
SF2972 Game Theory
Written Exam with Solutions

March 17, 2011

Part A – Classical Game Theory

Jörgen Weibull and Mark Voorneveld

1. Finite normal-form games.
(a) What are N , S and u in the definition of a finite normal-form (or, equivalently,

strategic-form) game G = 〈N, S, u〉? [1 pt]
(b) Give the definition of a strictly dominated (pure or mixed) strategy in such a

game. [1 pt]
(c) Give the definition of a Nash equilibrium (in pure or mixed strategies) in such

a game. [1 pt]
(d) For finite and symmetric two-player games G: give the definition of an evolu-

tionarily stable (pure or mixed) strategy. [1 pt]

Solution See Osborne-Rubinstein and lecture slides.

2. Consider the two-player normal-form game G with payoff matrix

a b c

a 6, 6 0, 0 0, 7
b 0, 0 1, 1 4, 5
c 7, 0 5, 4 0, 0

.

(a) Find all pure strategies that are strictly dominated. [1 pt]
(b) Find all Nash equilibria in pure and/or mixed strategies. [2 pts]
(c) Find all evolutionarily stable strategies. [1 pt]

Solution

(a) There is only one pure strategy that is strictly dominated, namely a, which is dominated by any
(0, ε, 1 − ε) for 0 < ε < 1

7
.

(b) The Nash equilibria are (c, b), (b, c), and
(
(0, 1

2
, 1

2
), (0, 1

2
, 1

2
)
)
.

(c) There is only one evolutionary stable strategy, namely (0, 1

2
, 1

2
).
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3. Two individuals, Al and Beth, contribute to a public good (say, a clean shared
office) by making individual efforts x ≥ 0 and y ≥ 0. Individual utilities are given
by

u1(x, y) = (x + y)a − ax2 and u2(x, y) = (x + y)a − ay2

for some a ∈ (0, 1). Each individual strives to maximize his or her utility.
(a) Game A: Suppose both effort levels are chosen simultaneously. Write up the

normal form GA = 〈N, S, u〉 of this game. Prove that there exists a unique
Nash equilibrium in pure-strategies, and identify this equilibrium. [2 pts]

(b) Game B: Suppose that Al first chooses his effort level, x, and that this is
observed by Beth, who then chooses her effort level, y. Write up the normal
form GB = 〈N, S, u〉 of this sequential game. [1 pt]

(c) Are the Nash equilibrium efforts in Game A, x∗ and y∗, taken in any Nash
equilibrium in Game B? [2 pts]

Solution (a) Each payoff function is differentiable on R
2
++. F.O.C. both necessary and sufficient for NE,

and has the unique solution (x∗, y∗) = (1/2, 1/2).
(b) S1 = R+ and S2 is the set of functions f : R+ → R+. Payoff functions: πi (x, f) =

ui(x, f (x)).
(c) Let f∗ be defined by

f∗ (x) =

{

0 if x < 1/2,

1/2 if x ≥ 1/2.

Then (x∗, f∗) is a NE as requested.

4. A child’s action a (from a nonempty, finite set A) affects both her own private
income c(a) and her parents’ income p(a); for all a ∈ A we have 0 ≤ c(a) < p(a).
The child is selfish: she cares only about the amount of money c(a) she has. Her
loving parents care both about how much money they have and how much their
child has. Specifically, model the parents as a single player whose payoff equals the
smaller of the amount of money the parents have and the amount of money the
child has. The parents may transfer money to the child.

First the child takes an action a ∈ A. Then the parents observe the action and
decide how much money x ∈ [0, p(a)] to transfer to the child. The game ends with
payoffs c(a) + x to the child and min{c(a) + x, p(a) − x} to the parents.

Show that in a subgame perfect equilibrium the child takes an action that max-
imizes the sum of her private income and her parents’ income. Not so selfish after
all! [4 pts]

Solution ⊠ In the subgame after action a ∈ A, the parents maximize min{c(a) + x, p(a) − x} over
x ∈ [0, p(a)]. This is done by choosing x such that c(a) + x = p(a) − x, i.e., by x∗(a) =
1

2
(p(a) − c(a)).

