# SF 2972 GAME THEORY Lecture 3 Finite games in normal form, part I

Jörgen Weibull

January 29, 2013

- Let  $G = \langle N, S, \pi \rangle$  be a finite game, where
  - -N is the finite set of (personal) players
  - $S = \times_{i \in N} S_i$  is the finite set of strategy profiles  $s = (s_1, .., s_n)$
  - $\pi$  is the joint **payoff function**,  $\pi_i(s_1, .., s_n) \in \mathbb{R}$  being the payoff to player *i* when profile *s* is played
- We will henceforth consider the mixed-strategy extension G̃ = ⟨N, ⊡ (S), π̃⟩ of G, the normal-form game in which a strategy for each player i is a probability distribution over the finite set S<sub>i</sub>
- We need to specify  $\boxdot(S)$  and  $\tilde{\pi}: \boxdot(S) \to \mathbb{R}^n$

## 1 Mixed-strategy sets

Let  $m_i$  be the number of pure strategies available to player i:  $m_i = |S_i|$ 

 The mixed-strategy set for player i ∈ N is the unit simplex spanned by his/her pure strategies:

$$\Delta_i = \Delta\left(S_i\right) = \{x_i \in \mathbb{R}^{m_i}_+ : \sum_{h=1}^{m_i} x_{ih} = 1\}$$

- The support of any given mixed strategy  $x_i$ :  $supp(x_i) = \{h \in S_i : x_{ih} > 0\}$
- The vertices of  $\Delta_i$  are the unit vectors,  $e_i^h$  for  $i \in N$ ,  $h \in S_i$  [interpreted as pure strategies]

• Interior or completely mixed strategies:

$$int(\Delta_i) = \{x_i \in \Delta_i : x_{ih} > 0 \ \forall h \in S_i\}$$

then all i's pure strategies are played with positive probability





• The **polyhedron** of mixed-strategy **profiles**:

$$X = \boxdot (S) = \times_{i \in N} \Delta_i = \times_{i \in N} \Delta (S_i)$$

• Example:  $\Box(S)$  when  $n = m_1 = m_2 = 2$ :



• Draw a picture of  $\Box(S)$  when  $n = m_2 = 2$  and  $m_1 = 3$ 

For any player  $i \in N$  and pure strategy  $s_i = h \in S_i$ , write  $x_i(s_i)$  for  $x_{ih}$ 

The payoff function \$\tilde{\pi}\_i : ⊡(S) → \mathbb{R}\$ of each player \$i \in N\$ assigns to each mixed-strategy profile \$x = (x\_1, ..., x\_n) \in ⊡(S)\$ the associated expected value of \$i\$'s payoff when strategy profile \$x\$ is played:

$$\tilde{\pi}_{i}(x) = \sum_{s \in S} \left[ \mathsf{\Pi}_{j \in I} x_{j}\left(s_{j}\right) \right] \pi_{i}(s)$$

Note the assumed statistical independence between different players' randomizations

**Example 1.1** The previously studied partnership game,

$$egin{array}{ccc} & C & F \ C & {f 3}, {f 3} & -{f 1}, {f 4} \ F & {f 4}, -{f 1} & -2, -2 \end{array}$$

Here the payoff matrix to player 1 is

$$A = \left(\begin{array}{cc} 3 & -1 \\ 4 & -2 \end{array}\right)$$

and that to player 2 is  $B = A^T$  (such games are called symmetric). We thus have

$$\tilde{\pi}_{1}(x) = x_{1} \cdot Ax_{2} = \mathbf{3} \cdot x_{11}x_{21} - \mathbf{1} \cdot x_{11}x_{22} + \mathbf{4} \cdot x_{12}x_{21} - \mathbf{2} \cdot x_{12}x_{22}$$

## **2** Dominance relations

**Definition 2.1**  $x_i^* \in \Delta_i$  strictly dominates  $x_i' \in \Delta_i$  if  $\tilde{\pi}_i(x_i^*, x_{-i}) > \tilde{\pi}_i(x_i', x_{-i})$  for all  $x \in \boxdot(S)$ .

**Definition 2.2**  $x_i^* \in \Delta_i$  weakly dominates  $x_i' \in \Delta_i$  if  $\tilde{\pi}_i(x_i^*, x_{-i}) \geq \tilde{\pi}_i(x_i', x_{-i})$  for all  $x \in \boxdot(S)$  with > for some  $x \in \boxdot(S)$ .

