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1 Functionals of Distribution Functions

Let X be a random variable and let a distribution function F on the real line
be defined as

F (x) = P (X ≤ x) , −∞ < x <∞
and we assume that the true distribution function is a member of a class of
distribution functions M. This is basically a nonparametric statistical model,
i.e., we do not assume the existence of a finite set of parameters that uniquely
define the members of M.

Often the quantity θ we are interested in estimating can be viewed as

θ = T (F )

and we say that θ is a statistical functional (on M). By this we mean that
T maps the function F to a real number θ, or, as one writes in mathematics,

M ∋ F
T7→ θ ∈ R.

This is readily understood by means of examples.

Example 1.1 Probability of an interval Let F be a distribution function
and set for real numbers a < b

θ = T (F ) = F (b) − F (a).
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We can also write this as

T (F ) =

∫ b

a

dF (x) =

{ ∫ b

a
f(x)dx X is a continuous r.v.∑

k:a<xk≤b p (xk) X is a discrete r.v.
(1.1)

Example 1.2 Mean θ = E [X], and thus

T (F ) =

∫ ∞

−∞
xdF (x) =

{ ∫∞
−∞ xf(x)dx X is a continuous r.v.∑

k xkp (xk) X is a discrete r.v.
(1.2)

Example 1.3 r-th moment θ is the r-th moment and then

T (F ) =

∫ ∞

−∞
xrdF (x),

where the right hand side can be written analogously to the right hand side
in (1.2).

Example 1.4 Variance The variance θ = V (X) and

θ = T (F ) =

∫ ∞

−∞

(
x−

∫ ∞

−∞
xdF (x)

)2

dF (x). (1.3)

Example 1.5 Median θ is the median, if

θ = T (F ) = F−1

(
1

2

)
⇔ F (θ) =

1

2
.
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Example 1.6 Skewness Let µ = E [X] and σ2 = V [X]. Then the skew-
ness of X is measured by

κ =
E (X − µ)3

σ3
= θ. (1.4)

Thus

T (F ) =

∫∞
−∞ (x− µ)3 dF (x)

(∫∞
−∞ (x− µ)2 dF (x)

)3/2
. (1.5)

This is a measure of the lack of symmetry of the distribution F .

Example 1.7 Covariance The covariance θ = Cov(X, Y ), now

F (x, y) = P (X ≤ x, Y ≤ y)

FX(x) = P (X ≤ x, Y ≤ ∞) , FY (y) = P (X ≤ ∞, Y ≤ y)

and

Cov(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞

(
x−

∫ ∞

−∞
xdFX(x)

)(
y −

∫ ∞

−∞
ydFY (y)

)
dF (x, y)

=

∫ ∞

−∞

∫ ∞

−∞
xydF (x, y)−

∫ ∞

−∞
xdFX(x) ·

∫ ∞

−∞
ydFY (y)

= t3 − t1t2 = a (t1, t2, t3) .

We set

T1(F ) =

∫ ∞

−∞
xdFX(x), T2(F ) =

∫ ∞

−∞
ydFY (y)

T3(F ) =

∫ ∞

−∞

∫ ∞

−∞
xydF (x, y).

Then
θ = a (T1(F ), T2(F ), T3(F )) . (1.6)
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Example 1.8 Quantiles Let F (x) be strictly increasing with a density. Let
0 ≤ p ≤ 1 and then

T (F ) = F−1(p)

is the p:th quantile.

Example 1.9 Mann-Whitney Functional Let F (x) and G(x) be two
distribution functions and let X ∼ F , Y ∼ G be independent random varia-
bles. Then

θ = T (F,G) = P (X ≤ Y ) =

∫ ∞

−∞

∫ y

−∞
dF (x)dG(y).

is the Mann-Whitney functional.

As a check of the formula

P (X ≤ Y ) =

∫ ∞

−∞
P (X ≤ y | Y = y) dG(y)

and independence gives

=

∫ ∞

−∞
P (X ≤ y)) dG(y) =

∫ ∞

−∞

∫ y

−∞
dF (x)dG(y).

