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Reliability in fatigue
On the choice of distributions in the load-strength model

Abstract

In this thesis the influence of the choice of distributions in the load-
strength model is considered. Accurate predictions of the failure probability
is very useful when aiming at the most cost effective design of a compo-
nent. Two distributions for load and strength are evaluated, the lognormal
distribution and the Weibull distribution. From the load-strength model
the failure probability can be determined which is the probability that the
component in question fails within a specific time. The main conclusion is
that the lognormal distribution should be used rather than the Weibull dis-
tribution, especially when the data available is limited. A possible way of
updating the model with observed failure rates using Bayesian methods is
also suggested.





Tillförlitlighet inom utmattning
Val av fördelningar i last-styrka-modellen

Sammanfattning

I detta exjobb undersöks vilken p̊averkan olika fördelningsval har p̊a
last-styrka-modellen. Noggranna förutsägelser av felsannolikheten är myck-
et användbara för kostnadseffektiv dimensionering av komponenter. Tv̊a
fördelningar för lasten och styrkan studeras, lognormalfördelningen och
Weibullfördelningen. I last-styrka-modellen kan felsannolikheten beräknas,
d.v.s. sannolikheten att den aktuella komponenten g̊ar sönder inom en viss
tid. Huvudslutsatsen är att lognormalfördelningen bör användas snarare än
Weibullfördelningen, i synnerhet vid begränsad tillg̊ang p̊a data. Ett möjligt
sätt att uppdatera modellen med felutfall med hjälp av Bayesianska metoder
föresl̊as ocks̊a.
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Chapter 1

Introduction

The load-strength model is a tool for reliability analysis in fatigue.The dam-
age that an external cyclic load causes to a material is called the fatigue of
the material. The load itself can be characterized by its local maxima and
minima. A good way to examine the load is the rainflow count method,
see Johannesson [3], which gives the load amplitudes. Some definitions are
needed in order to describe the model

C = Capacity (strength) ,

D = Duty (load) .

The capacity can, e.g., represent the strength of a vehicle component and
the duty is then the load that the component is exposed to. The basis of the
model is that failure occurs (the component breaks) if the duty exceeds the
capacity, i.e. D > C. In lecture notes from a course for Swedish industry, see
Johannesson and de Maré [2], the load-strength model and several applica-
tions are described. The duty naturally depends on the time or distance the
component has been used. The idea is that both capacity, C, and duty, D,
are modelled as random variables. The scatter in the strength of the com-
ponents is modelled by C and the scatter in the load is modelled by D. The
scatter in the strength is easy to understand (material and manufacturing
properties), but the scatter in the load is more complex. It consists of several
parts. Duty varies based on how the vehicle is driven, the road conditions,
and so on. Therefore it is much harder to find and motivate a suitable model
for the duty than the capacity. The failure probability is the probability that
failure occurs

Pf = P (D > C) .

The model can be used in several ways. One way of using the model is in
the case where there is a restriction on the failure probability for a critical
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component. The objective could also be to find the minimum life cycle cost.
The total cost is a sum of the manufacturing and operation cost. When the
failure probability decreases (stronger component) the manufacturing cost
increases and for the operation cost the relationship is reversed. This means
that an optimal design failure probability can be found which minimizes the
life cycle cost for the component. Then the component can be adjusted by
changing the manufacturing procedure in order to satisfy that condition.

The load-strength model have been used by PSA Peugeot Citroën, see
Thomas et al. [7], and Volvo Construction Equipment, see Olsson [5] and
Samuelsson [6]. They use different assumptions for the distributions of the
capacity and load. Volvo Construction Equipment uses a model in which
capacity and duty is based on the three parameter Weibull distribution. PSA
Peugeot Citroën models both capacity and duty with the normal distribution.

In Chapter 2 the background of the load-strength model is described
and the model and definitions are introduced. The use of the load-strength
model in industry is described in Chapter 3. In Chapter 4 the estimation
of parameters in the lognormal and Weibull distribution are examined. A
couple of methods for estimation of the parameters in a three parameter
Weibull distribution are examined. The basis of the estimation is data from
Volvo Trucks. Also the quantitative differences that depends on the choice of
distribution are studied. The model of Volvo Articulated Haulers is analyzed
in Chapter 5. In Chapter 6 feedback using Bayesian methods is examined.
Finally in Chapter 7 conclusions are drawn and proposals for how to use the
load-strength model in the future are suggested.
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Chapter 2

Background

The capacity, C, and the duty, D, are assumed to be continuous random
variables. A continuous random variable X is defined by its density function,
fX(x), and its distribution function, FX(x).

P (a ≤ X ≤ b) =

b
∫

a

fX(x) dx = FX(b) − FX(a)

fX(x) =
d

dx
FX(x)

In this thesis principally two distributions will be considered, the lognormal
distribution and the three parameter Weibull distribution (used by Volvo).
The reason why these distributions are used is discussed in Section 2.6. In
some examples in this chapter the normal distribution (used by PSA Peugeot
Citroën) will also be considered.

2.1 Normal distribution

If X ∼ N(µ, σ2) the density function is

fX(x) =
1√

2π
√

σ2
exp

(

−(x − µ)2

2σ2

)

, −∞ < x < ∞ .

The distribution function can not be determined explicitly

FX(x) =

x
∫

−∞

fX(y) dy .

If X ∼ N(0, 1) (standard normal) then the distribution function is denoted
by Φ(x).
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2.2 Lognormal distribution

If X ∼ LN(µ, σ2) it means that log X ∼ N(µ, σ2), where log is the natural
logarithm. The density function is

fX(x) =
1

x
√

σ2
√

2π
exp

(

−(log x − µ)2

2σ2

)

, x > 0 .

Also for this distribution the distribution function can not be expressed ex-
plicitly

FX(x) =

x
∫

0

fX(y) dy .

2.3 Three parameter Weibull distribution

If X ∼ W (β, η, γ) then the density function is

fX(x) =
β

η

(

x − γ

η

)β−1

exp

(

−
(

x − γ

η

)β
)

, β, η > 0, x > γ .

For this distribution there is a explicit expression for the distribution function

FX(x) =

x
∫

γ

fX(y) dy = 1 − exp

(

−
(

x − γ

η

)β
)

.

In case γ = 0 the distribution is called a two parameter Weibull.

2.4 A target customer

The 100p% customer zp is defined as a quantile in the duty distribution, see
Johannesson and de Maré [2]

P (D ≤ zp) = p

P (D > zp) = 1 − p

where 1 − p is the probability of finding a customer more extreme than zp.
How to calculate an extreme customer depends of course on the distribution
of the duty.
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2.4.1 Duty based on normal distribution

Assume that the duty is normally distributed with mean value mD =
300 MPa and standard deviation σD = 60 MPa. The 90% customer is sought,
and p = 0.90 yields

z0.90 = mD + λ0.10 σD = mD + 1.28 σD = 377 MPa.

2.4.2 Duty based on lognormal distribution

If the duty is lognormal the 100p% customer is found in the following way

P (D ≤ zp) = P (log D ≤ log zp) = P

(

log D − µ

σ
≤ log zp − µ

σ

)

= Φ

(

log zp − µ

σ

)

= p

which gives

log zp − µ

σ
= λp

zp = eµ+λp σ .

Assuming that the mean and variance is the same as in the example with
the normal distribution yields z0.90 = 379 MPa.

2.4.3 Duty based on Weibull distribution

Assume that the duty is inversely proportional to a Weibull distributed ran-
dom variable, i.e. D = 1/Y where Y ∼ W (β, η, 0).

FY (y) = 1 − exp

(

−
(

y

η

)β
)

, y ≥ 0, η, β > 0 .

The 100p% customer can be determined directly from the definition

P (D ≤ zp) = P

(

1

Y
≤ zp

)

= P

(

Y ≥ 1

zp

)

= 1 − FY

(

1

zp

)

= exp

(

−
(

1

η zp

)β
)

= p .

Extracting zp gives the explicit expression

zp =
1

η (− log p)1/β
.

If the mean value and the standard deviation is the same as in the example
with the normal distribution, then z0.90 = 372 MPa.
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2.5 Failure probability

There are different kinds of failure probabilities. One of them is the proba-
bility that a failure occurs considering the entire population. Another is the
probability that failure occurs for the 100p% customer.

2.5.1 Entire population

The probability that a failure occurs for the entire population is denoted by
Pf and is calculated as

Pf = P (D > C).

