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Abstract

This thesis investigates the dependence in survival of married couples and its
effect on the pricing of lifelong joint annuity insurances and survival annu-
ity insurances. The dataset used contained 199127 observations of married
couples where both husband and wife reached the age of 61 or more and
the maximum difference in age between husband and wife was ten years.
The Makeham distribution is proved to be a very good choice to model the
marginal distributions. The hypothesis of independent survival for married
couples is rejected at all reasonable levels of significance. The data show a
weak positive dependence. The dependence structure is shown to best fit a
Clayton copula model. For the lifelong joint annuity insurance the Clayton
copula-model yields 1.6% lower discounted expected future payments than,
when assuming independence. When pricing a survival annuity insurance it
is important to distinguish between the case when the husband is insured
and wife is co-insured and the case when the wife is insured and the husband
is co-insured. If the ages of the husband and wife are approximately equal
the Clayton copula-model yields 8% lower discounted expected future pay-
ments in the first case and 10% lower in the second case. In the first case,
the difference expressed as a percentage, between the discounted expected
future payments of the Clayton copula-model and the independent model is
decreasing as the difference in age increases from -10 to 10. In the second
case the difference expressed as a percentage is increasing.
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Chapter 1

Introduction

Lifelong joint annuity insurances pay monthly pension payments to the hus-
band and wife as long as at least one of the persons is alive. Survival annuity
insurances pay monthly pension payment from the time of death of the in-
sured until the time of death of the co-insured. Traditionally, when pricing
these insurances the survivals of the husband and wife are assumed to be in-
dependent. This thesis will investigate if there is any significant dependence
structure in the survival and its effect on pricing of joint annuity insurances
and survival annuity insurances. The dependence structure will be modeled
using copulas. A copula is a function that links the marginal distributions
to the joint distribution.

The reliability of the results in the analysis are effected by the limits
provided by the data. The data concerns married couples in the Swedish
population and not insured couples. The results of the study do however
agree with other research made on insured couples, e.g. Carriere [1]. More-
over the maximum observed age of death is 94 years old. This should not
have a crucial effect on the choice of copula since the dependence tends to
decrease at high ages of death. The estimated parameters of the marginal
distributions might however be effected causing too light tails.

Extensive research in the area of bivariate survival models include:
Carriere [1] studies the dependence between time of death of couples. Car-
riere suggests Gompertz marginal distributions and a linear mixture of Clay-
ton and independent copula. Hougaard et al [8] analyzes the dependence in
lifetimes and compare different distributions including Positive stable distrib-
ution and Gamma distribution. The dependence is, among others, measured
by Kendall’s tau and the data shows a weak positive dependence. Maguluri
[11] analyzes the Clayton model for bivariate survival (the Clayton copula),
by comparing the performance of different methods for estimating the cop-
ula parameter. Oakes [14] discusses a reparameterization of the Clayton
copula, criticizes the by Clayton proposed likelihood method for estimating
the copula parameter and suggest an alternative non-parametric estimator
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based on Kendall’s tau. Oakes [15] studies the model where two observed
survival times depend via, a proportional-hazards model, on the same un-
observed variable, called a frailty. The class of distributions arised in that
way is treated. Shih and Louis [16] investigates two-stage parametric and
two-stage semi-parametric estimation procedures for the copula parameter
where censoring in either one or both of the components is allowed. The
proposed methods are applied in an AIDS dataset. Zheng and Klein [17]
assumes a known copula and introduces nonparametric estimators of the
marginal survival functions. Further, bounds on the survival functions are
provided when the copula only is known approximately.
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Chapter 2

Dependence Structure

2.1 Copulas

Every joint distribution function for a random vector contains both descrip-
tion of the marginal behavior of the individual variables and a description of
their dependence structure. In this section I will describe how copulas pro-
vide a way of isolating the description of the dependence structure. This is
the mayor advantages of using a copula-approach when fitting data to a mul-
tivariate model; the marginal distributions can be fitted separately from the
dependence structure. In this way copulas provide a way of constructing a
wide variety of multivariate models. Copulas also help in the understanding
of dependence at a deeper level.

Definition 2.1 A two-dimensional copula is a distribution function on [0, 1]2

with standard uniform marginal distributions.

The following three properties must hold:

1. C(u1, u2) is increasing in each component ui.

2. C(1, ui) = ui for i ∈ {1, 2}, ui ∈ [0, 1].

3. For all (a1, a2), (b1, b2) ∈ [0, 1]2with ai ≤ bi We have:

2∑

i1=1

2∑

i2=1

(−1)i1+i2C(u1i1 , u2i2) ≥ 0,

where uj1 = aj and uj2 = bj for j ∈ {1, 2}.

The first two properties are clear. The third property is required of
any multivariate distribution function and ensures that if the random vector
(U1, U2)

T has distribution function C then P (a1 ≤ U1 ≤ b1, a2 ≤ U2 ≤ b2)
is non-negative. (Embrechts et al [4]).
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2.1.1 Sklar’s Theorem

Theorem 2.2 (Sklar’s theorem) Let F be a joint distribution function
with margins F1, F2. Then there exists a copula C: [0, 1]2 → [0, 1] such
that for all x1, x2 in R̄ = [−∞,∞]

F (x1, x2) = C(F1(x1), F2(x2)). (2.1)

If the margins are continuous then C is unique; otherwise C is uniquely deter-
mined on RanF1 ×RanF2, where RanFi denotes the range of Fi : RanFi =
Fi(R̄). Conversely, if C is a copula and F1, F2 are distribution functions,
then the function F defined in (2.1) is a joint distribution function with
margins F1, F2.

(Nelsen [13]). Sklar’s theorem says that the copula is a function that links
the joint distribution function F (x1, x2) to the marginal distributions
F1(x1), F2(x2). Another way of express this is through the following propo-
sition

Proposition 2.3 Let F be a joint distribution function with continuous mar-
gins F1, F2. Then the unique copula of F is given by

C(u1, u2) = F (F←1 (u1), F
←
2 (u2))

where F← denotes the generalized inverse.
(Embrechts et al [4]).

2.1.2 The Fréchet-Hoeffding Bounds

Consider the functions M, Π and W defined on [0, 1]2 as follows:

M(u) = min(u1, u2),

Π(u) = u1u2,

W (u) = max(u1 + u2 − 1, 0).

(Embrechts et al [5]).
The following theorem is called the Fréchet-Hoeffding bounds inequality.

Theorem 2.4 If C is any copula, then for every u in [0, 1]2,

W (u) ≤ C(u) ≤ M(u).

Theorem 2.5 Let (X1, X2)
T be a vector of continuous random variables

with copula C. Then X1, X2 are independent if and only if C = Π.

