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1 Introduction

• So far, the course has been focused on finite games:

— Normal-form games with a finite number of players, where each

player has a finite set of pure strategies

— Extensive-form games with a finite number of players, where each

player has finitely many information sets and a finite choice set at

each information set

• But we did in fact already consider certain infinite games – when

we considered the mixed-strategy extension of games, and when we

considered behavior strategies in extensive-form game

— Each player’s set of mixed strategies is then a unit simplex in a

Euclidean (finite dimensional) space. Hence compact and convex.



And each player’s payoff function is continuous, and linear in the
player’s own mixed strategy

— Each player’s set of behavior strategies is a polyhedron, the finite
Cartesian product of unit simplices (the set of local strategies at
each information set). These are also compact and convex sets.
However, although each player’s payoff-function is continuous, it is
in general not linear, not even quasi-concave, in the player’s own
behavior strategy

• In many applications of game theory, the games are infinite, in a num-
ber of distinct ways: players may have continuum strategy sets that
are neither simplices nor polyhedra, strategy sets may even be infinite-
dimensional, players may have countably infinitely many pure strategies
or information sets, there may be infinitely many players (either count-
ably many or a continuum)

• We will today consider infinite (normal-form and extensive-form) games



2 Infinite normal-form games

Recap:

Definition 2.1 A normal-form game is a triplet  = h  i, where

(i)  is the (non-empty) set of players

(ii)  = ×∈ is the set of strategy profiles  = ()∈ with  denoting
the non-empty strategy set of each player  ∈ 

(iii)  :  → R|| is the combined payoff function, where  () ∈ R is the
payoff to player  when strategy profile  is played



• For each player  and strategy profile , let

 () = arg max
0∈


³
0 −

´
and let

 () = ×∈ ()

• This defines a correspondence  :  ⇒  if it is non-empty valued

(which is not always the case)

Definition 2.2 A strategy profile ∗ ∈  is a Nash equilibrium of  if

∗ ∈  (∗).

•  is finite if the set  is finite



•  is Euclidean if the set  is a subset of some Euclidean space (finitely

many players, each player’s strategy set a subset of some Euclidean

space)

• Special cases: all finite games, and also their mixed-strategy extensions



Example 2.1 Reconsider the firm-worker example, but now with a contin-

uum range of wages. The firm owner, player 1, offers a wage  ∈  =

[0 100] to a worker, player 2. The worker has a binary choice, to either

accept the offer,  = 1, or reject it,  = 0. In the first case, the owner

makes a profit of 100 −  and the worker earns income , while in the

second case the firm earns zero profit and the worker earns her reservation

wage 0 ∈ (0 100).

The worker’s strategy set is infinite-dimensional, the set of functions  :

 → {0 1}. Hence, this is not a Euclidean game.

We obtain a Euclidean game if we restrict the worker to cut-off strategies,

step functions  that jump up from 0 (rejection) to 1 (acceptance) at

some critical wage  ∈ . We may then view  as a game on the square

 = [0 100]2, in which the firm owner picks an offer  ∈ [0 100], the



worker an acceptance wage  ∈ [0 100], and the payoff functions are 1
and 2, where

1 ( ) =

(
100− if  ≥ 
0 otherwise

and

2 ( ) =

(
 () if  ≥ 
 (0) otherwise



where  is the worker’s Bernoulli function. What is the set of Nash equi-

librium wages? Viewed as an infinite extensive-form game, what are the

subgames? What is the set of subgame-perfect equilibrium wages?



• Do all Euclidean games have Nash equilibria? No, but:

Theorem 2.1 Let = h  i be a Euclidean game in which each strategy
set  is non-empty, compact and convex, and each payoff function  :

 → R is continuous. If each payoff function  is quasi-concave in  ∈ 
(for any given − ∈ −) then  has at least one Nash equilibrium.

Proof: By Weierstrass’ Maximum Theorem,  () is non-empty and com-

pact for every  ∈ . By quasi-concavity and the convexity of ,  () is

convex. By Berge’s Maximum Theorem, each correspondence  is upper

hemi-continuous. The combined best-reply correspondence  :  ⇒ , de-

fined by  () = ×∈ (), inherits these properties. Thus all conditions
in Kakutani’s Fixed-Point Theorem are met, so  has at least one fixed

point. Q.E.D.

