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1 Nash equilibrium

Domain of analysis: finite NF games  = h  i with mixed-strategy
extension ̃ = h¡ ()  ̃i

Definition 1.1 A strategy profile  ∈ ¡ () is a Nash Equilibrium (NE) if

 ∈ ̃().

• Note that a strategy profile  is a NE if and only if

  0 ⇒  ∈ () ∀ ∈   ∈ 

• and note also that this is equivalent with the condition that  ∈
() ⇒  = 0.



1.1 Invariance properties

1. Positive affine transformations of any player’s payoffs:  =  + 
for any   0 and  ∈ R

2. “Local shifts” of a player’s payoffs: add any constant  ∈ R to all
’s payoff whenever some other player  plays some strategy  ∈ 

3. Elimination of strictly dominated strategies

4. Elimination of non-rationalizable strategies

• When solving a game for NE, always first try to simplify the game by
way of these transformations!



Example 1.1 Simplify and solve for NE!

 
 5 5 0 4
 4 0 2 2
 4 7 1 8



1.2 Implausible Nash equilibria

• The entry-deterrence game: infinitely many arguably implausible equi-
libria

• The firm-worker game: infinitely many arguably implausible equilibria

• What about the following game?
 

 9 9 0 0
 0 0 0 0

• Can one discard implausible Nash equilibria by first principles?

• We will study two refinements: perfection (Selten, 1975) and proper-
ness (Myerson, 1978)



2 Perfect equilibrium

The probably most well-known refinement of Nash equilibrium is that of

“trembling hand” perfection, due to Selten (1975).

• Selten (1975): “Rationality as the limit of bounded rationality when
the bounds are gradually lifted”

• Players have “trembling hands,” and know this!

• Imagine that players sometimes, maybe very rarely, make mistakes and
are aware of this risk, for themselves and others

• Recall that a strategy profile  is a NE iff  ∈  () ⇒  = 0, that

is, suboptimal pure strategies are not used at all



• Recall that a strategy profile  is interior if   0 ∀ ∈   ∈ 

• The following definition is equivalent to Selten’s original definition:

Definition 2.1 Given   0, an interior strategy profile  ∈  [¡ ()] is
-perfect if  ∈  [¡ ()] and

 ∈  () ⇒  ≤ 

A perfect equilibrium is any limit of -perfect strategy profiles as → 0.

1. Claim: PE ⇒ NE. [Let ∗ be a PE and suppose  ∈  (
∗). Then

̃(1 
∗
−)  ̃(

∗) so by continuity ̃(1 −)  ̃() ∀ suffi-
ciently close to ∗. Hence,  ∈  (), and thus 


→ 0.]

2. Claim: All completely mixed Nash equilibria are perfect. [Every such

strategy profile ∗ is -perfect for any   0]



Theorem 2.1 (Selten, 1975) The mixed-strategy extension ̃ of any finite

normal-form game  has at least one perfect equilibrium.

• This existence result will be a corollary to a later result.



• Characterization of perfection in terms of robustness to strategic un-
certainty:

Proposition 2.2 (Selten, 1975) ∗ is a perfect equilibrium⇔ every neigh-

borhood of ∗ contains some  ∈  (¡) such that ∗ ∈ ̃ ().

• ⇒ Every strict Nash equilibrium is perfect (then each player’s strategy

is, by continuity, the unique best reply to all nearby interior profiles)

• Moreover:

Corollary 2.3 If ∗ is a perfect equilibrium, then ∗ is undominated.

Proof: Suppose that ∗ ∈ ∆ is weakly dominated by some strategy ̃ ∈
∆. Then 

∗
 is not a best reply to any  ∈  (¡). Q.E.D.



• In fact, all undominated Nash equilibria in two-player games are per-
fect:

Proposition 2.4 (van Damme, 1987) If  is an undominated Nash equi-
librium in a two-player game, then  is a perfect equilibrium.

• Counter-example when  = 3 and each player has 2 pure strategies.
Let player 1 choose row, player 2 column, and player 3 trimatrix (M or
K):

 
 1 1 1 1 0 1
 111 0 0 1

 
 1 1 0 0 0 0
 0 1 0 1 0 0

 

—  = () is clearly an undominated NE. But it is not perfect
(1 =  non-robust against 3’s trembles.) The unique PE is ∗ =
().



