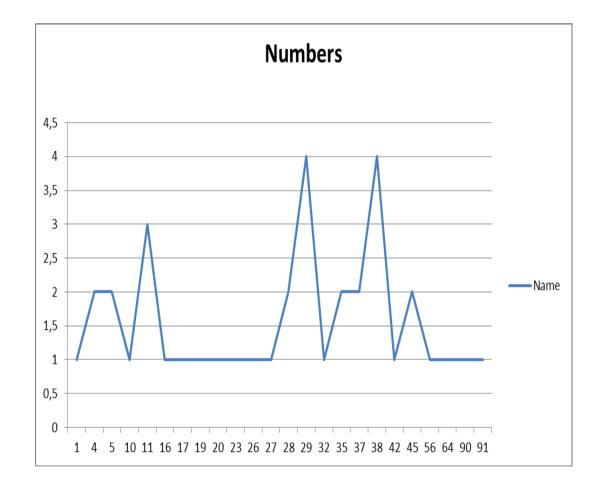
SF2972 GAME THEORY Lecture 3: Finite games I

Jörgen Weibull

27 January 2015

The result of the experiment last lecture:



- We note one peak around 37.5, which is three quarters of 50. This is the best reply if one believes that others' bids are uniformly distributed over the whole strategy set.
- We also note a peak around 28. That is the best reply if one believes the others' bid at 37.5.
- The data shows that rationality and the game are not common knowledge in the class. Instead, "level-k" reasoning, for k=1 and k=2, does a good job in picking the spikes.
- The winning bid was 23.

1 Finite normal-form games

• Recall:

Definition 1.1 A normal-form game is a triplet $G = \langle I, S, u \rangle$ where

(a) I is the set of players

(b) $S = \times_{i \in I} S_i$ is the set of strategy profiles, and S_i is the strategy set of player i

(c) $u : S \to \mathbb{R}^{|I|}$ is the combined payoff function, where $u_i(s) \in \mathbb{R}$ the payoff to player *i* when profile *s* is played

 \bullet Such a game is called *finite* if S is finite

- Let $G = \langle I, S, u \rangle$ be any finite game
- For each player i ∈ I write S_i = {1, 2, ..., m_i} for the player's (finite) strategy set
- Suppose that each player can randomize over his or her strategy set if he/she likes
- Then the analysis really concerns what we will call the mixed-strategy extension of the given game G, a game G̃ = ⟨I,⊡(S), ũ⟩ with the same player set I.
- We proceed to first carefully specify ⊡ (S) and ũ, and then to a general analysis of such games G

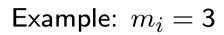
1.1 Mixed strategies

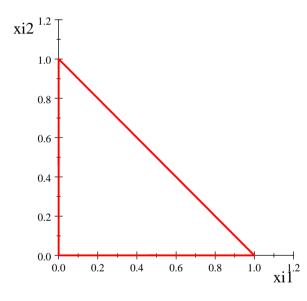
The *mixed-strategy set* for player i is the set Δ_i = Δ (S_i) of probability distributions over S_i:

$$\Delta(S_i) = \{x_i \in \mathbb{R}^{m_i}_+ : \sum_{h=1}^{m_i} x_{ih} = 1\}$$

where $h = 1, 2, ..., m_i \in S_i$ are *i*'s pure strategies. (Hence, for $s_i = h$ we write $x_i(s_i) = x_{ih}$.)

