
SF2972 Game Theory
Written Exam with Solutions

June 10, 2011

Part A – Classical Game Theory

Jörgen Weibull and Mark Voorneveld

1. Finite normal-form games.
(a) What are N , S and u in the definition of a finite normal-form (or, equivalently,

strategic-form) game G = 〈N, S, u〉? [1 pt]
(b) Give the definition of a strictly dominated (pure or mixed) strategy in such a

game. [1 pt]
(c) Give the definition of a Nash equilibrium (in pure or mixed strategies) in such

a game. [1 pt]
(d) Find all pure strategies that are strictly dominated, and find all Nash equilibria

(in pure or mixed strategies), in the game G with payoff bi-matrix

a′ b′ c′

a 3, 4 0, 0 0, 5
b 0, 0 0, 1 1, 0
c 4, 0 1, 0 0, 1

[3 pts]

Solution • (a)-(c) See Osborne-Rubinstein and lecture slides.

• (d) Strictly dominated: a and a′. NE: x1 = x2 = (0, 1/2, 1/2).

2. Two individuals, A and B, compete for a prize worth V > 0. If A makes effort
x > 0 and B makes effort y > 0, then the the probability that A wins is x/ (x + y)
and that B wins is y/ (x + y). [If no effort is made, then the probability of winning
is zero.] How much effort will they each make if the disutility (or cost) of own effort
is ax for A and by for B, where a, b > 0? Assume that each individual strives to
maximize the expected value from winning the prize, net of the disutility of own
effort. [That is, the probability of winning the prize times the value of the prize,
minus the disutility of own effort].
(a) Write this up as a normal-form game G = 〈N, S, u〉. [Efforts are made simul-

taneously.] [1 pt]
(b) Draw a diagram indicating A’s and B’s best-reply curves. [That is, A’s optimal

effort, for each given effort by B, and B’s optimal effort, for each given effort
by A.] [2 pts]
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(c) Prove that there exists a unique Nash equilibrium in pure strategies, and find
this equilibrium. How do the equilibrium efforts depend on V ? On a and b?
Explain the intuition for your answers. [2 pts]

(d) Let V = a = b = 1. Find the Nash equilibrium effort pair. Does there exist
pairs of effort levels (x, y) > 0 such that both A and B would be better off,
than in the Nash equilibrium, if they could commit themselves to those effort
levels? If such levels exist, specify such a pair, and explain the intuition why
or why not such pairs of effort levels exist. [2 pts]

Solution (a) N = {1, 2}, S1 = S2 = (0, +∞) and

u1 (x, y) =
V x

x + y
− ax and u2 (x, y) =

V y

x + y
− ay

(b) FOCs:

V y = a (x + y)
2

and V x = b (x + y)
2

Best-reply curves:
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0
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1

x

y

(c) Unique NE: x∗ = bV/ (a + b)
2

and y∗ = aV/ (a + b)
2

(d) Yes. For V = a = b = 1 we have x∗ = y∗ = 1/4. Any x = y ∈ (0, 1/4) is better than NE.

3. Consider the setup in Problem 2, now with 2a > b, and assume that A first chooses
effort x > 0. This is observed by B, who then chooses effort y > 0. Determine the
effort levels in the game’s subgame perfect equilibrium. [4 pts]

Solution • Observing x > 0, B solves maxy>0
V y
x+y

− by. The second derivative of the goal function is

negative, so the goal function is concave. The feasible set is open, so an optimum is found
by solving the first-order condition:

(1) V x = b(x + y)2.

The best response is y(x) =
√

V x
b
−x, assuming this is positive (as it will be in equilibrium:

that’s why I assumed 2a > b!).

• Anticipating this, A solves maxx>0
V x

x+y(x) − ax, i.e., maxx>0

√
V bx − ax. Again, the goal

function is concave. The feasible set is open, so an optimum is found by solving the first-
order condition:

V b

2
√

V bx
− a = 0 ⇔ x =

V b

4a2
.

