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1 Nash equilibrium

Domain of analysis: finite NF games G = (I, S, u) with mixed-strategy
extension G = (I,[1(S), )

Definition 1.1 A strategy profile x € [1(S) is a Nash Equilibrium (NE) if
z € B(z).

e Note that a strategy profile  is a NE if and only if

z;p, >0 = hepBi(z) Viel,hes

e and note also that this is equivalent with the condition that h ¢
Bi(x) = =z =0.



1.1 Invariance properties

1. Positive affine transformations of any player’'s payoffs: v, = a;u; + A;
forany a; >0 and \; e R

2. "Local shifts” of a player’'s payoffs: add any constant 0, € R to all
i's payoff whenever some other player j plays some strategy k € 5;

3. Elimination of strictly dominated strategies

4. Elimination of non-rationalizable strategies

e When solving a game for NE, always first try to simplify the game by
way of these transformations!



Example 1.1 Simplify and solve for NE!



1.2 Implausible Nash equilibria
e The entry-deterrence game: infinitely many arguably implausible equi-
libria

e The firm-worker game: infinitely many arguably implausible equilibria

e What about the following game?
L R

T 9,9 0,0
B 0,0 0,0

e Can one discard implausible Nash equilibria by first principles?

e We will study two refinements: perfection (Selten, 1975) and proper-
ness (Myerson, 1978)



2 Perfect equilibrium

The probably most well-known refinement of Nash equilibrium is that of
“trembling hand” perfection, due to Selten (1975).

e Selten (1975): “Rationality as the limit of bounded rationality when
the bounds are gradually lifted”

e Players have “trembling hands,” and know this!

e Imagine that players sometimes, maybe very rarely, make mistakes and
are aware of this risk, for themselves and others

e Recall that a strategy profile z isa NE iff h € 3, (x) = x;;, = 0, that
is, suboptimal pure strategies are not used at all



e Recall that a strategy profile x is interior if z;;, >0Vi € I,h € S

e The following definition is equivalent to Selten’s original definition:

Definition 2.1 Given € > 0, an interior strategy profile x € int[[J(S)] is
e-perfect if x € int [[1(S)] and
h¢pi(z) = zp<e

A perfect equilibrium is any limit of e-perfect strategy profiles as € — 0.

1. Claim: PE = NE. [Let z* be a PE and suppose h ¢ (5; («*). Then
@i (Lp, x* ;) < @;(x*) so by continuity ;(1;,r—;) < i;(x) Vo suffi-
ciently close to z*. Hence, h ¢ 8;(x), and thus z;, — 0.]

2. Claim: All completely mixed Nash equilibria are perfect. [Every such
strategy profile z* is e-perfect for any £ > 0]



Theorem 2.1 (Selten, 1975) The mixed-strategy extension G of any finite
normal-form game G has at least one perfect equilibrium.

e This existence result will be a corollary to a later result.



e Characterization of perfection in terms of robustness to strategic un-
certainty:

Proposition 2.2 (Selten, 1975) z* is a perfect equilibrium < every neigh-
borhood of x=* contains some x € int (1) such that z* € 5 (x).

e = Every strict Nash equilibrium is perfect (then each player’s strategy
is, by continuity, the unique best reply to all nearby interior profiles)

e Moreover:
Corollary 2.3 If =* is a perfect equilibrium, then x* is undominated.

Proof: Suppose that x7 € A; is weakly dominated by some strategy &; €
A;. Then x is not a best reply to any = € int ([J). Q.E.D.



e In fact, all undominated Nash equilibria in two-player games are per-
fect:

Proposition 2.4 (van Damme, 1987) If x is an undominated Nash equi-
librium in a two-player game, then x is a perfect equilibrium.

e Counter-example when n = 3 and each player has 2 pure strategies.

Let player 1 choose row, player 2 column, and player 3 trimatrix (M or
K):

b(
oy
~
oy

T 1,1,1 1,0,1 T 1,1,0 0,0,0
B 1,1,1 0,0,1 B 0,1,0 1,0,0
M K

— s = (B, L, M) is clearly an undominated NE. But it is not perfect

(s1 = B non-robust against 3's trembles.) The unique PE is s* =
(T, L, M).



