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Abstract

The purpose of this thesis is to investigate if there is any difference in op-
timal allocation in structured products in different market climates. There
are four different market climates considered; low/high interest rate and
low/high implied volatility, where three assets are available; a risk less as-
set (bond), a risky asset (equity index) and a structured product (bond and
derivative). This is accomplished by extracting the risk neutral density from
the option market for the two different implied volatility levels. The risk
neutral density is then transformed to a real world density corresponding
to different expected risk premiums. Utility relations are explored for in-
vestments in structured products and a representative investor is defined.
Portfolio optimization is performed on each scenario where the objective is
to maximize terminal expected utility.
Keywords : Structured products, implied risk neutral density, utility theory, port-

folio optimization
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Chapter 1

Introduction

The turmoil in the financial markets in 2008 has shaken the core of the fi-
nancial system. Major banks around the world have suffered massive losses.
The lack of credit have been devastating with a considerable number of
banks going bankrupt. In this market climate investors got extremely risk
averse. For example T-bills in U.S.A. went to negative yields. This means
that the investor directly looses money by holding these instruments. The
year 2008 went to the history as one of the worst year for global financial
markets.

Financial instruments such as structured products can be attractive in
this market climate . With these the investor can have a capital guarantee
but can also participate if the market changes direction. The characteristic
of structured products is the repackaging of strategies that involve positions
in derivatives and other types of assets into an investment vehicle that is eas-
ily accessible by investors. Researches have shown that structured products
can enhance an investor’s portfolio in terms of reducing risk or increasing
return in comparison to a traditional portfolio with only linear exposure to
underlying markets.

The purpose of this thesis is not to motivate the existence of structured
products in an effective portfolio but to investigate if there is any difference
in optimal allocation in structured products in different market climates.
There are four different market climates considered; low/high interest rate
and low/high implied volatility and three assets; a risk less asset (bond), a
risky asset (equity index) and a structured product (bond and derivative).

The participation rate of a structured product decides how much the
investor takes part in the underlying assets performance. This is decreasing
in volatility and increasing in interest rate, where interest rate dominates
volatility. For example in a high volatility and low interest rate market the
participation rate is low. However, the high volatility implies larger prob-
ability for large returns and the low interest rate causes a low opportunity
cost. So, should the investor consider the participation rate when making
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investment decisions? The emphasis in this thesis is to outline the rela-
tion between optimal allocation in structured products with respect to the
market climates, thus different participation rates, which creates interesting
scenarios.

To obtain a probability density function for the asset movement the im-
plied risk neutral density from the option market is extracted at certain
points in time. Two time periods are selected which reflects high implied
volatility and low implied volatility. This creates two scenarios that reflect
the market’s expectations not only in volatility but also the shape of the
risk neutral distribution. However, the risk neutral distribution cannot be
used in the portfolio optimization so some transformation must be made.

The transformation between the risk neutral world and the real world in-
volves dependencies with the investor’s utility. This transformation is made
with different parameters that imply different expected returns. Consider-
ation is also taken to historical risk premiums to evaluate the result. The
portfolio optimization is established where the objective is to maximize ter-
minal expected utility under short selling restriction. The utility function is
chosen for an investor with a sharp bound on negative returns.

Chapter 2 explains the financial assets used in this thesis, especially the
structured product. Chapter 3 outlines the approach of how the assets are
modeled and in Chapter 4 this is described in more detail. In Chapter 5 this
model is applied and calibrated to actual market option prices. Chapter 6
concerns terms of how risk/reward is measured. Finally, in Chapter 7 the
portfolio optimization is performed and the result is presented.
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Chapter 2

Financial assets

In this thesis three assets are available; a risk less asset (bond), a risky asset
(equity index) and a structured product (bond and derivative). The bond is
a theoretical asset where the default probability is zero. In reality no such
asset exists. The closest one get is government bonds issued by high graded
countries1, like USA, Germany or Japan. The equity index represents the
universe of risky assets. In this index all available equities are included. In
practice this could be a broad market equity index where companies across
different sectors are included. The structured product is a combination of
the bond and a derivative on the equity index. In the following part the
structured product is reviewed in more detail.