**Definition 2.3**  $x_i^* \in \Delta_i$  is weakly dominant if it weakly dominates all strategies  $x_i' \in \Delta_i$ . A strategy that is not weakly dominated is called undominated. A strategy that strictly dominates all other strategies is strictly dominant.

• Example: payoff matrix to player 1

$$A = \left[ \begin{array}{rrr} \mathbf{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} \\ \mathbf{1} & \mathbf{1} \end{array} \right]$$



• Iterated elimination of strictly dominated pure strategies:

$$G = \left[ \begin{array}{rrrr} \mathbf{3}, \mathbf{3} & \mathbf{1}, \mathbf{0} & \mathbf{6}, \mathbf{1} \\ \mathbf{0}, \mathbf{1} & \mathbf{0}, \mathbf{0} & \mathbf{4}, \mathbf{2} \\ \mathbf{1}, \mathbf{6} & \mathbf{2}, \mathbf{4} & \mathbf{5}, \mathbf{5} \end{array} \right]$$

• A game is called **dominance solvable** if the iterated elimination of strictly dominated pure strategies results in a **single** pure-strategy pro-file.

## **3** Best replies

• The *i*:th player's pure-strategy best-reply correspondence  $\beta_i : \boxdot (S) \rightrightarrows S_i$  is defined by

$$\beta_i(x) = \{h \in S_i : \tilde{\pi}_i(e_i^h, x_{-i}) \ge \tilde{\pi}_i(e_i^k, x_{-i}) \ \forall k \in S_i\}$$

• Mixed strategies cannot give higher payoffs than pure:

$$\beta_i(x) = \{h \in S_i : \tilde{\pi}_i(e_i^h, x_{-i}) \ge \tilde{\pi}_i(x_i', x_{-i}) \ \forall x_i' \in \Delta_i\}.$$

• The *i*:th player's mixed-strategy best-reply correspondence  $\tilde{\beta}_i$ :  $\boxdot$  (S)  $\Rightarrow$   $\Delta_i$  is defined by:

$$egin{array}{rll} ilde{eta}_i(x) &=& \{x_i^*\in \Delta_i: ilde{\pi}_i(x_i^*,x_{-i})\geq ilde{\pi}_i(x_i',x_{-i}) \; orall x_i'\in \Delta_i\} \ &=& \{x_i^*\in \Delta_i: {\it supp}(x_i^*)\subset eta_i(x)\} \end{array}$$

- Note that  $\tilde{\beta}_i(x)$  is a (non-empty) subsimplex
- The combined pure *BR*-correspondence  $\beta : \boxdot (S) \rightrightarrows S$ :

$$\beta(x) = \times_{i \in N} \beta_i(x)$$

• The combined mixed *BR*-correspondence  $\tilde{\beta}$  :  $\boxdot$  (*S*)  $\rightrightarrows$   $\boxdot$  (*S*):

$$\tilde{\beta}(x) = \times_{i \in N} \tilde{\beta}_i(x)$$

#### 3.1 Dominance vs. best replies

- Pure best replies are not strictly dominated
- If a pure strategy is not strictly dominated, is it then a best reply to some belief?
- Pure best replies to *interior* strategy profiles are undominated
- If a pure strategy is undominated, is it then a best reply to some interior belief?

**Proposition 3.1 (Pearce, 1984)** Suppose n = 2. Then  $s_i \in S_i$  is not strictly dominated iff  $s_i \in \beta_i(x)$  for some  $x \in \bigcup (S)$ , and  $s_i \in S_i$  is undominated iff  $s_i \in \beta_i(x)$  for some  $x \in int(\bigcup (S))$ .

# 4 Rationalizability

• Consider a finite game in normal form,  $G = \langle N, S, \pi \rangle$  and assume

A1 (*Rationality*): Each player *i* forms a probabilistic belief  $\mu_{ij} \in \Delta(S_j)$  about every other player *j*'s strategy choice, a belief that does not contradict any information or knowledge that player *i* has, and player *i* chooses a (pure or mixed) strategy that maximize his or her expected payoff, assuming statistical independence between other player's strategy choices.

A2 (*Common Knowledge*): The game G and the players' rationality (A1) is common knowledge among the players: each player knows G and that (A1) holds for all players, knows that all players know this, and knows that all players know that all players know this etc. *ad infinitum*.

