SF2972 GAME THEORY Lecture 2

Jörgen Weibull

January 19, 2011

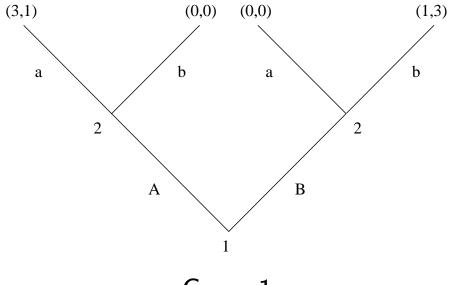
A game theorist's approach to applications

- 1. Identify key aspects of the strategic interaction in question
- 2. Simplify as much as possible, without losing what seem to be the most essential features
- 3. Write up an extensive-form game that represents the interaction
- 4. Write up a normal-form representation of the extensive-form game
- 5. Analyze the extensive-form game (hard) or analyze the normal-form game (usually easier), or do both.

6. If step 5 is successful, go back to step 2, but simplify less, and do steps 3-5. Terminate when you have interesting enough results for a sufficiently rich model.

1 Informally about the extensive form

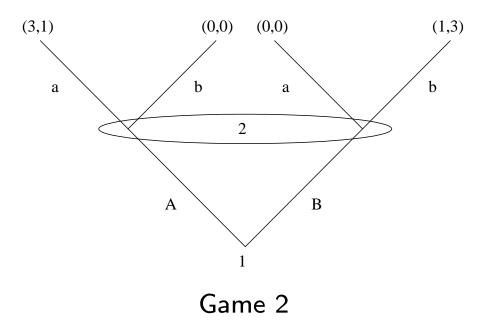
• Is it always better to be more informed?



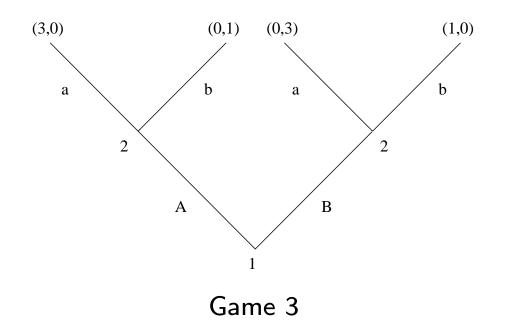
Game 1

• How many pure strategies does each player have?

- Backward induction
- *Perfect*-information games vs. games of *imperfect* information
- Suppose that player 2 is *not* informed about 1's move:



- In this game, player 2 cannot condition his choice on 1's action
- How many pure strategies does each player have?
- In Game 1: *First*-mover advantage (better to be less informed)
- Are there games with a *second*-mover advantage?



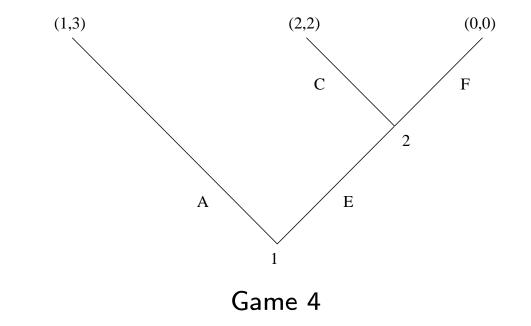
2 Informally about the normal form

Game 1:
$$A (3,1) (3,1) (0,0) (0,0) (1,3)$$

 $B (0,0) (1,3) (0,0) (1,3)$
Game 2: $A (3,1) (0,0) (1,3)$

3 Extensive forms with the same normal form

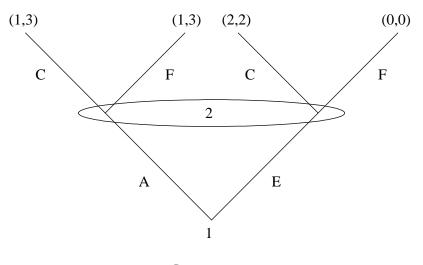
An *entry-deterrence* game: A potential entrant (player 1) into a monopolist's (player 2) market



