SF2972 GAME THEORY Normal-form analysis II

Jörgen Weibull

January 2017

1 Nash equilibrium

Domain of analysis: finite NF games $G = \langle I, S, u \rangle$ with mixed-strategy extension $\tilde{G} = \langle I, \boxdot (S), \tilde{u} \rangle$

Definition 1.1 A strategy profile $x \in \Box(S)$ is a Nash Equilibrium (NE) if $x \in \tilde{\beta}(x)$.

• Note that a strategy profile x is a NE if and only if

$$x_{ih} > 0 \implies h \in \beta_i(x) \quad \forall i \in I, h \in S_i$$

• and note also that this is equivalent with the condition that $h \notin \beta_i(x) \Rightarrow x_{ih} = 0$.

1.1 Invariance properties

- 1. Positive affine transformations of any player's payoffs: $v_i = \alpha_i u_i + \lambda_i$ for any $\alpha_i > 0$ and $\lambda_i \in \mathbb{R}$
- 2. "Local shifts" of a player's payoffs: add any constant $\theta_{ijk} \in \mathbb{R}$ to all *i*'s payoff whenever some other player *j* plays some strategy $k \in S_j$
- 3. Elimination of strictly dominated strategies
- 4. Elimination of non-rationalizable strategies
- When solving a game for NE, always first try to simplify the game by way of these transformations!

Example 1.1 Simplify and solve for NE!

$$\begin{array}{cccc} L & R \\ T & \mathbf{5}, \mathbf{5} & \mathbf{0}, \mathbf{4} \\ B & \mathbf{4}, \mathbf{0} & \mathbf{2}, \mathbf{2} \\ D & \mathbf{4}, \mathbf{7} & \mathbf{1}, \mathbf{8} \end{array}$$

1.2 Implausible Nash equilibria

- The entry-deterrence game: infinitely many arguably implausible equilibria
- The firm-worker game: infinitely many arguably implausible equilibria
- What about the following game?

 $\begin{array}{ccc} L & R \\ T & 9,9 & 0,0 \\ B & 0,0 & 0,0 \end{array}$

- Can one discard implausible Nash equilibria by first principles?
- We will study two refinements: *perfection* (Selten, 1975) and *properness* (Myerson, 1978)

2 Perfect equilibrium

The probably most well-known refinement of Nash equilibrium is that of *"trembling hand" perfection*, due to Selten (1975).

- Selten (1975): "Rationality as the limit of bounded rationality when the bounds are gradually lifted"
- Players have "trembling hands," and know this!
- Imagine that players sometimes, maybe very rarely, make mistakes and are aware of this risk, for themselves and others
- Recall that a strategy profile x is a NE iff h ∉ β_i(x) ⇒ x_{ih} = 0, that is, suboptimal pure strategies are not used at all

- Recall that a strategy profile x is interior if $x_{ih} > 0 \ \forall i \in I, h \in S_i$
- The following definition is equivalent to Selten's original definition:

Definition 2.1 Given $\varepsilon > 0$, an interior strategy profile $x \in int [\boxdot (S)]$ is ε -perfect if $x \in int [\boxdot (S)]$ and

$$h \notin \beta_i(x) \quad \Rightarrow \quad x_{ih} \le \varepsilon$$

A perfect equilibrium is any limit of ε -perfect strategy profiles as $\varepsilon \to 0$.

- 1. Claim: PE \Rightarrow NE. [Let x^* be a PE and suppose $h \notin \beta_i(x^*)$. Then $\tilde{u}_i(1_{ih}, x^*_{-i}) < \tilde{u}_i(x^*)$ so by continuity $\tilde{u}_i(1_{ih}, x_{-i}) < \tilde{u}_i(x) \forall x$ sufficiently close to x^* . Hence, $h \notin \beta_i(x)$, and thus $x^{\varepsilon}_{ih} \rightarrow 0$.]
- 2. Claim: All completely mixed Nash equilibria are perfect. [Every such strategy profile x^* is ε -perfect for any $\varepsilon > 0$]

Theorem 2.1 (Selten, 1975) The mixed-strategy extension \tilde{G} of any finite normal-form game G has at least one perfect equilibrium.

• This existence result will be a corollary to a later result.

• Characterization of perfection in terms of robustness to strategic uncertainty:

Proposition 2.2 (Selten, 1975) x^* is a perfect equilibrium \Leftrightarrow every neighborhood of x^* contains some $x \in int(\boxdot)$ such that $x^* \in \tilde{\beta}(x)$.

- ■ Every strict Nash equilibrium is perfect (then each player's strategy is, by continuity, the unique best reply to all nearby interior profiles)
- Moreover:

Corollary 2.3 If x^* is a perfect equilibrium, then x^* is undominated.

Proof: Suppose that $x_i^* \in \Delta_i$ is weakly dominated by some strategy $\tilde{x}_i \in \Delta_i$. Then x_i^* is not a best reply to any $x \in int(\boxdot)$. **Q.E.D.**

• In fact, *all* undominated Nash equilibria in two-player games are per-fect:

Proposition 2.4 (van Damme, 1987) If x is an undominated Nash equilibrium in a two-player game, then x is a perfect equilibrium.

 Counter-example when n = 3 and each player has 2 pure strategies. Let player 1 choose row, player 2 column, and player 3 trimatrix (M or K):

	L	R		L	R
T	1 , 1 , 1	1,0,1	T	1, 1, 0	0,0,0
B	${f 1, 1, 1}$	0,0,1	B	0, 1, 0	1, 0, 0
	Λ		K		

- s = (B, L, M) is clearly an undominated NE. But it is not perfect $(s_1 = B \text{ non-robust against 3's trembles.})$ The unique PE is $s^* = (T, L, M)$.

