
Exam in SF2975 Financial Derivatives.
Thursday May 30 2013 14.00-19.00.

Answers and suggestions for solutions.

1. (a) According to the First Fundamental Theorem the model is free of arbitrage if
and only if there exists a martingale measure. We thus need to prove that there
exists a 0 ≤ q ≤ 1 such that

s =
1

1 + r
[q · su+ (1− q) · sd] .

Solving for q we obtain

q =
(1 + r)− d

u− d

which is well defined, and satisfies 0 ≤ q ≤ 1 as long as d < 1 + r < u.

(b) Yes, it is possible to compute the price of the European call option given the
information in the exercise. First use the price of the zero coupon bond to find
the short rate r∗ you should use by solving

p(t, T ) = 0.95 = e−r∗·1.

Then use that the price of an American call option equals the price of a Euro-
pean call option to find the implied volatility σimp from

c(0, 100, 100, 1, r∗ , σimp) = 16.13.

Here c(t, s,K, T, r, σ) denotes the standard Black-Scholes price at time t of a
European call option with exercise price K and expiry date T , when the current
price of the underlying is s, the interest rate is r, and the volatility of the
underlying is σ. The price of the call option is now given by the Black-Scholes
formula for c(0, 100, 110, 0.5, r∗ , σimp).

(c) Let P (t, s) denote the price of the portfolio at time t when St = s. We then
have that

P (t, s) = c(t, s)− p(t, s).

Here c(t, s) denotes the standard Black-Scholes price at time t of a European
call option with exercise price K and expiry date T , when the current price of
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the underlying is s. The price of the corresponding put option is denoted by
p(t, s). By definition we have that

∆P (t, s) =
∂P (t, s)

∂s
.

The computation of this derivative will simplify considerably if if we use put-
call-parity, that is

p(t, s) = Ke−r(T−t) + c(t, s)− s.

We then have that

P (t, s) = c(t, s)−
(

Ke−r(T−t) + c(t, s)− s
)

= s−Ke−r(T−t).

the delta of the portfolio is thus

∆P (t, s) =
∂P (t, s)

∂s
= 1.

2. (a) Denote the payoff function by φ and note that

φ(ST ) = −a+max{ST − x1, 0} − 2max{ST − x2, 0}+max{ST − x3, 0}.
The price of the contract is therefore

Πt = e−r(T−t)EQ[−a+max{ST − x1, 0} − 2max{ST − x2, 0}
+max{ST − x3, 0}|Ft]

= −e−r(T−t)a+ c(t, St, x1, T, r, σ) − 2c(t, St, x2, T, r, σ)
+c(t, St, x3, T, r, σ)

= −e−r(T−t)a+ c(t, St, 0.95St, T, r, σ) − 2c(t, St, St, T, r, σ)
+c(t, St, 1.05St, T, r, σ).

Here c(t, s,K, T, r, σ) denotes the standard Black-Scholes price at time t of
a European call option with exercise price K and expiry date T , when the
current price of the underlying is s, the interest rate is r, and the volatility of
the underlying is σ. If we want the price of the claim to be zero a should be
chosen as

a = er(T−t) [c(t, St, 0.95St, T, r, σ) − 2c(t, St, St, T, r, σ) + c(t, St, 1.05St, T, r, σ)] ,

where c(t, s,K, T, r, σ) is given by the Black-Scholes formula.

(b) The price of the claim is given by

Πt = e−r(T−t)EQ
[

S2
T I{ST>K}

∣

∣

∣Ft

]

.

Since ST = Ste
Z where Z ∈ N

(

(r − σ2/2)(T − t), σ2(T − t)
)

this can be writ-
ten as

Πt = e−r(T−t)
∫ ∞

ln

{

K

St

} S2
t e

2zϕ(z)dz,

where ϕ denotes the density of a N
(

(r − σ2/2)(T − t), σ2(T − t)
)

-distribution.
Now use that the density function for aN(m,σ2)-distributed random variable is
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ϕ(z) = e−(z−m)2/(2σ2)/(σ
√
2π), and then complete the square in the exponent.

