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1 Economic theory and ”as if” rationality

• The rationalistic paradigm in economics: Savage rationality [Leonard

Savage: The Foundations of Statistics, 1954]

— Each economic agent’s behavior derived from maximization of some

goal function (utility, profit), under given constraints and informa-

tion

• The ”as if” defence by Milton Friedman (1953): The methodology of
positive economics

— Firms that do not take profit-maximizing actions are selected against

in the market

• But is this claim right? Under perfect competition? Under imperfect

competition?



• Evolutionary theorizing older than Darwin: De Mandeville, Malthus,
even Aristote

• Darwin: exogenous environment - “perfect competition”

• Maynard Smith: endogenous environment - “imperfect competition”

• Evolutionary game theory provides concepts and methods to rigorously
explore Nash’s mass-action interpretation



• The “folk theorem” of evolutionary game theory:

— If a stationary population distribution is dynamically stable, then it

constitutes a Nash equilibrium

— If the population process converges from an interior initial state,

then the limit distribution is a Nash equilibrium

— If the population process starts from an interior state, then iter-

atively strictly dominated strategies will be asymptotically wiped

out

• Natural selection among behaviors may lead to apparent game-theoretic
rationality, such as rationalizability and equilibrium play



1.1 Evolutionary game theory

• Evolutionary process =

= mutation process + selection process

• The unit of selection: usually strategies (”strategy evolution”), some-
times utility functions (”preference evolution”)

1. Evolutionary stability: focus on robustness to mutations

2. Replicator dynamic: focus on selection. [Robustness to mutations by

way of dynamic stability]

3. Stochastic stability: both selection and mutations



1.2 Evolutionary stability of strategies

• ESS = evolutionarily stable strategy [Maynard Smith and Price (1973)]

- “a strategy that ‘cannot be overturned’, once it has become the

‘convention’ in a population



Maynard Smith and Price: Consider a large population of individuals who

are recurrently and (uniformly) randomly matched in pairs to play a finite

and symmetric game

1. Initially, all individuals use the same pure or mixed strategy, , the

incumbent, or resident, strategy

2. Suddenly, a small population share   0 switch to another pure or

mixed strategy, , the mutant strategy

• If the residents on average do better than the mutants, then  is

evolutionarily stable against ,

• A strategy  is evolutionarily stable if it is evolutionarily stable against
all mutants  6= 



2 Evolutionary stability analysis

2.1 Domain

• Symmetric finite two-player games in normal form

Definition 2.1 A two-player game  = h{1 2}   i is symmetric if 1 =
2 and 2( ) = 1( ) ∀  ∈ 1 = 2.

• With payoff bimatrix (), where  = (),  = (), the game

is symmetric iff  = 



Example 2.1 (Prisoners’ dilemma)

 
 3 3 0 4
 4 0 1 1

 =

Ã
3 0
4 1

!
 =

Ã
3 4
0 1

!

Symmetric since  =  .



Example 2.2 (Matching Pennies)

 
 1−1 −1 1
 −1 1 1−1

 =

Ã
1 −1
−1 1

!
 =

Ã
−1 1
1 −1

!

Here  6= . Not a symmetric game.

• Thus, matching pennies games fall outside the domain of evolutionary
stability analysis



Example 2.3 (Coordination game) Payoff bimatrix:

 
 2 2 0 0
 0 0 1 1

 =  =

Ã
2 0
0 1

!

A doubly symmetric game:  =  = , an example of a potential game

[Rosenthal (1974), Monderer and Shapley (1996)]



2.2 Notation

• Write  for the (common) strategy set,  = 1 = 2

• Write ∆ for ∆ (), the (common)mixed-strategy simplex:

∆ = { ∈ R+ :
X
∈

 = 1}

• Write the payoff to any strategy  ∈ ∆, when used against any strategy

 ∈ ∆ as

( ) =  ·

Note that the first argument, , is own strategy, and the second argu-

ment, , the other party’s strategy



• Mixed best replies to  ∈ ∆:

∗() = {∗ ∈ ∆ : (∗ ) ≥ 
³
0 

´
∀0 ∈ ∆}

• This defines a correspondence from ∆ to itself: ∗ : ∆⇒ ∆

[ 6= usual BR correspondence, which maps ¡ = ∆2 to ∆]

• Let

∆ = { ∈ ∆ :  ∈ ∗ ()}

• Note  ∈ ∆ ⇔ ( ) is a symmetric NE

Proposition 2.1 ∆ 6= ∅.

