution functions M. This is basically a nonparametric statistical model,
i.e., we do not assume the existence of a finite set of parameters that uniquely
define the members of M.

Often the quantity 6 we are interested in estimating can be viewed as

0 =T(F)

and we say that 6 is a statistical functional (on M). By this we mean that
T maps the function F to a real number #, or, as one writes in mathematics,

M>3F&S0eR.

This is readily understood by means of examples.

Example 1.1 Probability of an interval Let F' be a distribution function
and set for real numbers a < b



We can also write this as

b b . .
_ _ [ f(x)dx X is a continuous r.v.
T(F) = /a dF () = { Zk:aqubp () X is a discrete r.v. (1.1)

Example 1.2 Mean ¢ = E'[X], and thus

[~ [ af(x)dx X is a continuous r.v.
TiF) = /— zdf(z) = { Zk xkp () X is a discrete r.v. (1.2)

[e.e]

Example 1.3 r-th moment 6 is the r-th moment and then
T(F) :/ x"dF(x),

where the right hand side can be written analogously to the right hand side
in (1.2).

Example 1.4 Variance The variance § = V(X)) and

0= T(F) = /_Oo (x - /_Oo xdF(x))2 dF (). (1.3)

[e.9] oo

Example 1.5 Median 6 is the median, if

1

6—T(F)=F" (5) o F () = %



Example 1.6 Skewness Let © = E[X] and 0? = V [X]. Then the skew-
ness of X is measured by

K= — ], (1.4)

Thus
J7 (= )’ dF (x)

()= = ar) "

This is a measure of the lack of symmetry of the distribution F.

(1.5)

T(F) =

Example 1.7 Covariance The covariance § = Cov(X,Y’), now
Flz,y) =P (X <z,Y <y)

Fx(z) =P (X <2,V <00), Fy(y) = P(X <00,V <y)

and

covx.v) = [ Z / Z (x— / ZxdFX(x)) (y— / Zdey(y)) dF (z,y)
:/: /_nydF(x,y)—/_ZxdFX(x)-/_Zdey(y)

= t3 — tth =a (tl,tQ,tg,) .
We set - -
(P = [ sdfx@). TP = [ k)

Ty(F) = /_Z /_Z xde(x,;).

0 = a(T3(F), To(F), T5(F)) . (L6)

Then



Example 1.8 Quantiles Let F'(x) be strictly increasing with a density. Let
0 <p <1 and then

is the p:th quantile.

Example 1.9 Mann-Whitney Functional Let F(z) and G(x) be two
distribution functions and let X ~ F| Y ~ G be independent random varia-
bles. Then

6 —T(F.G)=P(X<Y)= /_Oo /_y AF(2)dC(y).

is the Mann-Whitney functional.

As a check of the formula

P(Xsm:/ P(X <y|Y =y)dCly)

— 00

and independence gives

_ /_OO P(X <)) dG(y) = /: /_‘; AF (2)dG(y).

oo

Example 1.10 The chi-squared functional Let A; C R be a partition
of the real line into k cells , i.e.,

AlﬂAT:@,l%’f’, ,UleAl:R.

Let p;,l = 1,2,...,k be a given probability distribution and F' be a distri-
bution function. Next

P(4) = /A AP ().

Then we define the chi-squared functional as

T(F) - Zp ( / A —pl)Q.



2 Empirical Distribution Function

We start with the definition. Let X7,..., X, have the distribution F' € M.
The empirical distribution function is simply

~ 1
F,(x) = — x ( the number of X; < ).
n

More formalistically we can introduce the following.

Definition 2.1 The empirical distribution function F,(z) for z € R is
defined by

~ 1 —
E.(z)=— Ux—X;), 2.1
0= U= ) (2.)
where U(x) is the Heaviside function
0 <0
Ul(zx) = { 1 z>o0. (2.2)

Hence we see that the empirical distribution puts the probability mass % on

every data point X; = x;. Some first properties of E, (x) are given in the next
theorem.