This yields

Πt = e−r(T−t)e(2r+σ2)(T−t)S2
t

∫ ∞

ln

{

K

St

} ψ(u)du,

where ψ denotes the density of aN
(

(r + 3σ2/2)(T − t), σ2(T − t)
)

-distribution.
If we let U denote a N

(

(r + 3σ2/2)(T − t), σ2(T − t)
)

-distributed random vari-
able. Then we have that

Πt = e(r+σ2)(T−t)S2
tQ

(

U > ln

{

K

St

})

= e(r+σ2)(T−t)S2
t

[

1−N

(

1

σ
√
T − t

{

ln

{

K

St

}

−
(

r +
3

2
σ2

)

(T − t)

})]

= e(r+σ2)(T−t)S2
tN

(

1

σ
√
T − t

{

ln

{

St
K

}

+

(

r +
3

2
σ2

)

(T − t)

})

,

where we have used one of the hints to obtain the last equality.

3. (a) We have that

V h(t) = hB(t)B(t) + hS(t)S(t)

= [F (t, S(t)) − S(t)Fs(t, S(t))]B(t) + Fs(t, S(t))S(t) = F (t, S(t)),

since B(t) ≡ 1. That V h(T ) = g(S(T )) now follows from the boundary condi-
tion of PDE.

The self-financing condition is

dV h(t) = hB(t)dB(t) + hS(t)dS(t).

As dB(t) ≡ 0 this reduces to

dV h(t) = Fs(t, S(t))σ(t)S(t)dW
Q(t).

Since V h(t) = F (t, S(t)) the Itô formula yields that

dV h
t = Ftdt+ FsdSt +

1

2
FssdS

2
t

= Fs(t, S(t))σ(t)S(t)dW
Q(t) +

1

2

[

σ2(t)− σ2BS

]

S2(t)Fss(t, S(t))

where the PDE for F has been used to substitute out Ft. Hence the strategy
is self-financing precisely when

1

2

[

σ2(t)− σ2BS

]

S2(t)Fss(t, S(t)) = 0.

If σ(t) = σBS we are in the standard Black-Scholes setting (with zero interest
rate) and the PDE for F is the PDE that gives arbitage-free prices for simple
claims, and the strategy h is the standard delta hedge, which is self-financing
in the standard setting.

(b) Yes, there will be arbitrage opportunities. This since the price of a contingent
T -claim X in the model with stochastic interest rates is given by

Πmodel
t [X] = E

[

e−
∫

T

t
rsdsX

∣

∣

∣

∣

Ft

]

,
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while the risk manager will compute the price according to the formula

Πmanager
t [X] = er(t)(T−t)E[X|Ft].

In general these two prices will not be equal, and therefore arbitrage opportu-
nities exist. Suppose there is a claim X for which Πmanager

0 [X] > Πmodel
0 [X].

Then sell the claim to the manager (who will accept to buy at this price since
he believes it to be correct) and buy the claim for Πmodel

t [X] from someone else
on the market (since the stochastic interest rate model is assumed to be correct,
there should be someone out there, who is willing to sell at this price). Invest
the earnings from the transaction in the risk free asset. Your net investment at
time 0 will be 0, and at time T you can pay the manager what you owe him using
what you receive as an owner of the claim. But you will still have earnings in the
bank! Thus you will have created an arbitrage. (If Πmanager

0 [X] < Πmodel
0 [X] a

similar procedure can be used to create an arbitrage.)

4. (a) A short rate model is said to have an affine term structure if zero coupon bond
prices can be written on the following form

p(t, T ) = eA(t,T )−B(t,T )rt ,

where A and B are deterministic functions.

Sufficient conditions on µ and σ which guarantee the existence of an affine term
structure are that µ and σ2 are affine in r (and that there exists solutions to
two certain ordinary differential equation, see below), i.e.

{

µ(t, r) = a(t)r + b(t),
σ2(t, r) = c(t)r + d(t).

To see this insert these expression into the term structure equation
{

F T
t + µF T

r + 1
2σ

2F T
rr − rF T = 0,

F (T, r) = 1.

(Here F T (t, rt) = p(t, T ), and we have used the notation F T
t = ∂F T /∂t, etc.)

This will after some rewriting give you






















At(t, T )− b(t)B(t, T ) + 1
2d(t)B

2(t, T )

+
(

1 +Bt(t, T ) + a(t)B(t, T )− 1
2c(t)B

2(t, T )
)

r = 0,

eA(T,T )−B(T,T )r = 0.