Example 2.1 The entry-deterrence game

C F
A 1,3 1,3
E 2,2 0,0

Perfection rules out all implausible Nash equilibria!



Example 2.2 Reconsider the firm-worker example. Thus, G = ({1,2} , W X F,u),
where W = {1,2,....,100} and F' is the set of functions from W to {0, 1}.

We noted before that WNE = W n[30,100]. Yet only w = 30, and
perhaps also w = 31, "make sense” as predictions for wages that may be
agrees upon. And indeed: wWPE = wn {30,31}. Again perfection rules

out all implausible NE!

Example 2.3 Reconsider the game

L R
T 7,7 0,0
B 0,0 0,0



However...

e Myerson (1978) pointed out that perfection is sensitive to the addition
of a strictly dominated strategy —an arguably undesirable property of
a solution concept.

Example 2.4 Add a “dumb” strategy to the entry-deterrence game (say,
the potential entrant may shoot himself in the foot):

C F
A 1.3 1,3
E 22 0,0

D —4,—-1 —4,0

Before, only s* = (E, C) was perfect. But now also s° = (A, F') becomes
perfect! Because F is no longer weakly dominated.



3 Proper equilibrium

e Myerson (1978): People are less likely to make more costly mistakes,
so we should require some "order’ among mistake probabilities:

Definition 3.1 (Myerson, 1978) Given ¢ > 0, an interior strategy profile
x € int[[J(S5)] is e-proper if x € int [[1(S)] and

G; (Lip,x—g) < U3 (Lig, z—;) = xip < €- x5

A proper equilibrium is any limit of e-proper strategy profiles as € — 0.

e Every e-proper strategy profile is e-perfect, so every proper equilibrium
is perfect!

e Every completely mixed NE is e-proper for all € > 0. Hence all such
equilibria are proper



e But is it to ask for too much to ask for properness?

Proposition 3.1 (Myerson, 1978) The mixed-strategy extension G of any
finite normal-form game G has at least one proper equilibrium.

e This result follows from the Bolzano-Weierstrass Theorem if for every
e > 0 sufficiently small there exists an e-proper strategy profile. Hence,
it remains to establish existence of e-proper strategy profiles for arbi-

trary small € > 0.

e Once the existence of proper equilibria has been established, the exis-
tence of perfect (and in fact also Nash) equilibria follows

Proof sketch for Proposition 3.1:



. Let £ € (0,1)

. Ask each player 7 to submit a strict and complete ranking of his or her
m,; pure strategies

. For each player ¢, a computer will pick i's pure strategy with rank r
with probability

87"

T ete2 4+ tem

pr forr=1,2,....m;

. This defines a finite metagame G* in which a pure strategy is a ranking
(of one's pure strategies in GG)

. G* being finite, its mixed-strategy extension has at least one NE. Any
such metagame strategy-profile induces an e-proper strategy profile in

G



Example 3.1 The augmented entry-deterrence game

C r
A 1,3 1,3
E 22 0,0

While s° = (A, I') is perfect, it is not proper because D is a more costly
mistake for player 1 than E when play is close to (A, F).

e Properness has an amazing implication for extensive-form analysis -
a topic we will take up after we have defined perfect and sequential
equilibria in extensive-form games



4 Payoff-equivalent strategies and the reduced

normal form

e A normal-form game may contain two or more pure strategies that
result in exactly the same payoffs to all players.

Definition 4.1 Two pure strategies s, s/ € S; in a normal-form game are
payoff equivalent if u (s;, s_z-> = u (s;’ , s_i) for all pure-strategy profiles
seSs.

e Note that the whole payoff vector (with one component for every
player) has to remain unchanged if player i were to switch from strategy
s, to strategy s



e For each player ¢ € I and pure strategy s; € S; let [s;] C S; denote
its (payoff) equivalence class, that is, the set of pure strategies s, that

are payoff equivalent with s;.

Definition 4.2 The (purely) reduced normal form representation G° of a
finite normal-form game G = (I, S,u) is the normal-form game G° =
(I, S° u®) in which the pure strategies are the equivalence classes in G,
and where u° is the accordingly adapted payoff function; u® ([s1], .., [sn]) =
u(s1,..,8n) Vs € S.