2.1 Structured products

The characteristic of structured products is the repackaging of strategies
that involve long and short positions in derivatives and the underlying asset
into an investment vehicle easily accessible by investors, [24]. The first
occurrence of structured products was the option based portfolio insurance
(OBPI). This consists basically of combining a risky asset with a put written
on it. Today the most common package of a structured product in the retail
segment is the combination of a zero coupon bond and a call option linked
to equity, commodity or currency. This will in theory create the exact same
strategy as the OBPI in the case of at the money (ATM) strikes; recall the
put-call parity.

The purpose of a structured product is to create an investment vehicle
that is tailored to the investors risk profile. This could be features like
capital guarantee, which means that the notional amount is at least repaid
at maturity. We also have highly geared products which give the investor
leveraged exposure to underlying market. A product with capital guarantee
is generally called a note otherwise a certificate.

1Based on five year sovereign credit default swap (CDS) rates gathered from Bloomberg.
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In this thesis the simplest form of a structured product is considered.
This is by combining a risk less bond, in the form of a zero coupon bond, with
a plain vanilla ATM call option. Thus creating a 100 % capital guarantee
of the invested amount. The bond represents the safety net and the long
position in the call option the opportunity for future return on capital.
Figure 2.1 illustrates this relation.
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Figure 2.1: The figure illustrates the composition of the structured product.

Depending on the price of the zero coupon bond different amounts of the
option can be bought within the structure. This causes different exposures
depending on the market climate. The part of which the investor participates
with the underlying performance is called participation rate. Let B be the
price of a zero coupon bond and C2 be the price of a call option. The
participation rate, k, is then

k =
1 − B

C
.

For example if the participation rate is 0.6 then the investor takes part in 60
% of the underlying assets positive performance at maturity. The amount
paid to the investor at maturity, in per cent of invested amount, is

1 + k × max(0, asset performance).

2When dealing with this type of products the option price is usually quoted in percent.
This simply means that the option price is divided by the spot price of the underlying
asset.
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Figure 2.2 shows how the participation rate is varying with different volatil-
ities (option prices), with interest rate at 4 %. The participation rate is
more sensitive to changes with low volatility and less with high.
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Figure 2.2: The graph shows the relation between participation rate and
volatility.

Figure 2.3 shows how the participation rate is varying with different
interest rates (bond prices), with volatility at 25 %. It is clear from this
figure, compared to Figure 2.2, that the participation rate is more sensitive
to changes in interest rate than from volatility. Figure 2.4 shows these rela-
tions in a surface diagram. The marked spots in each corner illustrate the
different scenarios that are considered in this thesis. The question in this
thesis is to answer if it matters for the investor in which market climate
(level of interest rate and volatility) that prevails for optimal allocation in
structured products.
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Figure 2.3: The graph shows the relation between participation rate and
interest rate.
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Figure 2.4: The surface diagram shows the relation between participation
rate, interest rate and volatility. The four scenarios considered in this thesis
are marked in each corner.
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Chapter 3

Modeling financial assets

In this chapter it is described how the risky asset is modeled. Usually in
portfolio optimization a parametric assumption is made about the distri-
bution and parameters are estimated from historical data. The standard
literature on the subject uses exclusively historical data to fit distributions
to assets returns imposing distributional assumptions, [31]. For example
the assumption about returns are normally distributed with parameters es-
timated from historical data. To make an assumption about the distribution
from historical data ignores the market’s expectations about the volatility
and the shape of the distribution.

Financial time series show evidence to differ significantly from the nor-
mal distribution, [21]. Distribution of returns also shows excess kurtosis
and skew. This behavior of financial data has been incorporated by option
traders for a long time. However, prior to the stock market crash in October
1987 the volatility smile was nearly flat. After the crash traders got con-
cerned about the possibility of another crash and priced options accordingly,
[16]. This led to the suggestion that one reason for the volatility smile is
fear for a similar crash.