2.5.2 The target customer

Given the 100p% customer the duty D = zp which implies that

Pf, p = P (zp > C).

This means that once the 100p% customer is known only the distribution of
the capacity is needed.

In case that the capacity is normally distributed it is rather simple to
calculate the failure probability. Let z0.90 = 400 MPa and assume that
C ∼ N(500, 502). The failure probability for the target customer is then

Pf = P (C < zp) = P

(

C − mC

σC
<

zp − mC

σC

)

= P

(

Z <
400 − 500

50

)

= P (Z < −2), where Z ∼ N(0, 1)

= Φ(−2) = 1 − Φ(2) = 1 − 0.977 = 0.023 = 2.3%.

2.6 Distributions for duty and capacity

Until now some different distributions have been assumed for duty and
capacity. The choice in a specific case depends on the application. There
are three different models that are natural in the fatigue context.

1. D=normal C=normal
2. 1/D=Weibull C=Weibull
3. D=lognormal C=lognormal

1. PSA Peugeot Citroën uses a model where both duty and capacity are
normally distributed. The capacity is interpreted as the fatigue limit
which explains the assumption of normal distribution.
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2. Volvo Construction Equipment uses a Weibull distribution with three
parameters. The choice of the Weibull distribution is justified by the
”weakest link” principle. The Weibull distribution also fits well to
observations but does not give explicit formulas to calculate the failure
probability.

3. The capacity is often assumed to be lognormally distributed which can
be justified by analyzing the failures in the SN-graph. If the duty can
also be assumed to be lognormally distributed, it gives explicit formulas
for the failure probability.

2.7 Models for duty and capacity

According to the method that Volvo Construction Equipment uses the dam-
age of a component that is accumulated over time must be transformed to a
scalar value and one way to do that is to use the Palmgren-Miner hypothesis
for accumulated fatigue damage

d =

M
∑

i=1

1

N(∆Si)

where d is the damage. The function that describes the number of cycles to
failure for the component in interest is denoted by N(·). The different load
amplitudes are ∆Si, i = 1, . . . , M . Furthermore damage 1 corresponds to
failure.

Basquins equation is frequently used to describe N(·)

N = C (∆S)−k

where k is the Wöhler exponent. The capacity, C, is assumed to be a random
variable. Now the damage can be written as

d =

M
∑

i=1

(∆Si)
k

C
=

D

C

and thus defines the duty as

D =

M
∑

i=1

(∆Si)
k .

Note that failure occurs when d > 1 which is consistent with the previous
definition of failure D > C.
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2.7.1 Estimation of capacity

By performing experiments with varying load amplitudes ∆Si, a sequence
of a total of MC load cycles before the component breaks is received. Since
failure corresponds to d = 1, C can be extracted

1 =

MC
∑

i=1

1

C ∆S−k
i

C =

MC
∑

i=1

∆Sk
i .

Both the mean and the standard deviation of C can be estimated by
repeating the experiment a number of times.

2.7.2 Estimation of duty

The duty, D, is estimated from a load process and an observation is deter-
mined by the formula

D =

MD
∑

j=1

∆Sk
j

where MD is the total number of load cycles. The mean and the standard
deviation of D can be estimated from load measurements on different cus-
tomers.

2.8 Applications

In a typical application only the relation between C and D is of interest. Fur-
thermore, a value for the Wöhler exponent is chosen, e.g. Volvo Construction
Equipment (VCE) often uses k = 3 since the components are welded. In that
case C and D are determined from the expressions

CV CE =

MC
∑

i=1

∆S3
i , DV CE =

MD
∑

j=1

∆S3
j .

2.9 Duty intensity

Since the duty is accumulated linearly it is possible to determine the duty
intensity. If e.g. observations of the duty are given but they correspond to
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different distances they must obviously be normalized in some way. The
observations are transformed to the duty intensity, D̃ [duty/km], to make it
possible to use them for further inference. The duty intensity is calculated as
the duty divided by the driven distance. The duty at a certain distance, s,
is just D = s · D̃. If the duty is observed at different times the duty intensity
have the unit [duty/h] . Then the duty at a certain time, t, is calculated as
D = t · D̃. The duty intensity will be explained more carefully in the context
in which it is used in the thesis.
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Chapter 3

Applications in industry

3.1 Volvo Trucks

Volvo Trucks has made extensive trials in order to predict the life distribution
by means of the load strength model.

3.1.1 Load-strength model

1. Analysis of fatigue data regarding strength.
The analysis includes a description of fatigue data variation and fatigue
modelling by the life distribution. The capacity, C, is calculated from
rig tests and is determined by the formula

C =
∑

i

ni (∆Si)
k

where the ni is the number of cycles until a failure occurs at the load
level ∆Si and

∑

i

ni is the total number of cycles until failure occurs.

2. Analysis of operational loading.
The accumulated duty, D, is calculated from the load spectrum and is
determined by the formula

D =
∑

i

ni (∆Si)
k.

Duty values are divided by the distance in km to get a comparable unit
[duty/km], i.e. the duty intensity D̃. The Wöhler exponent k = 4 are
used in the calculations which differs from the value k = 3 that Volvo
Construction Equipment uses. That value is justified from examination
of the Wöhler curve.
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3. Life predictions and modelling.
The values for duty/km and capacity are examined and fitted inference
is based on a three parameter Weibull distribution. Then the life can
be predicted by means of simulation techniques. There are two more
assumptions except those already stated.

• The duty and the capacity are assumed to be independent. Duty is
actively accumulated until it reaches capacity (failure occurrence).

• The duty of the component is based on the lateral loading only,
even though loading may exist in vertical and longitudinal direc-
tion as well.

3.1.2 Load-strength simulations

In order to estimate the duty, a number of field measurements have been
performed at different markets, e.g Sweden, Norway, Germany and Brazil.
The distribution of the capacity has been examined from rig tests and a
three parameter Weibull inference has been made. The results are shown
in diagrams with “Level crossing spectrum”, “Range spectrum” and “Power
spectrum”. Some other types of diagrams are plotted too, e.g. accumulated
failure rate against driven distance and accumulated driven distance against
time [year].

3.2 Volvo Articulated Haulers

Bertil Jonsson at Volvo Articulated Haulers has written a report in which he
uses the load strength model in a slightly different way. The load is estimated
by driving for an hour, and the strength is estimated from the Paris equation.

3.2.1 Estimation of capacity

In order to estimate the capacity the Paris equation is used

da

dN
= B (∆K)k

where a is the crack length. The number of cycles is denoted by N . The
crack growth rate is da

dN
. The random variable B corresponds to material

properties and crack geometry of the component. The range of the stress
intensity factor is denoted by ∆K and k = 3 is a constant. Later it will turn
out that it is equal to the Wöhler exponent.
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If the load amplitude is denoted by ∆S, and using the fact that

∆K = ∆S · f(a)

where f(·) is a function that is determined by measuring the stress intensity
factor for different crack lengths, the expression can be written in the form

da

dN
= B · (∆S · f(a))k.

Rewriting and integration the expression above yields

ac
∫

a0

da

B (∆S)k f(a)k
=

Nc
∫

0

dN

1

B

ac
∫

a0

da

f(a)k
= Nc (∆S)k

where a0 is the initial crack length and ac (20 mm here) is the crack length
defined as failure. The number of cycles until failure is denoted by NC .
Extracting Nc gives

Nc =
1

B

ac
∫

A0

da

f(a)k
· (∆S)−k

where A0 is with capital letter since it is considered to be a random variable.
Comparing this expression to the other one for N

N = C (∆S)−k

implies that C can be identified and written as

C = g(B, A0) =
1

B

ac
∫

A0

da

f(a)k

i.e. a function g(·) of the random variables B and A0.
The entities B and A0 are considered to be normally distributed and

experiments have been made in order to estimate mean and standard de-
viation. The distribution of C can then be estimated by making computer
simulations. Volvo Articulated Haulers then fits a three parameter Weibull
distribution to these capacity values.
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3.2.2 Estimation of duty

The duty is determined by driving in different ways (normal and forced driv-
ing) for one hour and after that making an assumption of how common the
different types of driving styles are. Once that is made an estimation of the
distribution of the duty intensity, D̃, can be determined. In these calcula-
tions the Wöhler exponent k = 3 which is a value that is often chosen in
this context. The duty is assumed to be based on a three parameter Weibull
distribution which is fitted to the observations.
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Chapter 4

Inference based on data from
Volvo Trucks

In this section estimation of parameters in the lognormal and the Weibull
distribution will be examined. The basis of the examination will be the data
from Volvo Trucks. The different estimation methods have been implemented
in Matlab. All numerical calculations in this thesis have been carried out
through the use of Matlab.