Definition 2.6 If (X, Y )T has the copula M then X and Y are said to be
comonotonic; if it has the copula W they are said to be countermonotonic.
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2.1.3 Copula Densities

Copulas do not always have joint densities, the comonotonicity and coun-
termonotonicity copulas are examples of copulas which are not absolutely
continuous. However, most parametric copulas have densities given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
. (2.2)

2.2 Dependence

When measuring dependence the most commonly used measure in the linear
correlation. In this section I will explain some of the drawbacks of using
the linear correlation and present the alternative dependence measure rank
correlation.

2.2.1 Linear Correlation

Definition 2.7 Let (X, Y )T be a vector of random variables with nonzero
finite variances. The linear correlation coefficient for (X, Y )T is

ρ(X, Y ) =
Cov(X, Y )√

V ar(X)V ar(Y )
.

The linear correlation is a measure of the linear dependence talking values
in [-1,1]. If X and Y are independent ρ(X, Y ) = 0. An important property
is that the converse is not true; ρ(X, Y ) = 0 does not necessarily imply their
independence. Consider for an example the case when X ∼ N(0, 1), Y = X2.
The correlation between X and Y is zero although they are obviously not
independent.

An important remark is that the linear correlation only is defined if the
variances of X and Y are finite. The variance for heavy tail distributions may
be infinite and the estimation of correlation may therefore be misleading.

The most important weakness of using the linear correlation is stated by
the following theorem

Theorem 2.8 The joint distribution of a random vector is not determined
by the marginal distributions and the pairwise correlations.

(Embrechts et al [4]). To understand this statement consider figure 2.1.
The two bivariate random vectors have the same correlation and the same
marginal distributions but two totally different dependence structures. This
illustrates how using linear correlation might be misleading. Moreover the
correlation between two random variables does not only depend on their
copula but is also inextricably linked to the marginal distributions.
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Figure 2.1: 3000 simulated points from a Clayton and a Gumbel copula with
standard normal marginal distributions.

2.2.2 Rank Correlation

Rank correlation is a measure of concordance between two random variables.
Consider two points (x, y) and (x̃, ỹ). The two points are said to be concor-
dant if (x−x̃)(y−ỹ) > 0 and are said to be disconcordant if (x−x̃)(y−ỹ) < 0.

Theorem 2.9 Let (X, Y )T and (X̃, Ỹ )T be independent vectors of contin-
uous random variables with joint distribution functions H and H̃, respec-
tively, with common margins F (of X, X̃)) and G (of Y, Ỹ ). Let C and C̃
denote the copulas of (X, Y )T and (X̃, Ỹ )T , respectively, so that H(x, y) =
C(F (x), G(y)) and H̃(x, y) = C̃(F (x), G(y)). Let Q denote the difference
between the probability of concordance and disconcordance of (X, Y )T and
(X̃, Ỹ )T , i.e. let

Q = P
(
(X − X̃)(Y − Ỹ > 0)

)
− P

(
(X − X̃)(Y − Ỹ > 0)

)
.

Then

Q = Q(C, C̃) = 4

∫ ∫

[0,1]2
C̃(u, v)dC(u, v) − 1,

(Nelsen [13]). This motivates Kendall’s rank correlation (Kendall’s tau),
which is simply the probability of concordance minus the probability of dis-
concordance for these pairs.
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Definition 2.10 Kendall’s tau for a random vector (X, Y )T is defined as

τ(X, Y ) = P
(
(X − X̃)(Y − Ỹ ) > 0

)
− P

(
(X − X̃)(Y − Ỹ ) < 0

)

where (X̃, Ỹ )T is an independent copy of (X, Y )T .

Theorem 2.11 Let (X, Y )T be a vector of continuous random variables with
copula C. Then Kendall’s tau for (X, Y )T is given by

τ(X, Y ) = Q(C, C) = 4

∫ ∫

[0,1]2
C(u, v)dC(u, v) − 1.

(Embrechts et al [5]). Note that the integral above is the expected value of of
the random variable C(U,V), where U, V ∼ U(0, 1), with joint distribution
function C, i.e. τ(X, Y ) = 4E(C(U, V )) − 1.

Theorem 2.12 Let X and Y be continuous random variables with copula C,
and let τ denote Kendall’s tau. Then the following are true:

1. τ(X, Y ) = 1 ⇐⇒ C = M

2. τ(X, Y ) = −1 ⇐⇒ C = W .

(Embrechts et al [5]). Kandall’s tau is taking values in the interval [−1, 1]. It
gives the value zero for independent random variables, although a Kendall’s
tau of zero do not necessarily imply independence. But most importantly
Kandall’s tau does, unlike the linear correlation, only depend on the copula.

Let {(x1, y1), (x2, y2), . . . , (xn, yn)} denote a random sample of n obser-
vations from a vector (X, Y ) of continuous random variables. Then Kendall’s
tau for the sample is defined as

τ̂ =
c − d

c + d
= (c − d)/

(
n
2

)
(2.3)

where c is the number of concordant pairs and d is the number of discon-
cordant pairs. (Nelsen [13]).

2.3 Archimedean Copulas

Archimedean copulas are a class of copulas, which provide a great variety
of dependence structures and have closed form expressions. Expressions of
Archimedean copulas use the pseudo inverse.

Definition 2.13 Let ϕ be a continuous, strictly decreasing function from
[0, 1] to [0,∞] such that ϕ(1) = 0. The pseudo-inverse of ϕ is the function
ϕ[−1] : [0,∞] → [0, 1] given by

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞.
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Note that ϕ[−1] is continuous and decreasing on [0,∞], and strictly decreasing
on [0, ϕ(0)]. Furthermore, ϕ[−1](ϕ(u)) = u on [0, 1], and

ϕ(ϕ[−1](t)) =

{
t, 0 ≤ t ≤ ϕ(0)

ϕ(0), ϕ(0) ≤ t ≤ ∞.

Finally, if ϕ(0) = ∞, then ϕ[−1] = ϕ−1.
(Nelsen [13]).

Theorem 2.14 Let ϕ be a continuous, strictly decreasing function from
[0, 1] to [0,∞] such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse of
ϕ. Let C be the function from [0, 1]2 to [0, 1] given by

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)). (2.4)

Then C is a copula if and only if ϕ is convex.

Copulas of the form (2.4) are called Archimedean copulas and the function
ϕ is called the generator of the copula.

For Archimedean copulas Kendall’s tau can be expressed as a one-dimensional
integral of the generator

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (2.5)

(Nelsen [13]).