Example 1.10 The chi-squared functional Let Al ⊆ R be a partition
of the real line into k cells , i.e.,

Al ∩ Ar = ∅, l 6= r, ,∪k
l=1Al = R.

Let pl, l = 1, 2, . . . , k be a given probability distribution and F be a distri-
bution function. Next

P (Al) =

∫

Al

dF (x).

Then we define the chi-squared functional as

T (F ) =
k∑

l=1

p−1
l

(∫

Al

dF (x) − pl

)2

.
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2 Empirical Distribution Function

We start with the definition. Let X1, . . . , Xn have the distribution F ∈ M.
The empirical distribution function is simply

F̂n(x) =
1

n
× ( the number of Xi ≤ x) .

More formalistically we can introduce the following.

Definition 2.1 The empirical distribution function F̂n(x) for x ∈ R is
defined by

F̂n(x) =
1

n

n∑

i=1

U (x−Xi) , (2.1)

where U(x) is the Heaviside function

U (x) =

{
0 x < 0
1 x ≥ 0.

(2.2)

Hence we see that the empirical distribution puts the probability mass 1
n

on

every data point Xi = xi. Some first properties of F̂n(x) are given in the next
theorem.

Proposition 2.1 Let X1, . . . , Xn be I.I.D. and have the distribution F .
Then it holds that

1. For any fixed x

EF

(
F̂n(x)

)
= F (x), (2.3)

and

VF

(
F̂n(x)

)
=
F (x)(1 − F (x)

n
. (2.4)

2. Glivenko-Cantelli Theorem

sup
x

| F̂n(x) − F (x) |a.s.→ 0, (2.5)

as n→ 0.
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3. Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality For any ε > 0

P

(
sup

x
| F̂n(x) − F (x) |> ε

)
≤ 2e−2nε2

, (2.6)

as n→ 0.

By Chebyshev
′

s inequality we have for any ε > 0 in view of (2.3) that

P
(
| F̂n(x) − F (x) |> ε

)
≤ 1

ε2
VF

(
F̂n(x)

)

and thus (2.4) gives

P
(
| F̂n(x) − F (x) |> ε

)
≤ 1

ε2

F (x)(1 − F (x)

n
,

and this shows that we have convergence in probability

F̂n(x)
p→ F (x),

as n→ 0.

3 Plug-in Estimates of Statistical Functio-

nals

The class of estimators of θ = T (F ) mostly analysed in this course is the
plug-in estimator to be defined next.

Let x1, . . . , xn be a sample of I.I.D. random variables X1, . . . , Xn, respecti-
vely. Then

F̂n(x) =
1

n

n∑

i=1

U (x− xi) . (3.1)

Definition 3.1 x1, . . . , xn is a sample of I.I.D. random variables. The plug-
in estimator θ̂n of θ = T (F ) on basis of x1, . . . , xn is defined by

θ̂n = T
(
F̂n

)
. (3.2)
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Example 3.1 The Mean Let θ = E [X]. Then we get by example 1.2

T
(
F̂n

)
=

∫ ∞

−∞
xdF̂n.

But then we observe that F̂n is a discrete probability distribution with the
mass 1

n
at every sample point, and hence we can apply the corresponding

case in the right hand side of equation (1.2) to obtain

T
(
F̂n

)
=

n∑

i=1

xi
1

n
=

1

n

n∑

i=1

xi = x.

For those familiar with the Heaviside function U(x) we write

T
(
F̂n

)
=

∫ ∞

−∞
xdF̂n =

1

n

n∑

i=1

∫ ∞

−∞
xdU (x− xi) .

The ’derivative’ of the Heaviside function U(x) is the Dirac functional, δ(x),
in the sense that for any (sufficiently regular) function ϕ(x)

∫ ∞

−∞
ϕ(x)dU (x) =

∫ ∞

−∞
ϕ(x)δ(x)dx = ϕ(0).

