Intro

- Mark Voorneveld, mark.voorneveld@hhs.se
- Main topic: extensive form games (= extensive games = games in extensive form).
- Parts from chapters 6, 11, and 12 in Osborne and Rubinstein (OsRu).
- I refer explicitly to the definitions/results in OsRu in these slides.
- Before going into more advanced stuff, we'll be formalizing some of the things you have seen in Jörgen's part of the course.
- Disadvantage: elaborate notation.

Def. 89.1 An extensive form game with perfect information

 $\Gamma = \langle N, H, P, (\succeq_i)_{i \in N} \rangle$

consists of

 \boxtimes nonempty, finite set N of *players*,

 \boxtimes set H of histories, summarizing the sequence of actions taken so far:

- initial history: $\emptyset \in H$,
- H contains the initial segments of all histories: if (a^k)_{k=1,...,K} ∈ H (possibly K = ∞) and L < K (fewer actions), then (a^k)_{k=1,...,L} ∈ H,
- if an infinite seq $(a^k)_{k \in \mathbb{N}}$ satisfies that all its initial sequences $(a^k)_{k=1,...,K}$ with $K \in \mathbb{N}$ are in H, then so is the infinite sequence itself.

A history is *terminal* if it is infinite or there is no "longer" history:

 $(a^k)_{k=1,...,K}$ is terminal if there is no a^{K+1} such that $(a^k)_{k=1,...,K+1} \in H$. The set of terminal histories is denoted by $Z \subseteq H$.

 \boxtimes player function $P: H \setminus Z \to N$ assigning to each nonterminal history a player whose turn it is to take an action,

 \boxtimes for each player $i \in N$ a preference relation \succeq_i over terminal histories. Often assumed to satisfy the vNM axioms, in which case we represent them by a Bernouilli function u_i on Z.

Example 1.

$$N = \{1, 2\}$$

$$H = \{\underbrace{\emptyset}_{\text{length 0}}, \underbrace{A, B}_{\text{length 1}}, \underbrace{(A, a), (A, b), (B, a), (B, b)}_{\text{length 2}}\}$$

$$Z = \{(A, a), (A, b), (B, a), (B, b)\}$$

$$P(\emptyset) = 1, P(A) = P(B) = 2$$

In terminal history (A, a), player 1 gets "payoff" 3 and player 2 gets payoff 1, etc.

Other terminology/notational conventions:

 \boxtimes If the set of histories H is a finite set, the game is called *finite*.

 \boxtimes If every history $h \in H$ is a finite sequence, the game has a *finite horizon*.

 \boxtimes The game's *horizon* is the length of its longest history. The example above has horizon/length 2.

 \boxtimes So: finite game \Rightarrow finite horizon (what about the converse?!)

 \boxtimes Let $h = (a^1, \ldots, a^K) \in H$ and let a^{K+1} be such that $(a^1, \ldots, a^K, a^{K+1}) \in H$. The latter history is sometimes abbreviated as (h, a^{K+1}) .

 \boxtimes For nonterminal history $h \in H \setminus Z$, we define

$$A(h) = \{a: (h,a) \in H\}$$

as the set of actions that player P(h) can choose in history h.

 \boxtimes Def. 92.1: a pure strategy s_i of player $i \in N$ assigns to each history $\{h \in H \setminus Z : P(h) = i\}$ where it is *i*'s turn to choose, a feasible action $s_i(h) \in A(h)$. The set of pure strategies is denoted by S_i .

In Example 1, pl 1 chooses after \emptyset between A or B: two pure strategies, for convenience denoted as A and B.

PI 2 chooses after histories A and B, namely between a and b: four pure strategies, denoted aa, ab, ba, bb, where, for instance ab is shorthand for

$$s_2(A) = a, s_2(B) = b.$$

 \boxtimes Each pure strategy profile $s = (s_i)_{i \in N} \in S = \times_{i \in N} S_i$ determines a unique *outcome*/terminal history O(s).

 \boxtimes Def. 93.1: a (*pure*) Nash equilibrium of an extensive form game with perfect information is a pure-strategy profile s^* such that no player can profitably deviate to another strategy:

for all $i \in N$ and all pure strategies s_i of pl $i : O(s^*) \succeq_i O(s_{-i}^*, s_i)$.