Proposition 2.1 Let X;,...,X, be LLLLD. and have the distribution F'.
Then it holds that

1. For any fixed =
Ep (ﬁn(x)) = F(x), (2.3)

and
Ve (Bu@) = ()1 = F(z) (2.4)

n

2. Glivenko-Cantelli Theorem

a.s

sup | F,(z) — F(z) |3 0, (2.5)

asn — 0.



3. Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality For any ¢ > 0
P <sup | F,(z) — F(z) |> 5) < 272 (2.6)

asn — 0.

By Chebyshev's inequality we have for any € > 0 in view of (2.3) that

P (| Fule) - F(x) > ) < ;—QVF (F.()
and thus (2.4) gives

B (| Fue) — F(a) > ) < L FDI=F@)

g2 n

and this shows that we have convergence in probability
F(x) © F(x),

as n — 0.

3 Plug-in Estimates of Statistical Functio-
nals

The class of estimators of § = T'(F') mostly analysed in this course is the
plug-in estimator to be defined next.

Let zq,...,x, be a sample of I.I.LD. random variables X7, ..., X, respecti-
vely. Then

Fu(z) = %ZU(m—xi). (3.1)

Definition 3.1 zy,...,z, is a sample of L.L.D. random variables. The plug-
in estimator 6, of 8 = T'(F') on basis of x1, ..., x, is defined by

6, =T (ﬁn) . (3.2)



Example 3.1 The Mean Let § = E [X]. Then we get by example 1.2

o0

T(ﬁozi/ dF,.

— o0

But then we observe that ]3” is a discrete probability distribution with the

mass % at every sample point, and hence we can apply the corresponding

case in the right hand side of equation (1.2) to obtain

N n 1 1 n B
T(Fn> :;xzﬁ:ﬁ;%:x

For those familiar with the Heaviside function U(z) we write

T(ﬁn):/mxdﬁn:%i/oode(x—xi).
o — J-oo

The ’derivative’ of the Heaviside function U(x) is the Dirac functional, 6(z),
in the sense that for any (sufficiently regular) function ¢(z)

| e @ = [ @@= o).
Therefore we get for any
/ xdU (x — x;) = / xé(x — x;)dr = x;.

Hence n
N ~ 1 B
6, =T <Fn> = ; v =T, (3.3)

which gives the plug-in estimate of the mean as the arithmetic mean of the
samples.



Example 3.2 The Variance Let § = V [X]. Then we have in example 1.4

0= T(F) = /_ Z (x— /_ Z xdF(x))2dF(x)
_ /: PdF () - (/: xdF(x))2.
r(£) = [, - (/‘:dﬁ)

By the plug-in example 3.1 above we get

2
[e'] R 1 n
2
[rir (3)
=1
When we apply the same reasoning about the Heaviside function U(z) as in
the preceding example, we get

0o R 1 n
2 2
an:_E 2
/ v nizlxZ

— 00

Thus

Thus from (3.3)
1 n
o _—"Z.E:lxz T

As an algebraic identity we get

Z (z; —T)%. (3.4)

Example 3.3 Skewness From equation (1.5) we get using (3.3) and (3.4)

R (F) [rolw—mtdbu(@) I (-7

(3.5)

(/7 = P dFu() 7



Example 3.4 Covariance In view of example 1.7 and the expression in

(3.6) we have Fma(ri (7)1 (7)1 (7)) (3.6)
— T, (ﬁn) T (13>T2 <ﬁ)

and

n

Example 3.5 Estimation of Quantiles From example 1.8 we get the p:th
quantile
T(F)=F"(p).

Then the plug-in estimate of the quantile is
T (ﬁn) = F, ().
However, the empirical distribution function is not invertible, and we use

n

F N (p) = inf{z | Fu(z) > p}.



