
Homework 2 in SF2971 Martingale theory and stochastic integrals, spring 2018.

Answers and suggestions for solutions.

1. The Itô formula applied to Yt = u(Xt) yields

dYt = u′(Xt)dXt +
1

2
u′′(Xt)(dXt)

2

= u′(Xt)dt+ u′(Xt)2
√

XtdBt +
1

2
u′′(Xt)4Xtdt

=
[

u′(Xt) + 2Xtu
′′(Xt)

]

dt+ 2
√

Xtu
′(Xt)dBt

Now if we want a really simple SDE for Y we could try putting the diffusion equal
to one, i.e.

2
√

Xtu
′(Xt) = 1.

This means that

u′(x) =
1

2
√
x

and therefore

u(x) =
√
x+ C,

for some constant C. It will be easiest to put C = 0. Now the drift term for Y
becomes

1

2
√
Xt

+ 2Xt

(

−
1

4X3/2

)

= 0,

so the SDE for Y is

dYt = dBt, Y0 =
√
x0.

Integrating we obtain

Yt =
√
x0 +Bt.

Finally, we have that

Xt = Y 2
t = (

√
x0 +Bt)

2.
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2. (a) Let

Xt = Φ(t)

[

X0 +

∫ t

0
Φ−1(s)a(s)ds +

∫ t

0
Φ−1(s)σ(s)dBs

]

= Φ(t)Yt, (1)

where

dYt = Φ−1(t)a(t)dt +Φ−1(t)σ(t)dBt.

Applying the Itô formula to X we find that

dXt = ˙Φ(t)Ytdt+Φ(t)dYt

= A(t)Φ(t)Ytdt+Φ(t)
(

Φ−1(t)a(t)dt +Φ−1(t)σ(t)dBt

)

= [A(t)Xt + a(t)] dt+ σ(t)dBt.

Since Φ(0) = I we have that

X0 = I · ξ = ξ,

and we see that Xt indeed solves the stated SDE.

(b) On matrix form the system looks as follows

d

[

X1
t

X2
t

]

=

[

0 1
1 0

]

[

X1
t

X2
t

]

dt+

[

α 0
0 β

]

d

[

B1
t

B2
t

]

From (a) and the hint we see that the solution is given by

[

X1
t

X2
t

]

= exp(At)

[

x10

x20

]

+ exp(At)

∫ t

0
exp(−As)σdB(s)

where

A =

[

0 1
1 0

]

, σ =

[

α 0
0 β

]

, dB(s) = d

[

B1
s

B2
s

]

Now noting that A2 = I, where I denotes the 2×2 identity matrix we see that

eAt =

∞
∑

k=0

Ak

k!
tk =

[

cosh(t) sinh(t)
sinh(t) cosh(t)

]

and therefore

e−At =

∞
∑

k=0

(−A)k

k!
tk =

[

cosh(t) − sinh(t)
− sinh(t) cosh(t)

]

and the solution becomes

dX1
t = x10 cosh(t) + x20 sinh(t) + α

∫ t
0 cosh(t− s)dB1(s) + β

∫ t
0 sinh(t− s)dB2(s)

dX2
t = x10 sinh(t) + x20 cosh(t) + α

∫ t
0 sinh(t− s)dB1(s) + β

∫ t
0 cosh(t− s)dB2(s)

2



3. Using a stochastic representation formula tells us that F (t, x) = Et,x[X
2
T ] where the

dynamics of X are given by

dXs = µds+ σXsdBs,
Xt = x.

The Itô formula applied to Ys = X2
s yields

d(X2
s ) = 2XsdXs +

1

2
· 2(dXs)

2,

= 2Xsµds+ 2XsσXsdBs + σ2X2
s ds

= (2µXs + σ2X2
s )ds+ 2σX2

s dBs.

Integrate to obtain

X2
u −X2

t =

∫ u

t
(2µXs + σ2X2

s )ds+

∫ u

t
2σX2

s dBs.