2.3.1 Clayton Copula

The Clayton copula family has the generator ϕ(t) = (t−θ − 1)/θ. By using
(2.4) we get

CCl
θ (u1, u2) = (u−θ

1 + u−θ
2 − 1)−1/θ. (2.6)

Using (2.5), Kendall’s tau for a bivariate Clayton copula is

τ = 1 + 4

∫ 1

0

tθ+1 − t

θ
dt = 1 +

4

θ

(
1

θ + 2
−

1

2

)
=

θ

θ + 2
. (2.7)

2.3.2 Gumbel Copula

The Gumbel copula family has the generator ϕ(t) = (− log t)θ. By using
(2.4) we get

CGu
θ (u1, u2) = exp{−[(− log u1)

θ + (− log u2)
θ]1/θ}. (2.8)

Using (2.5), Kendall’s tau for a bivariate Clayton copula is

τ = 1 + 4

∫ 1

0

t log t

θ
dt = 1 +

4

θ



[
t2

2
log t

]1

0

−

∫ 1

0

t

2
dt


 = 1 −

1

θ
. (2.9)
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2.3.3 Frank Copula

The Frank copula family has the generator ϕ(t) = log( eθt−1
eθ−1

). By using (2.4)
we get

CFr
θ (u1, u2) =

1

θ


1 +

(
eθu1 − 1

) (
eθu2 − 1

)

(eθ − 1)


 . (2.10)

Using (2.5), it can be shown that Kendall’s tau for a bivariate Frank copula
is

τ = 1 −
4

θ
(1 − D1(θ)) (2.11)

where Dk(x) is the Debye function, given by

Dk(x) =
k

xk

∫ x

0

tk

et − 1
.

2.3.4 Linear Mixtures of Copulas

Let C(u1, u2) and C̃(u1, u2) be two different copulas. Then the linear mixture
Cm of the copulas is given by

Cm(u1, u2) = (1 − p)C(u1, u2) + pC̃(u1, u2), 0 ≤ p ≤ 1

is also a copula. (Nelsen [13]). In this thesis linear mixtures between inde-
pendent and various copulas will be used.
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Chapter 3

Fitting an Appropriate Model -

Parameter Estimation

3.1 Fitting the Marginal Distributions

The parameters of the marginal distributions are estimated by the maximum
likelihood method. Let x1, . . . , xn denote the data sample, and θ denote the
parameter vector of the distribution family. Then the MLE estimate of θ is
obtained by maximizing the log-likelihood function

log L(θ; x1, . . . , xn) =
n∑

i=1

log f(θ; xi) (3.1)

where f is the marginal density function.

3.2 Fitting the Copula

3.2.1 The Standard Log-likelihood Method

Fitting a copula by the standard log-likelihood method is performed in two
stages. In the first stage some appropriate parametric marginal distributions
are selected and the parameters of the distributions are estimated. The mar-
ginal distributions are then used to construct a pseudo-sample of observations
from the copula. In the second stage the copula parameters are estimated
by maximum likelihood from the pseudo-sample. Let F̂1, . . . , F̂d denote the
distribution functions of the selected margins. The pseudo-sample from the
copula are the vectors Û1, . . . , Ûn where

Ûi = (Û1i, . . . , Ûdi)
T =

(
F̂1(X1i), . . . , F̂d(Xdi)

)T
(3.2)

for i = 1, . . . , n.
Let Cθ denote a parametric copula where θ is the vector of parameters to
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be estimated. The MLE is obtained by maximizing

log L(θ; Û1, . . . , Ûn) =
n∑

i=1

log cθ(Ûi) (3.3)

with respect to θ, where cθ denotes the density as in (2.2), and Ûi denotes
the pseudo-observation from the copula as in (3.2).
(Embrects et al [4]). Obviously the statistical quality of the estimates of the
copula parameters depend very much on the quality of the estimates of the
marginal distributions used in the formation of the pseudo-sample from the
copula. This is definitely a drawback and motivates the pseudo log-likelihood
method.

3.2.2 The Pseudo Log-likelihood Method

Dias [3] describes the pseudo log-likelihood method, that avoids the crucial
choice of parametric marginal distributions when estimating the pseudo-
sample. The pseudo log-likelihood method has been proposed by several
authors, among others: Clayton and Cuzick [2], Genest [6] and Oakes [14].
Suppose (x1, . . . ,xn) is a sample of n iid d -dimensional vectors, where xi =
(x1i, . . . x1i)

T for i = 1, . . . , n. The difference from the standard log-likelihood
method is that the distribution function of margin i is modeled by the
rescaled empirical distribution function

Fin(x) =
1

n + 1

n∑

j=1

I{y∈R:y≤x}(xij), (3.4)

assuming that the sample size will be large enough to enable statistically
accurate non-parametric estimation. The n observed vectors are then trans-
formed to pseudo-observations

Ũi = (Ũ1i, . . . , Ũdi)
T = (F1n(x1i), . . . , Fdi(xdi))

T . (3.5)

for i = 1, . . . , n.
The pseudo log-likelihood estimates are obtained by maximizing

log L(θ; Ũ1, . . . , Ũn) =
n∑

i=1

log cθ(Ũi) (3.6)

with respect to θ.

3.3 Goodness of Fit

This section explains how the marginal distributions and the copula are
selected. To illustrate the fitting of the marginal distributions quantile-
quantile-plots are performed. The best fitting model is based on two factors.
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First the models are ranked by their Akaike information criterion. Secondly
the hypothesis that one model is better than another is tested by a χ2-
test. The accuracy of the estimations of the parameters in the marginal
distributions and the copula is determined by estimating the variances.

3.3.1 Quantile-Quantile-Plot

A quantile-quantile-plot (qq-plot) can be used to investigate if a sample
x1, . . . , xn comes from a suggested reference distribution F . If we define the
ordered sample as x(1) ≤ x(2) ≤ · · · ≤ x(n), then the qq-plot consists of the
points {(

x(k), F
←
(

k

n + 1

))
: k = 1, . . . , n

}
.

(Hult & Lindskog [10]). If the data has a similar distribution as the reference
distribution the qq-plot is approximately linear. The plot will bend down
if the reference distribution has too light tails and bend up if the reference
distribution has too heavy tails.

3.3.2 Akaike Information Criterion

The log likelihood values log L shall not be used to compare the goodness-
of-fit for different distributions since it produces a bias. Instead the Akaike
information Criterion (AIC) may be used. AIC is given by

AIC = −2 log L + 2q (3.7)

where log L is the log-likelihood function and q is the number of parameters
of the family of distribution fitted. The smaller the AIC-value is, the better
the model fits the data.

3.3.3 Likelihood Ratio Test

Let LD1
(θ̂D1

) and LD2
(θ̂D2

) denote the likelihood functions of two distrib-
utions D1 and D2, evaluated at the maximum likelihood estimates θ̂D1

and
θ̂D2

. Further, let Q = pD1 + (1 − p)D2 denote a mixture of the densities of
distribution D1 and distribution D2 and let θ̂Q = (θ̂D1

, θ̂D2
, p) denote the

parameters of Q. This mixture is called the full model. Next, let LQ(θ̂Q) be
the likelihood function for the full model evaluated in the maximum likeli-
hood estimate θ̂Q. Consider the null hypothesis H0: distribution D1, versus
the alternate hypothesis Ha: distribution D2. The test statistic is given by

T = −2 log

(
LD1

(θ̂D1
)

LD2
(θ̂D2

)

)
. (3.8)

Suppose H0 is rejected in favor for Ha whenever T > χ2(r, α), where the
degrees of freedom r are the number of parameters in the full model less the
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number in the restricted model, and χ2(r, α) is the [100(1−α)]:th percentile.
Then

Ψ = −2 log

(
LD1

(θ̂D1
)

LQ(θ̂Q)

)
a
∼ χ2(r).