- The vertices of Δ_i are the unit vectors, $e_i^h \in \mathbb{R}^{m_i}$ with all components except h being zero. We interpret the mixed strategy $e_i^h \in \Delta_i$ as playing pure strategy h (using it with probability one)
- The (relative) interior: $int(\Delta_i) = \{x_i \in \Delta_i : x_{ih} > 0 \ \forall h \in S_i\}$. These are player *i*'s interior or completely mixed strategies

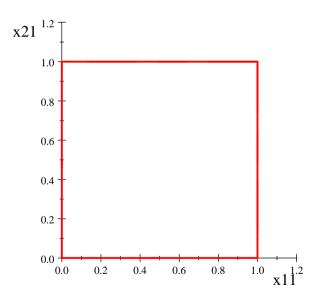




• A mixed-strategy profile $x = (x_1, ..., x_n)$ is a vector of mixed strategies, one mixed strategy for each player. We write this set as

$$\boxdot(S) = \times_{i \in I} \Delta_i = \times_{i \in I} \Delta(S_i)$$

• Example: $n = m_1 = m_2 = 2$



Can you draw a picture of ⊡ (S) when n = m₂ = 2 and m₁ = 3?
 (Note that ⊡ (S) then lives in ℝ⁵!)

 For each mixed-strategy profile x ∈ ⊡ (S) and player i ∈ I, let ũ_i (x) ∈ R be the *expected value* of the payoff function u_i when players use their mixed strategies in x :

$$ilde{u}_{i}(x) = \mathbb{E}\left[u_{i}(s) \mid x\right] = \sum_{s \in S} \left(\prod_{j=1}^{n} x_{j}\left(s_{j}\right)\right) u_{i}(s)$$

This completely specifies G̃ = ⟨I,⊡(S), ũ⟩, the mixed-strategy extension of any given finite game G = ⟨I, S, u⟩

1.2 Existence of Nash equilibrium

- We note that in $\tilde{G} = \langle I, \boxdot (S), \tilde{u} \rangle$ each player's strategy set, Δ_i , is non-empty, convex and compact, and $\tilde{u}(x)$ is continuous in $x \in \boxdot (S)$
- Moreover, for each player i, ũ_i(x) is linear in the player's own mixed strategy, x_i, for any given strategies used by the other players (when x_i is viewed as a vector in R^{m_i}):

$$\tilde{u}_i(x_i, x_{-i}) = \sum_{h \in S_i} \tilde{u}_i(e_i^h, x_{-i}) \cdot x_{ih} = a \cdot x_i$$

- ... and all linear functions are quasi-concave!
- Hence, the following is a corollary to last lecture's general existence theorem for Nash equilibrium:

Theorem 1.1 (Nash, 1950) If G is a finite game, then its mixed-strategy extension \tilde{G} has at least one Nash equilibrium.

2 Dominance relations

Let G be any finite game with mixed-strategy extension \tilde{G}

Definition 2.1 $x_i^* \in \Delta_i$ strictly dominates $x_i' \in \Delta_i$ if

$$\tilde{u}_i(x_i^*, x_{-i}) > \tilde{u}_i(x_i', x_{-i})$$
 for all $x \in \boxdot(S)$

Definition 2.2 $x_i^* \in \Delta_i$ weakly dominates $x_i' \in \Delta_i$ if

 $\tilde{u}_i(x_i^*, x_{-i}) \ge \tilde{u}_i(x_i', x_{-i})$ for all $x \in \boxdot(S)$

with > for some $x \in \boxdot(S)$

• A strategy that is not weakly dominated is called *undominated*

Definition 2.3 $x_i^* \in \Delta_i$ is strictly (weakly) dominant if it (strictly) weakly dominates all strategies $x_i' \in \Delta_i$.

• Example: in a Prisoners' dilemma "defect" strictly dominates "cooperate"

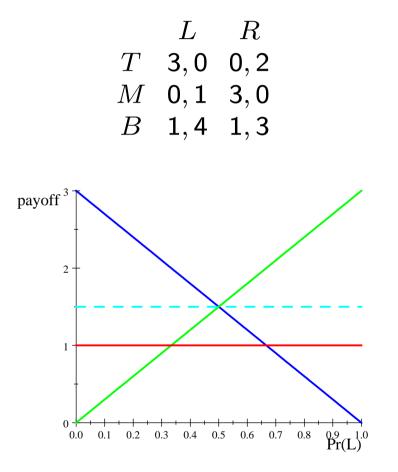
Example 2.1

$$\begin{array}{ccc} A & B \\ A & 9,9 & 0,9 \\ B & 9,0 & 1,1 \end{array}$$

The Nash equilibrium (A,A) gives high payoffs, but both strategies in this equilibrium are weakly dominated!

