GAME THEORY — PROBLEM SET 3

PROBLEM 1

We are playing a game of Nim (with the normal play convention) and my last move resulted in a position with five piles of sizes 26, 19, 10, 9, 7. Do you have a winning move from this position? If so, what is the maximum number of sticks you can remove in a winning move?

Problem 2

Let $G = \{\{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$ be an impartial game as represented in the lecture notes.

- (a) How many positions does G have?
- (b) Compute the Grundy value g(G).
- (c) Who will win the game?

PROBLEM 3

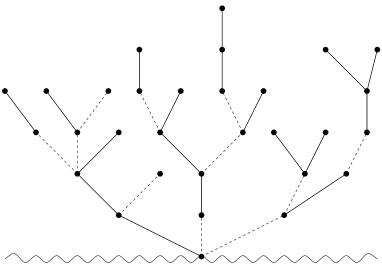
Show that the assumption that the game is short is necessary in the translation theorem.

Problem 4

Show that the game $\{0|*\}$ is positive but less than any positive number!

PROBLEM 5

Compute the value of the following Blue-Red Hackenbush position. Who will win the game?



Problem 6

Let $G = \{ \{7|5\}, \{10 \mid |5|3\} \mid \{1|0\} - \{7|0\} \}.$

- (a) Draw the thermograph of G.
- (b) What is the temperature of G?
- (c) What is the mean value of G?
- (d) Who will win G?
- (e) Who will win the game 7G 20?

Problem 7

Write the following short games on canonical form:

- (a) *2,
- (b) $\{ \{*|0\}, 0 \mid | \{*|0\} \mid * \}.$

Problem 8

Determine the value of $\left\{ \left. \frac{1}{8} \right| \frac{5}{8} \right\} + \left\{ \left. -\frac{91}{64} \right| \right. - \frac{41}{32} \right\}$.