• Its normal form:

$$\begin{array}{ccc} C & F \\ A & 1, 3 & 1, 3 \\ E & 2, 2 & 0, 0 \end{array}$$

• Another extensive form game with the same normal form:



Game 5

4 Preferences, utility functions and payoff functions

- A set X of alternatives x, y, z...
- Preferences as binary relations \succ on X: $x \succ y$
 - * Transitivity: if $x \succcurlyeq y$ and $y \succcurlyeq z$, then $x \succcurlyeq z$
 - * Completeness: either $x \succcurlyeq y$ or $y \succcurlyeq x$ or both
- Indifference $x \sim y$ and strict preference $x \succ y$

Let \succeq be a binary relation on a set X.

Definition 4.1 A utility function for \succeq is a function $u : X \to \mathbb{R}$ such that $u(x) \ge u(y)$ iff $x \succeq y$.

5 Decision-making under uncertainty

• Let the alternatives $x \in X$ be risky investment opportunities, gambles, outcomes or plays in a game.

5.1 Expected-utility theory

- John von Neumann and Oskar Morgenstern: *The Theory of Games* and *Economic Behavior* (1944)
- Let each alternative x ∈ X be a probability distribution over a finite set T of possible outcomes (or plays) τ₁,...,τ_m:

$$X = \Delta(T) = \{ x \in \mathbb{R}^m_+ : \sum_{k=1}^m x_k = 1 \}.$$

- Let \succ be a player's preferences over such "lotteries" $x \in X$
- Question: Does there \exists a function $v: T \to \mathbb{R}$ such that

$$x \succcurlyeq y \quad \Leftrightarrow \quad \sum_{k} x_k \cdot v(\tau_k) \ge \sum_{k} y_k \cdot v(\tau_k) \quad ?$$

• If yes, then

$$u(x) = \sum_{k=1} x_k \cdot v(\tau_k)$$

is a utility function $u:X\to \mathbb{R}$ for \succcurlyeq on X

• v is called a Bernoulli function or von Neumann-Morgenstern utility function

• The existence of such a function v is called the expected-utility hypothesis

5.2 Payoff functions in game theory

A two-step procedure:

- 1. For each player, define a *Bernoulli function* over the set of possible plays of the game
- 2. Given these Bernoulli functions, the *payoff function* for a player maps *strategy profiles* to the player's expected Bernoulli function values

6 Normal-form games

 Normal-form game = Game in strategic form = Strategic game (Osborne-Rubinstein)

Definition 6.1 A normal-form game is a triplet $G = \langle N, S, u \rangle$, where

(i) $N = \{1, 2, ..., n\}$ is the set of players

(ii) $S = \times_{i \in N} S_i$ is the set of strategy profiles $s = (s_1, ..., s_n)$, with S_i denoting the strategy set of player i

(iii) $u: S \to \mathbb{R}^n$ is the combined payoff function, where, for each strategy profile $s \in S$ and player $i \in N$, $u_i(s)$ is player i's payoff (utility)

- Notation: for any strategy profile $s \in S$, player $i \in N$ and strategy $s'_i \in S_i$, write (s'_i, s_{-i}) for the strategy profile in which s_i has been replaced by s'_i
- Notation: for any strategy profile $s \in S$ and player $i \in N$, write

$$\beta_{i}(s) = \arg \max_{s'_{i} \in S_{i}} u_{i}\left(s'_{i}, s_{-i}\right)$$
$$= \left\{s'_{i} \in S_{i} : u_{i}\left(s'_{i}, s_{-i}\right) \ge u_{i}\left(s''_{i}, s_{-i}\right) \quad \forall s''_{i} \in S_{i}\right\}$$

• This defines player *i*'s best-reply correspondence $\beta_i : S \rightrightarrows S_i$

• Write
$$\beta(s) = \times_{i \in N} \beta_i(s) = \beta_1(s) \times \beta_2(s) \times ... \times \beta_n(s)$$

 \bullet This defines the combined best-reply correspondence $\beta:S\rightrightarrows S$

Definition 6.2 A strategy profile $s^* \in S$ is a Nash equilibrium (NE) if s^* is a best reply to itself; $s^* \in \beta(s^*)$.