4.1 The lognormal distribution

Assume that the random variables X1, X2, . . ., Xn ∼ i.i.d. (independent and
identically distributed) LN(µ, σ2). Let θ = (θ1, θ2) = (µ, σ2). The density
function for Xi will then be

fX(x, θ) =
1

x
√

θ2

√
2π

exp

(

−(log x − θ1)
2

2θ2

)

, x > 0 .

Given that x1, x2, . . ., xn is a random sample from X1, X2, . . ., Xn, the
parameter vector θ can be estimated. Since log Xi is normally distributed
the MLE (maximum likelihood estimate) of θ will be the same as for the
normal distribution, but with the logarithm of the observations, i.e.

θ∗1 =
1

n

n
∑

i=1

log xi ,

θ̂2 =
1

n

n
∑

i=1

(log xi − θ∗1)
2 .
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The estimate θ̂2 is slightly biased, but the estimate

θ∗2 =
1

n − 1

n
∑

i=1

(log xi − θ∗1)
2

is unbiased. The unbiased estimate, θ∗2, is used further on in this thesis.

4.2 The Weibull distribution

Assume that the random variables X1, X2, . . ., Xn ∼ i.i.d. W(β, η, γ) are
given. θ = (θ1, θ2, θ3) = (β, η, γ). The density function for Xi is

fX(x, θ) =
β

η

(

x − γ

η

)β−1

exp

(

−
(

x − γ

η

)β
)

, β, η > 0, x > γ

where β is the shape parameter, η is the scale parameter, and γ is the location
parameter. Note that γ is a threshold. Given a sample x1, x2, . . . , xn from
X1, X2, . . . , Xn the task is to find an estimator of θ. The likelihood function
is

L(θ) =

n
∏

i=1

fX(xi) =

(

β

η

)n n
∏

i=1

(

xi − γ

η

)β−1 n
∏

i=1

exp

(

−
(

xi − γ

η

)β
)

Normally L or log L is maximized in order to find the MLE of θ, but the prob-
lem with the three parameter Weibull distribution is that it has a threshold
which means that L(θ) can be singular due to the factor

(xk − γ)β−1 where xk = min
1≤i≤n

xi

Since γ > xi ∀i it is only the factor with the minimum xi that has to be
examined. The expression can be examined by letting γ tend to xk

β < 1 : lim
γ→x−

k

(xk − γ)β−1 = ∞

β = 1 : lim
γ→x−

k

(xk − γ)β−1 = 1

β > 1 : lim
γ→x−

k

(xk − γ)β−1 = 0

This irregularity causes difficulties in the determination of the parameters
and thus it would be an advantage to use other methods to estimate at least
one of them. It turns out that it is often most convenient to estimate the
threshold γ first.
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4.2.1 Estimators based on percentiles

The distribution function of a three parameter Weibull distributed variable
is

FX(x) = 1 − exp

(

−
(

x − γ

η

)β
)

, x > γ .

The 100p% population percentile, xp is determined from the relationship

FX(xp) = p

which gives

1 − exp

(

−
(

xp − γ

η

)β
)

= p

(

x − γ

η

)β

= − log(1 − p)

xp = γ + η (− log(1 − p))1/β .

Let y1, y2, . . . , yn be the ordering of a sample x1, x2, . . . , xn, i.e. yi = x(i).
Then the sample distribution function that corresponds to the ith ordered
observation is

pi =
i

n + 1

and then the corresponding 100pi percent sample percentile ti is given by

ti = ydnpie

where dxe is the smallest integer that is larger than or equal to x.
The idea is that three sample percentiles yield a system of three equations
with the three unknown parameters. Let the estimation of the parameters
be β̃, η̃ and γ̃. Then the system is given by

ts = γ̃ + η̃ [− log(1 − ps)]
1/β̃ = ydnpse s = i, j, k

where 0 < pi < pj < pk < 1.
If pj is chosen such that

− log(1 − pj) = {[− log(1 − pi)][− log(1 − pk)]}1/2

the estimation of β will be, see Zanakis [8]

β̃ = log

(− log(1 − pk)

− log(1 − pi)

)/

log

(

tk − γ̃

ti − γ̃

)

.
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where the estimate γ̃ also is found with help from the sample percentiles

γ̃ =
titk − t2j

ti + tk − 2tj
.

If this estimated value exceeds the smallest observed value, y1, then it is not
permissible and γ = y1 should be used instead, but the probability that such
a situation occurs is very small.
The values for pi and pk can be chosen such that the asymptotic variance of
the estimator β̃ is minimized, see Dubey [1], which yields

pi = 0.16731,

pk = 0.97366.

A efficient estimator of γ can be found by using the 1st, 2nd and nth ordered
observation of the sample. When the estimation of γ is determined it is an
easy task to find the estimation of η. Finally the estimators are

γ̃ =
y1yn − y2

2

y1 + yn − 2y2

,

η̃ = −γ̃ + yd0.63ne ,

β̃ = log

(− log(1 − pk)

− log(1 − pi)

)/

log

(

tk − γ̃

ti − γ̃

)

.

The advantage of these estimators are both their simplicity and accuracy,
especially when n is small which suits the load-strength application since it
often involves small samples. These estimates will be denoted by β̃, η̃ and γ̃.

4.2.2 Estimators based on Maximum Likelihood

Consider the two parameter Weibull distribution, which corresponds to γ =
0. The distribution function is

FX(x) = 1 − exp

(

−
(

x

η

)β
)

, x > 0 .

Let X ∼ W (β, η, 0) and Y ∼ W (β, η, γ). Assume that γ is known or es-
timated. Then it is possible to transform the three parameter Weibull dis-
tributed random variable into a two parameter such one. The advantage of
this approach is that there will be no singularity problem since the threshold
has already been estimated.
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Let Z = Y − γ and examine the distribution function of Z

FZ(z) = P (Z ≤ z) = P (Y − γ ≤ z) = P (Y ≤ z + γ) = FY (z + γ) = FX(z)

which implies that Z and X are identically distributed.
Since the MLE can be determined for the two parameter Weibull distribu-

tion, a way to estimate the parameters could be to first estimate γ according
to the rule

γ̃ =
y1yn − y2

2

y1 + yn − 2y2

and then determine the MLE of β and η by maximizing the likelihood func-
tion for the sample values {xi − γ̃} , i = 1, . . . , n. The estimates of the
parameters according to this method will be denoted by β̂, η̂ and γ̃.

4.2.3 Estimators based on an iterative procedure

A natural estimation of the location parameter γ is γ = x(1). The disadvan-
tage with this estimation is that it will always exceed the true value. It is
therefore of interest to examine the expectation of X(1)

E(X(1)) =

∫ ∞

γ

x fX(1)
(x)dx .

Consequently the distribution of X(1) must be determined

FX(1)
(x) = P (X(1) ≤ x) = 1 − P (X(1) > x) = 1 − P (X1 > x, X2 > x, . . . , Xn > x)

= {independent} = 1 − P (X1 > x) · P (X2 > x) · . . . · P (Xn > x)

= 1 − (P (X > x))n = 1 − (1 − FX(x))n

= 1 −
(

1 −
(

1 − exp

(

−
(

x − γ

η

)β
)))n

= 1 − exp

(

−n

(

x − γ

η

)β
)

= 1 − exp

(

−
(

x − γ

η̆

)β
)

where

n
1

ηβ
=

1

η̆β
⇒ η̆ =

η

n1/β
.

The calculations above show that X(1) ∼ W (β, η̆, γ). The expectation of
X(1) can be determined since the expectation of a two parameter Weibull
distributed variable is known. Assume that Y ∼ W (β, η, 0). Then it follows
that

E(Y ) = η Γ

(

β + 1

β

)
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where Γ(·) is the gamma function that is defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt .

The random variable X is simply a translation of Y , γ units to the right
which implies that

E(X) = E(Y ) + γ .

Finally the expectation of X(1) can be determined

E(X(1)) = γ + η̆ Γ

(

β + 1

β

)

= γ +
η

n1/β
Γ

(

β + 1

β

)

.

This means that the bias of the estimate γ = X(1) is

η

n1/β
Γ

(

β + 1

β

)

.