• Does the theorem apply to the firm-worker example?



• The mixed-strategy extension ̃ = h¡ ()  ̃i of any finite game
 = h  i meets the conditions of the above existence theorem

• More generally, by representing mixed strategies by Borel probability
measures  on the pure-strategy sets , any Euclidean game  =

h  i with compact strategy sets and continuous payoff functions
has a mixed-strategy extension ̃ = h¡ ()  ̃i, where

̃ () =
Z
1

Z


 () 1 (1)  ()



Proposition 2.2 (Glicksberg, 1952) Let = h  i be a Euclidean game
in which each strategy set  is non-empty and compact, and where each

payoff function  :  → R is continuous. Its mixed-strategy extension,

the game ̃ = h¡ ()  ̃i, has at least one Nash equilibrium.



3 Examples

Consider  decision-makers  who each has to choose an ”action”  in some
closed and bounded interval, say,  = [0 ] for   0. Each decision-
maker  obtains utility or profit as the difference between a ”benefit” and
a ”cost” that may depend on everybody’s actions:

 () =  ()−  ()

• If  :  → R are continuous, then Theorem 2.2 applies, so any
such game has at least one NE in pure or mixed strategies

• If, moreover, each  is concave in  and each  convex in , for
any given subprofile − of others’ actions, then Theorem 2.1 applies,
so any such game has at least one NE in pure strategies

• Applications abound!



3.1 Cournot competition

[Cournot, 1838]

Firms competing in a product market by way of choosing their individual

outputs, with market-clearing prices

• Continuous payoff functions of the form

 (1  ) = 

⎛⎝ X
=1



⎞⎠ ·  −  ()

where  ≥ 0 is the output (or supply) of firm ,  () is its production

cost, and  =  () is the market price when aggregate output is 



Example of Cournot duopoly

1. Two identical firms, simultaneously choosing outputs 1 2 ∈ [0 100]

2. No fixed cost of production, constant marginal cost,  () =  ·  for
some   100

3. Demand at any price  ∈ [0 100]:

 () = 100− 

4. Market-clearing price at any aggregate output  ≥ 0:

 () = 100−



5. Payoff=profit, and payoff functions

 (1 2) = (100− 1 − 2) ·  −  · 

6. We have defined a Euclidean game. Are the conditions of Theorem

2.1 met?

7. In class: show that this game has a unique NE, and that it is

∗1 = ∗2 =
100− 

3

8. In class: Instead of equilibrium reasoning, use rationalizability!



3.2 Bertrand competition

[Bertrand, 1883]

Firms competing in a product market by way of choosing their individual
prices, and producing what is demanded from them

• Discontinuous payoff functions of the form

 (1  ) =  (1  ) ·  −  ( (1  ))

where  ≥ 0 is the price posted by firm ,  () is its production cost
output , and  (1  ) is the demand, and

 (1  ) =

⎧⎪⎨⎪⎩
 (min) if   min 6= 
 (min)  if  = min 6= 
0 if   min 6= 

for some continuos (demand) function  for the product in question, with
  1 denoting the number of firms who quote the lowest price



Example of Bertrand duopoly

1. Two identical firms, simultaneously choosing prices 1 2 ∈ [0 100]

2. No fixed cost of production, constant marginal cost,  () =  ·  for
some   100

3. Demand at any price  ∈ [0 100]:

 () = 100− 

4. Payoff=profit, and payoff functions (for  = 1 2 and  6= ):

 (1 2) =

⎧⎪⎨⎪⎩
(100− ) (− ) if   
(100− ) (− ) 2 if  = 
0 if   



5. We have defined a Euclidean game. Are the conditions of Theorem

2.1 met?

6. In class: show that this game has a unique NE, and that it is

∗1 = ∗2 = 

7. Note that the unique equilibrium strategies are weakly dominated

8. Assume a smallest monetary unit in which prices have to be expressed.

This defines a finite game. Hence, it has at least one undominated NE

(in pure or mixed strategies). Why? Show that (if the monetary unit

is small) there are two NE in pure strategies, one dominated, the other

perfect.