⊠ Anticipating this, the child knows that action a ∈ A leads to transfer x∗(a) and consequently
payoff c(a) + x∗(a) = 1

2
(c(a) + p(a)). Maximizing this is equivalent (just multiply with 2)

with maximizing c(a) + p(a).
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5. Consider the game below.
1

(2, 2)

L M

(3, 1)

ℓ

(1, 0)

r

R

(0, 0)

ℓ

(0, 1)

r

2

(a) Find the corresponding strategic form game. What is the outcome of iterated
elimination of weakly dominated strategies (IEWDS)?

(b) Find all sequential equilibria. Compare the outcomes under (a) and (b): which
do you find most reasonable?

[8 pts]

Solution (a) The corresponding strategic game is

ℓ r
L 2, 2 2, 2
M 3, 1 1, 0
R 0, 0 0, 1

IEWDS consecutively eliminates R (strictly dominated), r, and L: only Nash equilibrium
(M, ℓ) survives.

(b) Ignoring player 1’s trivial assessment in the singleton information set at the initial node, we
can denote an assessment by

(β, µ) = (β1, β2, µ)

= ((β1(∅)(L), β1(∅)(M), β1(∅)(R))
︸ ︷︷ ︸

beh. str. of pl. 1 over {L,M,R}

, (β2({M, R})(ℓ), β2({M, R})(r))
︸ ︷︷ ︸

beh. str. of pl. 2 over {ℓ,r}

, (µ({M, R})(M), µ({M, R})(R)
︸ ︷︷ ︸

beliefs over {M,R}

).

Since R is strictly dominated, sequential rationality requires that it is played with zero
probability in a sequential equilibrium:

(1) β1(∅)(R) = 0.

Distinguish two cases:
Case 1: sequential equilibria with β1(∅)(M) > 0:

⊠ Consistency requires that in information set {M, R}, which is reached with positive
probability, the beliefs are derived from β1(∅) using Bayes’ rule. Together with (1),
this gives µ({M, R})(M) = 1, µ({M, R})(R) = 0: player 2 believes to be in node M
with probability 1.

⊠ Player 2’s unique best response to this belief is to choose ℓ: β2({M, R})(ℓ) = 1.
⊠ Consequently, player 1 prefers M (giving payoff 3) to L (payoff 2): β1(∅)(M) = 1.
⊠ We found a candidate sequential equilibrium:

(β1, β2, µ) = ((0, 1, 0), (1, 0), (1, 0)),

corresponding to the equilibrium in the strategic game that survives iterated elimi-
nation.

⊠ To verify consistency, notice that (β1, β2, µ) is the limit of
(
(ε, 1 − 2ε, ε), (1 − ε, ε), (1−2ε

1−ε
, ε

1−ε
)
)
, 0 < ε → 0
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Case 2: sequential equilibria with β1(∅)(M) = 0:

⊠ Together with (1), this implies that β1(∅)(L) = 1. For notational convenience, denote
player 2’s strategy β2 by (p, 1 − p) and the belief µ over {M, R} by (q, 1 − q).

⊠ Sequential rationality requires that L is a best response. Player 1 won’t play R (see
(1)) and M gives expected payoff 3p + (1 − p) = 2p + 1, so L is a best response as
long as 2p + 1 ≤ 2, i.e., as long as p ∈ [0, 1/2].

⊠ But is every such p sequentially rational? If 0 < p ≤ 1/2, both actions ℓ and r
are chosen with positive probability and therefore have to be best responses to 2’s
beliefs in his information set. This is true only if q = 1/2. If p = 0, only action r is
chosen with positive probability. For this to be a best response to 2’s beliefs in his
information set, we need that q ∈ [0, 1/2].

⊠ We found the following candidates for sequential equilibria:

{(β1, β2, µ) = ((1, 0, 0), (p, 1 − p), (1/2, 1/2)) | 0 < p ≤ 1/2},

and

{(β1, β2, µ) = ((1, 0, 0), (0, 1), (q, 1 − q)) | 0 ≤ q ≤ 1/2}.