Therefore

γ∗ = x(1) −
η

n1/β
Γ

(

β + 1

β

)

could be an appropriate bias corrected estimate of γ.
Therefore it would be possible to estimate the parameters iteratively ac-

cording to the scheme

1. Starting guesses for β and η are determined by a direct method.

2. An estimation of γ is determined by the rule above.

3. The parameters β and η are determined by a two parameter Maximum
Likelihood distribution fit to the values {Xi − γ∗}, i = 1, . . . , n.

By looping over point 2 and 3 the parameters will eventually converge and
the loop is terminated when they change less than a certain tolerance in one
iteration.

4.2.4 Estimators based on elimination

Since an estimate of γ can be determined

γ∗ = x(1) −
η

n1/β
Γ

(

β + 1

β

)

a reasonable method to calculate the parameters would be to substitute γ in
the likelihood function. Now there is only two free parameters left which can
be estimated with ML. When that is done γ is determined by the expression
above using the MLE of β and η.
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Figure 4.1: Probability density fX(x), City.

4.2.5 Estimators based on Maximum Likelihood with
two parameters

If the threshold γ = 0 the distribution is the usual Weibull distribution. The
likelihood function can be maximized directly, for estimating β and η in this
case, and no singularity problem occurs.

4.2.6 Density and distribution fits

Since real observations were available from Volvo Trucks it is interesting
to apply the proposed methods to this data. Note that Volvo Trucks uses
the assumption that 1/D̃ is three parameter Weibull distributed. One way
to visualize the result from the inference is to plot the fitted density or
distribution function for each of the methods (see Figures 4.1-4.4). (The
resulting Weibull density and distribution functions have been plotted.) The
observations are represented by diamonds (�) in the figures. The estimated
parameter values for the different methods are tabulated in Appendix A.
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Figure 4.2: Cumulative distribution FX(x), City
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Figure 4.3: Probability density fX(x), Highway
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Figure 4.4: Cumulative distribution FX(x), Highway

4.3 Comparing the estimation methods

Assume θ∗ is an estimate of θ. The usual way to estimate the accuracy of an
estimate is to calculate the mean squared error (m.s.e.)

m.s.e.(θ∗) = E((θ∗ − θ)2) = V (θ∗) + (E(θ∗ − θ))2 = V (θ∗) + b(θ)2.

4.3.1 Simulations

The different estimation methods can be compared by simulations. The
capacity C ∼ W (2, 2.06 · 1011, 1.56 · 1011) where the parameters are taken
from the Volvo Trucks report. In these simulations only the duty intensity,
D̃, is varied. The design distance (a reasonable distance for the life of a
vehicle) is set to 1 000 000 km which means that s = 1 000 000 and the duty
D = s · D̃ as usual. This means that D = s · D̃ = s

Y
where Y ∼ W (β, η, γ).

In order to compare the methods four different sets of parameters for Y have
been chosen.

1. β = 0.65, η = 10−5, γ = 6 · 10−6, n = 5

2. β = 0.65, η = 10−5, γ = 6 · 10−6, n = 10

3. β = 1.30, η = 10−5, γ = 6 · 10−6, n = 5
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4. β = 1.30, η = 10−5, γ = 6 · 10−6, n = 10

where n is the number of observations. Both the parameters and the number
of observations have values that are similar to the ones that were determined
from the real observations. This is very important since it means that the
conclusions from the simulations are in some way also true for real cases. For
each setting of parameters 10 000 iterations have been carried out to get an
accurate estimate of the m.s.e. The results are found in tables in Appendix
B. The column “V (β∗) (%)” means the proportion in percent of the m.s.e,

i.e. 100 · V (β∗)
m.s.e.(β∗)

. The remaining part of the m.s.e. is due to the bias of the

estimates and it is shown in the column “b(β)2 (%)”.

4.3.2 Conclusions

The direct method (Zan) and the method that first uses the direct method
in order to estimate γ and then computes MLE of the other two parameters
(Mix) are the best methods (smallest m.s.e.). For almost every setting of
parameters these methods are first and second best. It is not possible to
conclude which of the two methods is best when looking only at the simula-
tions (see Appendix B). The direct method is simple to use which makes it
more suitable for use in industrial applications.

4.4 Distribution of the duty

Since the duty depends on the driven distance a design distance must be
chosen. A reasonable design distance is 1 000 000 km which means that s =
1 000 000. The duty D = s·D̃. The distribution of D can be determined since
the distribution of 1/D̃ is known. Let D̃ = 1/Y where Y ∼ W (βY , ηY , γY ).

D = s · D̃
fD(d) =

1

s
fD̃

(

d

s

)

FD̃(d̃) = P (D̃ ≤ d̃) = P

(

1

Y
≤ d̃

)

= P

(

Y ≥ 1

d̃

)

= 1 − FY

(

1

d̃

)

fD̃(d̃) = −fY

(

1

d̃

)

· −1

d̃2
=

1

d̃2
· fY

(

1

d̃

)

which implies that

fD(d) =
βY

ηY

s

d2

( s
d
− γY

ηY

)βY −1

exp

(

−
( s

d
− γY

ηY

)βY

)

, 0 < d <
s

γY

.
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Figure 4.5: Density functions, fD, when β = 0.65, η = 10−5, γ = 6 · 10−6.

The density functions for two parameter sets are plotted in Figure 4.5 and
Figure 4.6. Since the density function is plotted for different distances it is
possible to see how it changes and especially how the upper limit ( s

γY
) moves

to the right as the distance increases.

4.5 Failure probability

The failure probability is determined in different ways depending on the
distributions of capacity and duty. Below C ∼ W (βC , ηC , γC) but the calcu-
lations would be similar for other distributions. If the duty is based on three
parameter Weibull distribution, i.e. D = s

Y
where Y ∼ W (βY , ηY , γY ) then

the failure probability

Pf = P (D > C) = P
( s

Y
> C

)

= P (CY < s) =

∫∫

cy<s

fC,Y dc dy =

=

s
γY
∫

c=γC

fC(c)







s
c
∫

y=γY

fY (y) dy






dc =

s
γY
∫

c=γC

fC(c) [FY (y)]
s
c
γY

dc

=

s
γY
∫

c=γC

fC(c) · FY

(s

c

)

dc .
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Figure 4.6: Density functions, fD, when β = 1.30, η = 10−5, γ = 6 · 10−6.

If the duty is lognormal, i.e. D ∼ LN(µ, σ2) then the calculation of the failure
probability is slightly different.

Pf = P (D > C) =

∫∫

c<τ

fC,D dc dτ =

∞
∫

τ=γC

fD(τ)





τ
∫

c=γC

fC(c) dc



 dτ

=

∞
∫

τ=γC

fD(τ) [FC(c)]τγC
dτ =

∞
∫

τ=γC

fD(τ)FC(τ) dτ .

In general none of the two integrals for the failure probability can be solved
analytically and numerical methods, e.g. Simpson’s rule which is used in this
thesis, must be applied.

4.5.1 Simulations

According to the results of the simulations, see 4.3.2, the methods Zan and
Mix are chosen for further examination. Suppose that the true failure prob-
ability is p and one of the methods gives the approximation p∗. A good
measure of how close the estimate is to the real value is

Eexp = lg
p∗

p
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where lg is the logarithm to the base 10. One problem is how to deal with
the cases when p∗ = 0 since then Eexp = −∞. If those cases are dealt with
separately it is possible to determine the accuracy of the two methods when
p∗ 6= 0. The probability that the estimated Pf is less or equal to zero is
denoted by p0. The mean (mE) and standard deviation (sE) of the error
Eexp can be determined by simulating a number of times, in this case 10 000.
When β = 0.65, Pf = 1.4490 · 10−4 and when β = 1.30, Pf = 1.0634 · 10−5.
It is also of interest to examine how the proportion p0 changes when the

n=5 n=10
mE sE p∗0 mE sE p∗0

Zan 0.105 1.032 0.4373 -0.5007 0.9605 0.2626
Mix -0.0457 1.063 0.4386 -0.3364 0.9155 0.2627

Table 4.1: The entities mE and sE when β = 0.65.

n=5 n=10
mE sE p∗0 mE sE p∗0

Zan 0.9168 1.6 0.7507 -0.7226 1.508 0.7808
Mix 0.5553 1.657 0.7619 -0.4021 1.463 0.7772

Table 4.2: The entities mE and sE when β = 1.30.

sample sizes increases. This relation is plotted in Figures C.1 and C.2 which
are found in Appendix C. The direct method was used because it is very
fast, especially for bigger samples.