3.3 Cooperation and public goods

Individuals who all enjoy a public good, and to which each individual makes

a voluntary individual contribution

• Continuous payoff functions of the form

 (1  ) = 

⎛⎝ X
=1



⎞⎠−  ()

where  ≥ 0 of everybody’ contribution,  is a continuous function

that represents production of the public good, here taken to depend

on the sum of all individual contributions, and  () is the cost for

individual  to contribute 



Example of public goods game

1. Two individuals,  = 1 2. Each individual has to choose an effort level

 ∈ [0 1], resulting in provision 1 + 2 of a public good, and in

utilities

(1 2) = (1 + 2) · (1− )
12 .
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2. Are the conditions of Theorem 2.1met?

3. Find the best-reply correspondence of each player. For player 1, we

have

1()

1
= (1− )

12 − 1 + 2

2 (1− )
12

4. The necessary first-order condition (FOC) for 1 to be optimal for

player 1 then is

1 =
2− 2
3

5. Doing likewise for player 2, we find the unique NE ∗1 = ∗2 = 12

6. [Homework:] Now suppose individual 1 has to select 1 before individ-

ual 2 selects 2, and that individual 2 observes 1 before selecting 2.



Specify this as a normal-form game. What is the strategy set of player

1, player 2? Is it Euclidean?

(a) Find the unique subgame perfect equilibrium (in pure strategies).

Does individual 1 now make more or less effort than in the simultaneous-

move game?

(b) Find a Nash equilibrium that is not subgame perfect. Explain, in

terms of ”threats” and/or ”promises,” whether this Nash equilib-

rium is plausible or not

(c) Find the common effort level that would maximize the sum of the

individuals’ utility; the socially optimal effort level



3.4 Horizontal differentiation and competition

[Hotelling, 1929]

Two players, continuum strategy sets, discontinuous payoff functions

1. Consider two ice-cream vendors, A and B, who sell the same ice-cream

to a continuum of consumers, spread out on a beach. Let  be the pop-

ulation density and  the cumulative population distribution function.

(Normalize the total population to unity.)

2. The vendors have no fixed costs, each vendor has a unit cost of   1

euros per ice-cream, and they have to sell each ice-cream at the same

fixed price 



3. Each vendor has to choose a location,  and , respectively

4. Each consumer buys exactly one ice-cream, from the nearest vendor.

If the two vendors stand at the same location, all consumers split even

between them.

(a) Here   0 is the transportation cost (or disutility or inconvenience)

for the consumer of going to the vendor in question

5. Suppose the consumer are uniformly spread out on the unit interval.

(a) If you were a social planner who could decide at what locations,

 and  the ice-cream vendors can put up their stands, what

would you then decide if the goal was to minimize consumers’ total

distance to the nearest vendor?



(b) If the two vendors are free to choose their locations, and they would

do so simultaneously, where would they set up their stands? Write

this up as a normal form game. Is it Euclidean? Are payoff functions

continuous? Do best replies always exist? Does a NE exist? Do

they earn more than when their locations were regulated? Are

consumers better or worse off?

6. Solve for NE, as in 5 (b), but for an arbitrary population density  on

the real line

7. Consider an alternative interpretation in terms of policy positions and

competition for votes

8. In the case of ice-cream vendors: what if they can set their prices

themselves? [Hotelling, 1929, d’Apremont et al (1979)]



3.5 The Rubinstein-St̊ahl bargaining model

[St̊ahl, 1972, Rubinstein, 1982]

Two players, infinite-dimensional strategy sets, countably infinitely many

(singleton) information sets

• Informally in class

1. Two parties bargain over how to divide a unit of surplus (a ”cake”). If

one party gets the share  ∈ [0 1], the the other gets  = 1− 

2. Both parties are selfish



3. In each round  = 0 1 2  one party gives an offer  ∈ [0 1] to the
other, which the other party can accept or reject

(a) If accept they split the cake according to the agreement, 1− and

, and the game ends

(b) If reject, the game goes to the next round, + 1, and the rejector

in round  gives an offer +1 ∈ [0 1] to the other party

4. Can you write this up as an extensive-form game? As a normal-form

game? How specify payoff functions?



3.6 Repeated games

The same simultaneous-move game played in time periods  = 0 1 2 

• Another lecture!