Which strategy would you use, A or B, or a mixture?

Example 2.2 *Is any of 1's pure strategies strictly dominated in the following game?*



• Iterated elimination of strictly dominated pure strategies:

$$G = \left[egin{array}{cccc} 3,3 & 1,0 & 6,1 \ 0,1 & 0,0 & 4,2 \ 1,6 & 2,4 & 5,5 \end{array}
ight]$$

 One can show, in general, that the order of elimination of strictly dominated strategies does not matter for the end result. The remaining non-empty subset of pure strategies, Q_i ⊆ S_i, one for each player i, is the same, irrespective of the order used.

Definition 2.4 A game is dominance solvable if $|Q_i| = 1$ for each player *i*.

3 Best replies

• The *i*:th player's *pure-strategy best-reply correspondence* $\beta_i : \boxdot (S) \rightrightarrows S_i$ is defined by

$$\beta_i(x) = \{h \in S_i : \tilde{u}_i(e_i^h, x_{-i}) \ge \tilde{u}_i(e_i^k, x_{-i}) \ \forall k \in S_i\}$$

• Mixed strategies cannot give higher payoffs than pure:

$$\beta_i(x) = \{h \in S_i : \tilde{u}_i(e_i^h, x_{-i}) \ge \tilde{u}_i(x_i', x_{-i}) \ \forall x_i' \in \Delta_i\}.$$

The *i*:th player's *mixed-strategy best-reply correspondence* β_i: ⊡ (S) ⇒
 Δ_i is defined by:

$$egin{array}{rll} ilde{eta}_i(x) &= \{x_i^* \in \Delta_i : ilde{u}_i(x_i^*, x_{-i}) \geq ilde{u}_i(x_i', x_{-i}) \; orall x_i' \in \Delta_i \} \ &= \{x_i^* \in \Delta_i : {\it supp}(x_i^*) \subseteq eta_i(x) \} \end{array}$$

where $supp(x_i^*)$ is the support of x_i^* , that is, the subset $\left\{h \in S_i : x_{ih}^* > 0\right\}$

- Note that $\tilde{\beta}_i(x)$ is a (non-empty) subsimplex!
- The combined pure *BR*-correspondence $\beta : \boxdot (S) \rightrightarrows S$:

$$\beta(x) = \times_{i \in I} \beta_i(x)$$

• The combined mixed *BR*-correspondence $\tilde{\beta}$: \boxdot (*S*) \rightrightarrows \boxdot (*S*):

$$\tilde{\beta}(x) = \times_{i \in I} \tilde{\beta}_i(x)$$

4 Dominance versus best replies

- Pure best replies are evidently *not* strictly dominated
 - But, if a pure strategy is *not* strictly dominated, is it then a best reply to *some* mixed-strategy profile?
- Pure best replies to *interior* strategy profiles are clearly undominated (why?)
 - But, if a pure strategy is undominated, is it then a best reply to some interior mixed-strategy profile?

Proposition 4.1 (Pearce, 1984) Let G be any finite two-player game and let $s_i \in S_i$ be any strategy for any player $i \in I$.

(a) s_i is not strictly dominated iff $s_i \in \beta_i(x)$ for some $x \in \boxdot(S)$

(b) s_i is undominated iff $s_i \in \beta_i(x)$ for some $x \in int(\boxdot(S))$

5 Rationalizability

• Let $G = \langle I, S, u \rangle$ be any finite game and assume:

A1 (*Rationality*): Each player i forms a probabilistic belief $p_j^i \in \Delta(S_j)$ about every other player j's strategy choice, a belief that does not contradict any information or knowledge that player i has, and player i chooses a (pure or mixed) strategy that maximize his or her expected payoff, assuming statistical independence between different players' strategy choices

A2 (*Common Knowledge*): The game G and the players' rationality (A1) is common knowledge among the players; each player knows G and that (A1) holds for all players, knows that all players know this, and knows that all players know that all players know this etc. *ad infinitum*.

