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1. (a) Let  = 0, and let us name the three pure strategies , , and . There

are 3 pure NE: (), (), and (). The unique pure best reply to

() is , to () it is  and to () it is . There are 4 mixed NE.

All pure strategies in their supports are best replies, and only these. Three

of the mixed equilibria involve 50/50 randomizations between pairs of pure

strategies: {}, {} and {}, respectively:

Player 1 Player 2

probability pure best reply probability pure best reply

A (12), B (12) A or B A (12), B (12) A or B

A (12), C (12) A or C A (12), C (12) A or C

B (12), C (12) B or C B (12), C (12) B or C

The fourth mixed NE involves a uniform randomization over all three strate-

gies, each played with probability 13. All pure strategies are best replies.

All in all there thus are 7 NE.

(b) Let  = 1. There are still 3 pure NE: (), (), and (). These are

no longer strict; each player has an alternative best reply to each equilibrium.

(For example:  is a best reply to ().) There is no mixed NE involving

pairs of pure strategies. There is still one mixed NE involving all three

strategies, each played with probability 13. All pure strategies are best

replies to this (completely) mixed NE. All in all there are 4 NE (an even

number, a non-generic case).

(c) Let  = 2. There is no pure NE. There is no mixed NE involving pairs of

pure strategies. There is still one mixed NE involving all three strategies,

each played with probability 13. All pure strategies are best replies to this

(completely) mixed NE. All in all there is 1 NE.

(d) Done above.

(e) For  = 0 1 2: No pure strategy is (weakly) dominated, so all NE are

undominated, and hence perfect equilibria, since this is a 2-player game.
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2. (a) Pure strategy  is strictly dominated by a randomization over strategies 

and , where the probability to play , , satisfies 78    1.

(b) The rationalizable strategies for each player are , , and .

(c) The pure-strategy NE are (), (), and ().

(d) The candidates are the three NE. However, since strategy  is weakly dom-

inated by , () is not perfect. The other two NE are perfect.

3. (a) NE: ( ), () and the mixed strategy profile , where 1 = (34 14)

and 2 = (49 59). All strict, and also all completely mixed NE are perfect

and proper, so all three NE in this example have these robustness properties.

(b) In class. A reasonable answer is "no" to both questions, since player 1 cannot

deduce 2’s intention from 2’s message (2 would gain from 1 playing T even

if 2 plans to play R). In order to analyze this question rigorously, one needs

to incorporate the message-sending stage into the strategic analysis. For

instance, one can write up a so-called cheap-talk game, in which both players

first send messages to each other (say, simultaneously), and then play the

game in question. A pure strategy for a player is then a message to send

and, for each possible message pairs, a strategy to play in the game (that

may be conditioned on the messages sent). This is a fascinating part of game

theory, with some surprising (mostly negative) results.

4. (a) The monopoly price for each firm  is found by solving the profit-maximization

program

max
∈[0]

(− ) (− )

which has the unique solution


 =

+ 

2
∈ (0 )

(b) Let  = 1 = 2. The normal-form game is  = ( ), where  = {1 2},
1 = 2 =  = [0 ],  =  2 and, for   ∈  with  6= :

 (1 2) =

⎧⎨⎩ (− ) (− ) if   
1
2
(− ) (− ) if  = 
0 if   

These payoff functions are discontinuous and firm  has no best reply to  ∈
( ). Nevertheless, there exists a unique (pure-strategy) NE, namely

marginal-cost pricing: 1 = 2 = . We note that each player’s equilibrium

strategy is weakly dominated (for example by setting the monopoly price).

(c) In this case there exists no NE (in pure strategies), unless firm 2’s marginal

cost is quite high and the marginal cost difference is large. The reason is
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that, when the marginal costs are not very high and not very different, the

more efficient firm 1 "wants to" price slightly below the marginal cost of firm

2, to "capture" the whole market, but (with continuum strategy sets) there

exists no optimal such under-cutting price, unless firm 1’s monopoly price is

lower than firm 2’s marginal cost. In the latter case, that is, when 
1 ≤ 2,

or, equivalently,  ≤ 22−1, there exists infinitely many NE, all of the form
1 = 

1 , 2  1, and all resulting in firm 1 "capturing" the whole market.