Therefore we get for any i

∫ ∞

−∞
xdU (x− xi) =

∫ ∞

−∞
xδ(x− xi)dx = xi.

Hence

θ̂n = T
(
F̂n

)
=

1

n

n∑

i=1

xi = x, (3.3)

which gives the plug-in estimate of the mean as the arithmetic mean of the
samples.
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Example 3.2 The Variance Let θ = V [X]. Then we have in example 1.4

θ = T (F ) =

∫ ∞

−∞

(
x−

∫ ∞

−∞
xdF (x)

)2

dF (x)

=

∫ ∞

−∞
x2dF (x) −

(∫ ∞

−∞
xdF (x)

)2

.

Thus

T
(
F̂n

)
=

∫ ∞

−∞
x2dF̂n −

(∫ ∞

−∞
xdF̂n

)2

.

By the plug-in example 3.1 above we get

=

∫ ∞

−∞
x2dF̂n −

(
1

n

n∑

i=1

xi

)2

.

When we apply the same reasoning about the Heaviside function U(x) as in
the preceding example, we get

∫ ∞

−∞
x2dF̂n =

1

n

n∑

i=1

x2
i .

Thus from (3.3)

σ̂2 =
1

n

n∑

i=1

x2
i − x2.

As an algebraic identity we get

σ̂2 =
1

n

n∑

i=1

(xi − x)2 . (3.4)

Example 3.3 Skewness From equation (1.5) we get using (3.3) and (3.4)

κ̂ = T
(
F̂n

)
=

∫∞
−∞ (x− µ)3 dF̂n(x)

(∫∞
−∞ (x− µ)2 dF̂n(x)

)3/2
=

1
n

∑n
i=1 (xi − x)3

σ̂3
. (3.5)
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Example 3.4 Covariance In view of example 1.7 and the expression in
(3.6) we have

θ̂ = a
(
T1

(
F̂n

)
, T2

(
F̂n

)
, T3

(
F̂n

))
(3.6)

= T3

(
F̂n

)
− T1

(
F̂n

)
T2

(
F̂n

)
,

and

T1

(
F̂n

)
=

1

n

n∑

i=1

xi, T2

(
F̂n

)
=

1

n

n∑

i=1

yi,

T3

(
F̂n

)
=

1

n

n∑

i=1

xiyi.

Then we get, as is well known, by an algebraic manipulation that

θ̂ =
1

n

n∑

i=1

(xi − x) (yi − y) .

Example 3.5 Estimation of Quantiles From example 1.8 we get the p:th
quantile

T (F ) = F−1(p).

Then the plug-in estimate of the quantile is

T
(
F̂n

)
= F̂−1

n (p).

However, the empirical distribution function is not invertible, and we use

F̂−1
n (p) = inf

x
{x | F̂n(x) ≥ p}.
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4 Linear Functionals and Linear Estimators

Any statistical functional T (F ) of the form

T (F ) =

∫ ∞

−∞
a (x) dF (x)

is a linear functional. The functional T is called linear, as it satisfies

T (aF + bG) = aT (F ) + bT (G) (4.1)

for any two distribution functions F and G and any real numbers a and b.
We have that

T (F ) =

{ ∫∞
−∞ a(x)f(x)dx X is a continuous r.v.∑

k a (xk) p (xk) X is a discrete r.v.

As in the preceding we find that

T
(
F̂n

)
=

∫ ∞

−∞
a (x) dF̂n(x) =

1

n

n∑

i=1

a (xi) . (4.2)

This is the plug-in representation of a linear statistical functional and is called
a linear estimator. We shall now check a few examples of linear functionals
and linear estimators.

Example 4.1 Probability of an interval In example 1.1 we introduced
for real numbers a < b

θ = T (F ) = F (b) − F (a).

This is a linear functional, since we can write it as

T (F ) =

∫ b

a

dF (x) =

∫ ∞

−∞
I]a,b](x)dF (x)

where a(x) = I]a,b](x) is the indicator function

I]a,b](x) =

{
1 if a < x ≤ b
0 otherwise.