For equity index options the typical shape is a negative skew, this means
that the implied volatility is decreasing in strike. In [17] the authors outline
four reasons for this:

• Leverage effect – when equity prices fall the company’s debt-to-equity
ratio in market value tends to rise.

• Correlation effect – individual equity returns become more highly cor-
related when equity prices fall.

• Wealth effect – investors become less wealthy when equity prices fall
and of this more risk averse and respond more strongly to news.

• Risk effect – because investors become more risk averse they demand
a higher expected return and this lead to reduction in equity prices.
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In this thesis financial assets returns are modeled by estimating the im-
plied distribution from the option market and transform this to a real world
distribution using a utility function. The option market has the expected
future distribution rather than estimation from historical data. This creates
a distribution that will change over time to catch the dynamics of changing
expectations. However, it is important to point out that many researches
have shown that the implied distribution does not predict certain move-
ments but rather reflects the market’s sentiment, [12]. On the other hand,
others have shown that the implied distribution has higher likelihood than
historical densities, [20].

In the following part several methods are described for estimating the
implied risk neutral density (RND) from the option market and how to
transform the RND to a real world density and further outline methods to
extract market data from option prices.

3.1 Techniques for estimating the implied RND

In this section various techniques are presented for estimating the implied
RND from option prices. There are basically three main approaches:

• The parametric approach – assumption is made about the underlying
distribution.

• The semi-parametric approach – weak assumption is made about the
underlying distribution.

• The non-parametric approach – no assumption is made about the un-
derlying distribution.

All of these techniques use the result, in some way, from Breeden and Litzen-
berger [6]. They show that if the underlying price has a continuous probabil-
ity distribution then the state price is proportional to the second derivative
of a related option. When applied across all states the second derivative
equals the discounted RND. For additional details on this result see Ap-
pendix A. However, options are only traded at discrete strikes and for a
limited range. Hence, there are many RNDs that can fit the market prices
and it really all comes down to the completion of the option pricing function.

Currently there is no consensus of a method for extracting the implied
RND but many have been described in the literature. The following methods
are described briefly in this section:

• Interpolate the observed option prices.

• Interpolate the implied volatility curve.

• Assumption about the underlying stochastic process.
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• Assumption about the terminal distribution.

• Implied trees.

3.1.1 Interpolate the observed option prices

A straightforward approach would be by direct application of the Breeden
and Litzenberger result, [6], to the call pricing function. However, the call
pricing function is not directly observable and requires to be consistent with
the monotonicity and convexity conditions and that can be differentiated
twice. In [3] the authors constructed a non-parametric estimator for the
RND. It means that they have no parametric restriction and do not need to
make any assumptions about the underlying stochastic process or terminal
RND. The method they use is based on kernel regression and takes a rather
complicated form and is highly data-intensive. In [5] the author takes a
more primitive approach; interpolate the observed option prices using cubic
splines. Because of the complex form of the call pricing function this ap-
proach needs a large number of degrees of freedom and can therefore cause
practical problems.

3.1.2 Interpolate the implied volatility curve

This method is similar to the previous one but instead of interpolating the
option prices interpolation is applied to the implied volatility curve. As [7]
points out, the translation of option prices into implied volatilities eliminates
a lot of the non-linearity in the option price relation. In [32] the author, the
first originator of this approach, means that implied volatility tends to be
smoother than option prices. One shortfall of the author’s, [32], method
is that the model does not prevent negative implied probabilities which
would mean arbitrage opportunities. However, there exist methods that
prevent this. For example [7] came up with an approach that is, under
weak constraints, consistent with the absence of arbitrage. One advantage
with this approach is that generally no assumption has to be made about
the underlying distribution; this approach would then fall into the non-
parametric approach.

