
Homework 2 in SF2971 Martingale theory and stochastic integrals, spring 2018.

Due Thursday March 1, 2018. Each student should hand in his or her own solutions.

Note: In all stochastic integrals, the integrands can be assumed to be integrable enough
to guarantee that the stochastic integral is a martingale.

1. Solve the stochastic differential equation

dXt = 1 · dt+ 2
√

XtdBt, X0 = x0 > 0.

where B is a one-dimensional standard Brownian motion. . . . . . . . . . . . . . . . . . . . . (1p)

Hint: Make a transformation of the form Yt = u(Xt) and look for a really simple
linear SDE for Y , which allows you to solve for Y and determine the function u.

2. (a) Consider the n-dimensional linear stochastic differential equation
{

dXt = [A(t)Xt + a(t)] dt+ σ(t)dBt, 0 ≤ t < ∞,

X0 = ξ,
(1)

where B ∈ BM(Rm) and independent of the n-dimensional initial vector ξ, and
the n × n, n × 1, and n × m matrices A(t), a(t), and σ(t) are assumed to be
deterministic, “nice” functions of time.

Let Φ be the unique solution to the (deterministic) matrix differential equation

Φ̇(t) = A(t)Φ(t), Φ(0) = I (2)

for 0 ≤ t < ∞, where I denotes the n × n identity matrix. Note that Φ is
always non-singular.

Show that

Xt = Φ(t)

[

X0 +

∫

t

0

Φ−1(s)a(s)ds +

∫

t

0

Φ−1(s)σ(s)dBs

]

; 0 ≤ t < ∞,

solves (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0.25p)
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(b) Use the result from (a) to solve the 2-dimensional SDE

dX1
t = X2

t dt+ αdB1

t

dX2
t = X1

t dt+ βdB2

t

where (B1
t , B

2
t ) is a 2-dimensional Brownian motion, α and β are constants,

and (X1
0
,X2

0
) = (x1

0
, x2

0
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0.75p)

Hint: For a constant matrix A the solution to (2) is given by

eAt =
∞
∑

k=0

Ak

k!
tk.

Looking at some known Taylor expansions might also be helpful.

3. Use a stochastic representation result in order to solve the following boundary value
problem in the domain [0, T ]× R.











∂F

∂t
+ µ

∂F

∂x
+

1

2
σ2x2

∂2F

∂x2
= 0,

F (T, x) = x2.

Here µ and σ are assumed to be known constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

4. Let B be a one-dimensional standard Brownian motion on (Ω,F , P 0, {Ft}t≥0), where
the filtration is the one generated by B. Fix a time interval [0, T ]. Define the process
X as the solution to the SDE

dXt = σdBt,

X0 = 0,

where σ > 0 is a constant.

(a) Let f be a known real-valued function. Define, for each real number α, a
measure Pα, such that X under Pα solves the equation

dXt = αf(Xt)dt+ σdBα
t ,

where Bα is a Brownian motion under Pα. Give an explicit expression for the
Radon-Nikodym derivative (likelihood process)

Lα(t) =
dPα

t

dP 0
t

,

where Pα
t = Pα|Ft

and t ≤ T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)
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(b) Determine, for every 0 < t ≤ T , the maximum likelihood estimator α̂(t) for
the parameter α, based on observations of X over the interval [0, t]. In other
words: for each fixed t (and ω), solve the problem

max
α

Lα(t),

and denote the optimal α by α̂(t).

Now consider two special cases:

i. f(x) = x. For this case it is possible to obtain a more explicit expression
for α̂(t).

ii. f(x) ≡ 1. For this case you should try to express α̂(t) in terms of the
observed process X (rather than in terms of the driving Brownian motion).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(c) For the special case f(x) ≡ 1, suppose that σ = 0.1 and give a 95% confidence
interval for the parameter α based on the observations in the time period [0, t].
If you want the interval to be reasonably tight (depends on the application of
course), say α̂(t)± 0.02, for how long must you observe X? . . . . . . . . . . . . . (1p)

Good luck!

3