That is, Ψ has an approximate chi-squared distribution, under the assump-
tion that the data is actually distributed according to distribution D1. Note
that T < Ψ and so

P
(
T > χ2(r, α)

)
< P

(
Ψ > χ2(r, α)

)
≈ α,

assuming that distribution D1 is the actual distribution.
(Carriere [1]). (3.8) may be expressed through the AIC-values

T = −2 log

(
LD1

(θ̂D1
)

LD2
(θ̂D2

)

)

= −2 log LD1
(θ̂D1

) − (−2 log LD2
(θ̂D2

))

= AICD1
− AICD2

− 2qD1
+ 2qD2

(3.9)

where qD1
and qD2

are the number of parameters of distribution 1 and 2,
respectively.

3.3.4 Accuracy of the Estimated Margin Parameters

To estimate the covariance matrix of the estimated parameters the so called
Fisher information matrix is used. Let X = (X1, . . . , Xn) be a random
sample, and let f(X|θ) denote the probability density function for some
model of the data, which has parameter vector θ = (θ1, . . . , θn). Then the
Fisher information matrix In(θ) of the sample size n is given by the k × k
symmetric matrix whose ij -th element is given by the first partial derivatives
of the log-likelihood,

In(θ)i,j = Cov

[
∂ log f(X|θ)

∂θi
,
∂ log f(X|θ)

∂θj

]
.

An alternative, but equivalent, definition for the Fisher information matrix
is based on the expected values of the second partial derivatives, and is given
by

In(θ)i,j = −E

[
∂2 log f(X|θ)

∂θi∂θj

]
.

Strictly, this corresponds to the expected Fisher information. If no expecta-
tion is taken we obtain a data-dependent quantity called the observed Fisher
information. It is worth noting that In(θ) = nI1(θ), meaning that the ex-
pected Fisher information matrix for a sample of n independent observations
is equivalent to n times the Fisher information matrix of a single observa-
tion. By the Fisher information matrix a lower bound for the variance of an
arbitrary unbiased estimator may be determined.
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Proposition 3.1 (The Cramer-Rao Inequality) Let T (X) be any sta-
tistic and let µ(θ) be its expectation, such that µ(θ) = E [T (X)]. Under
some regularity conditions, it follows that for all θ,

V ar[T (X)] ≥

(
dµ(θ)

dθ

)2

In(θ)
.

If T (X) is an unbiased estimator for θ then the numerator becomes one and
the lower bound is simply 1/In(θ). For maximum likelihood estimator the
following useful proposition can be used

Proposition 3.2 The maximum likelihood estimator achieves the Cramer-
Rao minimum variance asymptotically. That is, it follows under some regu-
larity conditions that the sampling distribution of a maximum likelihood es-
timator θML is asymptotically unbiased and also asymptotically normal with
its covariance matrix obtained from the inverse of the Fisher information
matrix of size 1,

θML → N

(
θ,

I1(θ)−1

n

)
, n → ∞

(Myung & Navarro [12]).

3.3.5 Accuracy of the Estimated Copula Parameters

In this section I will describe a procedure to estimate the covariance matrix
of the estimated copula parameters when using the pseudo log-likelihood
method.

Introduce the following notations

l(θ; u1, . . . , ud) = log c(θ; u1, . . . , ud)

lθi
(θ; u1, . . . , ud) =

∂

∂θi
l(θ; u1, . . . , ud) i = 1, . . . , q

lθiθj
(θ; u1, . . . , ud) =

∂2

∂θi∂θj
l(θ; u1, . . . , ud) i, j = 1, . . . , q

li(θ; u1, . . . , ud) =
∂

∂ui
l(θ; u1, . . . , ud) i = 1, . . . , d.

The functions lθi
(θ; u1, . . . , ud) are the so called score functions.

For the case of a bivariate model where the copula has a scalar parameter,
d=2 and q=1, we have the following proposition.

Proposition 3.3 In the case θ is a scalar and d=2, the semi-parametric
estimator θ̂ obtained by maximizing (3.6) is consistent and n1/2(θ̂ − θ) is
asymptotically normal with variance ν2 = σ2/β2, where

β = −E (lθ,θ(θ; F1(X1), F2(X2))) = E

(
l2θ(θ; F1(X1), F2(X2))

)
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and
σ2 = var (lθ(θ; F1n(X1), F2n(X2))) = W1(X1) + W2(X2)

for

Wi(Xi) =

∫

[0,1]2
I{u∈[0,1]:Fi(Xi)≤u}(ui)lθ,i(θ; u1, u2)c(θ; u1, u2)du1du2 (3.10)

with i = 1,2.

An alternative expression for (3.10) which will be useful for estimation pur-
poses is given, for i = 1, 2, by

Wi(Xi) = −

∫

[0,1]2
I{u∈[0,1]:Fi(Xi)≤u}(ui)

lθ(θ; u1, u2)li(θ; u1, u2)c(θ; u1, u2)du1du2.

With proposition 3.3 we are equipped to estimate standard error for the
estimate θ as long as we can estimate ν2. β2 can be viewed as the variance
of the random variable

A(X1, X2) = lθ(θ; F1(X1), F2(X2)),

given that the expected value of the score function lθ(θ; F1(X1), F2(X2)) is
zero, and σ2 is the variance of

B(X1, X2) = A(X1, X2) + W1(X1) + W2(X2).

there exist estimators of those quantities, namely σ̂2 and β̂2, such that

ν̂2 =
σ̂2

β̂2
(3.11)

is a consistent estimator of ν2. The variables A and B are not observed
but the pseudo-observations Âi and B̂i, i = 1, 2, . . . , n can be computed.
Estimates of σ2 and β2 are then obtained by the empirical sample variance of
the pseudo-observations. Suppose that (x1, . . . ,xn) is a sample of n bivariate
observations. The pseudo-observations Â are given by

Âi(x1i, x2i) = lθ(θ̂; F1n(x1i), F2n(x2i)), i = 1, 2, . . . , n.

For the B̂ pseudo-observations we need the rescaled empirical copula function
of the sample,

Cn(u1, u2) =
1

n + 1

n∑

i=1

I{(y1,y2)∈[0,1]2:y1≤u1,y2≤u2}(u1i, u2i).