 \boxtimes This is just a pure Nash equilibrium of the associated strategic form game (**def. 94.1**) where the pure strategies are those of the extensive form game and the preferences/Bernouilli functions are defined over the outcomes induced by the strategies.

The pure Nash equilibria of the game in Example 1 are just the pure Nash equilibria of the strategic game

	aa	ab	ba	bb
A	3 , 1	3 , 1	0,0	0,0
B	0,0	1,3	0,0	1, 3

Reduced games and equivalent strategies:

Example 2.

$$\begin{array}{ccccc} L_{2} & C_{2} \\ L_{1}L_{3} & a & a \\ L_{1}C_{3} & a & a \\ C_{1}L_{3} & b & c \\ C_{1}C_{3} & b & d \end{array}$$

 \boxtimes Strategies L_1L_3 and L_1C_3 are outcome-equivalent: the choice between L_3 or C_3 in history (C_1, C_2) is irrelevant, since this history is not reached anyway.

 \boxtimes Strategies s_i and t_i of pl. $i \in N$ are *outcome-equivalent* if — given the strategies of the remaining players — they give rise to the same outcome:

for all
$$s_{-i}$$
: $O(s_i, s_{-i}) = O(t_i, s_{-i}).$

 \boxtimes So C_1L_3 and C_1C_3 are not outcome-equivalent: the outcomes are different if 2 chooses C_2 . But if outcomes c and d were to give the same payoff, the difference in the outcomes is irrelevant. We call the strategies payoff-equivalent.

 \boxtimes Strategies s_i and t_i of pl. $i \in N$ are *payoff-equivalent* if — given the strategies of the remaining players — each player is indifferent between the outcomes generated by s_i and t_i :

for all
$$s_{-i}$$
, for all $j \in N$: $O(s_i, s_{-i}) \sim_j O(t_i, s_{-i})$
(or $u_j(O(s_i, s_{-i})) = u_j(O(t_i, s_{-i}))$).

 \boxtimes **Def. 95.1:** the *reduced strategic form* of Γ is obtained from its strategic form by replacing each set of equivalent strategies by a single "representative" one.

If c and d give different payoffs, the reduced strategic form is

	L_2	C_2
L_1	a	a
C_1L_3	b	c
C_1C_3	b	d

If c and d give identical payoffs, the reduced strategic form is

$$\begin{array}{ccc} L_2 & C_2 \\ L_1 & a & a \\ C_1 & b & c \end{array}$$

(Notice: "the" strategic form is somewhat ambiguous: e.g. the names of the strategies are arbitrary...)

Subgame perfection

Example 3.

Strategic form:

$$egin{array}{cccc} L & R \ A & {f 0}, {f 0} & {f 2}, {f 1} \ B & {f 1}, {f 2} & {f 1}, {f 2} \end{array}$$

Nash equilibria: (B, L) and (A, R). But if pl 2 is called upon to play, would 2 choose R?

Subgame perfection requires that players play equilibria in each subgame. In games with perfect information, a subgame is simply a game that starts from an arbitrary history:

Def. 97.1: A subgame of $\Gamma = \langle N, H, P, (\succeq_i)_{i \in N} \rangle$ after history $h \in H$ is the game $\Gamma(h) = \langle N, H_{|h}, P_{|h}, (\succeq_i)_{i \in N} \rangle$ with

 $\boxtimes H_{|h} = \{h' \mid (h, h') \in H\}$ (histories following h)

 \boxtimes for all $h' \in H_{|h}$: $P_{|h}(h') = P(h, h')$ (player assignments the same)

 \boxtimes for all terminal histories $h', h'' \in H_{|h}$: $h' \succeq_{i|h} h'' \Leftrightarrow (h, h') \succeq_i (h, h'')$ (preferences the same) **Def. 97.2:** A strategy combination $s^* = (s_i^*)_{i \in N}$ is a subgame perfect equilibrium of $\Gamma = \langle N, H, P, (\succeq_i)_{i \in N} \rangle$ if it induces a Nash equilibrium in each subgame: for each $h \in H \setminus Z$, $s_{|h}^*$ (the strategy profile s^* restricted to the subgame $\Gamma(h)$) is a Nash equilibrium of $\Gamma(h)$.