• Substitution gives that y(x) = V
2a

− V b
4a2 = V

2a

(
1 − b

2a

)
. Both effort levels are positive under

our assumption b < 2a.
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4. Determine all sequential equilibria of the game below:
1

(2, 2)

L M

(3, 0)

ℓ

(0, 1)

r

R

(0, 1)

ℓ

(3, 0)

r

2

[8 pts]

Solution Ignoring player 1’s trivial assessment in the singleton information set at the initial node, we can
denote an assessment by

(β, µ) = (β1, β2, µ)

= ((β1(∅)(L), β1(∅)(M), β1(∅)(R))
︸ ︷︷ ︸

beh. str. of pl. 1 over {L,M,R}

, (β2({M, R})(ℓ), β2({M, R})(r))
︸ ︷︷ ︸

beh. str. of pl. 2 over {ℓ,r}

, (µ({M, R})(M), µ({M, R})(R)
︸ ︷︷ ︸

beliefs over {M,R}

).

For notational convenience, write m := µ({M, R})(M), q := β2({M, R})(ℓ). The expected payoff
to player 2 given assessment m is

m(1 − q) + (1 − m)q = m + q(1 − 2m).

We therefore consider three cases:
Case 1: m < 1/2: 2’s unique best response is q = 1. Player 1’s payoffs associated with L, M, R
are

L 7→ 2, M 7→ 3, R 7→ 0,

so M is the unique best response. But then player 2’s beliefs are not consistent: there is no
sequential equilibrium of this type.
Case 2: m > 1/2: 2’s unique best response is q = 0. Player 1’s payoffs associated with L, M, R
are

L 7→ 2, M 7→ 0, R 7→ 3,

so R is the unique best response. But then player 2’s beliefs are not consistent: there is no
sequential equilibrium of this type.
Case 3: m = 1/2: every q ∈ [0, 1] is a best response of player 2. Player 1’s payoffs associated
with L, M, R are

L 7→ 2, M 7→ 3q, R 7→ 3(1 − q).

⊠ Player 1 cannot choose both M and R with positive probability: sequential rationality would
require that both are a best reply and therefore give the same payoff. This is possible only
if q = 1/2, but then L gives a strictly higher payoff!

⊠ Player 1 cannot choose exactly one of the actions M and R with positive probability, since
consistency would then lead to m ∈ {0, 1}.

⊠ So in sequential equilibrium, the only remaining possibility is that L is chosen with proba-
bility 1. To assure that this is a best response requires that 2 ≥ 3q and 2 ≥ 3(1 − q), i.e.,
that q ∈ [1/3, 2/3].

⊠ Our candidates for sequential equilibria are

{(β1, β2, µ) = ((1, 0, 0), (q, 1 − q), (1/2, 1/2)) | q ∈ [1/3, 2/3]}.
⊠ To verify consistency, notice that ((1, 0, 0), (q, 1 − q), (1/2, 1/2)) with q ∈ [1/3, 2/3] is the

limit of the sequence of assessments

((1 − 2/n, 1/n, 1/n), (q, 1− q), (1/2, 1/2)).
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Part B – Combinatorial Game Theory

Jonas Sjöstrand

5. The divisor game is a two-player game with the following rules: From the beginning
a number of positive integers are written on a blackboard. The players alternate
moves and in each move the player at turn chooses one of the numbers on the black-
board and replaces it by any of its strictly smaller positive divisors. (A divisor of
n is a positive integer d such that n/d is an integer.) For example, from the posi-
tion (2, 4, 6) the following positions can be reached in one move: (1, 4, 6), (2, 2, 6),
(2, 1, 6), (2, 4, 3), (2, 4, 2), and (2, 4, 1). When all numbers on the blackboard are
ones, no move is possible and as usual the player that cannot move is the loser.
(a) Let P

n
denote the position with only the number n written on the blackboard.