4  Linear Functionals and Linear Estimators

Any statistical functional T'(F) of the form

T(F) = /_ () dF (2)

is a linear functional. The functional 7" is called linear, as it satisfies
T(aF +bG) = aT(F) 4+ 0T(G) (4.1)
for any two distribution functions F' and G and any real numbers a and b.
We have that
[ a(z) f(x)dx X is a continuous r.v.

TF) = { Z_k a(x)p (k) X is a discrete r.v.
As in the preceding we find that

7 (F,) = / T a@ B = LS aw). (4.2)

n
- i=1

This is the plug-in representation of a linear statistical functional and is called

a linear estimator. We shall now check a few examples of linear functionals
and linear estimators.

Example 4.1 Probability of an interval In example 1.1 we introduced
for real numbers a < b

0=T(F)=F(b) — F(a).
This is a linear functional, since we can write it as

1) = [[ar@ = [ fay@ar

—0o0

where a(z) = lj.4 () is the indicator function

To(x) = 1 fa<z<bd
JabIV2) = otherwise.

Therefore the corresponding linear estimator (of F'(b) — F'(a)) is by (4.2)

(4.3)

n

P = Fla) == Y ae) = % > B ) =

number of z; in ]a, 0]

n

i.e., the relative frequency of the samples z; hitting |a, b].

10



Example 4.2 The Variance with Known Mean Let in example 1.4 the
mean p = [ xdF(z) be known. Then the variance is

() - [ " (o - )P dF(@),

oo

which is a linear functional with
a(z) = (z — p)*.

The plug-in estimate of variance to be obtained by means of (4.2) is now

1 & )
E;(%—M)

Further linear estimators are the plug-in estimators of mean and r-th mean.

Proposition 4.3 Let § = T(F) = [~ _a(x)dF(x) be a linear functional
and 0 =T <ﬁn) Then we have the following:

1.
Er [@] — 9, (4.4)

i.e., # is unbiased.

biaspeer = 0

Proof: We prove the latter assertion. By definition of a;sboot applied to the
linear plug-in estimator we get

biaspeot = Ep- (ﬁ ;a (X; )) - ;a (x;)
and as the bootstrap variables are identically distributed,
o 1
= Bra(XD) — > Y a()
i=1

11



but a (X7) is a discrete random variable that assumes the values {a (z;)},
with the respective probabilities 1/n, we get

n

:%Za(gji)—%Za(xi) — 0.

i=1

5  Other Non-linear Estimators, Quadratic
Estimators

Example 5.1 Estimation of the chi-squared functional The chi-squared
functional in example 1.10 is not linear, but inside it

T(F) = /A () = /_ Z Ly, (2)dF ()

is a linear functional, with I4,(z) being the indicator function of the cell A;.
Therefore we get from (4.2) that

~ 1 & number of x; in A,
T (F) == D Lalm) = ,

n

which is a generalization of the estimate in example 4.1 above. We write

ny number of z; in A;

n n

Then we have for the the chi-squared functional

T(ﬂ) = gpz_l </Al dF,(v) —pz)2

Zf: <__pl> Xk: npz - nl—npl)z.

=1
Now we observe that

< ) ZZ:: m—npz

12



is the familiar chi-square statistic ! for testing whether the hypothesis
P(A;)) =pi,i=1,...,k holds w.r.t. the observed sample.

Example 5.2 Estimation of Mann-Whitney Functional In example
1.9 above we introduced the Mann-Whitney functional

—T(F,G) = /_ Z /_ : AF(2)dC(y).

