

Homework 2 in SF2971 Martingale theory and stochastic integrals, spring 2018.

Due Thursday March 1, 2018. Each student should hand in his or her own solutions.

Note: In all stochastic integrals, the integrands can be assumed to be integrable enough to guarantee that the stochastic integral is a martingale.

1. Solve the stochastic differential equation

$$dX_t = 1 \cdot dt + 2\sqrt{X_t} dB_t, \qquad X_0 = x_0 > 0.$$

2. (a) Consider the *n*-dimensional linear stochastic differential equation

$$\begin{cases} dX_t = [A(t)X_t + a(t)] dt + \sigma(t)dB_t, & 0 \le t < \infty, \\ X_0 = \xi, \end{cases}$$
(1)

where $B \in BM(\mathbb{R}^m)$ and independent of the *n*-dimensional initial vector ξ , and the $n \times n$, $n \times 1$, and $n \times m$ matrices A(t), a(t), and $\sigma(t)$ are assumed to be deterministic, "nice" functions of time.

Let Φ be the unique solution to the (deterministic) matrix differential equation

$$\dot{\Phi}(t) = A(t)\Phi(t), \qquad \Phi(0) = I \tag{2}$$

for $0 \le t < \infty$, where I denotes the $n \times n$ identity matrix. Note that Φ is always non-singular.

Show that

$$X_t = \Phi(t) \left[X_0 + \int_0^t \Phi^{-1}(s)a(s)ds + \int_0^t \Phi^{-1}(s)\sigma(s)dB_s \right]; \quad 0 \le t < \infty,$$

solves (1).(0.25p)

(b) Use the result from (a) to solve the 2-dimensional SDE

$$dX_t^1 = X_t^2 dt + \alpha dB_t^1$$
$$dX_t^2 = X_t^1 dt + \beta dB_t^2$$

where (B_t^1, B_t^2) is a 2-dimensional Brownian motion, α and β are constants, and $(X_0^1, X_0^2) = (x_0^1, x_0^2)$(0.75p)

Hint: For a constant matrix A the solution to (2) is given by

$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k}{k!} t^k.$$

Looking at some known Taylor expansions might also be helpful.

3. Use a stochastic representation result in order to solve the following boundary value problem in the domain $[0, T] \times \mathbb{R}$.

$$\begin{cases} \frac{\partial F}{\partial t} + \mu \frac{\partial F}{\partial x} + \frac{1}{2} \sigma^2 x^2 \frac{\partial^2 F}{\partial x^2} &= 0, \\ F(T, x) &= x^2. \end{cases}$$

4. Let *B* be a one-dimensional standard Brownian motion on $(\Omega, \mathcal{F}, P^0, \{\mathcal{F}_t\}_{t\geq 0})$, where the filtration is the one generated by *B*. Fix a time interval [0, T]. Define the process *X* as the solution to the SDE

$$dX_t = \sigma dB_t,$$

$$X_0 = 0,$$

where $\sigma > 0$ is a constant.

(a) Let f be a known real-valued function. Define, for each real number α , a measure P^{α} , such that X under P^{α} solves the equation

$$dX_t = \alpha f(X_t)dt + \sigma dB_t^{\alpha}$$

where B^{α} is a Brownian motion under P^{α} . Give an explicit expression for the Radon-Nikodym derivative (likelihood process)

$$L^{\alpha}(t) = \frac{dP_t^{\alpha}}{dP_t^0},$$

where $P_t^{\alpha} = P^{\alpha}|_{\mathcal{F}_t}$ and $t \leq T$. (1p)

(b) Determine, for every $0 < t \leq T$, the maximum likelihood estimator $\hat{\alpha}(t)$ for the parameter α , based on observations of X over the interval [0, t]. In other words: for each fixed t (and ω), solve the problem

 $\max_{\alpha} L^{\alpha}(t),$

and denote the optimal α by $\hat{\alpha}(t)$.

Now consider two special cases:

- i. f(x) = x. For this case it is possible to obtain a more explicit expression for $\hat{\alpha}(t)$.
- ii. $f(x) \equiv 1$. For this case you should try to express $\hat{\alpha}(t)$ in terms of the observed process X (rather than in terms of the driving Brownian motion).

Good luck!