4.5.2 Conclusions

It is hard to draw any conclusions from the simulations that are summarized
in Tables 4.1 and 4.2 since the probability that Pf = 0 is so high. This
measure of the error, Eexp would probably be better in a situation where
the failure probability always is positive, e.g. when either the capacity or the
duty is lognormal.

4.5.3 Sensitivity analysis

Since the accuracy in determining the failure probability Pf depends on the
accuracy in the estimates of the parameters, it is of interest to examine how
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big that influence is. One way to do that is to vary one of the parameters
and keeping the other two fixed and then calculate the failure probability for
each combination. The figures are found in Appendix D. The m.s.e. for the
direct method is included in the captions.

4.5.4 Conclusions

Since the estimations of the parameters are dependent the figures in Ap-
pendix D do not show the true relationship, but nevertheless they give some
qualitative information. Anyhow it is clear that the failure probability de-
pends mostly on the value of γ. Therefore the method of determining γ, if
there should be a threshold at all, will have a big influence on the final result.
Probably it would be better to use a more robust model.

4.6 Qualitative analysis of duty distribution

There are two properties that have to be examined in order to decide how
to model the duty. The first of them, which will be discussed in this section
is the qualitative property of the model. The other of the two properties are
composed of the computational properties, such as stability and accuracy.

4.6.1 Duty based on three parameter Weibull distri-

bution

Since the duty D = s
Y

where Y ∼ W (βY , ηY , γY ) as a consequence there
will be an upper limit for D which will be equal to s

γY
. The question is if

it is reasonable to have an upper limit for the duty? This means that it is
impossible to exceed a certain duty limit no matter how the driver drives
or what the road conditions are. This seems strange, but maybe it could be
justified if the upper limit is so high that the probability to cause a duty close
to this upper limit would be very low. One way to examine this phenomenon
more strictly mathematically is to determine certain quantiles for the duty
distribution.

P (D ≤ zp) = p, which gives

zp =
s

γY + ηY · (− log p)1/βY

In order to be able to compare the results for different duty distributions
the observations from the Volvo Construction Equipment report have been
used (City and Highway). The parameters that were estimated by Volvo
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Construction Equipment (Weibull++) are used here, see Appendix A. Two
important quantiles are the median z0.50 and the 95% quantile z0.95. The
design distance s is 1 000 000 here. The quantiles and the upper limits are
given below.

1. City: z0.50 = 8.53 · 1010, z0.95 = 15.5 · 1010, s
γY

= 15.6 · 1010

2. Highway: z0.50 = 6.74 · 1010, z0.95 = 7.76 · 1010, s
γY

= 7.81 · 1010

It is clear that if it were be an upper limit it should not be as close to z0.95

as it is in this case. It is unreasonable that so many drivers have duty values
that are close to the upper limit. Therefore this model seems inappropriate.

4.6.2 Duty based on lognormal distribution

In this case there is no upper limit. The quantiles in the lognormal distribu-
tion can be found numerically for the two cases.

1. City: z0.50 = 6.98 · 1010, z0.95 = 25.0 · 1010

2. Highway: z0.50 = 2.83 · 1010, z0.95 = 8.77 · 1010

4.6.3 Duty based on two parameter Weibull distribu-
tion

Here there is no upper limit. The quantiles are given by the same expression
as for the three parameter Weibull distribution, but with γY = 0.

1. City: z0.50 = 6.22 · 1010, z0.95 = 34.7 · 1010

2. Highway: z0.50 = 2.60 · 1010, z0.95 = 15.3 · 1010

4.6.4 Failure probability for different driven distances

A model that describes duty in a good way should give reasonable results for
different driven distances (s). One way to visualize this is to determine Pf

for different s and the resulting graphs are found in Figures 4.7 and 4.8. The
curves that are denoted by “drivers” corresponds to the failure probability for
one certain driver, i.e. one duty intensity value (d̃i). From this the empirical
distribution function for the duty is generated and it is determined by the
relations

P (D < s · d̃i) = 0

P (D ≥ s · d̃i) = 1
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Figure 4.7: Failure probability Pf for different s, City.
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Figure 4.8: Failure probability Pf for different s, Highway.
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In Figures 4.7 and 4.8 it is clear that the upper limit results in strange
properties for the failure probability. It is zero until a certain distance and
then it suddenly increases very fast. This is not reasonable because the failure
probability should increase in a smoother way as it does for the other two
distributions. It is also interesting to note how much this upper limit differs
in the two cases.

There is also a big difference between the lognormal fit and the Weibull
fit without upper limit (corresponds to two parameter Weibull distribution).
This is due to the fact that the density function for the lognormal distribu-
tion decreases faster for larger values compared to the Weibull distribution,
especially for smaller s. That is why the failure probability differs with or-
ders of magnitude for small s. Consequently the load-strength model is very
sensitive with respect to the choice of distribution. Therefore the model must
be compared with real outcomes before it can be used.
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Chapter 5

Analysis of Volvo Articulated
Haulers model

The model by Volvo Articulated Haulers is described more precisely in Sec-
tion 3.2. One interesting aspect of this approach is the model for calculating
capacity. It is stated that

C =
1

B

ac
∫

A0

da

f(a)k

where the random variables and parameters are described in Section 3.2. The
function f(·) has been determined by tests

f(a) = 0.1388 a2 + 0.35 a + 5.4 .

Since the assumption is that A0, the initial crack length, and B, a mate-
rial parameter, are normally distributed tests have been done in order to
determine the mean and variance. The results of these tests are that

A0 ∼ N(mA0 , σ
2
A0

) = N(10, 1.78) ,

B ∼ N(mB , σ2
B) = N(1.832 · 10−13, 2.098 · 10−27) .

5.1 Model properties

In the model by Volvo Articulated Haulers it is assumed that the initial crack,
A0, should be greater than zero and less than the crack length by failure, i.e.

0 ≤ A0 ≤ 20 .
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Therefore it is of interest to examine this property for the model that is
chosen. Since the initial crack is normally distributed it can happen that
A0 takes values outside the interval [0, 20]. Therefore the corresponding
probabilities are of importance

P (A0 < 0) = P

(

A0 − mA0

σA0

<
−mA0

σA0

)

= 1 − Φ

(

mA0

σA0

)

= 1 − Φ

(

10√
1.78

)

= 3.31 · 10−14

and by symmetry

P (A0 > 20) = P (A0 < 0).

Since the probability that A /∈ [0, 20] is negligible this model error is probably
not a big problem. The material parameter, B, should be greater than zero.
Since B is normally distributed it can take values less than zero and therefore
that probability must be determined

P (B < 0) = P

(

B − mB

σB

<
−mB

σB

)

= 1 − Φ

(

1.832 · 10−13

√
2.098 · 10−27

)

= 3.17 · 10−5.

This means than on average 3 of 100 000 simulated values will be less than
zero. Since a large number of observations can be obtained easily and quickly
the probability that B < 0 is too high, therefore the distribution should be
truncated in order to avoid such values.

5.2 General truncation of the normal distri-

bution

Suppose that X ∼ N(m, σ2), but it is known that X is restricted to the
interval [xl, xu] and the probability that X takes values outside this interval
is so small that this restriction will have negligible influence on the mean and
variance of X. If the original Gaussian shape is preserved then

fX(x) = α · 1√
2πσ2

exp

(

−(x − m)2

2σ2

)

, xl ≤ x ≤ xu

where α is a constant that is determined by the relation

P (xl ≤ X ≤ xu) = 1
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which gives

P (xl ≤ X ≤ xu) =

xu
∫

xl

fX(x)dx = α ·
(

Φ

(

xu − m

σ

)

− Φ

(

xl − m

σ

))

= 1

α =
1

Φ
(

xu−m
σ

)

− Φ
(

xl−m
σ

) .

For simulating from this distribution, values are generated from the original
normal distribution and then values outside the interval [xl, xu] are not used.

5.3 Simulations

In order to understand what the resulting distribution of the capacity is
for this model 10 000 capacity values were generated (n = 10 000). Then
a three parameter Weibull distribution and a lognormal distribution were
fitted to these artificial observations. Finally the fitted distributions could
be compared with the empirical distribution which gives a lot of information
because the number of observations is large. The distribution functions are
plotted in Figure 5.1 and the density functions (histogram for the empirical
density function) are located in Figure 5.2. Volvo Articulated Haulers uses
the three parameter Weibull distribution. Thirty capacity values have been
simulated. The Weibull parameters have been determined from a Weibull
paper.