Find the Grundy value g(P
n
) for 1 ≤ n ≤ 8. [2 pts]

(b) State a conjecture for the value of g(P
n
) for general n. [1 pt]

(c) Prove your conjecture. [1 pt]
(d) Find a winning move from the position (126, 21 870 000, 16 384 000 000). [2 pts]

Solution (a)

g(P1) = 0

g(P2) = mex{g(P1)} = mex{0} = 1

g(P3) = mex{g(P1)} = mex{0} = 1

g(P4) = mex{g(P1), g(P2)} = mex{0, 1} = 2

g(P5) = mex{g(P1)} = mex{0} = 1

g(P6) = mex{g(P1), g(P2), g(P3)} = mex{0, 1, 1} = 2

g(P7) = mex{g(P1)} = mex{0} = 1

g(P8) = mex{g(P1), g(P2), g(P4)} = mex{0, 1, 2} = 3

(b) Conjecture: g(Pn) is the number of factors in the prime factorization of n. Example:
600 = 2 · 2 · 2 · 3 · 5 · 5 has 6 prime factors.

(c) Let Ω(n) denote the number of prime factors of n. The divisors of n less than n are precisely
the numbers we obtain by dropping some factors in the prime factorization of n. Thus, for
any positive integer n we have

{Ω(Pd) : 1 ≤ d < n and d divides n} = {0, 1, . . . , Ω(n) − 1}.
Now fix an n and suppose g(Pk) = Ω(k) for any k < n. Then it follows from the observation
above that

g(Pn) = mex{g(Pd) : 1 ≤ d < n and d divides n}
= mex{Ω(Pd) : 1 ≤ d < n and d divides n}
= mex{0, 1, . . . , Ω(n) − 1} = Ω(n),

and the conjecture is true by induction.
(d) Prime factorization yields 126 = 2 ·32 ·7, 21 870 000 = 24 ·37 ·54, and 16 384 000 000 = 220 ·56

so Ω(126) = 4, Ω(21 870 000) = 15, and Ω(P16 384 000 000) = 26, and we obtain

g(126, 21 870 000, 16 384 000 000) = g(P126 + P21 870 000 + P16 384 000 000)

= g(P126) ⊕ g(P21 870 000) ⊕ g(P16 384 000 000)

= Ω(126) ⊕ Ω(21 870 000)⊕ Ω(P16 384 000 000)

= 4 ⊕ 15 ⊕ 26

= (100)2 ⊕ (1111)2 ⊕ (11010)2

= (10001)2 = 17.
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Since 17 > 0 there is a winning move, and it must be to replace the largest number by a
divisor d such that 4 ⊕ 15 ⊕ Ω(d) = 0, that is Ω(d) = 4 ⊕ 15 = 11. For instance we could
drop the 15 largest prime factors of 16 384 000 000 and choose d = 211 = 2048.
So, one example of a winning move is to replace 16 384 000 000 by 2048.

6. Let G = { { | 4, {6, 3 | } }, { | {3, 7 | }, 2, {5, 1 | }} | }.
(a) Show that G is equal to a number and compute the value of G. [2 pts]
(b) If Left starts, G can be described by the following game tree:

24

6 3 3 7 5 1

Max

Max

Min

Perform a minimax search with alpha-beta pruning on the tree. The options
of each subtree should be explored from left to right. Which parts of the tree
are not explored by the search? [3 pts]

(c) What will be the outcome of the game if Left starts? Discuss why this is not
the same number as the value of G. [1 pt]

Solution (a) We apply the simplicity rule repeatedly:

G = { { | 4, {6, 3 | } }, { | {3, 7 | }, 2, {5, 1 | }} | } = { { | 4, 7 }, { | 8, 2, 6} | }= { 0, 0 | } = 1.

