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1 Introduction

Q1: Can repetition enable " better” outcomes than "static” equilibrium?
e Peace instead of war?
e Resolution of the tragedy of the commons?
e Collusion in oligopolistic markets?
e Keeping together criminal gangs?
Q2: Can repetition enable "worse” outcomes than "static” equilibrium?

e Better for one party but worse for another? Worse for all parties?



Key concepts
Threats and promises

Punishments and rewards

Credibility

e Credible threats " cost nothing” but " credible promises” may be costly!



Example 1.1 Consider a repeated prisoners’ dilemma protocol (in monetary
gains):

(a) Suppose this is played T = 100 times, each time as a simultaneous-
move game, under perfect monitoring (of past moves), and that each player
evaluates plays in terms of the sum of own monetary gains:

T

N, => m(a(t)) i=1,2

t=1
where a (t) € {c,d}? Vt. If T = 100, how would you play? What does the

extensive form look like? What is a strategy? Subgame? Find all SPE! Is
cooperation possible in SPE?



(b) Suppose everything is as in (a), except that now T is a geometrically
distributed random variable. After each round, the game continues with
probability 5 € (0, 1) to the next round, with statistically independent draws

each time. Then
Pril=1]=1-6, PriT=2]=6(1-90), Pr[T’=3]=6%(1-9),...

How would you now play? What is a strategy? Subgame? Payoff func-
tions? How define SPE? Find some SPE! Is cooperation possible in SPE?

[Discounting?]



(c) Suppose everything is as in (b), except that the random variable T' has
a probability distribution with finite support, say Pr {T < 109] = 1.

(d) Suppose everything as in (a),(b) or (c), except that now monitoring is
imperfect. Two main cases: public monitoring (both players observe the
same noisy signal about last round’s play), private monitoring (each player
observes a private noisy signal about last round’s play)



Example 1.2 Finitely repeated play of a coordination game with an added
strictly dominated strategy:

a 3,3 3,0
b 0,0 0,0
c 0,8 7.7

Suppose each player adds up his or her period payoffs. Assume perfect
monitoring.

Repeated play of (b,b) gives payoff 1 to each player in each round. Can
this be obtained in SPE?

Repeated play of (a,a) gives payoff 3 to each player in each round. Can
this be obtained in SPE?

Is it possible, in SPE, to obtain higher payoffs than 3T for each player?



2

Infinitely repeated games with discounting

Simultaneous-move stage game G = (N, A, m), for
N={1,..,n} A=x1'"{A ©7:A-—->R"

with each A; is finite (or, more generally, compact)
Terminology: a; € A; “actions”

Time periods t = 0,1, 2, ...

Perfect monitoring: all actions observed after each period

Write a; € A (A;) if «; is a randomized action choice, a "mixed ac-
tion”, by player 2

Write N for the non-negative integers (that is, including zero)



1. Histories H = U;cNHy
In the initial period ¢t = 0: Hg = {hg} (hg is the “null history”)

In any period t > 0: h = (hg,a(0),a(1),..,a(t—1)) € Hy =
Hg X At

2. Plays: infinite sequences of action profiles

7={(a(0),a(1),...,a(t),...) € A

3. Behavior strategies vy; : H — A (A;)

(a) For any history h € H: y;(h) = a; € A(A4;) is ¢'s (local) random-
ization, in the next period, over his or her action set

(b) Y; denote the set of behavior strategies for player ¢, and let Y =
XieNY;



4. Each behavior-strategy profile y € Y, when used, recursively defines a
play 7 € A®°:

(a) a(0) € A is the realization of y (hg) € [1(A)
(b) a(1) € A is the realization of y (hg, a (0)) € [1(A)
(c) a(2) € A is the realization of y (hg,a (0),a (1)) € [J(A) etc.

5. Each player’s preferences over plays is assumed to be representable by
the Bernoulli function

vi (1) = (1 =6) Y 6'mi[a(t)]
1=0

for some common discount factor § € (0,1)

This is the normalized present value of the stream of stage-game pay-
offs.



6. Payoff functions u; : Y — R are defined as the normalized expected
present value of the payoff stream:

u; (y) = (1 —9) - By

3" otmifa (t)]}
t=0

This defines an infinitely repeated game with discounting, o

Remark: The assumption that preferences over plays take this simple ad-
ditive form (over one's own per-period payoffs) is a very strong assumption



3 Solution concepts

Definition 3.1 A behavior-strategy profile y* is a NE of [0 if
u; (Y°) > ug (yi,y*_i) Vie N,y; €Y

e Just as in the case of finite extensive-form games, a behavior-strategy

profile is a NE if and only if it is sequentially rational on its own path.

e Continuation strategies: given any history h € H, the restriction of a
behavior-strategy profile y to the subset of histories that begin with A:

