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1 Examples

1.1 Pure price competition [Bertrand duopoly]

1. Two firms with identical products

2. Both firms have the same constant unit cost  ≥ 0

3. Demand  () = max {0 100− }

4. Each firm chooses its price  ∈ [0 100] so as to maximize its profit

∗ (1 2) =

⎧⎪⎨⎪⎩
( − ) () if   
1
2 ( − ) () if  = 

0 if   

(for  6= )



• Formalize this as a normal-form game  = h  i

• Do best replies always exist?

• Draw a picture of the graph of 1

• Identify the set of pure-strategy equilibria

• Discuss weak dominance

• Consider the case of  = 10 and a smallest monetary unit for prices:

 ∈ {0 1 2  99 100}



1.2 Pure location competition [the Downs model]

1. Two firms, same product, but at locations  and  in [0 1]

- or two firms that choose different varieties of a product

- or two political candidates/parties, taking policy positions in compe-

tition for votes

2. Both firms have the same constant unit cost   0

3. Both firms sell at the same (fixed) price   

4. Each firm strives to maximize its profit, or, equivalently, its sales

5. Consumers uniformly distributed on [0 1] and each consumer buys 1

unit from the nearest seller



• Formalize this as a normal-form game  = h  i

• Do best replies always exist?

• Identify the set of pure-strategy Nash equilibria

• Consider the case of a finite and odd set of locations,

 = {1 2  2+1} ⊂ [0 1]

at equal distance from each other, with 1 consumer at each location

• Will best replies now always exist? Nash equilibrium?



1.3 Competition in both location and price [the Hotelling

model]

A two-stage game:

• Stage 1: Both firms simultaneously choose their locations,  and 

• Stage 2: Both firms observe each others’ locations and simultaneously
choose their prices, 1 and 2

• Each firm strives to maximize its (expected) profit

• What is now the strategy set of firm 1, of firm 2?

• Non-credible threats and the idea of subgame perfection



1.4 Sequential quantity competition [Stackelberg leader-

ship]

• Reconsider the Cournot duopoly, with two identical firms, constant
unit cost   0, but now interacting in two stages

• Stage 1: Firm 1 chooses its output quantity, 1

• Stage 2: Firm 2 observes 1 and chooses its own output quantity, 2

• Each firms strives to maximize its profit.

• What is the strategy set of firm 1, firm 2?

• Non-credible threats and the idea of subgame perfection



2 Subgame perfection

• The idea goes back to Selten (1965) [Osborne-Rubinstein 6.2]

• The concept will be fully formalized in Mark’s lectures on finite extensive-
form games

• Here we develop the idea rather informally

Definition 2.1 A subgame of an extensive-form game Γ is the extensive-

form game Γ that

(i) has as its initial node (“root”) a singleton node  such that if a node

 in an information set  is preceded by node , then all nodes in  are

preceded by 

(ii) “inherits” the Bernoulli function values of Γ.



• Note that, by definition, Γ is a subgame of itself (just as any set is a
subset of itself).

Definition 2.2 A strategy profile  in an extensive-form game Γ is subgame

perfect if it induces a Nash equilibrium in all subgames of Γ.

• Reconsider examples



3 Games of incomplete information

• In many strategic interactions, the actors know the “rules of the game”
but not each others’ preferences (or payoff functions)

• Such situations of incomplete information are usually modelled as
games of imperfect information [Harsanyi (1967)]

• Approach: Create a “meta-game” by

(a) Introducing “nature” as “player 0”, who makes an initial random

draw from a set of possible preference profiles

(b) Let each player learn his or her preference, or “type”

(c) Let each player decide what to do, conditional each of his or her

possible types



• Formally, this gives rise to an extensive-form game with an initial ran-

dom move by “nature”

3.1 Example

• Two competing firms with private information about their own pro-
duction costs

• Suppose that both know the prior probabilities, , for the four possible
cost constellations: ( ), ( ), ( ), ( )

• Each firm learns its own cost (“type”) and uses Bayes’ law to infer the

posterior probability distribution for the other firm’s cost. For instance,



suppose firm 1 learns that its cost is low. Then:

Pr [Firm 2’s cost is  | 1’s cost is ] =
 ( )

 ( ) +  ( )

etc.