(b) The circled parts are not explored by the minimax search with alpha-beta pruning:

24

6 3 3 7 5 1

Max

Max

Min

(c) The outcome will be 4 if Left starts. The reason this does not equal the game value 1 is that
the game value takes into account what happens if the game is played together with other
components in a sum of games, and in that situation the players do not need to alternate
moves in G, nor does Left have to start.
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7. Consider the infinite sequence T1, T2, . . . of Christmas trees that begins with the
following six trees and then continues in the obvious way.

Let G
n

denote the Blue-Red Hackenbush game played on T
n

with the solid edges
coloured blue and the dashed ones coloured red (and the root connected to the
ground as in the pictures).
(a) Compute the value of G6. [2 pts]
(b) What happens to the game value if we remove the four-edge star at the

top of T6? (Note that we keep the short edge below the star.) [2 pts]
(c) State a conjecture for the value of G

n
for general n. [1 pt]

(d) Prove your conjecture. [2 pts]

Solution (a) A single four-edge star connected to the ground has value −1 as revealed for instance by a
simple strategical argument. This means that G1 = 1 : −1 = 1

2 . For n ≥ 2 we have the
recurrence relation Gn = 1 : (Gn−1 − 1) since each two-edge branch of a Christmas tree is
worth −1 : 1 = − 1

2 when connected to the ground. Thus,

G1 = 1
2 ,

G2 = 1 : (G1 − 1) = 1 : − 1
2 = 3

4 ,

G3 = 1 : (G2 − 1) = 1 : − 1
4 = 7

8 ,

G4 = 1 : (G3 − 1) = 1 : − 1
8 = 15

16 ,

G5 = 1 : (G4 − 1) = 1 : − 1
16 = 31

32 ,

G6 = 1 : (G5 − 1) = 1 : − 1
32 = 63

64 .

(b) Let G∗
n denote the game obtained by removing the star from Tn. Clearly, G∗

1 = 1 and now
the recurrence G∗

n = 1 : (G∗
n−1 − 1) yields G∗

2 = 1 : 0 = 1, G∗
3 = 1 : 0 = 1, and so on, so in

particular G∗
6 = 1.

(c) Conjecture: Gn = 1 − 2−n for all n ≥ 1.



SF2972 – Game Theory – Written Exam with Solutions – June 10, 2011 7

(d) The conjecture is true for n = 1, so suppose n ≥ 2 and argue by induction over n.
By the recurrence relation above, we have Gn = 1 : (Gn−1 − 1) which, by the induction

hypothesis, equals 1 : −2−(n−1). The sign-expansion of −2−(n−1) = −1 +
∑n−1

k=1 2−k is

−(+)n−1; in other words, to reach −2−(n−1) in Conway’s number tree we should first go left
and then right n− 1 times. Thus, by definition of the colon operator, the sign-expansion of
1 : −2−(n−1) is + − (+)n−1. We conclude that

1 : −2−(n−1) = 1 − 1
2 +

n∑

k=2

2−k = 1 − 2−n

and hence Gn = 1 − 2−n.

8. Let G = { {8 | 7 || 1 | 0} | {−4 | −6}, {−2 | −4 || −9} }.
(a) Draw the thermograph of G. [3 pts]
(b) What is the temperature and mean value of G? [1 pt]
(c) Who will win G? [1 pt]
(d) Who will win the game 6G? [1 pt]

Solution (a) Here are the thermographs of G (thick lines) and of its options (thin lines):

1

3 27 6 5 4 1 0 −2 −3 −4 −5 −6 −7 −8 −9

4

3

2

5

−1

(b) The temperature is t(G) = 5 and the mean value is G∞ = −1.
(c) Since the origin is strictly inside the thermograph we know that G is fuzzy to zero and hence

the first player will win the game.
(d) By the mean-value theorem, 6G < 6G∞ + t(G) + ε = −6 + 5 + ε < 0 for sufficiently small

positive ε, so Right will always win 6G.