Example 2.1 The entry-deterrence game

 $\begin{array}{ccc} C & F \\ A & 1, 3 & 1, 3 \\ E & 2, 2 & 0, 0 \end{array}$

Perfection rules out all implausible Nash equilibria!

Example 2.2 Reconsider the firm-worker example. Thus, $G = \langle \{1,2\}, W \times F, u \rangle$, where $W = \{1, 2, ..., 100\}$ and F is the set of functions from W to $\{0,1\}$. We noted before that $W^{NE} = W \cap [30, 100]$. Yet only w = 30, and perhaps also w = 31, "make sense" as predictions for wages that may be agrees upon. And indeed: $W^{PE} = W \cap \{30, 31\}$. Again perfection rules out all implausible NE!

Example 2.3 Reconsider the game

$$\begin{array}{ccc} L & R \\ T & 7,7 & 0,0 \\ B & 0,0 & 0,0 \end{array}$$

However...

 Myerson (1978) pointed out that perfection is sensitive to the addition of a strictly dominated strategy —an arguably undesirable property of a solution concept.

Example 2.4 Add a "dumb" strategy to the entry-deterrence game (say, the potential entrant may shoot himself in the foot):

$$\begin{array}{ccc} C & F \\ A & \mathbf{1}, \mathbf{3} & \mathbf{1}, \mathbf{3} \\ E & \mathbf{2}, \mathbf{2} & \mathbf{0}, \mathbf{0} \\ D & -\mathbf{4}, -\mathbf{1} & -\mathbf{4}, \mathbf{0} \end{array}$$

Before, only $s^* = (E, C)$ was perfect. But now also $s^o = (A, F)$ becomes perfect! Because F is no longer weakly dominated.

3 Proper equilibrium

• Myerson (1978): People are less likely to make more costly mistakes, so we should require some "order" among mistake probabilities:

Definition 3.1 (Myerson, 1978) Given $\varepsilon > 0$, an interior strategy profile $x \in int [\boxdot (S)]$ is ε -proper if $x \in int [\boxdot (S)]$ and

$$\tilde{u}_i(\mathbf{1}_{ih}, x_{-i}) < \tilde{u}_i(\mathbf{1}_{ik}, x_{-i}) \implies x_{ih} \le \varepsilon \cdot x_{ik}$$

A proper equilibrium is any limit of ε -proper strategy profiles as $\varepsilon \to 0$.

- Every ε-proper strategy profile is ε-perfect, so every proper equilibrium is perfect!
- Every completely mixed NE is ε-proper for all ε > 0. Hence all such equilibria are proper

• But is it to ask for too much to ask for properness?

Proposition 3.1 (Myerson, 1978) The mixed-strategy extension \tilde{G} of any finite normal-form game G has at least one proper equilibrium.

- This result follows from the Bolzano-Weierstrass Theorem if for every
 ε > 0 sufficiently small there exists an ε-proper strategy profile. Hence,
 it remains to establish existence of ε-proper strategy profiles for arbi trary small ε > 0.
- Once the existence of proper equilibria has been established, the existence of perfect (and in fact also Nash) equilibria follows

Proof sketch for Proposition 3.1:

- 1. Let $\varepsilon \in (0,1)$
- 2. Ask each player i to submit a strict and complete *ranking* of his or her m_i pure strategies
- 3. For each player i, a computer will pick i's pure strategy with rank r with probability

$$p_r = \frac{\varepsilon^r}{\varepsilon + \varepsilon^2 + \varepsilon^3 + ... + \varepsilon^{m_i}} \text{ for } r = 1, 2, ..., m_i$$

- 4. This defines a finite metagame G^* in which a pure strategy is a ranking (of one's pure strategies in G)
- 5. G^* being finite, its mixed-strategy extension has at least one NE. Any such metagame strategy-profile induces an ε -proper strategy profile in \tilde{G}

Example 3.1 The augmented entry-deterrence game

$$\begin{array}{ccc} C & F \\ A & 1, 3 & 1, 3 \\ E & 2, 2 & 0, 0 \\ D & -4, -1 & -4, 0 \end{array}$$

While $s^o = (A, F)$ is perfect, it is not proper because D is a more costly mistake for player 1 than E when play is close to (A, F).

 Properness has an amazing implication for extensive-form analysis a topic we will take up after we have defined perfect and sequential equilibria in extensive-form games

4 Payoff-equivalent strategies and the reduced normal form

• A normal-form game may contain two or more pure strategies that result in exactly the same payoffs to *all* players.

Definition 4.1 Two pure strategies $s'_i, s''_i \in S_i$ in a normal-form game are payoff equivalent if $u(s'_i, s_{-i}) = u(s''_i, s_{-i})$ for all pure-strategy profiles $s \in S$.

• Note that the whole *payoff vector* (with one component for every player) has to remain unchanged if player i were to switch from strategy s'_i to strategy s''_i

For each player i ∈ I and pure strategy s_i ∈ S_i let [s_i] ⊆ S_i denote its (payoff) equivalence class, that is, the set of pure strategies s'_i that are payoff equivalent with s_i.

Definition 4.2 The (purely) reduced normal form representation G^o of a finite normal-form game $G = \langle I, S, u \rangle$ is the normal-form game $G^o = \langle I, S^o, u^o \rangle$ in which the pure strategies are the equivalence classes in G, and where u^o is the accordingly adapted payoff function; $u^o([s_1], ..., [s_n]) = u(s_1, ..., s_n) \ \forall s \in S$.