This is not a linear functional but we may use the lessons learned there. If E,
and G, are the the empirical distributions based on a sample of I.I.D. random
variables Xi,..., X, and a sample of I.I.LD. random variables Y7,...,Y,,,
respectively, then the plug-in estimate of 6 is

~ e 1 X
A o) ST
where [)_ 4, (%) is the indicator function of | — oo, y;], i.e.,

(1 if —oo <z <y,
Loy, (2) = { 0 otherwise. (5:1)

3|*—‘

An estimator §(X1, ..., X,) that can be written in the form

§(X1,...,Xn):u—i-%Za(Xi)—i-%ZZﬁ(Xi,Xj) (5.2)

i=1 j<i

is called a quadratic estimator. We can obtain quadratic estimators by
suitable expansions of non-linear plug-in estimators and by approximating
these by dropping out other than the linear and quadratic terms.

c.f., the collection of formulas, p. 7. in
http://wuw.math.kth.se/matstat/gru/FS/fs 5B1501_v05.pdf

13



Example 5.3 The Plug-in Estimate of Variance as a Quadratic Esti-
mator The plug-in estimate of variance in (3.4) is

7 =13 (-7 (5.3)

Then we get that with m = E(X),

82:,U‘i‘%za(xi)‘i‘%zz:ﬁ(xhxj)a
i=1

i=1 j<i

where )
_ n— _ 2 2
- o, a(x) - ((m m) o )

and

g (x,xl> = 20z —m)(z —m).
The check of this is left for the reader.

6 Influence Functions

The influence function is an analytic tool used to approximate the standard
error of a plug-in estimator. We give a formal definition, which requires a
preliminary definition. Let d; be the distribution function that puts all pro-
bability mass in the point ¢. Or,

so={1 . (6.)

This is the Heaviside function U(x—t), but the notation 6;(x) is more common
in statistics.

Definition 6.1 The influence function Ly (¢; F') of T is defined as

Lot F) — tim LU= OF + ) =T (F)

e—0 €

(6.2)

14



Intuitively, this is the derivative of T'(F') in the direction of ¢,. That is, if we
write
FﬂE = (1 — E)F + E(St,

then, assuming existence of the derivative,

Le(t; F) = T (F) oo (6.3)

Definition 6.2 The empirical influence function ET(t) of T is defined
as Lp(t) = Lr(t; Fy), i.e.,

ZT(t) = lim g <(1 B G)F\” + 6515) - T <ﬁn>

e—0 €

(6.4)

[ ]
We shall now show how to use the influence functions to find more about the
linear statistical functionals.

Proposition 6.1 Let T(F) = [*_a(x)dF(z) be a linear functional. Then
we have the following:

1.

Le(t: F) = a(t) — T(F), Lp(t)=a(t) - T (ﬁn) (6.5)
2. For any distribution function G

T(G) = T(F) + / T Lot F)AG(). (6.6)
3, _
/ Le(t: F)F() = 0.
4. Let -
3 / Ly(t: F)2dF (1),
Then

2= [ - Teyrara)

[e.9]

15



and if 72 < oo, then
Jn <T (ﬁn) . T(F)) — N(0,7%),
as n — o<0.

5. Let

Then

and if se = % and se = 4/V <T (ﬁn>>, then

as n — oQ.

We note that f/—’%ﬁ is the estimated standard error of 7.
Proof:

1. In (6.2) we look at the ratio
T((1—¢e)F +eb)—T(F)

€

By linearity (4.1)
T (1= )F + b)) = (1— T (F) + €T (5,).
We have .
7(5,) = / 0 (z) doy(z) = alt).

—0o0

(Compare for the Dirac functional). Thus we have

T(1-eF +e5,)—T(F) (1—&T(F)+ea(t)— T (F)

€ €

_ —€l' (F) + eaf(t) —a(t) = T (F).

€

Hence Lr(t; F') = a(t) — T(F). The proof of the expression for Ly (t) is
identical.

16



2. Let us observe that by the first case of this proof

/ " Lo(t; F)AG(t) = / " (alt) - T(F)) dG(1)

oo —00

_ /_ Z a(B)dG(t) — /_ Z T(F)AG(L)

since [*° T(F)dG(t)=T(F) [~_dG(t) = T(F), as G is a distribution

function.