(Consider, for example, the case when  = 1, 1 = 01 and 2 = 06.)

(d) In this case we have a finite game. Hence, in the mixed-strategy extension,

there always exists at least one Nash equilibrium and, indeed at least one

perfect equilibrium, and hence at least one Nash equilibrium in undominated

strategies. But we here focus on pure strategies. In the case 1 = 2 = 

there now are two pure NE: 1 = 2 =  and 1 = 2 =  + 1, respectively,

where the former NE is weakly dominated while the second is undominated

(and hence perfect, since this is a two-player game). In the case 1  2:

either  ≤ 22 − 1, in which case the Nash equilibria in (c) are still Nash

equilibria, or   22− 1, in which case 1 = 2− 1 and 2 = 2 constitutes

a NE. This is undominated iff 1  2 − 1.
5. (a) Pareto efficiency means that it is not possible to make one party strictly

better off without making the other party worse off. Hence, Pareto efficiency

requires that the object be allocated to the party who values it most. Pareto

efficiency thus requires that the good be sold at all valuation pairs above the

diagonal in the unit square in ( )-space.

(b) Since there are no point masses in the type distributions, ties can be neglected

(these have probability zero). Bert will accept any offer   . Anne thus

chooses her ask price  so as to maximize

 () = (− ) · Pr [  ] = (− ) (1− )

a strictly concave function of  that is maximized at

∗ () =
1 + 

2

This optimal ask price depends on Anne’s own valuation : the more she

likes the object, the higher will her ask-price be.

(c) In the double-auction, we need to verify that the proposed strategy pair

constitutes a Nash equilibrium. A pure strategy for Anne is a function  :

[0 1]→ [0 1] that to each possible valuation  that she might have assigns an

ask price (). Likewise, a pure strategy for Bert is a function  : [0 1]→
[0 1] that to each possible valuation  that he might have assigns a bid price

(). We first note that trade only takes place when () ≤ (). Under

the proposed strategy profile, this happens iff 2( − )3  14 − 112 or,
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equivalently, iff  −  14. From the players’ strategies we also have that

Anne never asks a price below 14, and Bert never bids more than 34. In

order to verify whether the proposed strategy pair is a Nash equilibrium, we

need to consider the optimality of each player’s strategy choice, given the

other party’s strategy. First, given B’s strategy: is A’s strategy optimal? A

takes as given that

 () =

(
23 + 112 if   14

 otherwise

Conditional upon her own valuation, , A sets her price, , so as to maximize

her expected utility. For any given , her expected utility is

 () = E
∙
+  ()

2
−  |  ()  

¸
· Pr [ ()  ]

i. For 0 ≤  ≤ 14:

 () =

Z 14



µ
+ 

2
− 

¶
 +

Z 1

14

µ
+ 23 + 112

2
− 

¶


= (2− ) (1− ) +
1

2

Z 14



 +
1

3

Z 1

14



ii. For 14   ≤ 1:

 () =

Z 1

32−18

µ
+ 23 + 112

2
− 

¶


= (2 + 124− ) (1− 32 + 18) + 1
3

Z 1

32−18


iii. Taking the derivative with respect to , we find that, for 0 ≤  ≤ 14:
0 () = (1− ) 2− (2− )− 2 =  + 12−   0

so A never wants to ask a price  ≤ 14. Again taking the derivative
with respect to , but this time for 14   ≤ 1, we find that:
0 () = (1− 32 + 18) 2− 3 (2 + 124− ) 2− (32− 18) 2

= 32− 94 + 916
Hence, 00 ()  0 so  is a strictly concave function, with unique

maximum where 0 () = 0, or

 = 23 + 14

proving that A’s strategy is the optimal one against B’s.

iv. With a similar calculation one can verify that B’s strategy is optimal

against A’s.
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