⊠ It remains to verify that these assessments are consistent. For the first class of
equilibria, let 0 < p ≤ 1/2. The assessment is the limit of

(
(1 − 2ε, ε, ε), (p, 1 − p), (1/2, 1/2)

)
, 0 < ε → 0.

For the second class of equilibria, let 0 ≤ q ≤ 1/2. The assessment is the limit of
(
(1 − ε, (q + ε)ε, (1 − q − ε)ε), (ε, 1 − ε), (q + ε, 1 − q − ε)

)
, 0 < ε → 0.

Discussion: It can be argued that, since the other equilibria involve the play of iteratively
dominated strategies, the equilibrium in case 1 is the most appealing.
Notice: Another approach to finding sequential equilibria is to first find the trembling-
hand perfect equilibria of the agent strategic form. Here, this is relatively easy: the agent
strategic form is the same as the strategic form in (a) and in two-player games, the perfect
equilibria are the undominated (notice: not the iteratively undominated) Nash equilibria,
i.e., the Nash equilibria of the 2 × 2 game with pure strategy space {L, M} × {ℓ, r}.
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Part B – Combinatorial Game Theory

Jonas Sjöstrand

6. Consider the game of Nim with the additional rule that we are only allowed to
remove one stick or a prime number of sticks.
(a) Find the Grundy value g(Pn) of a pile Pn of n sticks, for 0 ≤ n ≤ 8. [2 pts]
(b) State a conjecture for the value of g(Pn) for general n. [1 pt]
(c) Prove your conjecture. [1 pt]
(d) Find a winning move from the three-pile position (100, 50, 25). [1 pt]

Solution (a)

g(P0) = mex ∅ = 0

g(P1) = mex{g(P1−1)} = mex{0} = 1

g(P2) = mex{g(P2−1), g(P2−2)} = mex{1, 0} = 2

g(P3) = mex{g(P3−0), g(P3−2), g(P3−3)} = mex{2, 1, 0} = 3

g(P4) = mex{g(P4−1), g(P4−2), g(P4−3)} = mex{3, 2, 1} = 0

g(P5) = mex{g(P5−1), g(P5−2), g(P5−3), g(P5−5)} = mex{0, 3, 2, 0} = 1

g(P6) = mex{g(P6−1), g(P6−2), g(P6−3), g(P6−5)} = mex{1, 0, 3, 1} = 2

g(P7) = mex{g(P7−1), g(P7−2), g(P7−3), g(P7−5), g(P7−7)} = mex{2, 1, 0, 2, 0} = 3

g(P8) = mex{g(P8−1), g(P8−2), g(P8−3), g(P8−5), g(P8−7)} = mex{3, 2, 1, 3, 1} = 0

(b) Conjecture: g(Pn) is the remainder when n is divided by four.
(c) Let [n] denote the remainder when n is divided by four. Since [n] = [n − k] only if k is a

multiple of 4, the set Sn = {[n− p] : 1 ≤ p ≤ n, p is prime or 1} does not contain [n]. But
all nonnegative integers smaller than [n] belongs to the set {[n− 1], [n− 2], [n− 3]} if n ≥ 3.
Thus, mex Sn = [n] and the conjecture is true by induction.

(d) For example, taking one stick from the first pile is a winning move, since

g(P99 + P50 + P25) = g(P99) ⊕ g(P50) ⊕ g(P25) = 3 ⊕ 2 ⊕ 1 = 0.

7. Alice and Bob plays the following game: First, Alice chooses a continent, then Bob
chooses a country in that continent, and finally Alice chooses a city in that country.
However, they may only choose continents, countries and cities from the following
list of ten of the greatest cities in the world.

City Country Continent Population/106

Tokyo Japan Asia 35.2
Jakarta Indonesia Asia 22.0
Bombay India Asia 21.3
New York United States America 20.6
São Paulo Brazil America 20.2
Mexico City Mexico America 18.7
Shanghai China Asia 18.4
Osaka Japan Asia 17.0
Calcutta India Asia 15.5
Los Angeles United States America 14.8

Alice wants to minimize the population of the chosen city, while Bob wants to
maximize it. To compute the best strategy, Alice performs a complete minimax
search on the game tree. When there are many possible choices, she decides to try
them in alphabetical order.
(a) Draw the complete game tree. [2 pts]
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(b) Circle the parts of the game tree that would not have been explored if Alice
had used alpha-beta pruning. [3 pts]

Solution Here is the complete game tree with those parts circled that would not have been explored if Alice
had used alpha-beta pruning.