The pseudo-observations of B̂ are then obtained from

B̂i(x1i, x2i) = Âi(x1i, x2i) + Ŵ1(x1i) + Ŵ2(x2i), i = 1, 2, . . . , n,

16



with

Ŵj(xji) = −

∫

[0,1]2
I{(y1,y2)∈[0,1]2;Fjn(xji)≤yj}(u1, u2)

lθ(θ̂; u1, u2)lj(θ̂; u1, u2)dCn(u1, u2)

for j = 1, 2 and i = 1, 2, . . . , n. Now suppose we rearrange the sample
{(x1i, x2i) : i = 1, 2, . . . , n} sorting the first components x1i in increasing
order. Denote the sample ordered in such a way by {(x1(i), x2(i)) : i =
1, 2, . . . , n}. As the pairs of observations must kept coupled, applying the
marginal distributions, we obtain

{(F1n(x1(i)), F2n(x2(i))) : i = 1, 2, . . . , n} =

= {(i/(n + 1), Si/(n + 1)) : i = 1, 2, . . . , n},

where Si is the rank of x2i within {x2i : i = 1, 2, . . . , n}. So we can estimate
the pseudo-observations Â as

Âi = lθ

(
θ̂;

i

n + 1
,

Si

n + 1

)
, i = 1, 2, . . . , n (3.12)

and B̂ by

B̂i = Âi −
1

n

n∑

j=1

l1

(
θ̂;

j

n + 1
,

Sj

n + 1

)
lθ

(
θ̂;

j

n + 1
,

Sj

n + 1

)

−
1

n

∑

Sj≥Si

l2

(
θ̂;

j

n + 1
,

Sj

n + 1

)
lθ

(
θ̂;

j

n + 1
,

Sj

n + 1

)
(3.13)

for i = 1, 2, . . . , n.
It is possible to generalize Proposition 3.3 yielding that the pseudo log-

likelihood estimator for the vector parameter θ ∈ R
q is consistent and as-

ymptotically normal. Moreover, the asymptotic covariance matrix of n1/2
θ

is
G
−1

ΣG
−1 (3.14)

where G is the information matrix associated with the copula and Σ is the
covariance matrix of the q-dimensional random vector with kth component

∂

∂θk
log c(F1(X1), F2(X2), . . . , Fd(Xd); θ) +

d∑

i=1

Wθki(Xi), (3.15)

with

Wθki(Xi) =∫

[0,1]d
I{u∈[0,1]:Fi(Xi)≤u}(ui)lθki(θ, u1, . . . , ud)dC(θ; u1, . . . , ud).
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In order to clarify the generalization of the variance estimator, suppose now
θ has dimension q and d = 2. Given the properties for q = 1 we have as an
estimator for the matrix G the following. The diagonal elements of G, Gkk

can be estimated as the variance of the pseudo-observations Âθki,

Âθki = lθk

(
θ̂k;

i

n + 1
,

Si

n + 1

)
,

for k = 1, 2, . . . , q and i = 1, 2, . . . , n and assuming that we ordered the
sample just like for (3.12). The off-diagonal elements of G, Gkj for k 6= j
can be estimated by

Ĝkj = −
1

n

n∑

i=1

lθkθj

(
θ̂k, θ̂j ;

i

n + 1
,

Si

n + 1

)
.

The matrix Σ can be estimated as the sample covariance matrix of the q
vectors of the pseudo-observations B̂θki for k = 1, 2, . . . , q and i = 1, 2, . . . , n
namely

B̂θki = Âθki −
1

n

n∑

j=1

l1

(
θ̂k;

j

n + 1
,

Sj

n + 1

)
lθk

(
θ̂k;

j

n + 1
,

Sj

n + 1

)

−
1

n

∑

Sj≥Si

l2

(
θ̂k;

j

n + 1
,

Sj

n + 1

)
lθk

(
θ̂;

j

n + 1
,

Sj

n + 1

)
.

(Dias [3]).
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Chapter 4

The Insurance Models

4.1 Survival and Mortality

Traditionally, Tx denotes the additional time to death of a x -year old person.

Definition 4.1 The survival function ℓ(x, t) of a x-year old person is given
by

ℓ(x, t) = 1 − FTx(t) = 1 − P (Tx > t), t ≥ 0.

Theorem 4.2 The survival function of a x-year old person can be expressed
by the survival function of a newborn ℓ(t)

ℓ(x, t) =
ℓ(0, x + t)

ℓ(0, x)
=

ℓ(x + t)

ℓ(x)
, t ≥ 0.

In this study we are only concerned with the survival of married persons that
have reached the age of 61, i.e. P (T0 > 61) = 1. The following notations will
be used: Tm is length of life of 61-year old husband and T f is the length
of life of a 61-year old wife. Tx and Ty is the additional time to death of
a x -year old husband and a y-year old wife respectively, where x and y are
larger than 61.
Then

FTx(t) = P (Tx ≤ t)

= 1 − P (Tx > t)

= 1 − P (Tm > x + t|Tm > x)

= 1 −
P (Tm > x + t, Tm > x)

P (Tm > x)

= 1 −
P (Tm > x + t)

P (Tm > x)

=
FT m(x + t) − FT m(x)

1 − FT m(x)
, t ≥ 0. (4.1)
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and

FTy(t) =
FT f (y + t) − FT f (y)

1 − FT f (y)
, t ≥ 0. (4.2)

Definition 4.3 Let FT (x) denote the continuous distribution function for
the time of death of a newborn person and let fT (x) = d

dxFT (x) be the con-
tinuous density function. The mortality intensity µ(x) is the probability of
death per time unit at the age of x, given by

µ(x) =
fT (x)

1 − FT (x)
.

Definition 4.4 Makeham’s formula of mortality intensity is defined as

µ(x) = a + becx.

Solving the differential equation of definition 4.3 for Makeham’s formula
gives

FT (x) = 1 + k exp

{
−

(
ax +

b

c
ecx
)}

(4.3)

where k is a constant. The boundary condition FT (61) = 0 gives

k = − exp

{
61a +

b

c
e61c

}
.

The probability of a person that have reached the age of 61 to die before the
age of x is

FT (x) = 1 − exp

{
−

(
a(x − 61) +

b

c
(ecx − e61c)

)}
(4.4)

and the density function is

fT (x) =
d

dx
FT (x) = (a+becx) exp

{
−

(
a(x − 61) +

b

c
(ecx − e61c)

)}
. (4.5)

Combining (4.1) and (4.2) with (4.3) gives

FTx(t) =

=
FT m(x + t) − FT m(x)

1 − FT m(x)

=
1 + k exp

{
−
(
a(x + t) + b

ce
c(x+t)

)}
− 1 − k exp

{
−
(
ax + b

ce
cx
)}

1 − 1 − k exp
{
−
(
ax + b

ce
cx
)}

= − exp

{
−

(
a(x + t) +

b

c
ec(x+t) − ax −

b

c
ecx
)}

+ 1

= 1 − exp

{
b

c
ecx(1 − ect) − at

}
(4.6)
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and

FTy(t) = 1 − exp

{
b

c
ecy(1 − ect) − at

}
. (4.7)

4.2 The Expected Future Payments

4.2.1 Lifelong Joint Annuity Insurance

The probability of payment at t for a lifelong joint annuity insurance, as
described in Section 1, is

P (max[Tx, Ty] > t) = 1 − P (max[Tx, Ty] ≤ t)

= 1 − P (Tx ≤ t, Ty ≤ t)

= 1 − FTx,Ty(t, t).