(4.3)

Therefore the corresponding linear estimator (of F (b) − F (a)) is by (4.2)

̂F (b) − F (a) =
1

n

n∑

i=1

a (xi) =
1

n

n∑

i=1

I]a,b] (xi) =
number of xi in ]a, b]

n

i.e., the relative frequency of the samples xi hitting ]a, b].
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Example 4.2 The Variance with Known Mean Let in example 1.4 the
mean µ =

∫∞
−∞ xdF (x) be known. Then the variance is

T (F ) =

∫ ∞

−∞
(x− µ)2 dF (x),

which is a linear functional with

a(x) = (x− µ)2 .

The plug-in estimate of variance to be obtained by means of (4.2) is now

1

n

n∑

i=1

(xi − µ)2

Further linear estimators are the plug-in estimators of mean and r-th mean.

Proposition 4.3 Let θ = T (F ) =
∫∞
−∞ a (x) dF (x) be a linear functional

and θ̂ = T
(
F̂n

)
. Then we have the following:

1.
EF

[
θ̂
]

= θ, (4.4)

i.e., θ̂ is unbiased.

2.
b̂iasboot = 0

Proof: We prove the latter assertion. By definition of b̂iasboot applied to the
linear plug-in estimator we get

b̂iasboot = E bFn

(
1

n

n∑

i=1

a (X∗
i )

)
− 1

n

n∑

i=1

a (xi)

and as the bootstrap variables are identically distributed,

= E bFn
a (X∗

1 ) − 1

n

n∑

i=1

a (xi)
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but a (X∗
1 ) is a discrete random variable that assumes the values {a (xi)}n

i=1

with the respective probabilities 1/n, we get

=
1

n

n∑

i=1

a (xi) −
1

n

n∑

i=1

a (xi) = 0.

5 Other Non-linear Estimators, Quadratic

Estimators

Example 5.1 Estimation of the chi-squared functional The chi-squared
functional in example 1.10 is not linear, but inside it

Tl(F ) =

∫

Al

dF (x) =

∫ ∞

−∞
IAl

(x)dF (x)

is a linear functional, with IAl
(x) being the indicator function of the cell Al.

Therefore we get from (4.2) that

Tl

(
F̂n

)
=

1

n

n∑

i=1

IAl
(xi) =

number of xi in Al

n
,

which is a generalization of the estimate in example 4.1 above. We write

nl

n
=

number of xi in Al

n
.

Then we have for the the chi-squared functional

T
(
F̂n

)
=

k∑

l=1

p−1
l

(∫

Al

dF̂n(x) − pl

)2

=
k∑

l=1

p−1
l

(nl

n
− pl

)2

=
k∑

l=1

(
n2pl

)−1
(nl − npl)

2 .

Now we observe that

nT
(
F̂n

)
=

k∑

l=1

(nl − npl)
2

npl
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is the familiar chi-square statistic 1 for testing whether the hypothesis
P (Ai) = pi, i = 1, . . . , k holds w.r.t. the observed sample.

Example 5.2 Estimation of Mann-Whitney Functional In example
1.9 above we introduced the Mann-Whitney functional

θ = T (F,G) =

∫ ∞

−∞

∫ y

−∞
dF (x)dG(y).

This is not a linear functional but we may use the lessons learned there. If F̂n

and Ĝn are the the empirical distributions based on a sample of I.I.D. random
variables X1, . . . , Xn and a sample of I.I.D. random variables Y1, . . . , Ym,
respectively, then the plug-in estimate of θ is

θ̂ = T (F̂n, Ĝm) =
1

m

m∑

j=1

1

n

n∑

i=1

I]−∞,yj](xi),

where I]−∞,yi](x) is the indicator function of ] −∞, yj], i.e.,

I]−∞,yj](x) =

{
1 if −∞ < x ≤ yj

0 otherwise.
(5.1)

An estimator θ̂ (X1, . . . , Xn) that can be written in the form

θ̂ (X1, . . . , Xn) = µ+
1

n

n∑

i=1

α (Xi) +
1

n2

n∑

i=1

∑

j<i

β (Xi, Xj) (5.2)

is called a quadratic estimator. We can obtain quadratic estimators by
suitable expansions of non-linear plug-in estimators and by approximating
these by dropping out other than the linear and quadratic terms.