Yn = (y1|h7 "t yn[h)



e Recall that under perfect monitoring every history is the root of a

subgame

Definition 3.2 A behavior-strategy profile y* is a SPE of [0 if

U; (y‘*h) > U; (yi|h7y*_i‘h) Vie Ny, €Y;,he H

Remark 3.1 Unconditional play of any NE of the stage game G in each
period, can be supported in SPE in 9, for any 0 and for any time horizon

T < 400

Remark 3.2 Unconditional play of any given sequence of NE of the stage
game (G can also be supported in SPE



4 The one-shot deviation principle

In dynamic programming: this principle is called unimprovability

Definition 4.1 A one-shot deviation from a strategy y; € Y; is a strategy
y; =+ y; that agrees with y; at all histories but one: 3! h* € H such that

yi (h) =y; (h) Vh#hR"
Such a deviation from a strategy profile y € Y is profitable if

i (U Y—i) > wipps ()



e Nash equilibria have no profitable one-shot deviations on their paths,
but may have profitable one-shot deviations off their paths

e But not so for subgame perfect equilibria:

Proposition 4.1 (One-shot deviation principle) A strategy profile y is a
SPE of T if and only if 7 profitable one-shot deviation.

Proof sketch:

1. SPE = no profitable one-shot deviation

2. not SPE = d profitable one-shot deviation by “payoff continuity at
infinity” (in class)



Example 4.1 Reconsider the Prisoners’ dilemma and use the one-shot de-
viation principle to test well-known strategy profiles for SPE, given some
6 € (0,1): grim trigger, tit-for-tat, all D etc.



5 Folk theorems

Aumann (1959), Friedman (1971), Aumann and Shapley (1976), Rubin-
stein (1979), Fudenberg and Maskin (1986), Abreu, Dutta and Smith
(1994).

Q: In infinitely repeated games with discounting and perfect mon-
itoring, what payoff vectors (normalized expected present value of
stream of stage-game payoffs) can be supported in SPE?

A: For sufficiently patient players (high § < 1): any feasible and
individually rational payoff vector in the stage game

e Why called "folk theorems”?

e Early versions: NE instead of SPE, limit average payoffs (no discount-
ing) instead of present values under discounting



5.1 The Nash-threat folk theorem

e Suppose that each action set A; be compact (not necessarily finite),
write A = X,;cnA; and let each stage-game payoff function 7; : A —
R be continuous

e Then any payoff vector in the stage game that strictly Pareto domi-
nates some stage-game NE can be supported in SPE if the players are
sufficiently patient:

Theorem 5.1 (Friedman, 1971) Assume that v = w(a) > w(a™) for some
4 € A and some NE a* € A in G. There exists a 6 € (0,1) such that v is
a SPE payoff outcome in [ for every 0 € [5, 1).

Proof: Let y € Y in 0 be defined by y (hg) = & € A, y(h) = a for all
h € H in which all players took actions a in all preceding periods. For
other h € H: y(h) = a*



1. On the path of y: No profitable one-shot deviation for player 7 iff
(1—-6) - M;+6-m(a*) < m;(a) (1)
where M; = max,.ca, 7;(a;,a—;) (and note that M; > m;(a) >
T (a™))

(a) Inequality (1) holds iff
M; — ;i (a)
M; — i (a*)

§>0;, =

(b) Let § = max;cn 0;. Then 6 < 1.

2. Off the path of y: the stage-game NE a™ is prescribed in each period
after any such history h, so there is no profitable one-shot deviation



5.2 Example: Cournot duopoly

e Two identical firms, producing the same good, for which the demand
function is

D (p) =100 — p

in each time period t =1, 2, ...

e No fixed costs and a constant marginal production cost of ¢ > 0 per
unit

e Each firm ¢ independently decides on its on output, ¢;(t), in each
period t =0,1,2, ...

e The resulting market price in period ¢:

p(t) = 100 — [q1 (t) + g2 (t)]



e Profits in period t:

m; [q (t)] = (100 — [q1 (t) + g2 ()] — ¢) - q; (t)

e Perfect monitoring: past outputs are observed (or, equivalently, past
prices are observed)

e The stage game GG has a unique NE:

100 — ¢
3

*

d1 = 92 = q =

o Let Q* = 2¢™. This industry output exceeds monopoly industry output

Q:
(Q__2(1 —C)<—3 — C) =



e Equilibrium industry profit fall short of monopoly industry profit:

rI*_2(1oo—c
- 3

) <(

100 — c\2 .
c) A
2

e Note that the sum of profits is a function of the sum of outputs:

71 + mp = (100 — (g1 + ¢2) — ¢) - (q1 + @2)

pi2

N\

AN

AN




e Suppose infinitely repeated with discount factor § (for example § =
e "2 where r is the interest rate and A the period length)

*

o Consider the following pure (behavior) strategy, s

quantity §; € (0,100), and supply this output in all future periods, as

start out with some

long as no deviation from these output levels, § = (g1, §>) has been
observed. If a deviation occurs: play the static Cournot equilibrium,

q*, in all future periods.

e No profitable one-shot deviations in any history containing a deviation
from 4. The strategy pair (s“lk, 35) is thus a SPE iff

mi(@) = (1 —o) aiel0.100] (9:4—) +6-mi(q") fori=1,2



e Possible to support also other outcomes in SPE? Lower than static
Cournot profits for one firm, or even for both firms?