• Having done this, they simultaneously take some action (output quan-
tity, price and/or location)

• Each firm takes his or her two actions in order to maximize its expected
profit, given its posterior belief about the other firm’s cost and action



• Note that this two-player game can alternatively be analyzed as a four-
player game, in which each firm has been replaced by two players, one

for each of its two “types” (its low- and high-cost incarnations)

• What is the strategy set of each player in each of these two game
representations? How define payoff functions?



4 Bayesian games

• A general model of strategic interactions under incomplete information
[Osborne-Rubinstein 2.6]

Definition 4.1 The pre-image of a set  ⊂  under any function  :  →
 , is the set

−1 () = { ∈  :  () ∈ }

1. Let  = {1 2  } be the set of (personal) players 

2. Let Ω be a finite set of states of nature 

3. For each player , let  be a finite set of potential signals or types



4. For each player , let  : Ω →  be ’s signal function [complete
information being the special case  () ≡ ]

5. For each player , let  ∈ ∆ (Ω) be ’s prior belief, before  receives
her/his signal

- and assume that each signal has a positive prior:


h
−1 ()

i
 0 ∀ ∈ 

6. For each player , let  be a set of actions  [the strategies in the
“underlying” game]

and write  = ×∈

7. For each player , let  be the set of functions  : → 

- the strategies for player  in the “Bayesian game” specifying what
action to take, conditional upon each of ’s signal



8. Whenever this game is played, exactly one point in the set Ω× will

materialize

9. Preferences < are defined over the set ∆ (Ω×) of probability dis-

tributions (“lotteries”) over Ω×

- if these preferences satisfy the vonNeumann-Morgenstern axioms: let

 : Ω×→ R be a Bernoulli function representation of <

10. This defines an ordinal Bayesian game
D
Ω (    <)∈

E
,

or a Bayesian game if we replace preferences by Bernoulli functions .

• One may represent this either as an -player normal-form game. How-

ever:



Definition 4.2 A strategy profile  in a Bayesian game Γ is a Nash equi-

librium if implements a Nash equilibrium in the normal-form game ∗ =
h∗ ∗ ∗i, where

(a) ∗ = {( ) :  ∈  and  ∈ }

(b) ∗() =  and 
∗ = ×()∈∗

∗
()

(c) ∗() (
∗) = E() [ (  ())], where the expectation is taken with

respect to ( )’s posterior,

() () =

(
 () 

h
−1 ()

i
if  ∈ −1 ()

0 otherwise

and  () = ∗
(())

for all  ∈  and  ∈ Ω



5 Examples

5.1 Cournot duopoly with uncertain costs

• Two firms competing in a homogeneous product market

• Firm 1 has unit production cost 

• Firm 2 has either unit production cost  or  where   

• The probabilities are Pr [] =  and Pr [] = 1 −  for some  ∈
(0 1)

• Firm 2 learns its own cost, but firm 1 is not informed of 2’s actual cost



• Then both firms simultaneously select output levels, 1 and 2

• The market clears at the price  =  (1 + 2)

• Formalize this as a three-player game and solve for NE



5.2 Second-price auction

• An indivisible object is auctioned off to the highest bidder in a sealed-
bid procedure

• The bidder with the highest bid wins the object and pays the second
highest bid

[A so-called Vickrey auction]

• Suppose there are  bidders, and that the bidders’ valuations are sta-
tistically independent draws from the same probability distribution 

on some finite set  ⊂ R of potential valuations

• Hence, Ω =   and  = (1  )



• Assume all bidders know this: a common prior  =  :

 (1  ) =  (1) ·  ·  ()

• Each bidder is only informed about his or her valuation:

 (1  ) ≡ 

• What is a bidder’s set of pure strategies?

• How define payoff functions?

• Homework: Show that bidding one’s valuation is a (weakly) dominant
strategy, and that this strategy profile constitutes a Nash equilibrium.

[Osborne and Rubinstein Example 27.1]



Next lecture

1. Interpretations of mixed strategies

2. Rationalizability

3. Evolutionary stability