Lemma 98.2 (One-deviation property) Let $\Gamma = \langle N, H, P, (\succeq_i)_{i \in N} \rangle$ have finite horizon. The following two claims are equivalent:

(1) s^* is a subgame perfect equilibrium.

(2) in each subgame, the first player to move cannot profitably deviate by changing only the initial action.

Proof sketch: Clearly $(1) \Rightarrow (2)$. Conversely, assume (2) holds. If s^* is not subgame perfect, choose a subgame and a profitable deviation by some pl. i with as few deviations as possible. Consider the longest history h after

which *i* deviates. Then $\Gamma(h)$ is a subgame with a profitable deviation in the initial node.

Prop. 99.2 (backwards induction) Every finite extensive form game with perfect information has a subgame perfect equilibrium (in pure strategies).

Proof sketch: Induction on length of subgames. In each subgame, given equilibrium behavior after the initial move, the one-deviation property assures that we only need to check that the first player chooses optimally.

Q: why finite games? Isn't a finite horizon enough?

That's a pretty nice result: equilibrium existence in pure strategies! No need for different types of randomization (mixed/behavioral).

Example 91.1 Dividing 2 indivisible objects. Pl. 1 proposes, pl. 2 accepts or rejects.

Subgame perfect equilibria?

Section 6.3: two extensions

Extension 1: observable chance moves

Example 4: toss a coin to decide which of two extensive form games with perfect information will be played.

One-deviation property and backward-induction result still hold.

Extension 2: simultaneous moves

Example 5: Player 1 chooses to stay home and end the game with payoffs (2, 2) or to play a battle of the sexes game:

	Bach	Stravinsky
Bach	3 , 1	0,0
Stravinsky	0, 0	1,3

One-deviation property still holds; backward-induction result doesn't (pure equilibria need not exist — Matching Pennies)

Backwards induction and iterated elimination of weakly dominated strategies (IEWDS)

- 1. If $\Gamma = \langle N, H, P, (\succeq_i)_{i \in N} \rangle$ is such that no player is indifferent between any of the terminal nodes (e.g. all payoffs distinct), then there is a unique subgame perfect equilibrium. There is a process of iterated elimination of weakly dominated strategies (IEWDS) under which this subgame perfect equilibrium survives. (Idea: follow backwards induction).
- 2. Other orders of elimination may eliminate all subgame perfect equilibria.
- 3. If there are ties in the payoffs, IEWDS may eliminate all subgame perfect equilibria or result in outcomes that aren't even equilibria (p. 109-110).

Illustration of IEWDS to keep subgame perfect equilibrium

Example 6.

Strategic form:

 $\begin{array}{ccc} C & D \\ AE & 2,0 & 1,1 \\ AF & 0,2 & 1,1 \\ BE & 3,3 & 3,3 \\ BF & 3,3 & 3,3 \end{array}$

Backwards induction: AF weakly dominated by AE, then C weakly dominated by D, then AE weakly dominated by BE.

Other order eliminates the subgame perfect equilibrium: AE weakly dominated by BE, then D weakly dominated by C, then AF weakly dominated by BE.

Forward induction

Recall example 5: Player 1 chooses to stay home and end the game with payoffs (2, 2) or to play a battle of the sexes game:

BachStravinskyBach3,10,0Stravinsky0,01,3

Reduced strategic form:

	Bach	Stravinsky
Home	2,2	2,2
Bach	3 , 1	0,0
Stravinsky	0,0	1 , 3

Subgame perfect equilibria?

IEWDS?

Forward induction bases reasoning on what happened *earlier* in the game:

- If pl 2 needs to make a choice, that pl 1 gave up payoff 2.
- That makes sense only if he chooses *Bach* in the battle-of-the-sexes game.
- PI 2's best response is also to choose *Bach*.

This type of reasoning applies to a limited class of games, though.