If K is the combined yearly pension payments to the husband and wife, the
discounted expected future payments are

A = K

∫ ∞

0

[
1 − FTx,Ty(t, t)

]
e−δtdt

= K

∫ ∞

0
e−δtdt − K

∫ ∞

0
FTx,Ty(t, t)e

−δtdt

=
K

δ
− K

∫ ∞

0
FTx,Ty(t, t)e

−δtdt. (4.8)

Using Sklar’s Theorem, (4.6) and (4.7), (4.8) can be written as

A =
K

δ
− K

∫ ∞

0
C(FTx(t), FTy(t))e

−δtdt (4.9)

where

FTx(t) = 1 − exp

{
b1

c1
ec1x(1 − ec1t) − a1t

}

FTy(t) = 1 − exp

{
b2

c2
ec2y(1 − ec2t) − a2t

}

and C is the copula.

4.2.2 Survival Annuity Insurance

The probability of payment at t for a survival annuity insurance, as described
in Section 1, is when the husband is insured and the wife is co-insured

P (Tx ≤ t, Ty > t) = P (Tx ≤ t) − P (Tx ≤ t, Ty ≤ t)

= FTx(t) − FTxTy(t, t)
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and when the wife is insured and the husband is co-insured

P (Tx > t, Ty ≤ t) = FTy(t) − FTxTy(t, t) (4.10)

Let Km and Kf denote the yearly pension payments to the husband and
wife, respectively. Then the discounted expected future payments, when
the husband is insured and the wife is co-insured Am and when the wife is
insured and the husband is co-insured Af , are given by

Am = Km
∫ ∞

0

[
FTx(t) − FTx,Ty(t, t)

]
e−δtdt (4.11)

Af = Kf
∫ ∞

0

[
FTy(t) − FTx,Ty(t, t)

]
e−δtdt. (4.12)

Using Sklar’s Theorem, (4.6) and (4.7), (4.11) and (4.12) can be written as

Am = Km
∫ ∞

0

[
FTx − C(FTx(t), FTy(t))

]
e−δtdt (4.13)

Af = Kf
∫ ∞

0

[
FTy − C(FTx(t), FTy(t))

]
e−δtdt (4.14)

where

FTx(t) = 1 − exp

{
b1

c1
ec1x(1 − ec1t) − a1t

}

FTy(t) = 1 − exp

{
b2

c2
ec2y(1 − ec2t) − a2t

}

and C is the copula.
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Chapter 5

Analysis

5.1 The Data

The data consists of 199127 pairs of Swedish citizens that fulfilled the fol-
lowing criteria

1. Were born during the period 1909-1942.

2. Got married.

3. Reached the age of 61 or more.

4. Had the maximum difference in age of 10 years to husband/wife.

5. Died during the period 1968-2003.

The ages are rounded off downwards i.e. a person that reached the age of 62
and 9 months is considered to have reached the age of 62. Couples where
one or both of the persons has emigrated or in some other way disappeared
from the national registration is leaved out from the data. Same-sex couples
are not included in the data.

5.2 Modeling the Marginal Survival

Four different marginal distributions were tested: Makeham, Weibull, Gamma
and Lognormal distribution. Quantile-quantile-plots against the different
distributions were performed. Appendix A.1 shows the results. Based on
the qq-plots the Makeham distribution seems to be the most satisfactory
marginal distributions.

The distribution parameters were estimated by the log-likelihood method
as described in Section 3.1. The covariance matrix of the parameters was
estimated by the method described in Section 3.3.4. Table 5.1 shows the
estimated distribution parameters and their variances and covariances.
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Men

Makeham â = 0.0156 V ar(â) = 1.08 · 10−7

b̂ = 1.89 · 10−6 V ar(b̂) = 1.83 · 10−14

ĉ = 0.139 V ar(ĉ) = 7.27 · 10−7

Cov(â, b̂) = −3.93 · 10−11

Cov(â, ĉ) = 2.43 · 10−7

Cov(b̂, ĉ) = −1.15 · 10−10

Weibull â = 1.07 · 10−21 V ar(â) = 1.05 · 10−24

b̂ = 11.0 V ar(b̂) = 2.41 · 10−7

Cov(â, b̂) = 2.54 · 10−18

Gamma â = 96.9 V ar(â) = 0.163

b̂ = 0.782 V ar(b̂) = 1.09 · 10−5

Cov(â, b̂) = −1.3 · 10−3

Lognormal µ̂ = 4.32 V ar(µ̂) = 5.44 · 10−8

σ̂2 = 0.102 V ar(σ̂2) = 4.62 · 10−8

Cov(µ̂, σ̂2) = 9.77 · 10−9

Women

Makeham â = 0.0138 V ar(â) = 5.51 · 10−8

b̂ = 3.76 · 10−7 V ar(b̂) = 6.21 · 10−16

ĉ = 0.158 V ar(ĉ) = 6.26 · 10−7

Cov(â, b̂) = −4.92 · 10−12

Cov(â, ĉ) = 1.53 · 10−7

Cov(b̂, ĉ) = 6.26 · 10−7

Weibull â = 4.82 · 10−23 V ar(â) = 1.05 · 10−24

b̂ = 11.7 V ar(b̂) = 2.59 · 10−7

Cov(â, b̂) = 1.44 · 10−18

Gamma â = 100 V ar(â) = 0.169

b̂ = 0.768 V ar(b̂) = 1.03 · 10−5

Cov(â, b̂) = −1.3 · 10−3

Lognormal µ̂ = 4.34 V ar(µ̂) = 5.78 · 10−8

σ̂2 = 0.101 V ar(σ̂2) = 4.36 · 10−8

Cov(µ̂, σ̂2) = 1.74 · 10−8

Table 5.1: Estimated parameters of the marginal distributions and their
variances and covariances.

24



Next, the AIC values were determined using (3.7). Table 5.2 shows the
AIC-values.

Men Women

Makeham 1348698 1345575
Weibull 1382237 1370832
Gamma 1376508 1376133
Lognormal 1377743 1378591

Table 5.2: AIC-values for the marginal distributions.