6.1 Examples

- Reconsider the finite games in Lecture 1
- The Cournot duopoly: assume that each firm strives to maximize its profit

$$\pi_i(q) = (100 - Q) q_i$$

6.2 Ordinal games

Definition 6.3 An ordinal normal-form game is a triplet $G = \langle N, S, (\succeq_i) \rangle$, where

(i) $N = \{1, 2, ..., n\}$ is the set of players

(ii) $S = \times_{i \in N} S_i$ is the set of strategy profiles $s = (s_i)_{i \in N}$ with S_i denoting the strategy set of player i

(iii) For each $i \in N$, \succ_i is player *i*'s preference ordering of the set *S* of strategy profiles.

• Interpretation: $s \succcurlyeq_i s'$ means that player i (weakly) prefers strategy profile s over strategy profile s' [or, more exactly, (weakly) prefers the probability distribution over outcomes/plays that is induced by s over that induced by s']

• For any strategy profile $s \in S$ and player $i \in N$, we now write

$$\beta_{i}(s) = \left\{ s_{i}' \in S_{i} : \left(s_{i}', s_{-i}\right) \succcurlyeq_{i} \left(s_{i}'', s_{-i}\right) \quad \forall s_{i}'' \in S_{i} \right\}$$

- Nash equilibrium can be defined in the same way as with payoff functions, that is, as a strategy profile that is a best reply to itself.
- Note that, if, for each player i ∈ N, u_i is a utility function for player i, then a strategy profile is a NE in the ordinal game ⟨N, S, (≽_i)⟩ iff it is a NE in the game ⟨N, S, u⟩.

7 Existence of Nash equilibrium

Recall:

Definition 7.1 A function $f : X \to \mathbb{R}$, where X is a convex set, is quasiconcave if, for each $a \in \mathbb{R}$, the upper-contour set

 $X_a = \{x \in X : f(x) \ge a\}$

is convex.

Definition 7.2 A fixed point under a correspondence $\varphi : X \rightrightarrows X$ is a point $x \in X$ such that $x \in \varphi(x)$.

Theorem 7.1 Let $G = \langle N, S, u \rangle$ be a normal-form game in which each strategy set S_i is a non-empty, compact and convex set in some Euclidean space \mathbb{R}^{m_i} , each payoff function $u_i : S \to \mathbb{R}$ is continuous, and quasiconcave in the player's own strategy, $s_i \in S_i$. Then G has at least one Nash equilibrium.

Proof sketch:

- 1. Weierstrass' Maximum Theorem $\Rightarrow \beta(s)$ non-empty and compact $\forall s \in S$
- 2. Quasi-concavity $\Rightarrow \beta(s)$ convex $\forall s \in S$
- 3. Berge's Maximum Theorem $\Rightarrow \beta$ upper hemi-continuous

- Kakutani's Fixed-Point Theorem: Every upper hemi-continuous correspondence φ from a non-empty, compact and convex set S to itself has at least one fixed point if φ(s) is non-empty, compact and convex ∀s ∈ S
- Nash's (1950) existence result is a special case:

Definition 7.3 For any player i in any game: a mixed strategy x_i is a randomization (probability distribution) over the player's strategy set S_i ;

$$x_i \in \Delta(S_i) = \left\{ x_{ih} \in \mathbb{R}^{m_i}_+ : \sum_{h \in S_i} x_{ih} = 1 \right\}$$

Theorem 7.2 (Nash, 1950) Let $G = \langle N, S, u \rangle$ be a normal-form game in which the set N of players is finite, each strategy set S_i is non-empty and finite. Then G has at least one Nash equilibrium in pure or mixed strategies.

Proof: Each player's set of mixed strategies is a non-empty compact and convex set in a Euclidean space, and each player's expected payoff is a continuous function, that is linear in the player's own mixed strategy. Hence, the general existence theorem, given above, applies.