1c.f., the collection of formulas, p. 7. in

http://www.math.kth.se/matstat/gru/FS/fs 5B1501 v05.pdf

13



Example 5.3 The Plug-in Estimate of Variance as a Quadratic Esti-
mator The plug-in estimate of variance in (3.4) is

σ̂2 =
1

n

n∑

i=1

(xi − x)2 . (5.3)

Then we get that with m = E (X),

σ̂2 = µ+
1

n

n∑

i=1

α (xi) +
1

n2

n∑

i=1

∑

j<i

β (xi, xj) ,

where

µ =
n− 1

n
σ2, α (x) =

n− 1

n

(
(x−m)2 − σ2

)

and
β
(
x, x

′

)
= −2(x−m)(x

′ −m).

The check of this is left for the reader.

6 Influence Functions

The influence function is an analytic tool used to approximate the standard
error of a plug-in estimator. We give a formal definition, which requires a
preliminary definition. Let δt be the distribution function that puts all pro-
bability mass in the point t. Or,

δt(x) =

{
0 x < t
1 t ≤ x.

(6.1)

This is the Heaviside function U(x−t), but the notation δt(x) is more common
in statistics.

Definition 6.1 The influence function LT (t;F ) of T is defined as

LT (t;F ) = lim
ǫ→0

T ((1 − ǫ)F + ǫδt) − T (F )

ǫ
. (6.2)
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Intuitively, this is the derivative of T (F ) in the direction of δt. That is, if we
write

Fǫ = (1 − ǫ)F + ǫδt,

then, assuming existence of the derivative,

LT (t;F ) =
d

dǫ
T (Fǫ) |ǫ=0 . (6.3)

Definition 6.2 The empirical influence function L̂T (t) of T is defined

as L̂T (t) = LT (t; F̂n), i.e.,

L̂T (t) = lim
ǫ→0

T
(
(1 − ǫ)F̂n + ǫδt

)
− T

(
F̂n

)

ǫ
. (6.4)

We shall now show how to use the influence functions to find more about the
linear statistical functionals.

Proposition 6.1 Let T (F ) =
∫∞
−∞ a (x) dF (x) be a linear functional. Then

we have the following:

1.
LT (t;F ) = a(t) − T (F ), L̂T (t) = a(t) − T

(
F̂n

)
. (6.5)

2. For any distribution function G

T (G) = T (F ) +

∫ ∞

−∞
LT (t;F )dG(t). (6.6)

3. ∫ ∞

−∞
LT (t;F )dF (t) = 0.

4. Let

τ 2 =

∫ ∞

−∞
LT (t;F )2dF (t).

Then

τ 2 =

∫ ∞

−∞
(a(t) − T (F ))2 dF (t)
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and if τ 2 <∞, then

√
n
(
T
(
F̂n

)
− T (F )

)
→ N(0, τ 2),

as n→ ∞.

5. Let

τ̂ 2
n =

1

n

n∑

i=1

L̂T (Xi)
2 =

1

n

n∑

i=1

(
a (Xi) − T

(
F̂n

))2

.

Then
τ̂ 2
n

p→ τ 2,

and if ŝe = bτn√
n

and se =

√
V
(
T
(
F̂n

))
, then

ŝe

se

p→ 1,

as n→ ∞.

We note that bτ2
n√
n

is the estimated standard error of T .
Proof:

1. In (6.2) we look at the ratio

T ((1 − ǫ)F + ǫδt) − T (F )

ǫ
.

By linearity (4.1)

T ((1 − ǫ)F + ǫδt) = (1 − ǫ)T (F ) + ǫT (δt) .