20.2 18.7 14.8 20.6 18.4 21.3 15.5 22.0 17.0 35.2

Sao Paulo Mexico City Los Angeles New York Shanghai Bombay Calcutta Jakarta Osaka Tokyo

JapanIndonesiaIndiaChinaUnited StatesMexicoBrazil

America Asia

Min

Max

Min

8. Let Tn be a binary tree of depth n with coloured edges such that edges between
levels i − 1 and i are blue if n − i is even and red if n − i is odd. For instance, T4

looks like this, where the solid edges are blue and the dashed ones are red:

Level 4

Level 2

Level 3

Level 1

Level 0

Let Gn denote the Blue-Red Hackenbush game played on Tn with the root connected
to the ground.
(a) Compute the value of Gn for 0 ≤ n ≤ 7. [2 pts]
(b) State a conjecture for the value of Gn for general n. [1 pt]
(c) Prove your conjecture. [2 pts]
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Solution (a) Obviously, G0 = 0, and for n ≥ 1 we have the recurrence relation

Gn =

{

2(−1 : Gn−1) if n is even,

2(1 : Gn−1) if n is odd.

Thus,

G0 = 0

G1 = 2(1 : G0) = 2(1 : 0) = 2,

G2 = 2(−1 : G1) = 2(−1 : 2) = − 1

2
,

G3 = 2(1 : G2) = 2(1 : − 1

2
) = 3

2
,

G4 = 2(−1 : G3) = 2(−1 : 3

2
) = − 3

4
,

G5 = 2(1 : G4) = 2(1 : − 3

4
) = 5

4
,

G6 = 2(1 : G5) = 2(−1 : 5

4
) = − 7

8
,

G7 = 2(1 : G6) = 2(1 : − 7

8
) = 9

8
.

(b) Conjecture: G2m = 2−m − 1 and G2m+1 = 2−m + 1 for all nonnegative integers m.
(c) The conjecture is true for m = 0, so suppose m ≥ 1 and argue by induction over m.

By the recurrence relation above, we have G2m = 2(−1 : G2m−1) which, by the induction

hypothesis, equals 2
(
−1 : (2−m+1+1)

)
. The sign-expansion of 2−m+1+1 = 1+1−

∑m−1

k=1
2−k

is + + (−)m−1; in other words, to reach 2−m+1 + 1 in Conway’s number tree we should first
go right twice and then left m − 1 times. Thus, by definition of the colon operator, the
sign-expansion of −1 : (2−m+1 + 1) is − + +(−)m−1. We conclude that

−1 : (2−m+1 + 1) = −1 + 1

2
+ 1

4
−

m+1∑

k=3

2−k = 2−m−1 − 1

2

and hence G2m = 2−m − 1.
Now, again by the recurrence relation, G2m+1 = 2(1 : G2m) = 2

(
1 : (2−m − 1)

)
. The

sign-expansion of 2−m − 1 = −1 + 1

2
−

∑m

k=2
2−k is − + (−)m−1, so the sign-expansion of

1 : (2−m − 1) is + − +(−)m−1. We conclude that

1 : (2−m − 1) = 1 − 1

2
+ 1

4
−

m+1∑

k=3

2−k = 2−m−1 − 1

2

and hence G2m+1 = 2−m + 1.

9. Consider a simplified version of chess where there are only pawns and where the
normal play convention is adopted. Show that the following position is equal to 1
if Left is white.

(Recall that a pawn can move forward one
square if that square is unoccupied. “Forward”
means up in the diagram for white pawns and
down for black pawns. A white pawn at rank
2 (that is, row 2) has also the option of mov-
ing two squares up provided both squares above
the pawn are unoccupied. Analogously, a black
pawn at rank 7 has the option of moving two
squares down. No captures are possible in our
example.)