The most satisfactory distribution based on the AIC-values is the Make-
ham distribution. The hypotheses that Weibull, Gamma or Lognormal dis-
tribution is significantly better than the Makeham distribution was tested
using likelihood ratio tests as described in Section 3.3.3. Since the differ-
ences between the AIC-values of the Makeham distribution and the other
distributions were very large (> 104) the hypotheses that Weibull, Gamma
or Lognormal distribution is better than the Makeham distribution were
rejected at all reasonable levels of significance, e.g. at the level of 99%;
χ2(4, 0.01) = 13.28. Figure (5.1), (5.2), (5.3) and (5.4) shows plots of the
empirical density function and the densities of the fitted marginal distribu-
tions. It is obvious that the Makeham distributions are the most satisfactory
marginal distributions.
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Figure 5.1: Empirical density functions and the density functions of the
fitted Makeham distributions.
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Figure 5.2: Empirical density functions and the density functions of the
fitted Weibull distributions.
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Figure 5.3: Empirical density functions and the density functions of the
fitted Gamma distributions.
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Figure 5.4: Empirical density functions and the density functions of the
fitted Lognormal distributions.
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5.3 Dependence Versus Difference in Age

The dataset was divided according to the difference in age between husband
and wife (the difference in time between the dates of birth of the husband and
wife). Let z ∈ {−10,−9, . . . , 9, 10} denote the difference in age, expressed
in years (positive if husband older than wife and negative if wife older than
husband).

The dependence in survival was measured by Kendall’s tau rank corre-
lation and linear correlation. Figure 5.5 shows Kendall’s tau and the linear
correlation plotted against z. The plot indicates a weak positive dependence
that decreases as the difference in age is getting large.
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Figure 5.5: Linear correlation and Kendall’s tau versus difference in age.

5.4 Modeling the Dependence Structure

To fit an appropriate copula the pseudo log-likelihood method, described in
Section 3.2.2 was used. The pseudo-observations estimated by (3.5) forms
the empirical copula. Figure 5.6 shows a two-dimensional histogram of the
empirical copula of the total dataset.

Six different copulas were fitted: Frank, Gumbel, Clayton, Frank- In-
dependent mixture, Gumbel-Independent mixture and Clayton-Independent
mixture. The mixtures are linear, as described in Section 2.3.4. The vari-
ances and covariances of the copula parameters were estimated by the method
described in Section 3.3.5. Based on the AIC-values Clayton is the most sat-
isfactory fitting copula. The hypotheses that the other copulas fits better
than Clayton were tested using likelihood ratio tests, as described in Sec-
tion 3.3.3. Table 5.3 shows the estimated copula parameters, their variances
and covariances, the AIC-values and the test statistics T. The hypotheses
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Figure 5.6: Histogram of the empirical copula.

were rejected at all reasonable levels of significance, e.g. at the level of 99%
χ2(2, 0.01) = 9.21. Hence Clayton is proved to be the most satisfactory of
the tested copulas.

Recall from section 3.3.5 that θ is asymptotically normal. A confidence
interval for the Clayton copula parameter θ can be constructed by using the
estimated variance.

I99%
θ̂

= θ̂ ± σ̂θ̂Φ
−1(0.995) = 0.1751 ± 6.3 · 10−3

where Φ−1 denotes the inverse of standard normal distribution function.
Note that zero does not fall within the interval. This is an important result
since it rejects the hypothesis that the survival is independent.

To be able to generalize the conclusions, the total dataset was divided
into sub datasets in two different ways. First, the total dataset was divided
into 21 sub datasets, where each sub dataset contained notations of couples
with the same difference in age z. The copula fitting procedure described
above was repeated for all of the 21 datasets. Clayton was the best fitting
copula, based on the AIC-values, for all of the datasets except for z=10 and
z=-8, where Gumbel was the best one. However for z=10 and z=-8 the
hypothesis that Clayton was a better fitting copula than Gumbel could not
be rejected.

Secondly, the total dataset was divided into sub datasets containing cou-
ples where both persons have reached the age of 62, 63, . . . or more. The
copula fitting procedure was performed for each sub dataset. Clayton was
the significantly best copula up to the minimum age of 70 and the copula pa-
rameter θ had a stable value of approximately 0.2 for the ages 62, 63, . . . , 70.
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F FI G GI C CI

θ̂ 0.881 2.57 1.08 1.22 0.175 0.605
p̂ 0.363 0.404 0.342

σ̂2
θ̂

5.08 · 10−6 8.97 · 10−4 5.09 · 10−6 1.58 · 10−5 5.91 · 10−6 1.50 · 10−3

σ̂2
p̂ 1.59 · 10−5 3.73 · 10−5 3.93 · 10−4

σ̂θ̂p̂ 8.53 · 10−5 2.15 · 10−5 −7.21 · 10−4

AIC 4275 4402 3653 3746 2872 3085

T 1403 1528 781.4 871.8 210.9

Table 5.3: Estimated parameters of the copulas: Frank, Frank-Independent
mixture, Gumbel, Gumbel-Independent mixture, Clayton, and Clayton-
Independent mixture, their variances and covariances, the AIC-values and
the test statistics T. The parameters are estimated for the total dataset.
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5.5 Pricing the Contracts

The aim of this section is to investigate how using the suggested Clayton
copula-model, instead of assuming independence, effect the discounted ex-
pected future payments of the insurances. The discounted expected future
payments of the insurances will further on be referred to as the prices. In
the study below δ is set to 0.03 and K, Km and Kf are set to one. The
payments of the insurance, purchased at t = 0, are assumed to start im-
mediately. The integrals in (5.1), (5.2), (5.3), (5.4), (5.5) and (5.6) have
to be solved numerically since there exist no analytical solutions. This was
performed by using the Matlab function quad, which uses adaptive Simpson
quadrature where the absolute error tolerance was set to 10−11.

5.5.1 Lifelong Joint Annuity Insurance

The pricing formula for the lifelong joint annuity insurance, when using the
Clayton copula model, can be expressed by using (2.6) and (4.9)

AC =
K

δ
− K

∫ ∞

0

[
FTx(t)−θ + FTy(t)

−θ − 1
]−1/θ

e−δtdt. (5.1)

The pricing formula for the independent model is

AI =
K

δ
− K

∫ ∞

0
FTx(t)FTy(t)e

−δtdt. (5.2)

where FTx and FTy are the marginal distributions as defined in (4.9).

Let ∆J be defined as

∆J =
AI − AC

AI
100%

i.e. ∆J is the difference in price, expressed as a percentage, between the
Clayton copula-model and the independent model.

Figure 5.7 shows the prices AC and AI plotted against the age of entrance
of the couple. The Clayton copula parameter was set to θ = 0.2019, i.e. the
estimated parameter for z = 0. Figure 5.8 shows ∆J plotted against the age
of entrance of the couple. The ages of the coupled persons were assumed to
be equal.

