SF2970: Homework 1 (Due on February 8)

Spring 2017

Q 1. (Conditional expectation) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let X and Y be integrable random variables.

a.) Let $\mathcal{H} \subset \mathcal{G}$ be two sub- σ -algebras of \mathcal{F} . Prove that

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}],\\ \mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{H}].$$

(5points)

b.) Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} such that X is \mathcal{G} -measurable. Prove that $\mathbb{E}[Y|\mathcal{G}] = X$ implies that $\mathbb{E}[Y|X] = X$. (Here $\mathbb{E}[Y|X]$ is a shorthand notation for $\mathbb{E}[Y|\sigma(X)]$.)

(5points)

Q 2. (Martingale I) Let (Y_n) , $n \in \mathbb{N}$, be a simple symmetric random walk on \mathbb{Z} . Fix $b \in \mathbb{R}$. Show that

$$S_n := e^{bY_n} \left(\frac{2}{e^b + e^{-b}}\right)^n, \qquad \forall n \in \mathbb{N},$$

is a martingale with respect the natural filtration, i.e. $\mathbb{E}|S_n| < \infty$ and

$$\mathbb{E}[S_{n+1}|\sigma(Y_1, Y_2, \dots, Y_n)] = S_n, \qquad \forall n \in \mathbb{N}.$$

(10points)

Q 3. (Martingale II) Let b, w and r be natural numbers. An urn initially contains b black and w white balls. At each discrete time step (trial), we take out a ball from the urn, determine its color and then return r balls of the same color to the urn (thus at each step we add r-1 balls to the urn). Let R_n be the random variable given by the ratio of the number of black balls and the number of total balls in the urn at step $n, n \ge 1$, with $R_1 = b/(b+w)$. Show that (R_n) is a martingale with respect the natural filtration. (10points)

Q 4. (Girsanov's theorem) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

a. Let (B_n) , $n \ge 0$, be a one-dimensional discrete Brownian motion under \mathbb{P} . Compute

$$\mathbb{E}\left[(B_n+n)^2 \exp(-B_n-n/2)\right].$$

b. Let $(B_n^{(1)}, B_n^{(2)}), n \ge 0$, be a two-dimensional discrete Brownian motion under \mathbb{P} . Compute

$$\mathbb{E}\Big[\big(B_n^{(1)} + B_n^{(2)}\big)^2 \exp(-B_n^{(1)} - n/2)\Big].$$

(5points)

(5points)

Q 5. (Multivariate Gaussian distribution) Let Σ be a real symmetric positive definite $n \times n$ matrix, n > 1. The *n*-dimensional normal distribution $\mathcal{N}(0, \Sigma)$ with covariance Σ is given by the density

$$\nu_{\Sigma}(\mathrm{d}x) := \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x\right) \mathrm{d}^n x \,, \qquad x \in \mathbb{R}^n \,.$$

Let (X_1, X_2, \ldots, X_n) be random variables with joint distribution ν_{Σ} . Set

$$\mathcal{G} := \sigma(X_2, X_3, \dots, X_n) \, .$$

Show that the conditional expectation $\mathbb{E}[X_1|\mathcal{G}]$ is almost surely given by

$$\mathbb{E}[X_1|\mathcal{G}] = -\frac{1}{t_{11}} \sum_{j=2}^n t_{1j} X_j \,,$$

where (t_{ij}) denote the matrix elements of the inverse matrix T of Σ , i.e., $T = \Sigma^{-1}$.

Hint: Write T in the form

$$T = \left(\begin{array}{c|c} t_{11} & s^T \\ \hline s & S \end{array}\right)$$

with $s^T = (t_{12}, t_{13}, \ldots, t_{1n})$, etc. Choose $G \in \mathcal{G}$ and note that $G = \{\omega : (X_2, \ldots, X_n)(\omega) \in B\}$, for some Borel set B in \mathbb{R}^{n-1} . By explicit Gaussian integration check that

$$\mathbb{E}[X_1 \mathbb{1}_G] = \mathbb{E}\left[-\frac{1}{t_{11}}\sum_{j=2}^n t_{1j}X_j \mathbb{1}_G\right].$$

(10 points)

Good luck!