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A game theorist’s approach to applications

1. Identify key aspects of the strategic interaction in question

2. Simplify as much as possible, without losing what seem to be the most

essential features

3. Write up an extensive-form game that represents the interaction

4. Write up a normal-form representation of the extensive-form game

5. Analyze the extensive-form game (hard) or analyze the normal-form

game (usually easier), or do both.



6. If step 5 is successful, go back to step 2, but simplify less, and do

steps 3-5. Terminate when you have interesting enough results for a

sufficiently rich model.



1 Informally about the extensive form

• Is it always better to be more informed?

a a bb

(3,1) (0,0) (1,3)(0,0)

A B

1

2 2

Game 1

• How many pure strategies does each player have?



• Backward induction

• Perfect-information games vs. games of imperfect information

• Suppose that player 2 is not informed about 1’s move:

a a bb

(3,1) (0,0) (1,3)(0,0)

A B

1

2

Game 2



• In this game, player 2 cannot condition his choice on 1’s action

• How many pure strategies does each player have?

• In Game 1: First-mover advantage (better to be less informed)

• Are there games with a second-mover advantage?



a a bb

(3,0) (0,1) (1,0)(0,3)

A B

1

2 2

Game 3



2 Informally about the normal form

Game 1:
   

 (3 1) (3 1) (0 0) (0 0)
 (0 0) (1 3) (0 0) (1 3)

Game 2:
 

 (3 1) (0 0)
 (0 0) (1 3)



3 Extensive forms with the same normal form

An entry-deterrence game: A potential entrant (player 1) into a monopo-

list’s (player 2) market

C F

(1,3) (0,0)(2,2)

A E

1

2

Game 4



• Its normal form:
 

 1 3 1 3
 2 2 0 0

• Another extensive form game with the same normal form:

C C FF 

(1,3) (1,3) (0,0)(2,2)

A E

1

2

Game 5



4 Preferences, utility functions and payoff func-

tions

• A set  of alternatives   

• Preferences as binary relations < on :  < 

* Transitivity : if  <  and  < , then  < 

* Completeness: either  <  or  <  or both

• Indifference  ∼  and strict preference  Â 

Let < be a binary relation on a set .

Definition 4.1 A utility function for < is a function  :  → R such that
 () ≥  () iff  < .



5 Decision-making under uncertainty

• Let the alternatives  ∈  be risky investment opportunities, gambles,

outcomes or plays in a game.

5.1 Expected-utility theory

• John von Neumann and Oskar Morgenstern: The Theory of Games
and Economic Behavior (1944)

• Let each alternative  ∈  be a probability distribution over a finite

set  of possible outcomes (or plays) 1  :

 = ∆( ) = { ∈ R+ :
X
=1

 = 1}.



• Let < be a player’s preferences over such “lotteries”  ∈ 

• Question: Does there ∃ a function  :  → R such that

 <  ⇔
X


 ·  () ≥
X


 ·  () ?

• If yes, then

 () =
X
=1

 ·  ()

is a utility function  :  → R for < on 

•  is called a Bernoulli function or von Neumann-Morgenstern utility

function



• The existence of such a function  is called the expected-utility hy-

pothesis



5.2 Payoff functions in game theory

A two-step procedure:

1. For each player, define a Bernoulli function over the set of possible

plays of the game

2. Given these Bernoulli functions, the payoff function for a player maps

strategy profiles to the player’s expected Bernoulli function values



6 Normal-form games

• Normal-form game = Game in strategic form = Strategic game (Osborne-
Rubinstein)

Definition 6.1 A normal-form game is a triplet  = h i, where

(i)  = {1 2  } is the set of players

(ii)  = ×∈ is the set of strategy profiles  = (1  ), with 
denoting the strategy set of player 

(iii)  :  → R is the combined payoff function, where, for each strategy
profile  ∈  and player  ∈  ,  () is player ’s payoff (utility)



• Notation: for any strategy profile  ∈ , player  ∈  and strategy

0 ∈ , write
³
0 −

´
for the strategy profile in which  has been

replaced by 0

• Notation: for any strategy profile  ∈  and player  ∈  , write

 () = arg max
0∈


³
0 −

´
=

n
0 ∈  : 

³
0 −

´
≥ 

³
00  −

´
∀00 ∈ 

o

• This defines player 0s best-reply correspondence  :  ⇒ 

• Write  () = ×∈ () = 1 ()× 2 ()× ×  ()

• This defines the combined best-reply correspondence  :  ⇒ 



Definition 6.2 A strategy profile ∗ ∈  is a Nash equilibrium (NE) if ∗ is
a best reply to itself; ∗ ∈  (∗).



6.1 Examples

• Reconsider the finite games in Lecture 1

• The Cournot duopoly: assume that each firm strives to maximize its

profit

 () = (100−) 



6.2 Ordinal games

Definition 6.3 An ordinal normal-form game is a triplet  = h (<)i,
where

(i)  = {1 2  } is the set of players

(ii)  = ×∈ is the set of strategy profiles  = ()∈ with  denoting

the strategy set of player 

(iii) For each  ∈  , < is player ’s preference ordering of the set  of

strategy profiles.

• Interpretation:  < 
0 means that player  (weakly) prefers strategy

profile  over strategy profile 0 [or, more exactly, (weakly) prefers the
probability distribution over outcomes/plays that is induced by  over

that induced by 0]



• For any strategy profile  ∈  and player  ∈  , we now write

 () =
n
0 ∈  :

³
0 −

´
<

³
00  −

´
∀00 ∈ 

o

• Nash equilibrium can be defined in the same way as with payoff func-

tions, that is, as a strategy profile that is a best reply to itself.

• Note that, if, for each player  ∈  ,  is a utility function for player

, then a strategy profile is a NE in the ordinal game h (<)i iff it
is a NE in the game h i.



7 Existence of Nash equilibrium

Recall:

Definition 7.1 A function  :  → R, where  is a convex set, is quasi-

concave if, for each  ∈ R, the upper-contour set

 = { ∈  :  () ≥ }

is convex.

Definition 7.2 A fixed point under a correspondence  :  ⇒  is a

point  ∈  such that  ∈  ().



Theorem 7.1 Let  = h i be a normal-form game in which each

strategy set  is a non-empty, compact and convex set in some Euclidean

space R, each payoff function  :  → R is continuous, and quasi-

concave in the player’s own strategy,  ∈ . Then  has at least one

Nash equilibrium.

Proof sketch:

1. Weierstrass’ Maximum Theorem⇒  () non-empty and compact ∀ ∈


2. Quasi-concavity ⇒  () convex ∀ ∈ 

3. Berge’s Maximum Theorem ⇒  upper hemi-continuous



4. Kakutani’s Fixed-Point Theorem: Every upper hemi-continuous corre-

spondence  from a non-empty, compact and convex set  to itself

has at least one fixed point if  () is non-empty, compact and convex

∀ ∈ 

• Nash’s (1950) existence result is a special case:

Definition 7.3 For any player  in any game: a mixed strategy  is a

randomization (probability distribution) over the player’s strategy set ;

 ∈ ∆ () =

⎧⎨⎩ ∈ R
+ :

X
∈

 = 1

⎫⎬⎭
Theorem 7.2 (Nash, 1950) Let  = h i be a normal-form game in

which the set  of players is finite, each strategy set  is non-empty and

finite. Then  has at least one Nash equilibrium in pure or mixed strategies.



Proof: Each player’s set of mixed strategies is a non-empty compact and

convex set in a Euclidean space, and each player’s expected payoff is a con-

tinuous function, that is linear in the player’s own mixed strategy. Hence,

the general existence theorem, given above, applies.