We have

T (δt) =

∫ ∞

−∞
a (x) dδt(x) = a(t).

(Compare for the Dirac functional). Thus we have

T ((1 − ǫ)F + ǫδt) − T (F )

ǫ
=

(1 − ǫ)T (F ) + ǫa(t) − T (F )

ǫ

=
−ǫT (F ) + ǫa(t)

ǫ
= a(t) − T (F ) .

Hence LT (t;F ) = a(t)− T (F ). The proof of the expression for L̂T (t) is
identical.
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2. Let us observe that by the first case of this proof

∫ ∞

−∞
LT (t;F )dG(t) =

∫ ∞

−∞
(a(t) − T (F )) dG(t)

=

∫ ∞

−∞
a(t)dG(t) −

∫ ∞

−∞
T (F )dG(t)

= T (G) − T (F ),

since
∫∞
−∞ T (F )dG(t) = T (F )

∫∞
−∞ dG(t) = T (F ), as G is a distribution

function.

3. This is now obvious, since by the above

∫ ∞

−∞
LT (t;F )dF (t) =

∫ ∞

−∞
(a(t) − T (F )) dF (t)

=

∫ ∞

−∞
a(t)dF (t) −

∫ ∞

−∞
T (F )dF (t)

=

∫ ∞

−∞
a(t)dF (t) − T (F )

∫ ∞

−∞
dF (t) = T (F ) − T (F ) = 0.

4. We apply (6.6) to get

T (F̂n) = T (F ) +

∫ ∞

−∞
LT (t;F )dF̂n(t)

(6.7)

= T (F ) +
1

n

n∑

i=1

LT (Xi;F ).

Thus
√
n
(
T
(
F̂n

)
− T (F )

)
=

1√
n

n∑

i=1

LT (Xi;F ).

By the preceding steps of this proof we know that for any i

E [LT (Xi;F )] =

∫ ∞

−∞
LT (t;F )dF (t) = 0.
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since Xi are I.I.D.. Then

V [LT (Xi;F )] = E
[
LT (Xi;F )2

]
=

∫ ∞

−∞
LT (t;F )2dF (t) = τ 2.

If τ 2 <∞, then the central limit theorem gives that

1√
n

n∑

i=1

LT (Xi;F )
d→ N(0, τ 2),

as n→ ∞, as was to be proven.

5. We are to consider

τ̂ 2
n =

1

n

n∑

i=1

L̂T (Xi)
2 =

1

n

n∑

i=1

(
a (Xi) − T

(
F̂n

))2

and rewrite this as

=
1

n

n∑

i=1

(
(a (Xi) − T (F )) −

(
T (F ) − T

(
F̂n

)))2

=
1

n

n∑

i=1

(a (Xi) − T (F ))2 − 2
(
T (F ) − T

(
F̂n

)) 1

n

n∑

i=1

(a (Xi) − T (F ))

(6.8)

+
(
T (F ) − T

(
F̂n

))2

,

since 1
n

∑n
i=1

(
T (F ) − T

(
F̂n

))2

=
(
T (F ) − T

(
F̂n

))2

. We consider first

the mixed term in (6.8), i.e.,

(
T (F ) − T

(
F̂n

)) 1

n

n∑

i=1

(a (Xi) − T (F ))

We have above in (6.7) shown the following

T (F̂n) − T (F ) =
1

n

n∑

i=1

LT (Xi;F )

18



which thus equals

=
1

n

n∑

i=1

(a (Xi) − T (F )) .

By the law of large numbers, as n→ ∞,

1

n

n∑

i=1

LT (Xi;F )
a.s.→ E [LT (X1;F )] =

∫ ∞

−∞
LT (t;F )dF (t) = 0.