Proof: Application of Kakutani’s Fixed-Point Theorem.



2.3 Definition of ESS

Definition 2.2  ∈ ∆ is an evolutionarily stable strategy (ESS) if for every

strategy  6=  ∃ ̄ ∈ (0 1) such that for all  ∈ (0 ̄):

 [  + (1− )]   [  + (1− )] 

• “Post-entry population mixture”:

 =  + (1− ) ∈ ∆

a convex combination of  and , a point on the straight line between

them

• Note that ̄ may be ”tailored” for the particular mutant  at hand



• Let ∆ ⊂ ∆ denote the set of ESSs

• Note that an ESS has to be a best reply to itself: if  ∈ ∆ then

( ) ≤ ( ) for all  ∈ ∆

• Hence ∆ ⊂ ∆

• Note also that an ESS has to be a better reply to its alternative best
replies than they are to themselves: if  ∈ ∆,  ∈ ∗ () and
 6= , then  ( )   ( )



Proposition 2.2  ∈ ∆ if and only if for all  6= :

( ) ≤ ( )

and

( ) = ( )⇒ ( )  ( )

• ⇒ the strategy used in any strict symmetric NE is an ESS



2.4 Examples

2.4.1 Prisoner’s dilemma

 
 3 3 0 4
 4 0 2 2

∆ = ∆ = {}



2.4.2 Coordination game

 
 2 2 0 0
 0 0 1 1

∆ =
½


1

3
+

2

3

¾

∆ = {}

The mixed NE is perfect and even proper, but not evolutionarily stable!



2.4.3 Hawk-dove game

• The original example of Maynard Smith and Price (1972)

• Start-up two-partner businesses, or pairs of students assigned to write
an essay together

• Each partner has to choose between work (“contribute”) and shirk
(“free-ride”):

 
 3 3 0 4
 4 0 −1−1

• Symmetric game (but not a Prisoners’ Dilemma)

• Consider a large pool of individuals and random matching



1. Unique symmetric NE: randomize uniformly, ∗ = (12 12), ∆ =

{∗}. Hence ∆ ⊂ {∗}

2. ∗ an ESS iff

(∗ )  ( ) ∀ 6= ∗

3. Equivalently:

1

2
[31 + 41 − (1− 1)]  321 + 41 (1− 1)− (1− 1)

2

or

81 − 1  −421 + 121 − 2

or

4
µ
1 −

1

2

¶2
 0



4. True, hence ∗ is an ESS!

• Payoff difference (∗ )− ( ):
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• Some games have no ESS. For instance, when all payoffs are the same.
But also in more interesting games such as

Example 2.4 (Rock-scissors-paper) Rock beats Scissors, Scissors beat Pa-

per, and Paper beats Rock:

 =

⎛⎜⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎟⎠

Unique Nash equilibrium: ∗ = (13 13 13). All pure strategies are best
replies and do just as well against themselves as ∗ does against them:
∆ = ∅.



3 Relations to non-cooperative solution concepts

• Evolutionary stability not only implies that the strategy is a best reply
to itself, it also implies that the strategy is not weakly dominated:

Proposition 3.1  ∈ ∆ ⇒  undominated.

Corollary 3.2 Hence:  ∈ ∆ ⇒ ( ) is a perfect equilibrium.



• One can prove that ESS even implies properness:

Proposition 3.3 (van Damme, 1987)  ∈ ∆ ⇒ ( ) is a proper

equilibrium.

• Hence, every ESS induces a (realization-equivalent) sequential equilib-
rium in every EF-game with the given NF!

• All roads lead to Rome ...

THE END