- Question: What is the logical implication of the joint hypothesis $[A1 \land A2]$?
- Answer: *Rationalizability*! A concept defined (independently) by David Pearce and Douglas Bernheim in 1984
- Definition based upon the iterated elimination of pure strategies that are not best replies to any mixed-strategy profile
- Both authors showed that every player i has a non-empty subset $R_i \subseteq S_i$ of rationalizable pure strategies
- Recall that $Q_i \subseteq S_i$ is the player's set of pure strategies that survive the iterated elimination of strictly dominated strategies, and write

$$Q = \times_{i \in I} Q_i$$
 and $R = \times_{i \in I} R_i$

Proposition 5.1 (Pearce, 1984) Let G be any finite n-player game. Then $R \subseteq Q$, and R = Q if n = 2.

• Reconsider the introductory examples!

6 Nash equilibrium revisited

- Let $G = \langle I, S, u \rangle$ be any finite game with mixed-strategy extension $\tilde{G} = \langle I, \boxdot (S), \tilde{u} \rangle$
- Then $x \in \boxdot (S)$ is a NE of \tilde{G} iff

 $x \in \tilde{\beta}(x)$

• Equivalently:

$$x_{ih} > 0 \implies h \in \beta_i(x) \quad (\forall i \in I, h \in S_i)$$

• All NE are rationalizable:

 $x \in \tilde{\beta}(x) \land x_{ih} > 0 \implies h \in R_i \quad (\forall i \in I, h \in S_i)$

• While a NE strategy cannot be *strictly* dominated, such a strategy may, as noted above, be weakly dominated

Definition 6.1 A Nash equilibrium $x = (x_1, ..., x_n)$ is undominated if no strategy x_i is weakly dominated.

• Practice how to solve for NE in two-player games!

Example 6.1 Coordination games

$$\begin{array}{cccccc}
 A & B \\
 A & a_1, b_1 & 0, 0 \\
 B & 0, 0 & a_2, b_2
\end{array}$$

for $a_1, b_1, a_2, b_2 > 0$. Three NE. Solve for the mixed NE! Note how each player's equilibrium randomization depends on the **other** player's payoffs (and not at all on the player's own payoffs)! Any completely mixed NE requires indifference:

$$a_1x_{21} = a_2x_{22} \wedge b_1x_{11} = b_2x_{12} \Rightarrow x_{11}^* = \frac{b_2}{b_1 + b_2}$$
 etc.

Example 6.2 Entry-deterrence game: Player 1 has a profitable monopoly in a part of a town, earning 3 million euros per year. Player 2 has a less profitable business in another part of town, earning 1 million euros per year. Both are rational and risk-neutral profit maximizer. One day player 2 has an opportunity to move his business into 1's part of town and set up competition there with player 1. Player 1 threatens to then run a price war against 2, resulting in zero profits for both players. If, however, Player 1 would not run a price war after 2's entry, each would earn 2 million euros after 1 entered 1's territory. Should player 2 enter or not? Should player 1, if 2 enters, fight or not? Write this up as a finite normal-form game and find its (infinitely many) Nash equilibria!

 $\begin{array}{cccc} E & N \\ F & 0, 0 & 3, 1 \\ Y & 2, 2 & 3, 1 \end{array}$

- We have seen examples of "implausible" Nash equilibria
- Can one discard (some of) those by first principles, by way of using a more refined equilibrium concept?
- Next lecture, we will study two such refinements: *perfection* (Selten, 1975) and *properness* (Myerson, 1978)