5.4 Conclusions

In the Figures 5.1 and 5.2 it is clear that the lognormal distribution gives
a better fit than the Weibull distribution especially for low capacity values
which is the most important part of the distribution. One reason for this dif-
ference is that the smallest observed value has a big influence on the Weibull
distribution fit which means that the density function will be comparatively
large for small capacity values. When the lognormal fit is carried out the
smallest capacity value will not have that big of an influence. In this model
the theoretical threshold for the capacity is zero (corresponds to B → ∞
or A0 → ac) which means that a distribution with a threshold can not be
justified. It is also of interest to compare the Weibull distribution fit carried
out by Volvo Articulated Haulers, from thirty capacity values, with the one
in this thesis which is based on 10 000 capacity values. The result is found in
Table 5.1. Since the threshold γ depends very much on the smallest capacity
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Figure 5.1: Distribution fits for C when n = 10000.
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Figure 5.2: Density fits for C when n = 10000.
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observation it is clear that γ will be smaller when n = 10 000. That in turn
has a influence on the estimation of β and η. The use of a threshold can
be questioned since it is clear that the more observations (xi) that are used
the better, but at the same time the threshold will tend toward zero since
0 ≤ γ ≤ x(1) and lim

n→∞
x(1) = 0.

5.5 Failure probability

In the Volvo Articulated Haulers report a distribution for the duty (corre-
sponds to 1 hours of driving), actually the duty intensity D̃ [duty/h], is found
and D̃ = 1

Y
where Y ∼ W (βY , ηY , γY ). The parameter values are βY = 1.0,

ηY = 1.065 · 10−5 and γY = 3.5 · 10−7. Just three observations were used in
order to determine the parameters which means that the uncertainty is very
high. A reasonable choice of design life for the machine is 10 000 hours which
corresponds to t = 5 000 hours in use (half of the time the engine is idling)
which means that the duty D = t ·D = t

Y
. In this case the failure probability

has been determined for different capacity distributions: Weibull, lognormal
and empirical distribution (using 10 000 capacity values). The result is found
in Table 5.2. The failure probabilities are all close to 30% which is the value
that was calculated by Bertil Jonsson in the Volvo Articulated Haulers re-
port. The reason that the values are similar is that the failure probability
is comparatively high which means that the overlap of the distributions of
capacity and duty is large which makes the calculation stable with respect
to the choice of distribution. Since the failure probability of course depends
on the distribution of the duty more extensive experiments with more duty

Parameter Volvo ART (n=30) Zan (n=10000)
β 2.0 1.49
η 1.1 · 109 1.34 · 109

γ 4 · 108 1.95 · 108

Table 5.1: Weibull parameter values for different distribution fits.

Distribution of C Failure probability
Weibull 0.3353
lognormal 0.3319
Empirical 0.3103

Table 5.2: Failure probability for different capacity distributions.
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Figure 5.3: Density functions for C and D.

values and other types of distribution fits must be carried out before further
conclusions can be drawn. According to this model approximately 30% of
the machines are broken after 10 000 hours which can be compared to the
real outcome which is about 2%. This seems to be a rather large difference
but actually it is not so large if it is considered how sensitive the calcula-
tion of the failure probability is. Regarding that only three duty values were
used in order to determine its distribution the estimated failure probability
is actually close to the real failure probability. Nevertheless the accuracy
must be better than that in order to be able to use the model in industrial
applications.

5.6 Density functions for capacity and duty

One way to visualize the result is to plot the density functions for capacity
and duty. The curves are found in Figure 5.3. Since the density functions
for capacity and duty overlap to a rather large extent it is natural that the
failure probability will be as big as 30%.
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Chapter 6

Feedback using Bayesian
estimates

In the Volvo Articulated Haulers’ model the failure rate (proportion of fail-
ures in the field) was known, but it has not been used in the model. A way to
improve the estimates by using the failure rate is to use Bayesian methods.
The Bayesian method will here be used for a simple update of the model but
it could be generalized to a more sophisticated update.

6.1 Distributions of capacity and duty

Let it be assumed that both capacity and duty are lognormal. Since the
data from the Volvo Articulated Haulers’ report is being used the distri-
bution of the duty intensity, which in that model is based on a three pa-
rameter Weibull distribution, will be transformed to a lognormal distribu-
tion with the same mean and variance. This gives D̃ ∼ LN(µD̃, σ2

D̃
) where

µD̃ = E(log D̃) = 11.97 and σ2
D̃

= V (log D̃) = 1.139. The distribution
of the capacity is determined from the extensive simulations which gives
C ∼ LN(µC , σ2

C) where µC = 20.97 and σ2
C = 0.3386. The design life of the

machine, t, is assumed to be 5 000 h which gives the duty D = t · D̃. Then
it will hold that D ∼ LN(µD̃ + log t, σ2

D̃
). The failure probability, Pf , can be

determined

Pf = P (D > C) = P (log D − log C > 0) = Φ





µD̃ + log t − µC
√

σ2
D̃

+ σ2
C





and with the numerical values

Pf = Φ

(

11.97 + log 5 000 − 20.97√
1.139 + 0.3386

)

= Φ(−0.3972) = 0.346.
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This value can be compared to the failure probability when the duty was
based on a three parameter Weibull distribution which gave Pf = 0.335 and
this means that the transformation to a lognormal duty seems reasonable.

6.2 Bayesian estimates

For each machine included in the set of observed machines a random variable
is associated

Λi = 1{Di>Ci}, i = 1, 2, . . . , n.

This means that machine number i is broken if Λi = 1, and it works if Λi = 0.
The total number of machines that are broken after a certain time can then
be expressed in the following way

Sn =

n
∑

i=1

Λi .

Since the probability that Λi = 1 simply is equal to the failure probability it
will hold that

Sn ∼ Bin(n, p), p = Pf .

In the Volvo Articulated Haulers’ report the total number of machines is n =
917 and the number of broken machines after 5 000 h is 18 which corresponds
to 1.96% ≈ 2% of the population. In this case this would yield the observation
s917 = 18.
Now the Bayesian method can be applied. First, assume that the distribution
of C is much more accurate than the distribution of D. This is a reasonable
assumption since in general, more information about the capacity than the
duty is available. Therefore the distribution of C is kept fixed, but the
distribution of D is modified. Since it is easier if only one parameter is free
the new model will be

C ∼ LN(20.97, 0.3386)

D̃ ∼ LN(µ, 1.139)

where the parameter µ is assumed to have normal prior distribution. Suppose
that

µ ∼ N(11.97, 1)
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The prior mean value of µ is just the estimation of µD̃ that was determined
from the duty observations. The prior variance of µ has here been set to
1, which seems reasonable. It is not evident what variance to use. One
idea could be to take into account the spread in the estimate of µD̃, but
this is hard to carry out since the lognormal distribution of the duty was
transformed from a Weibull distribution and not fit from data. The issue of
choosing the variance is actually a question about how much influence the
prior distribution will have on the posterior distribution, i.e. the final model.
A small prior variance means that the duty observations will have a great
influence on the model, and a large variance means that the failure rate will
have a greater influence. Therefore this issue must be carefully examined in
developing this type of Bayesian methods for the load-strength model.

Due to the Bayesian method a reasonable estimation of µD̃ would be
E(µ|s197 = 18). In general

E(µ|Sn = sn) =

∫

τ fµ|Sn
(τ |sn) dτ .

The density function fµ|Sn
(τ |sn) can be found via Bayes theorem, see Lind-

gren [4]

fµ|Sn
(τ |sn) =

fSn|µ(sn|τ) fµ(τ)
∫

fSn|µ(sn|τ) fµ(τ)dτ
.

Since Sn is binomial it will hold that

fSn|µ(sn|τ) = P (Sn = sn|µ = τ) =

(

n

sn

)

psn(1 − p)n−sn, sn = 0, 1, . . . , n

where

p = Φ

(

τ + log 5 000 − 20.97√
1.139 + 0.3386

)

.

The normalization integral can then be solved numerically
∞
∫

−∞

fSn|µ(sn|τ)fµ(τ)dτ =

∞
∫

−∞

(

917

18

)

· Φ
(

τ − 12.45

1.216

)18(

1 − Φ

(

τ − 12.45

1.216

))899

· 1√
2π · 1

exp

(

−(τ − 11.97)2

2 · 1

)

dτ = 0.001427 = C−1 .

