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The result of the experiment last lecture:



• We note one peak around 37.5, which is three quarters of 50. This is
the best reply if one believes that others’ bids are uniformly distributed

over the whole strategy set.

• We also note a peak around 28. That is the best reply if one believes
the others’ bid at 37.5.

• The data shows that rationality and the game are not common knowl-
edge in the class. Instead, ”level-k” reasoning, for k=1 and k=2, does

a good job in picking the spikes.

• The winning bid was 23.



1 Finite normal-form games

• Recall:

Definition 1.1 A normal-form game is a triplet G = hI, S, ui where

(a) I is the set of players

(b) S = ×i∈ISi is the set of strategy profiles, and Si is the strategy set

of player i

(c) u : S → R|I| is the combined payoff function, where ui (s) ∈ R the

payoff to player i when profile s is played

• Such a game is called finite if S is finite



• Let G = hI, S, ui be any finite game

• For each player i ∈ I write Si = {1, 2, ...,mi} for the player’s (finite)
strategy set

• Suppose that each player can randomize over his or her strategy set if
he/she likes

• Then the analysis really concerns what we will call the mixed-strategy
extension of the given game G, a game G̃ = hI,¡ (S) , ũi with the
same player set I.

• We proceed to first carefully specify ¡ (S) and ũ, and then to a general
analysis of such games G̃



1.1 Mixed strategies

• The mixed-strategy set for player i is the set∆i = ∆ (Si) of probability

distributions over Si:

∆ (Si) = {xi ∈ Rmi
+ :

miX
h=1

xih = 1}

where h = 1, 2, ..,mi ∈ Si are i’s pure strategies. (Hence, for si = h

we write xi (si) = xih.)

• The vertices of ∆i are the unit vectors, e
h
i ∈ Rmi with all components

except h being zero. We interpret the mixed strategy ehi ∈ ∆i as

playing pure strategy h (using it with probability one)

• The (relative) interior : int(∆i) = {xi ∈ ∆i : xih > 0 ∀h ∈ Si}.
These are player i’s interior or completely mixed strategies



Example: mi = 3
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• A mixed-strategy profile x = (x1, ..., xn) is a vector of mixed strategies,
one mixed strategy for each player. We write this set as

¡ (S) = ×i∈I∆i = ×i∈I∆ (Si)

• Example: n = m1 = m2 = 2
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• Can you draw a picture of ¡ (S) when n = m2 = 2 and m1 = 3?

(Note that ¡ (S) then lives in R5!)



• For each mixed-strategy profile x ∈ ¡ (S) and player i ∈ I, let ũi (x) ∈
R be the expected value of the payoff function ui when players use their
mixed strategies in x :

ũi (x) = E [ui (s) | x] =
X
s∈S

⎛⎝ nY
j=1

xj
³
sj
´⎞⎠ui (s)

• This completely specifies G̃ = hI,¡ (S) , ũi, the mixed-strategy exten-
sion of any given finite game G = hI, S, ui



1.2 Existence of Nash equilibrium

• We note that in G̃ = hI,¡ (S) , ũi each player’s strategy set, ∆i, is

non-empty, convex and compact, and ũ (x) is continuous in x ∈ ¡ (S)

• Moreover, for each player i, ũi (x) is linear in the player’s own mixed
strategy, xi, for any given strategies used by the other players (when

xi is viewed as a vector in Rmi):

ũi (xi, x−i) =
X
h∈Si

ũi
³
ehi , x−i

´
· xih = a · xi

• ... and all linear functions are quasi-concave!

• Hence, the following is a corollary to last lecture’s general existence
theorem for Nash equilibrium:



Theorem 1.1 (Nash, 1950) If G is a finite game, then its mixed-strategy

extension G̃ has at least one Nash equilibrium.



2 Dominance relations

Let G be any finite game with mixed-strategy extension G̃

Definition 2.1 x∗i ∈ ∆i strictly dominates x
0
i ∈ ∆i if

ũi(x
∗
i , x−i) > ũi(x

0
i, x−i) for all x ∈ ¡ (S)

Definition 2.2 x∗i ∈ ∆i weakly dominates x
0
i ∈ ∆i if

ũi(x
∗
i , x−i) ≥ ũi(x

0
i, x−i) for all x ∈ ¡ (S)

with > for some x ∈ ¡ (S)

• A strategy that is not weakly dominated is called undominated



Definition 2.3 x∗i ∈ ∆i is strictly (weakly) dominant if it (strictly) weakly

dominates all strategies x0i ∈ ∆i.

• Example: in a Prisoners’ dilemma ”defect” strictly dominates ”coop-
erate”



Example 2.1

A B
A 9, 9 0, 9
B 9, 0 1, 1

The Nash equilibrium (A,A) gives high payoffs, but both strategies in this

equilibrium are weakly dominated!

Which strategy would you use, A or B, or a mixture?



Example 2.2 Is any of 1’s pure strategies strictly dominated in the following

game?

L R
T 3, 0 0, 2
M 0, 1 3, 0
B 1, 4 1, 3
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• Iterated elimination of strictly dominated pure strategies:

G =

⎡⎢⎣ 3, 3 1, 0 6, 1
0, 1 0, 0 4, 2
1, 6 2, 4 5, 5

⎤⎥⎦

• One can show, in general, that the order of elimination of strictly
dominated strategies does not matter for the end result. The remaining

non-empty subset of pure strategies, Qi ⊆ Si, one for each player i, is

the same, irrespective of the order used.

Definition 2.4 A game is dominance solvable if |Qi| = 1 for each player i.