Now take expectations given that Xt = x (and assume that it is OK to interchange
the order of integration) to arrive at

Et,x[X
2
u] = x2 +

∫ u

t

(

2µEt,x[Xs] + σ2Et,x[X
2
s ]
)

ds+ Et,x

[
∫ u

t
2σX2

s dBs

]

. (2)

Assuming enough integrability the expectation of the stochastic integral will be zero.
We see that we need the conditional expectation for Xs in order to proceed, but from
the SDE for Xs we obtain

Xs −Xt =

∫ s

t
µdu+

∫ s

t
σXudBu.

Taking expectations given that Xt = x we have that (assuming enough integrability)

Et,x[Xs] = x+ µ(s− t) + 0.

Inserting this into (2) together with the definition m(u) = Et,x[X
2
u] we have

m(u) = x2 +

∫ u

t
[2µ(x+ µ(s− t)] + σ2m(s))ds + 0.

Taking derivatives with respect to time u, and using that m(t) = x2, we arrive at
the ODE

{

ṁ(u) = 2µ[(x+ µ(u− t)] + σ2m(u),

m(t) = x2.

This is a first order linear non-homogeneous ODE with the explicit solution

m(u) =

(

x2 +
2µx

σ2
+

2µ2

σ4

)

eσ
2(u−t) −

2µ2

σ2
(u− t)−

1

σ2

(

2µx+
2µ2

σ2

)

.

(The homogeneous solution is mh(u) = Ceσ
2u for some constant C, and for the

particular solution you may try mp(u) = Au + B for some constants A and B).
Finally, we therefore obtain that

F (t, x) = m(T ) =

(

x2 +
2µx

σ2
+

2µ2

σ4

)

eσ
2(T−t)−

2µ2

σ2
(T − t)−

1

σ2

(

2µx+
2µ2

σ2

)

.

Note that you can check that you have obtained the correct solution by simply
inserting your function into the PDE!
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4. Defining the likelihood process by

dLα(t) = Lαhα(t)dB(t),

Girsanov gives us, under Pα

dB(t) = hα(t)dt+ dBα(t)

where Bα is a Pα-Brownian motion.

(a) Substituting into the original SDE we get, under Pα,

dX = σhαdt+ σdBα.

Thus we must choose hα such that σhα(t) = αf(Xt) i.e.

hα =
α

σ
f(Xt).

Thus the log-likelihood process is given by

lnLα(t) =

∫ t

0

α

σ
f(Xs)dBs −

1

2

∫ t

0

α2

σ2
f2(Xs)ds.

(b) Maximizing the likelihood is of course equivalent to maximizing the log-likelihood,
thus

max
α

{
∫ t

0

α

σ
f(Xs)dBs −

1

2

∫ t

0

α2

σ2
f2(Xs)ds

}

.

Since this is concave in α we obtain the maximum in a point where the derivative
w.r.t. α is equal to zero. The optimal α is

α̂t =

∫ t
0 f(Xs)σdBs
∫ t
0 f

2(Xs)ds
=

∫ t
0 f(Xs)dXs
∫ t
0 f

2(Xs)ds
.

i. For f(x) = x we obtain

α̂t =

∫ t
0 XsσdBs
∫ t
0 X

2
s ds

=

∫ t
0 σBsσdBs
∫ t
0 X

2
s ds

==
σ2(B2

t − t)

2
∫ t
0 X

2
s ds

=
X2

t − σ2t

2
∫ t
0 X

2
s ds

.

Note that you prefer the estimate to be expressed in terms of X, since X
can be observed, while B can not.

ii. For f(x) = 1 we obtain

α̂t =

∫ t
0 σdBs
∫ t
0 ds

=
σBt

t
=

Xt

t
.

(c) If α is the true parameter value then our point estimate at time t

α̂t =
Xt

t
=

αt+ σBα
t

t
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is normally distributed with expectation α and standard deviation σ/
√
t. Stan-

dard theory thus gives us the following 95% confidence interval

Iα =

[

α̂t ± 1.96
σ√
t

]

.

To obtain an interval of the stated length you would nedd to observe X for the
time

t =

(

1.96 · 0.1
0.02

)2

= 96.04.

If the unit of time is years you would need a lot of data!
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