Thus the mixed term converges almost surely to zero, as n → ∞ and
in fact the limit of the third term in (6.8) has been treated by this, too,
i.e., (

T (F ) − T
(
F̂n

))2

→ 0

as n→ ∞. It remains to note that the first term in (6.8) is

1

n

n∑

i=1

(a (Xi) − T (F ))2 =
1

n

n∑

i=1

LT (Xi, F )2

The law of large numbers gives, as a (Xi) − T (F ) are I.I.D. random
variables that

1

n

n∑

i=1

LT (Xi, F )2 p→ E
[
LT (X1;F )2

]
= τ 2,

and by the preceding

τ 2 =

∫ ∞

−∞
(a(x) − T (F ))2 dF (x).

The final statement to be proved is left for the reader.

We point first out a few examples of influence functions and the properties
found above.

Example 6.2 The Influence Function for the Probability of an In-
terval In examples 1.1 and 4.1 we studied for real numbers a < b

θ = T (F ) = F (b) − F (a) =

∫ ∞

−∞
I]a,b](x)dF (x),
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where a(x) = I]a,b](x) is the indicator function of the half-open interval ]a, b].
From (6.5) we obtain the influence functions

LF (b)−F (a)(x;F ) = I]a,b](x) − F (b) − F (a),

(6.9)

L̂F (b)−F (a)(x) = I]a,b](x) −
1

n

n∑

i=1

I]a,b] (xi) .

Thus

τ̂ 2
n =

1

n

n∑

i=1

(
I]a,b] (Xi) −

1

n

n∑

i=1

I]a,b] (Xi)

)2

and

τ̂ 2
n

p→
∫ ∞

−∞

(
I]a,b](x) − F (b) − F (a)

)2
dF (x)

= (F (b) − F (a)) (1 − (F (b) − F (a))) ,

as is readily seen. Thus

1√
n

n∑

i=1

LF (b)−F (a)(Xi;F )
d→ N(0, (F (b) − F (a)) (1 − (F (b) − F (a)))),

as n→ ∞.

Example 6.3 Variance with Known Mean In example 1.4 we assume
that µ =

∫∞
−∞ xdF (x) is known and then

T (F ) =

∫ ∞

−∞
(x− µ)2 dF (x),

Then by (6.5) we obtain the influence functions

LV (x;F ) = (x− µ)2 − σ2, L̂V (x) = (x− µ)2 − 1

n

n∑

i=1

(xi − µ)2 (6.10)

Then it follows that

1√
n

n∑

i=1

LV (Xi;F )
d→ N

(
0, τ 2

)
,
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where

τ 2 =

∫ ∞

−∞

(
(x− µ)2 − σ2

)2
dF (x),

which is consistently estimated by

τ̂ 2
n =

1

n

n∑

i=1

L̂V (Xi)
2 =

1

n

n∑

i=1

(
(Xi − µ)2 − σ2 − 1

n

n∑

i=1

(Xi − µ)2

)2

.

We make one further simple finding in the proof above explicit.

Corollary 6.4 If T (F ) is a linear functional, then

lim
n→∞

T (F̂n)
a.s.
= T (F ).

We needed in this the representation (6.6), which holds exactly for linear fun-
ctionals but can hold approximately for other functionals, as will be discussed
next.

7 A Series Expansion and The Nonparametric

Delta Method

It can be shown under reasonable regularity conditions that

T (F̂n) = T (F ) +
1

n

n∑

i=1

LT (Xi;F ) +Op

(
1

n

)
, (7.1)

where

LT (x;F ) = ψ(x) −
∫ ∞

−∞
ψ(x)dF (x)

for some integrable function ψ(x). The formula (7.1) can be seen as kind of
Taylor expansion of the statistical functional T .

Then we approximate by the linear estimator

T
(
F̂n

)
≈ T (F ) +

1

n

n∑

i=1

LT (Xi;F ),
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and we get

VF

(
T (F̂n)

)
≈ VF

(
T (F ) +

1

n

n∑

i=1

LT (Xi;F )

)

=
1

n
VF (LT (X;F )) =

1

n
EF

(
LT (X;F )2

)
,

since EF (LT (X;F )) = 0.
In view of theorem 6.1 and the Slutzky theorem we get with ŝe = bτn√

n
that

(
T (F ) − T

(
F̂n

))

ŝe
→ N(0, 1),

as n→ ∞. We call the approximation
(
T (F ) − T

(
F̂n

))

ŝe
≈ N(0, 1)

the non-parametric delta method . By force of this approximation we
get a large sample confidence interval for T (F ). The procedure should work
well for nonlinear functionals that admit the expansion in (7.1).