Now the posterior distribution of µ can be determined

fµ|Sn
(τ |sn) = C ·

(

917

18

)

· Φ
(

τ − 12.45

1.216

)18 (

1 − Φ

(

τ − 12.45

1.216

))899

· 1√
2π · 1

exp

(

−(τ − 11.97)2

2 · 1

)

.
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Figure 6.1: Density functions for C and D before and after update.

Since the posterior distribution is known both the mean and variance can be
determined numerically

E(µ|S917 = 18) = 9.963

V (µ|S917 = 18) = E(µ2|S917 = 18) − (E(µ|S917 = 18))2 = 99.267 − 9.96262

= 0.0132.

Let µ̃ be the estimation of µD̃. The prior estimate µ̃ = E(µ) = 11.97 and
the posterior estimate µ̃ = E(µ|S917 = 18) = 9.96 with variance 0.0132.
This means that the parameter µD̃ in the load-strength model has decreased
from 11.97 to 9.963 due to the failure rate. It is of interest to compare the
distribution before and after the update. In Figure 6.1 the density functions
are plotted and it can be observed that the distribution of the duty has moved
to the left which means that the duty values in general are much lower after
the update. The model after the update gives the new failure probability

Pf = Φ

(

9.963 − 12.45

1.216

)

= Φ(−2.0455) = 0.0204.

which means that the failure probability has decreased from 35% to 2%.
The reason that the new distribution fits well to the observation of the actual
failure probability is a combination of the fact that the number of machines
that is observed (n = 917) is large which gives a high accuracy in the pro-
portion 2% and that the variance where set to 1. This means that the load-
strength model adapts almost completely to the failure rate. Therefore it
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would be interesting to see how much the result would differ if it instead was
one out of 50 machines that were broken. This is still 2% but the accuracy
is much lower.

Assume that the prior distribution of µ is the same as before, i.e. µ ∼
N(11.97, 1) and that the observation s50 = 1 is given. Then the normalization
integral is

∞
∫

−∞

fSn|µ(sn|τ)fµ(τ)dτ =

∞
∫

−∞

(

50

1

)

· Φ
(

τ − 12.45

1.216

)1(

1 − Φ

(

τ − 12.45

1.216

))49

· 1√
2π · 1

exp

(

−(τ − 11.97)2

2 · 1

)

= 0.02690.

In this case the posterior mean and variance of µ will be

E(µ|S50 = 1) = 10.228

V (µ|S50 = 1) = E(µ2|S50 = 1) − (E(µ|S50 = 1))2 = 104.76 − 10.2282

= 0.156.

This means that the estimate µ̃ has decreased from 11.97 to 10.23. This
updated parameter value corresponds to the failure probability

Pf = Φ

(

10.23 − 12.45

1.216

)

= Φ(−1.826) = 0.0339.

This value is somewhat larger than 2% which was the result in the other
case. Therefore the observation s50 = 1 had less influence on the model than
the observation s917 = 18, just as predicted.

6.3 Conclusions

Bayesian estimation is a powerful tool for this kind of application since it
makes it possible to improve the model as new data becomes available. Fur-
thermore it can be adjusted so that the observations that are most accurate
have a major influence on the resulting model. It would be interesting to
have failure rates at different times as then the time development of the
load-strength model could be studied. Probably this sort of feedback is one
of the things that can improve the model enough to make it useful in indus-
trial applications.
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Chapter 7

Conclusions and discussion

The main focus of this report is examining the properties of the load-strength
model with respect to the choice of distributions for capacity and duty. Two
distributions for duty and capacity have been examined, the Weibull and
the lognormal distribution. The estimation methods were evaluated based
on the data measurements from Volvo Trucks. Since it was not obvious
how to estimate the parameters if an entity is modelled as three parameter
Weibull distributed, different methods were considered and the effectiveness
was determined by extensive simulations. A very simple direct method was
one of the two most effective ones and therefore it is recommendable to use
that one. Since the estimation method is general this method could also be
useful in other applications where the three parameter Weibull distribution
is used.

It is also important to study the properties of the distributions in the
context of the load-strength model. The assumption that one over the duty
intensity 1/D̃ is three parameter Weibull distributed leads to some strange
properties for the distribution of the duty, D, if the shape parameter β < 1.
By plotting the density function when β < 1 one can see that a rather
high proportion of the probability mass is close to the upper limit which is
obviously unreasonable. Results suggest that a reasonable condition when
using the three parameter Weibull distribution, for modelling D, is that the
shape parameter β > 1. Furthermore, the Weibull assumption implies an
upper limit for the duty and a lower limit for the capacity which means that
a safe distance is established. If one were to drive less than this distance
the failure probability is zero. Then, the failure probability increases rather
rapidly as you drive on past that safe distance. In contrast if both capacity
and duty are assumed to be lognormal there will always be an overlap of
the distributions, also for very short distances, which means that the failure
probability will increase more smoothly as the distance increases.
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The failure probability depends on the upper tail of the duty distribution
and the lower tail of the capacity distribution. Many observations are needed
in order to determine the tail of a distribution with high accuracy. Therefore,
the number of observations must be increased considerably in order to obtain
reasonable accuracy in the calculation of the failure probability. The fact that
the failure probability depends mostly on the tails means that the choice of
distribution has a great impact on the final result. This is true even if there is
no threshold involved. For example, the upper tail of the duty distribution is
in general significantly thinner if the lognormal distribution is used compared
to the tail if it is based on a two parameter Weibull distribution.

In the Volvo Articulated Haulers’ report a model for determining the dis-
tribution of the capacity is used in which no rig test is needed. It is our
opinion that it would be very interesting to examine this method more rig-
orously. From this model one can easily obtain a large number of capacity
values and then a distribution fit can be carried out. The lognormal dis-
tribution seems to describe the capacity distribution better than the three
parameter Weibull distribution in this case. We think that the distributions
of the initial crack length a0 and the parameter B could be determined more
precisely which in turn would improve the model. Further on we think the
model must be compared to rig tests on the same type of components in order
to find out if it works properly. If the model were to give a good description
of the capacity it would be very useful since it is cheaper than a rig test and
it is easier to apply.

Feedback has been carried out in order to use the failure rate measured
in the field. A natural approach is the Bayesian method. Even though only
a simple example has been examined in this report the result of this exam-
ple shows how powerful this method is. In this example the model adapts
very closely to the failure rate. This is good since this is a direct observa-
tion of what we want to predict. If capacity and duty values are observed
they are only indirect observations of the failure probability. Observations
of the failure rate could be useful in many ways. First, the model could
be updated with the Bayesian model. Secondly, this information could be
used for the improvement of the original load-strength model. Then it can,
e.g., be examined if the load-strength model is unbiased with respect to the
failure probability. Examinations of these kind of properties can be the basis
for how to weigh the capacity and duty observations in comparison to the
failure rates. In addition, if the times or distances when components fail
were observed it would be very useful in determining the distributions for
capacity and duty. Then time or distance properties of the model could also
be further examined and the ability to predict the future failure rate could
be checked.
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It is concluded based on the research presented here that the load-strength
model must be used with great care and the user must be aware of the fact
that subjectivity in the choice of distribution has a huge impact on the result,
especially if few observations are available. Even if many observations are
available the result can differ significantly due to the fact that the relevant
tails have different properties depending on the choice of distribution. Ac-
cording to the study in this report the lognormal distribution should be used
rather than the three parameter Weibull distribution for modelling both the
capacity and duty.

7.1 Future research

When using the model it is our opinion that the accuracy in the estimation of
the distribution parameters should be included which would give a confidence
interval for the calculated failure probability. Doing this would gain insight
into what extent you can trust the result.

In general the model can be compared to the use of safety factors. Safety
factors are tools for handling component design. They are not very accu-
rate, but they will continue to be used as long as there is no other method
that works better. Hopefully it will turn out that the load-strength model,
if used properly, gives more precise and accurate results. Since statistics are
involved in the load-strength model it is very important that accuracy in the
predictions are rigorously examined. We think that it is a great challenge
to further develop this model. The fact that recent progress in computer
technology makes it possible to collect huge amounts of data from field mea-
surements creates a situation where statistical methods can be increasingly
useful.
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Appendix A

Estimated parameters with
different methods

The Weibull distributions fits are carried out on the duty observations from
City and Highway driving and the resulting parameter values are tabulated
for the different estimation methods.