This equation should hold for all t and r, so there will be an affine term structure
if A and B solve the following ordinary differential equations







At(t, T ) = b(t)B(t, T )− 1
2d(t)B

2(t, T ),

A(T, T ) = 0,
(1)

and










Bt(t, T ) + a(t)B(t, T )− 1

2
c(t)B2(t, T ) = −1,

B(T, T ) = 0.
(2)
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(b) Use Itô’s formula on p(t, T ) = eA(t,T )−B(t,T )rt to obtain

dp(t, T ) = . . . dt− σ(t, rt)B(t, T )p(t, T )dVt.

The volatility is thus

ν(t, T ) = −σ(t, rt)B(t, T ),

where the function B is the solution to equation (2).

(c) It is readily verified that the Vasiček model satisfies the sufficient conditions
from (a) and thus has an affine term structure, i.e. zero coupon bond prices
are of the form

p(t, T ) = eA(t,T )−B(t,T )rt . (3)

Identifying parameters we see that A and B should solve the following equations






At(t, T ) = bB(t, T )− 1
2σ

2B2(t, T ),

A(T, T ) = 0,

and






Bt(t, T )− aB(t, T ) = −1,

B(T, T ) = 0.

Solving the equation for B yields

B(t, T ) =
1

a

(

1− e−a(T−t)
)

.

A can then be obtain via integration

A(t, T ) =

∫ T

t

1

2
σ2B2(s, T )ds−

∫ T

t
bB(s, T )ds.

5. (a) The zero coupon bond with maturity T .

(b) UnderQT every price process normalized by the price process of the zero coupon
bond maturing at time T should be a martingale. In particular the process
ZT (t) = B(t)/p(t, T ) should be a martingale.

Using Itô’s formula on ZT (t) = B(t)/p(t, T ) we obtain the Q-dynamics

dZT
t =

1

pTt
dBt −

Bt

(pTt )
2
dpTt +

1

2
2
Bt

(pTt )
3
(dpTt )

2

= (νTt )
2ZT

t dt− νTt Z
T
t dVt

Now define a Girsanov transformation by

dQT = LT (t)dQ, on Ft,

where






dLT
t = gTt L

T
t dVt,

LT
0 = 1.

From Girsanov’s theorem we have that

dVt = gTt dt+ dUT
t ,
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where UT is a QT -Wiener process. We then have the QT -dynamics of ZT as

dZT
t = (νTy )

2ZT
t dt− νTt Z

T
t (g

T
t dt+ dUT

t )

=
(

(νTt )
2 − νTt g

T
t

)

ZT
t dt− νTt Z

T
t dU

T
t

In order for ZT to be a QT -martingale the drift must be zero and this means
that we must have

gT (t) = ν(t, T ).

An explicit expression for the likelihood process LT is therefore

LT
t = exp

{
∫ t

0
ν(s, T )dVs −

1

2

∫ t

0
ν2(s, T )ds

}

.

(c) From the martingale property of Π/pT under QT (here Π denotes the price
process of a traded asset) we have that

Π(t)

p(t, T )
= ET

[

Π(T )

p(T, T )

∣

∣

∣

∣

Ft

]

.

Using that P (T, T ) = 1 and that Π(T ) = X for a T -claim X we obtain the
following pricing formula after some rewriting

Π(t) = p(t, T )ET [X| Ft] .

(d) In order to be able to use the pricing formula from (c) we need the dynamics of
r under QT . From (b) we know that the Girsanov kernel from Q to QT is given
by the volatility of the zero coupon bond with maturity T , and from exercise 4
(b) we know that this is given by

ν(t, T ) = −σB(t, T ),

where we know from exercise 4 (c) that

B(t, T ) =
1

a

(

1− e−a(T−t)
)

. (4)

This means that the QT -dynamics of r are given by

drt =
(

b− σ2BT
t − art

)

dt+ σdUT
t .

An explicit solution of this SDE can be found in the hints and is given by

rT = e−a(T−t)rt +

∫ T

t
e−a(T−s)

(

b− σ2BT
s

)

ds +

∫ T

t
e−a(T−s)σdUT

s

From the above formula we see that the expectation of rT conditional on Ft is

ET [rT |Ft] = e−a(T−t)rt +

∫ T

t
e−a(T−s)

(

b− σ2BT
s

)

ds.

The price of the claim is thus given by

Π(t) = p(t, T )

[

e−a(T−t)rt +

∫ T

t
e−a(T−s)

(

b− σ2BT
s

)

ds

]

,

where p(t, T ) is given by formula (3) computed in exercise 4 (c) and BT is given
by (4).