- **Question**: What is the logical implication of A1 and A2?
- Answer: rationalizability!

1. For any 
$$X_j \subset \Delta(S_j)$$
, let  $X = \times_{j=1}^n X_j$  and write  
 $\tilde{\beta}_i(X) = \left\{ x_i^* \in \Delta(S_i) : x_i^* \in \tilde{\beta}_i(x) \text{ for some } x \in X \right\}$ 

2. Write 
$$B_j(0) = \Delta(S_j)$$
 and  $B(0) = \times_{j=1}^n B_j(0)$ . [Thus  $B(0) = \bigcirc(S)$ ]

3. Define the set sequence  $\langle B(t) \rangle_{t \in \mathbb{N}}$  recursively by

$$B_i(t+1) = \tilde{\beta}_i[C(t)]$$

where  $B(t) = \times_{j=1}^{n} B_j(t)$ ,  $C(t) = \times_{j=1}^{n} C_j(t)$  and

 $C_{j}(t)$  is the *convex hull* of  $B_{j}(t)$ 

4. Note that  $B_i(t+1) \subseteq B_i(t)$  for all t and i.

Definition 4.1 (Pearce, 1984) A strategy  $x_i \in \Delta(S_i)$  is rationalizable for player *i* if  $x_i \in B_i$ , where

$$B_i = \cap_{t \in \mathbb{N}} B_i(t).$$

• Let  $C_i$  be the convex hull of  $B_i$ 

**Proposition 4.1** For each *i*:  $B_i \neq \emptyset$  and  $C_i = \Delta(T_i)$  for some non-empty subset  $T_i \subset S_i$ 

• A set  $B_i(t)$  is not necessarily convex:

**Example 4.1** Consider player 1 with payoff matrix

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \\ 2 & 2 \end{bmatrix}$$





$$B_1 = \{ x_1 \in \Delta_1 : x_{11}x_{12} = \mathbf{0} \} \quad \neq \quad C_1 = \Delta_1$$

## 5 Nash equilibrium

**Definition 5.1**  $X^{NE} = \{x \in \boxdot (S) : x \in \tilde{\beta}(x)\}.$ 

**Definition 5.2**  $x \in X^{NE}$  is strict if  $\tilde{\beta}(x) = \{x\}$ .

• A NE strategy cannot be *strictly* dominated, but may be *weakly* dominated. Example?





Game 4

The strategy profile s = (A, F) is a Nash equilibrium! But F is weakly dominated by C. (The game has infinitely dominated Nash equilibria. Find them!)

$$\begin{array}{ccc} C & F \\ A & 1, 3 & 1, 3 \\ E & 2, 2 & 0, 0 \end{array}$$

#### 5.1 Existence

Theorem 5.1 (Nash, 1950)  $\Box^{NE} \neq \emptyset$ .

Two alternative proofs:

1. Application of Kakutani's fixed-point theorem (Nash's first proof)

2. Application of Brouwer's fixed-point theorem (Nash's second proof). This inspired Arrow's and Debreu's proof of the existence of Walrasian equilibrium in general-equilibrium theory.

**Proof 1:** The polyhedron  $\boxdot(S)$  is non-empty, convex and compact. Berge's Maximum Theorem implies that  $\tilde{\beta} : \boxdot \rightrightarrows \boxdot$  is upper hemi-continuous. We saw that  $\tilde{\beta}(x)$  is a non-empty convex and closed set. Hence, Kakutani's Fixed-Point Theorem applies, so  $x^* \in \tilde{\beta}(x^*)$  for at least one  $x^* \in \boxdot$ .

**Proof 2:** Let 
$$\pi_{ih}^+(x) = \max\left\{0, \tilde{\pi}_i(e_i^h, x_{-i}) - \tilde{\pi}_i(x)\right\}$$
 and define  $f : \boxdot (S) \rightarrow \boxdot (S)$  by

$$f_{ih}(x) = \frac{x_{ih} + \pi_{ih}^{+}(x)}{1 + \sum_{k \in S_i} \pi_{ik}^{+}(x)} \qquad \forall i \in N, h \in S_i$$

Clearly f is continuous and thus has a fixed point by Brouwer's Fixed-Point Theorem. Not difficult to verify that each fixed point  $x^* \in X^{NE}$ .