Example 2.1 The entry-deterrence game

 
 1 3 1 3
 2 2 0 0

Perfection rules out all implausible Nash equilibria!



Example 2.2 Reconsider the firm-worker example. Thus,  = h{1 2}  ×  i,
where  = {1 2  100} and  is the set of functions from  to {0 1}.
We noted before that  =  ∩ [30 100]. Yet only  = 30, and

perhaps also  = 31, ”make sense” as predictions for wages that may be

agrees upon. And indeed:  =  ∩ {30 31}. Again perfection rules
out all implausible NE!

Example 2.3 Reconsider the game

 
 7 7 0 0
 0 0 0 0



However...

• Myerson (1978) pointed out that perfection is sensitive to the addition
of a strictly dominated strategy –an arguably undesirable property of

a solution concept.

Example 2.4 Add a “dumb” strategy to the entry-deterrence game (say,

the potential entrant may shoot himself in the foot):

 
 1 3 13
 2 2 0 0
 −4−1 −4 0

Before, only ∗ = () was perfect. But now also  = ( ) becomes

perfect! Because F is no longer weakly dominated.



3 Proper equilibrium

• Myerson (1978): People are less likely to make more costly mistakes,
so we should require some ”order” among mistake probabilities:

Definition 3.1 (Myerson, 1978) Given   0, an interior strategy profile

 ∈  [¡ ()] is -proper if  ∈  [¡ ()] and

̃ (1 −)  ̃ (1 −) ⇒  ≤  · 
A proper equilibrium is any limit of -proper strategy profiles as → 0.

• Every -proper strategy profile is -perfect, so every proper equilibrium
is perfect!

• Every completely mixed NE is -proper for all   0. Hence all such

equilibria are proper



• But is it to ask for too much to ask for properness?

Proposition 3.1 (Myerson, 1978) The mixed-strategy extension ̃ of any

finite normal-form game  has at least one proper equilibrium.

• This result follows from the Bolzano-Weierstrass Theorem if for every

  0 sufficiently small there exists an -proper strategy profile. Hence,

it remains to establish existence of -proper strategy profiles for arbi-

trary small   0.

• Once the existence of proper equilibria has been established, the exis-
tence of perfect (and in fact also Nash) equilibria follows

Proof sketch for Proposition 3.1:



1. Let  ∈ (0 1)

2. Ask each player  to submit a strict and complete ranking of his or her
 pure strategies

3. For each player , a computer will pick ’s pure strategy with rank 

with probability

 =


+ 2 + 3 + + 
for  = 1 2 

4. This defines a finite metagame ∗ in which a pure strategy is a ranking
(of one’s pure strategies in )

5. ∗ being finite, its mixed-strategy extension has at least one NE. Any
such metagame strategy-profile induces an -proper strategy profile in
̃



Example 3.1 The augmented entry-deterrence game

 
 1 3 13
 2 2 0 0
 −4−1 −4 0

While  = ( ) is perfect, it is not proper because D is a more costly

mistake for player 1 than E when play is close to ( ).

• Properness has an amazing implication for extensive-form analysis -

a topic we will take up after we have defined perfect and sequential

equilibria in extensive-form games



4 Payoff-equivalent strategies and the reduced

normal form

• A normal-form game may contain two or more pure strategies that

result in exactly the same payoffs to all players.

Definition 4.1 Two pure strategies 0 
00
 ∈  in a normal-form game are

payoff equivalent if 
³
0 −

´
= 

³
00  −

´
for all pure-strategy profiles

 ∈ .

• Note that the whole payoff vector (with one component for every

player) has to remain unchanged if player  were to switch from strategy

0 to strategy 
00




• For each player  ∈  and pure strategy  ∈  let [] ⊆  denote

its (payoff) equivalence class, that is, the set of pure strategies 0 that
are payoff equivalent with .

Definition 4.2 The (purely) reduced normal form representation  of a

finite normal-form game  = h  i is the normal-form game  =

h  i in which the pure strategies are the equivalence classes in ,

and where  is the accordingly adapted payoff function;  ([1]   []) =

 (1  ) ∀ ∈ .