Estimates based on Maximum Likelihood and direct

method (Mix)

β∗ η∗ γ∗

City 0.634 8.81 · 10−6 6.57 · 10−6

Highway 0.669 2.47 · 10−5 1.40 · 10−5

Estimates based on percentiles, direct method (Zan)

β∗ η∗ γ∗

City 0.51 2.00 · 10−5 6.57 · 10−6

Highway 0.670 2.68 · 10−5 1.40 · 10−5

Estimates based on iteration (Iter)

β∗ η∗ γ∗

City 1.393 1.89 · 10−5 1.25 · 10−6

Highway 1.160 3.77 · 10−5 8.62 · 10−6
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Estimates determined by VTC, Weibull++

β∗ η∗ γ∗

City 0.53 1.06 · 10−5 6.41 · 10−6

Highway 0.85 3.12 · 10−6 1.28 · 10−5

Estimates based on ML with 2 parameters (ML2)

β∗ η∗

City 1.514 2.05 · 10−5

Highway 1.469 4.94 · 10−5

Estimates based on elimination (Elim)

β∗ η∗ γ∗

City 0.508 4.50 · 10−6 6.30 · 10−6

Highway 0.793 2.46 · 10−5 1.23 · 10−5
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Appendix B

Results from Weibull inference

The different estimation methods are compared with respect to the mean
squared error (m.s.e.). Two different parameter sets are used

1. β = 0.65, η = 10−5, γ = 6 · 10−6

2. β = 1.30, η = 10−5, γ = 6 · 10−6

and then the m.s.e. is determined for the estimation of β, η and γ, respec-
tively. For each combination 10 000 samples have been used in order to give
a high accuracy in the calculation of the m.s.e.

m.s.e.(β∗) V (β∗) (%) b(β)2 (%) Rank
Zan 0.1315 95.9 4.1 1
Mix 0.1773 97.5 2.5 2
Iter 0.3742 64.6 35.4 4
ML2 1.343 22.1 77.9 5
Elim 0.1852 99.9 0.1 3

Table B.1: Estimation of β when β = 0.65 and n = 5.
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m.s.e.(η∗) V (η∗) (%) b(η)2 (%) Rank
Zan 2.092 · 10−10 86.5 13.5 4
Mix 5.391 · 10−11 96.9 3.1 2
Iter 2.046 · 10−10 77.4 22.6 3
ML2 2.431 · 10−10 35.9 64.1 5
Elim 5.317 · 10−11 62.3 37.7 1

Table B.2: Estimation of η when β = 0.65 and n = 5.

m.s.e.(γ∗) V (γ∗) (%) b(γ)2 (%) Rank
Zan 4.453 · 10−12 87.6 12.4 2
Mix 4.412 · 10−12 87.1 12.9 1
Iter 6.473 · 10−12 85.5 14.5 4
Elim 4.721 · 10−12 98.4 1.6 3

Table B.3: Estimation of γ when β = 0.65 and n = 5.

m.s.e.(β∗) V (β∗) (%) b(β)2 (%) Rank
Zan 0.0571 99.5 0.5 2
Mix 0.04224 95.7 4.3 1
Iter 0.2085 59.1 40.9 4
ML2 0.9158 21.6 78.4 5
Elim 0.08776 99.0 1.0 3

Table B.4: Estimation of β when β = 0.65 and n = 10.

m.s.e.(η∗) V (η∗) (%) b(η)2 (%) Rank
Zan 6.219 · 10−11 94.4 5.6 4
Mix 2.551 · 10−11 95.1 4.9 1
Iter 5.601 · 10−11 85.3 14.7 3
ML2 1.679 · 10−10 24.7 75.3 5
Elim 3.422 · 10−11 74.1 25.9 2

Table B.5: Estimation of η when β = 0.65 and n = 10.
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m.s.e.(γ∗) V (γ∗) (%) b(γ)2 (%) Rank
Zan 5.461 · 10−13 76.2 23.8 1
Mix 5.488 · 10−13 76.4 23.6 2
Iter 2.229 · 10−12 70.2 29.8 4
Elim 7.973 · 10−13 99.9 0.1 3

Table B.6: Estimation of γ when β = 0.65 and n = 10.

m.s.e.(β∗) V (β∗) (%) b(β)2 (%) Rank
Zan 0.448 59.6 40.4 4
Mix 0.3782 84.7 15.3 1
Iter 0.391 97.2 2.8 2
ML2 1.234 13.1 86.9 5
Elim 0.4347 80.1 19.9 3

Table B.7: Estimation of β when β = 1.30 and n = 5.

m.s.e.(η∗) V (η∗) (%) b(η)2 (%) Rank
Zan 2.508 · 10−11 99.9 0.1 2
Mix 2.574 · 10−11 58.2 41.8 3
Iter 2.484 · 10−11 92.1 7.9 1
ML2 7.611 · 10−11 15.6 84.4 5
Elim 3.672 · 10−11 50.0 50.0 4

Table B.8: Estimation of η when β = 1.30 and n = 5.

m.s.e.(γ∗) V (γ∗) (%) b(γ)2 (%) Rank
Zan 9.955 · 10−12 64.1 35.9 4
Mix 9.93 · 10−12 61.1 38.9 3
Iter 7.911 · 10−12 99.7 0.3 1
Elim 9.264 · 10−12 83.1 16.9 2

Table B.9: Estimation of γ when β = 1.30 and n = 5.
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m.s.e.(β∗) V (β∗) (%) b(β)2 (%) Rank
Zan 0.2424 83.8 16.2 2
Mix 0.2298 66.2 33.8 1
Iter 0.3711 71.7 28.3 4
ML2 1.278 10.3 89.7 5
Elim 0.2774 99.0 1.0 3

Table B.10: Estimation of β when β = 1.30 and n = 10.

m.s.e.(η∗) V (η∗) (%) b(η)2 (%) Rank
Zan 1.133 · 10−11 94.0 6.0 1
Mix 1.278 · 10−11 53.0 47.0 2
Iter 1.399 · 10−11 91.7 8.3 3
ML2 6.335 · 10−11 9.9 90.1 5
Elim 1.558 · 10−11 84.5 15.5 4

Table B.11: Estimation of η when β = 1.30 and n = 10.

m.s.e.(γ∗) V (γ∗) (%) b(γ)2 (%) Rank
Zan 3.624 · 10−12 46.3 53.7 1
Mix 3.631 · 10−12 47.6 52.4 2
Iter 4.502 · 10−12 91.7 8.3 4
Elim 3.793 · 10−12 99.4 0.6 3

Table B.12: Estimation of γ when β = 1.30 and n = 10.
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Appendix C

Proportion p0 for different n

The entity p0 is the proportion of cases when the numerical calculation of
the failure probability, Pf , gives the result zero even though the actual value
is not zero. This reflects how sensitive the calculation of Pf is when the dis-
tribution of the duty has an upper limit and the distribution of the capacity
has a lower limit (threshold).
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Figure C.1: Proportion p0 for different n when β = 0.65.
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Figure C.2: Proportion p0 for different n when β = 1.30.
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Appendix D

Sensitiveness in failure
probability

The failure probability is determined by varying one of the parameters at
the time and keeping the other two fixed. Since the parameter estimates are
not independent this does not give the true variation but nevertheless some
qualitative information. The parameters that are varied corresponds to the
distribution of the duty.
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Figure D.1: Failure probability Pf for different β, varying around β = 0.65
Zan: m.s.e.(β∗)=0.1315 (n = 5), m.s.e.(β∗)=0.0571 (n = 10).
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Figure D.2: Failure probability Pf for different β, varying around β = 1.30
Zan: m.s.e.(β∗)=0.448 (n = 5), m.s.e.(β∗)=0.2424 (n = 10).
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Figure D.3: Failure probability Pf for different η when β = 0.65
Zan: m.s.e.(η∗)=2.092 · 10−10 (n = 5), m.s.e.(η∗)=6.219 · 10−11 (n = 10).
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Figure D.4: Failure probability Pf for different η when β = 1.30
Zan: m.s.e.(η∗)=2.508 · 10−11 (n = 5), m.s.e.(η∗)=1.133 · 10−11 (n = 10).
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Figure D.5: Failure probability Pf for different γ when β = 0.65
Zan: m.s.e.(γ∗)=4.453 · 10−12 (n = 5), m.s.e.(γ∗)=5.461 · 10−13 (n = 10).
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Figure D.6: Failure probability Pf for different γ when β = 1.30
Zan: m.s.e.(γ∗)=9.955 · 10−12 (n = 5), m.s.e.(γ∗)=3.624 · 10−12 (n = 10).
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