6 General folk theorems

Definition 6.1 An action profile a = (a1, ..,an) € A is a minmax action-
profile against player i if

a_; € Agi — arg min (maax ; (ag, a_i))

a_; )

e It is as if the others gang up to jointly punish ¢ and 7, knowing their
punishment (a_;) defends her/himself as best she/he can

Definition 6.2 Player i’'s minmax value:

0 L .
v; = min (maaxm (a;, a_z-)>
—1 1

Definition 6.3 A payoff vector v € R" is strictly individually rational if

v>’uo.



e In some games the resulting minmax value can be (much) lower if the
punishers use mixed strategies

e Reconsider the Prisoner’'s dilemma, the matching-pennies game, a 2x2
coordination game

oy

C D H T A
C 3,3 1,4 H 1,-1 —-1,1 A 2
D 4,1 22 T —-1,1 1,-1 B 0

~»

= O

, 0
1

Y

2
0

~

Y

e What are the minmax vectors under pure/mixed minmaxing?



Definition 6.4 The set of feasible payoff vectors in the stage game G is
the convex hull of the direct payoff image of the action space:

V =co[r (A)] C R"
e Why is convexification natural?

Definition 6.5 The set of feasible and strictly individually rational payoff
vectors in the stage game G:

V*:{’UEV:’U>’UO}

e Reconsider the above examples!



6.1 Two-player games

e Assume n =2, A= Ay X Ay compact and 7 : A — R? continuous

Definition 6.6 A mutual minmax profile in GG is an action profile (acl), ag) c

A such that a(l) € A1 is a minmax action against 2 and ag € Ar a minmax
action against 1.

e Note that 7 (acl), ag) < Y (since a player's minmax action is not nec-
essarily a best-reply to the other's minmax action)



e Main result: Any payoff vector in the stage game that strictly Pareto
dominates the minmax payoff vector can be supported in SPE if the
players are sufficiently patient. Proof: Threat of temporary mutual

minmaxing.

Theorem 6.1 (Fudenberg and Maskin, 1986) Letn = 2, and suppose & €
A is such that 7 (&) > v9. There exists a d € (0, 1) such that play of & € A
in each period is supported by a SPE in T0, for any § € [5 : 1).



Proof sketch:

Given & € A such that 7w (&) > oY, consider a behavior-strategy profile
y = (y1,y2) in the repeated game, with " penalty duration” L:

1. Start by playing a = (a1, d), and play a if a was always played so far

2. Also play a if sometime in the past the mutual minmax profile a¥ was
played for L consecutive periods after which no other action pair than
a was ever played

3. For all other histories: play a®



e [ has to be long enough to deter deviations in phases 1 and 2, but
short enough to deter deviation in phase 3. Such an L always exists!

e Use the one-shot deviation principle!

— One-shot deviations in phases 1&2 unprofitable iff

ameazzl(- i (a;,a_;) —m; (a) < (5 + 5 + ..+ 5L) [7‘(‘7; (a) — m; (ao)}

— One-shot deviations in phase 3 unprofitable iff

v — (UJO) < st [W’L’ (@) — m; (G“O)]

e Draw picture in class



e Can this theorem explain why two rational persons stand in a street
beating each other with a stick?

e Reconsider the Cournot duopoly example!



6.2 Games with more than two players

e For n > 2 there may exist no mutual minmax action-profile:

R R
0,0,0
1,1,1

Y Y

L
1,1 0,00
0,0 0,0,0

o O ™~

U 1 U 0,0,0
D o, D 0,0,0

Y Y

A

Sy

e A player can unilaterally deviate from minmaxing of another player,
and obtain a payoff 1, instead of the minmax value 0O

e The proof for n = 2 cannot be generalized. Not only that, the claim
is not valid for generally valid for n > 2!

Definition 6.7 Two players in G, say © and j, have equivalent payoff func-
tions if m; = am; + 8 for some o > 0 and 8 € R.



e The so-called NEU condition, or Non-Equivalent-Utilities condition:
no pair of players have equivalent payoffs functions

e Assume that A = x!' ;A; is compact and 7 : A — R" is continuous

Theorem 6.2 (Abreu, Dutta and Smith, 1994) Assume G satisfies NEU.
Suppose & € A is such that 7w (&) > v0. Then there exists a § € (0,1) such

that play of 4 € A in each period is supported by a SPE in I, for every
§ € [5, 1).

e See Abreu, Dutta and Smith (1994) and/or Mailath & Samuelson
(2006)



7 Concluding comment

e Note the neutrality of the folk theorems: they do not say that repeti-
tion will necessarily lead to cooperation, only that it enables coopera-

tion if players are sufficiently patient

e Interesting implications of the folk theorem also for "bad” outcomes