An asymptotic confidence interval with the degree of confidence
1 − α is given by

T
(
F̂n

)
± λα/2ŝe,

where λα/2 is the α/2 -quantile of N(0, 1).

Example 7.1 An asymptotic confidence interval for the mean T (F ) =∫∞
−∞ xdF (x), T (F̂n) = X. This is a linear functional, and from theorem 6.1

we get

LT (x;F ) = a(x) − T (F ) = x− θ, L̂T (x) = a(x) − T
(
F̂n

)
= x−X.

Therefore

τ̂ 2
n =

1

n

n∑

i=1

L̂T (Xi)
2 =

1

n

n∑

i=1

(
Xi −X

)2
= σ̂2,
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which is the familiar (example 3.2) plug-in estimate of variance Thus

X ± 1.96
σ̂√
n

is a pointwise asymptotic 95% confidence interval for θ2 .

8 Exercises on Influence Functions

Statistical functionals can be of the form, c.f. (3.6),

T (F ) = a (T1(F ), . . . , Tm(F ))

with a real valued function a (t1, . . . , tm). If the chain rule of multivariable
calculus holds for a (t1, . . . , tm) we get

LT (x;F ) =

m∑

i=1

∂a

∂ti
LTi

(x;F ).

Example 8.1 We continue the example 1.7. We have

T1(F ) =

∫ ∞

−∞
xdFX(x), T2(F ) =

∫ ∞

−∞
ydFY (y)

T3(F ) =

∫ ∞

−∞

∫ ∞

−∞
xydF (x, y).

and augment these by

T4(F ) =

∫ ∞

−∞
x2dFX(x), T5(F ) =

∫ ∞

−∞
y2dFY (y).

We define

a (t1, t2, t3, t4, t5) =
t3 − t1t2√

t4 − t21
√
t5 − t22

.

2This as the nonparametric version of the approximative method in section 12.3 in the

collection of formulas, p. 5. in

http://www.math.kth.se/matstat/gru/FS/fs 5B1501 v05.pdf
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Then the coefficient of correlation ρX,Y is

ρX,Y = T (F ) = a (T1(F ), T2(F ), T3(F ), T4(F ), T5(F )) .

An Exercise Show that the influence function of ρX,Y is

LT ((x, y);F ) = x̃ỹ − 1

2
T (F ) (x̃− ỹ) ,

where

x̃ =
x−

∫
xdFX(x)√∫

x2dFX(x) −
(∫

xdFX(x)
)2

and

ỹ =
y −

∫
ydFY (y)√∫

y2dFY (y) −
(∫

ydFY (y)
)2 .

Example 8.2 Quantiles Let F (x) be strictly increasing with the density
f(x). Let 0 ≤ p ≤ 1 and then

θ = T (F ) = F−1(p)

is the p:th quantile. The influence function is

LT (x;F ) =

{
p−1
f(θ)

x ≤ θ
p

f(θ)
x > θ.

Hint: if Fǫ = (1 − ǫ)F + ǫδt, then by (6.3) we need to compute

d

dǫ
T (Fǫ) |ǫ=0=

d

dǫ
F−1

ǫ (p).

Since
p = Fǫ (T (Fǫ)) .

we get

0 =
d

dǫ
Fǫ (T (Fǫ)) .

and continue.
Thus the asymptotic variance of T

(
F̂n

)
is

VF

(
T (F̂n)

)
=

1

n
EF

(
LT (X;F )2

)
=

1

n

∫ ∞

−∞
LT (x;F )2dF (x) =

p(1 − p)

nf 2(θ)
.
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