The price of the lifelong joint annuity insurance, when using the copula
model instead of the independent model, is approximately 1.7% lower. This
seemes like a good approximation for all z except z = -10, where the survival
can be assumed to be independent. This is motivated in Table 5.4, where
∆J is listed for all z (estimated with the individual θ-values).
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Figure 5.7: Price for the lifelong joint annuity insurance, when using the
Clayton and the independent model, plotted against age of entrance. The
ages of the coupled persons were assumed to be equal.
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Figure 5.8: ∆J plotted against age of entrance. The ages of the coupled
persons were assumed to be equal.
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5.5.2 Survival Annuity Insurance

The pricing formulas for the survival annuity insurances, when using the
Clayton copula model, can be expressed by using (2.6), (4.13) and (4.14)

Am
C = Km

∫ ∞

0

(
FTx(t) −

[
FTx(t)−θ + FTy(t)

−θ − 1
]−1/θ

)
e−δtdt (5.3)

Af
C = Kf

∫ ∞

0

(
FTy(t) −

[
FTx(t)−θ + FTy(t)

−θ − 1
]−1/θ

)
e−δtdt (5.4)

and the pricing formulas, when using the independent model, are

Am
I = Km

∫ ∞

0

(
FTx(t) − FTx(t)FTy(t)

)
e−δtdt (5.5)

Af
I = Kf

∫ ∞

0

(
FTy(t) − FTx(t)FTy(t)

)
e−δtdt (5.6)

where FTx and FTy are the marginal distributions as defined in (4.9).
Let ∆m and ∆f be defined as

∆m =
Am

I − Am
C

Am
I

100%, ∆f =
Af

I − Af
C

Af
I

100%

i.e. ∆m and ∆m are the differences in price, expressed as percentages, be-
tween the Clayton copula-models and the independent models.

Figure 5.9 shows Am
C , Am

I , Af
C and Af

I plotted against the age of entrance
of the couple. Figure 5.10 shows ∆m and ∆f plotted against the age of
entrance of the couple. The ages of the coupled persons are assumed to be
equal. The prices of the survival annuity insurances, when using the copula
models instead of the independent models, are approximately 7% lower when
the husband is insured and 9% lower when the wife is insured (when z = 0).

The values of ∆m and ∆f for all z (estimated with the individual θ-
values) are listed in Table 5.4. Notice that these values are estimated for the
case when the youngest person is 61 years old.
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Figure 5.9: Price when using the Clayton and the independent model, when
the husband is insured and the wife is co-insured (left) and when the wife is
insured and the husband is co-insured (right), plotted against age of entrance.
The ages of the coupled persons are assumed to be equal.
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Figure 5.10: ∆ plotted against age of entrance, when the husband is insured
and the wife is co-insured (left) and when the wife is insured and the husband
is co-insured (right). The ages of the persons are assumed to be equal.
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z n θ ∆J ∆m ∆f

-10 361 0.0556 0.4431 4.4691 1.1678
-9 534 0.2281 1.7785 16.1641 5.0528
-8 866 0.2290 1.8471 15.2138 5.6703
-7 1252 0.1577 1.3409 10.0635 4.4566
-6 1965 0.1952 1.6734 11.5053 6.0321
-5 2917 0.2411 2.0663 13.0814 8.0885
-4 4706 0.1681 1.4898 8.7273 6.3381
-3 6977 0.2345 2.0425 11.1239 9.4470
-2 10387 0.2209 1.9326 9.8296 9.7160
-1 15155 0.1958 1.7188 8.1998 9.3863
0 21583 0.2019 1.7537 7.8792 10.3891
1 23519 0.2325 1.9877 8.3214 12.6050
2 23575 0.1869 1.6063 6.2636 10.9457
3 21304 0.1646 1.4046 5.1023 10.3270
4 18078 0.1975 1.6339 5.5321 13.0155
5 14429 0.1805 1.4663 4.6312 12.7092
6 11105 0.1807 1.4244 4.2016 13.4917
7 8110 0.1896 1.4374 3.9654 14.9436
8 5663 0.1923 1.3972 3.6113 16.0166
9 3988 0.1877 1.3028 3.1611 16.5446
10 2653 0.1679 1.1142 2.5433 15.7486

Tot 199127 0.1751 1.5342 6.8933 9.0891

Table 5.4: Properties of the sub datasets. n is the number of observations,
θ is the estimated Clayton copula parameter and ∆J , ∆m and ∆f are the
differences in price, expressed as percentages, between the Clayton copula-
model and the independent model. The ∆-values were estimated for a couple
where the youngest person was 61 years old.
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Chapter 6

Conclusion

Copulas have been applied on the pricing of lifelong joint annuity insurances
and survival annuity insurances. The dataset used contained 199127 obser-
vations of married couples where both husband and wife reached the age of
61 or more and the maximum difference in age between husband and wife
was ten years. The Makeham distribution is proved to be very good choices
of marginal distributions and the hypotheses that the marginal survival of
the husband and the wife better fit the Weibull, Gamma or Lognormal distri-
butions than the Makeham distribution are rejected at all reasonable levels
of significance.

The hypothesis of independent survival for married couples is also re-
jected at all reasonable levels of significance. The survival show a weak
positive dependence, where Kendall’s tau is approximately 0.05. The depen-
dence is getting weaker as the difference in age between husband and wife
is getting large, although it can be approximated to be equal for all of the
differences in age, except when the female is ten years older than the male,
where the survival is close to independent.

The dependence structure of the survival is shown to fit best a Clayton
copula model since the hypotheses that the dependence structure fit the
Gumbel, Gumbel-independent mixture, Frank, Frank-independent mixture
or Clayton-independent mixture copulas better than the Clayton copula are
rejected at all reasonable levels of significance. The dependence structures
of the sub datasets, containing couples where both persons have reached the
age of 62, 63, . . . , 70, are also shown to fit best the Clayton copula. The
Clayton copula parameter θ can be approximated to 0.2 for all of the sub
datasets.

For the lifelong joint annuity insurance the Clayton copula model yields
a 1.7% lower discounted expected future payments than, when assuming
independence.

When pricing a survival annuity insurance it is important to distinguish
between the case when the husband is insured and wife is co-insured and
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the case when the wife is insured and the husband is co-insured. If the ages
of the husband and wife are approximately equal the Clayton copula-model
yields 8% lower discounted expected future payments in the first case and
10% lower in the second case. In the first case, the difference expressed as a
percentage, between the discounted expected future payments of the Clayton
copula-model and the independent model is decreasing as the difference in
age increases from -10 to 10. In the second case the difference expressed as
a percentage is increasing.

Suggested future research may be to apply the methods described in this
thesis on a dataset of insured couples.
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Appendix A

Appendix

A.1 Quantile-Quantile-Plots
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Figure A.1: QQ-plots against Makeham distribution.
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Figure A.2: QQ-plots against Weibull distribution.
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Figure A.3: QQ-plots against Gamma distribution.
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Figure A.4: QQ-plots against Lognormal distribution.
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