You may use the identity {0 | ↑} = ↑ + ↑ + ∗, where ↑ = {0 | ∗}, without proving
it.

[5 pts]
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Solution In chess, the columns of the board are called files. Let A be the game obtained by removing all
pawns in files other than the a-file, and define C, D, E, and G analogously. Since a pawn cannot
interact with a pawn in another file, the game position equals A + C + D + E + G.

In the d-file, only one move is possible for either player, so D = ∗. In the c- and e-files, both
players can move to ∗, but Right also has the option to move his pawn two squares forward which
results in a zero game. So C = E = {∗| 0, ∗}, but the right option ∗ is reversible through 0 ≥ C
(since left has no winning move from C) and thus C = E = ↓ = −↑ = {∗| 0}.

In the a-file, Right’s only option is equal to −C while left has two options: either he moves
to a4 which results in ∗, or he moves to a3 which results in {∗|∗} = 0. So A = {∗, 0 | ↑}, but
the left option ∗ is reversible through 0 ≤ A (since right has no winning move from A) and thus
A = {0 | ↑}.

By the identity {0 | ↑} = ↑ + ↑ + ∗, we see that A +C + D +E = 0 so it remains only to show
that G = 1. In the g-file, the players have one option each, let us call them GL and GR. From
GL, Right’s only option is equal to 1 while Left has two options: either he moves to g5 which
results in {0, 1|} = 2, or he moves to g3 which results in {1|0} < 2. Since dominated options can
be removed, we have GL = {2|1}. From GR, Left’s only option is equal to 1 while Right’s only
option is a zero game, so GR = {1|0}.

We conclude that G = {GL|GR} = {2|1 ‖ 1|0}. Now, we can check that G = 1 for example

by a strategic discussion (showing that G − 1 is a win for the second player) or by drawing the

thermograph of G, or by showing that GL
⊳ 1 ⊳ GR and using the simplicity theorem.

10. The games G and H have the following thermographs:

2 1 0 −1 −2

1

2

3

2 1 0

1

2

3

3
0

G H

Which of the following graphs can possibly be the thermograph of G+H? (In each
case, either give examples of G and H or prove that there are no such examples.)
[5 pts]
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2 1 0

1

2

3

3
0

45

2 1 0

1

2

3

3
0

45

4

2 1 0

1

2

3

3
0

45

2 1 0

1

2

3

3
0

45

4
C

A B

D

Solution We see from the thermographs of G and H that t(G) = 3, t(H) = 1, G∞ = 1, and H∞ = 2. It
follows that t(G + H) ≤ max{t(G), t(H)} = 3 and (G + H)∞ = G∞ + H∞ = 3. Diagram A or D
cannot show the thermograph of G + H since the mean value of A is not 3 and the temperature
of D is greater than 3. Diagram C does not show a thermograph at all since there is a horizontal
line segment in it.

The only diagram that possibly can show the thermograph of G + H is B, and indeed it does
if G = {6|2 ‖ −2} and H = {3|1}. Then, G + H = {{6|2} + H, G + 3 ‖ −2 + H, G + 1} and, by
the translation theorem,

{6|2} + H = {6 + {3|1}, {6|2}+ 3 | 2 + {3|1}, {6|2}+ 1} = {{9|7}, {9|5} | {5|3}, {7|3}},

G + 3 = {{6|2}+ 3 | 1} = {9|5 ‖ 1},

−2 + H = {1 | −1},

G + 1 = {{6|2}+ 1 | −1} = {7|3 ‖ −1}.

The options {9|5} and {7|3} of {{9|7}, {9|5} | {5|3}, {7|3}} are dominated, so {6|2}+H = {9|7 ‖
5|3} and

G + H = {{9|7 ‖ 5|3}, {9|5 ‖ 1} | {1 | −1}, {7|3 ‖ −1}}.

But now the options {9|5 ‖ 1} and {7|3 ‖ −1} are dominated, so

G + H = {{9|7 ‖ 5|3} | {1 | −1}}.

Here are the thermographs of G + H and its options in the same diagram:

1

2

3

3 27 6 5 4 1 0 −1