3 Best replies

• The i:th player’s pure-strategy best-reply correspondence βi : ¡ (S)⇒
Si is defined by

βi(x) = {h ∈ Si : ũi(e
h
i , x−i) ≥ ũi(e

k
i , x−i) ∀k ∈ Si}

• Mixed strategies cannot give higher payoffs than pure:

βi(x) = {h ∈ Si : ũi(e
h
i , x−i) ≥ ũi(x

0
i, x−i) ∀x0i ∈ ∆i}.

• The i:th player’smixed-strategy best-reply correspondence β̃i: ¡ (S)⇒
∆i is defined by:

β̃i(x) = {x∗i ∈ ∆i : ũi(x
∗
i , x−i) ≥ ũi(x

0
i, x−i) ∀x0i ∈ ∆i}

= {x∗i ∈ ∆i : supp(x
∗
i ) ⊆ βi(x)}

where supp(x∗i ) is the support of x
∗
i , that is, the subset

n
h ∈ Si : x

∗
ih > 0

o



• Note that β̃i(x) is a (non-empty) subsimplex!

• The combined pure BR-correspondence β : ¡ (S)⇒ S:

β(x) = ×i∈Iβi(x)

• The combined mixed BR-correspondence β̃ : ¡ (S)⇒ ¡ (S):

β̃(x) = ×i∈Iβ̃i(x)



4 Dominance versus best replies

• Pure best replies are evidently not strictly dominated

— But, if a pure strategy is not strictly dominated, is it then a best

reply to some mixed-strategy profile?

• Pure best replies to interior strategy profiles are clearly undominated
(why?)

— But, if a pure strategy is undominated, is it then a best reply to

some interior mixed-strategy profile?



Proposition 4.1 (Pearce, 1984) Let G be any finite two-player game and

let si ∈ Si be any strategy for any player i ∈ I.

(a) si is not strictly dominated iff si ∈ βi(x) for some x ∈ ¡ (S)

(b) si is undominated iff si ∈ βi(x) for some x ∈ int(¡ (S))



5 Rationalizability

• Let G = hI, S, ui be any finite game and assume:

A1 (Rationality): Each player i forms a probabilistic belief pij ∈
∆
³
Sj
´
about every other player j’s strategy choice, a belief that

does not contradict any information or knowledge that player i has,

and player i chooses a (pure or mixed) strategy that maximize his

or her expected payoff, assuming statistical independence between

different players’ strategy choices

A2 (Common Knowledge): The game G and the players’ ratio-

nality (A1) is common knowledge among the players; each player

knows G and that (A1) holds for all players, knows that all players

know this, and knows that all players know that all players know

this etc. ad infinitum.



• Question: What is the logical implication of the joint hypothesis [A1 ∧A2]?

• Answer: Rationalizability ! A concept defined (independently) by David
Pearce and Douglas Bernheim in 1984

• Definition based upon the iterated elimination of pure strategies that
are not best replies to any mixed-strategy profile

• Both authors showed that every player i has a non-empty subset Ri ⊆
Si of rationalizable pure strategies

• Recall that Qi ⊆ Si is the player’s set of pure strategies that survive

the iterated elimination of strictly dominated strategies, and write

Q = ×i∈IQi and R = ×i∈IRi



Proposition 5.1 (Pearce, 1984) Let G be any finite n-player game. Then

R ⊆ Q, and R = Q if n = 2.

• Reconsider the introductory examples!



6 Nash equilibrium revisited

• Let G = hI, S, ui be any finite game with mixed-strategy extension
G̃ = hI,¡ (S) , ũi

• Then x ∈ ¡ (S) is a NE of G̃ iff

x ∈ β̃(x)

• Equivalently:

xih > 0 ⇒ h ∈ βi (x) (∀i ∈ I, h ∈ Si)

• All NE are rationalizable:

x ∈ β̃(x) ∧ xih > 0 ⇒ h ∈ Ri (∀i ∈ I, h ∈ Si)



• While a NE strategy cannot be strictly dominated, such a strategy
may, as noted above, be weakly dominated

Definition 6.1 A Nash equilibrium x = (x1, .., xn) is undominated if no

strategy xi is weakly dominated.

• Practice how to solve for NE in two-player games!



Example 6.1 Coordination games

A B
A a1, b1 0, 0
B 0, 0 a2, b2

for a1, b1, a2, b2 > 0. Three NE. Solve for the mixed NE! Note how each

player’s equilibrium randomization depends on the other player’s payoffs

(and not at all on the player’s own payoffs)! Any completely mixed NE

requires indifference:

a1x21 = a2x22 ∧ b1x11 = b2x12 ⇒ x∗11 =
b2

b1 + b2
etc.



Example 6.2 Entry-deterrence game: Player 1 has a profitable monopoly

in a part of a town, earning 3 million euros per year. Player 2 has a less

profitable business in another part of town, earning 1 million euros per

year. Both are rational and risk-neutral profit maximizer. One day player

2 has an opportunity to move his business into 1’s part of town and set up

competition there with player 1. Player 1 threatens to then run a price war

against 2, resulting in zero profits for both players. If, however, Player 1

would not run a price war after 2’s entry, each would earn 2 million euros

after 1 entered 1’s territory. Should player 2 enter or not? Should player

1, if 2 enters, fight or not? Write this up as a finite normal-form game and

find its (infinitely many) Nash equilibria!

E N
F 0, 0 3, 1
Y 2, 2 3, 1



• We have seen examples of “implausible” Nash equilibria

• Can one discard (some of) those by first principles, by way of using a
more refined equilibrium concept?

• Next lecture, we will study two such refinements: perfection (Selten,
1975) and properness (Myerson, 1978)