3. This is now obvious, since by the above

/ " Lo(t; F)AF(t) = / " (alt) = T(F)) dF (1)

oo

- /_Oo a(t)dF(t) — /Oo T(F)dF(t)

[e.e] —00

_ /_ " a(t)dF(t) - T(F) /_ " dF(t) = T(F) - T(F) = 0,

oo

4. We apply (6.6) to get
T(E,) = T(F)+ / N Ly (t; F)dF,(t)
h (6.7)

— T(F)+ % Z L(X:; F).

Thus
NG <T (ﬁn) . T(F)) - % Z Le(Xi; F).

By the preceding steps of this proof we know that for any ¢

E[Lr(X: F)) = / " Lol F)AF() = 0,

17



since X; are I.I.D.. Then

V[Ly(X;; F)] = E [Lr(X;; F)?] = /_Oo Lp(t; F)*dF(t) =

o0

If 72 < oo, then the central limit theorem gives that

1 n
NG S Lr(Xi F) 5 N(0,72),
=1

as n — 00, as was to be proven.

. We are to consider

and rewrite this as

_ %Z ((a(x) =T (F) = (T(F) - T <A>>>2

(T
since = > 1( (F)— (ﬁn)f:( ( )) We consider first

T
the mixed term in (6.8), i.e.,

(r(r) -7 (%)) - S (a(X) - T (F))

1=

We have above in (6.7) shown the following
T(ﬁ Z LT XZ; F

18



which thus equals

By the law of large numbers, as n — oo,

S b = B = [ LR <o

—00

Thus the mixed term converges almost surely to zero, as n — oo and
in fact the limit of the third term in (6.8) has been treated by this, too,
ie.,

(T(F) -7 (ﬁn))2 =0

as n — oo. It remains to note that the first term in (6.8) is
1 < s 1 2
=S @) =T (F)? =~ Ly (X, F)
i=1 =1

The law of large numbers gives, as a (X;) — T (F) are L.I.D. random
variables that

1 n
= Ly (X, F)’ 5 E [Ly(Xy; F)?] =7,
n
i=1
and by the preceding

#:/mawg—npwdm@.

—00
The final statement to be proved is left for the reader.

We point first out a few examples of influence functions and the properties
found above.

Example 6.2 The Influence Function for the Probability of an In-
terval In examples 1.1 and 4.1 we studied for real numbers a < b

[e.e]

Gzﬂﬂ:F@—F@:/‘mmmﬁm%

—0o0

19



where a(x) = Ij, () is the indicator function of the half-open interval |a, b].
From (6.5) we obtain the influence functions

Lrwy-r@) (@ F) = Loy(z) — F(b) — F(a),
(6.9)

ZF(b)—F(a) () = lop(z) — = Z Lo (25) -

Thus

2
1
iy (m 1S hx )
and

27, / (Bony(@) — F(b) — F(a)* dF ()
F(a)) (1= (F(b) — F(a))),

as is readily seen. Thus

Z= 3 Lity-r(Xis F) 5 N (0. (F(8) = F(a)) (1 = (F() = Fla)).

as n — oQ.

Example 6.3 Variance with Known Mean In example 1.4 we assume
that = [~ xdF(z) is known and then

() - [ (o - )P dF(@),

oo

Then by (6.5) we obtain the influence functions
Ly(x;F) = (x = p)* = o®, Ly(x) = (x — )’ =~ Z (zi —p)*  (6.10)
Then it follows that
% zzj Lv(X5 F) 5 N (0,7%),

20



where
o0

#= [ (@ o) ara),

— o0

which is consistently estimated by
T = EZLV(XOQ = EZ <(Xz' )=’ - EZ(Xz'—Mf) :
i=1 j

We make one further simple finding in the proof above explicit.

Corollary 6.4 If T(F) is a linear functional, then

lim T(F,) “ T(F).

n—oo

|
We needed in this the representation (6.6), which holds exactly for linear fun-
ctionals but can hold approximately for other functionals, as will be discussed
next.

7 A Series Expansion and The Nonparametric
Delta Method

It can be shown under reasonable regularity conditions that
T(F) =) + 1S Lexs ) 40, (- (7.1)
n) — n — T Iz p n ) .
where

Lna F) = i) - [ " (a)dF(2)

for some integrable function ¢ (x). The formula (7.1) can be seen as kind of
Taylor expansion of the statistical functional 7.
Then we approximate by the linear estimator

~ 1 —
T(F)~T(F)+ > Lr(XiF),

21



and we get

Vi (T(ﬁn)) ~ Vp (T(F) + % Xn: Lo(Xs; F))

= %VF (Lr(X;F)) = %EF (LT(X; F)z) ’

since Er (L7 (X; F)) = 0.
In view of theorem 6.1 and the Slutzky theorem we get with seé = % that

(T(F) T (ﬁn

~

se

>> — N(0,1),

as n — 0o. We call the approximation

(o1 (5)

se

(0,1)

the non-parametric delta method . By force of this approximation we
get a large sample confidence interval for T'(F"). The procedure should work
well for nonlinear functionals that admit the expansion in (7.1).

An asymptotic confidence interval with the degree of confidence
1 — « is given by

T (ﬁn) & Ao S0,
where ),/ is the o/2 -quantile of N(0,1).

Example 7.1 An asymptotic confidence interval for the mean T'(F') =
[22 adF(x), T(F,) = X. This is a linear functional, and from theorem 6.1
we get

Le(x;F) = a() — T(F) =2 — 0, Lr(x) = a(z) — T (]) —z-X.

Therefore



which is the familiar (example 3.2) plug-in estimate of variance Thus

o~

— o
X +1.96—
NLD

is a pointwise asymptotic 95% confidence interval for 62 .

8 Exercises on Influence Functions

Statistical functionals can be of the form, c.f. (3.6),

T(F) = a(Ty(F),. .., Tpn(F))

with a real valued function a (¢1,...,%,). If the chain rule of multivariable
calculus holds for a (t1,...,t,) we get
Lol F) =3 2 L (0 ),
= Ot

Example 8.1 We continue the example 1.7. We have

T\(F) = /_ " wdFy(2), To(F) = / YR ()

— 00

Ty(F) = /_Z /_Z wydF(z,y).

and augment these by

Tu(F) = / T RdFy(r), Ty(F) = / T AR ().

— 00 — 00

We define
t3 — tltg

Vie—80\/ts — 8

2This as the nonparametric version of the approximative method in section 12.3 in the
collection of formulas, p. 5. in
http://wuw.math.kth.se/matstat/gru/FS/fs 5B1501_v05.pdf

a (tla t27 t37 t47 t5) =

23



Then the coefficient of correlation px y is
pxy =T(F) =a(Ty(F), T2(F), T5(F), Tu(F), T5(F)) .
An Exercise Show that the influence function of px y is

La((a,y); F) = 7 — 5T(F) (F — ).

where
_ r— [xdFx(x)
\/f$2dFX (fxdFX ))
and
y — [ ydFy(y)

Y

\/fy2dFY — ([ydFy( )) |

Example 8.2 Quantiles Let F'(x) be strictly increasing with the density
f(x). Let 0 < p <1 and then

0 =T(F)=F"(p)

is the p:th quantile. The influence function is

Pl <4
Ly(x; F) = fgf) v
Hint: if F, = (1 — €)F + €4, then by (6.3) we need to compute
d d
—T (F.) |e=o= —F."(p).
ST (F) o= S )
Since
p=F (T (F.))
we get
d
= —F. (T (F
0= LR ()

and continue.
Thus the asymptotic variance of T < "

\_/
-
wn

Vi (T(ﬁn)) - lEF (Lr(X; F)?) =
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