3.1.3 Assumption about the underlying stochastic process

The procedure with this technique is to make an assumption about the un-
derlying stochastic process, a parametric approach. This model will then
imply a specific RND. The RND can be obtained in closed form under
strong assumptions about how the underlying price evolves. An example of
this is the Black and Scholes assumption about a geometric Brownian mo-
tion (GBM) with constant drift and volatility, this would imply a lognormal
RND. If one would use the GBM and add a jump-diffusion model and model
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the probability of jumps, with a non-stochastic size, as a Bernoulli distribu-
tion and only allow one jump per run, this would result in a mixture of two
lognormal distributions. One large disadvantage with this procedure is that
an assumption must be made about the stochastic process and the result
will only be as good as the model assumed and calibration routines. Gener-
ally the terminal RND cannot be computed in closed form when assuming a
more sophisticated model like a stochastic-volatility jump-diffusion model.
It can also be hard to calibrate the model to observed option prices, [9]. The
main advantage with this method is that any option can be priced when the
whole stochastic price process is revealed.

3.1.4 Assumption about the terminal distribution

To start with an assumption about the terminal distribution is a more gen-
eral approach rather than the previous described procedure. This is because
a stochastic process implies a unique terminal distribution, but the opposite
is not true. This means that any terminal RND is consistent with many
stochastic processes. The use of a two lognormal mixture model is widely
used in the literature, for example [4] and [33]. As pointed out in [4] the
lognormal has good statistical properties and given that the distribution of
observed prices are in the neighborhood of the lognormal distribution. How-
ever, the lognormal distribution has limited possibilities to model fat tailed
behaved data even though a mixture model can be used. A mixture model
may produce a good fit but the shape of the distribution can get inconsis-
tent where the two distributions mix. There are other models used in the
literature such as skewed Student-t, [10], generalized beta distribution, [1]
and Weibull, [30]. More recent works with generalized gamma distribution,
[34] and generalized extreme value distribution, [22]. These distributions
have several parameters which imply that more shapes can be obtained in
comparison to the lognormal distribution.

3.1.5 Implied trees

The implied binomial trees approach was introduced by [29] and uses a non-
parametric technique to construct a binomial tree for the evolution of the
underlying price process. This is based on finding a RND that leads to a
best fit to observed option prices due to some smoothness criterion. The
method demands a prior guess of the RND and these are set according to
a lognormal distribution. However, it is shown that the priors have clearly
less influence on the implied binomial tree as the number of options used.
The authors in [27] extended this method and use a trinomial tree model
which is a semi-recombining version of the technique presented in [29]. The
main advantage with this approach is that path dependent options can be
priced.
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3.2 Model selection

The common path among researches is to limit the assumptions made but in
most cases the limitation in assumptions makes the procedure more compli-
cated. As stated before there is no consensus about a model and is therefore
more in a question about how sophisticated model one wants and in what
circumstances. However, it is very easy to compare different approaches and
simply select one based on the result.

In this thesis an assumption is made about the terminal distribution, a
parametric approach, and with this evaluate some work of previous men-
tioned authors by comparing several of the distributions mentioned. The
reason for this selection is that there exist many suitable distributions for
this purpose and a better understanding for the shape of the distribution
can be obtained in contrast to interpolation methods for example. The goal
is to find a model that is as simple as possible that provides a reasonable
good fit.

Sometimes an analytic expression can be found for various distributions
which make the calibration faster. This approach is consistent with the ab-
sence of arbitrage when this constraint is implied by the model. The degrees
of freedom is limited to five which would mean two parameters per distribu-
tion if a mixture model is used or five if only one distribution is used. The
reason is for the calibration to work in a smooth way.

3.3 Extracting the implied RND

As described in [13] a European option can be valued on the basis that
the world is risk neutral under no arbitrage assumption. This means that
the equilibrium price of a European option in an arbitrage free economy
will be the discounted value of the expected value of the pay off under risk
neutrality.

Thus, the price of a European call option and a put option for a stochastic
variable, S, can be valued according to

C(K, τ) = e−rτEQ
[

(S − K)+
]

= e−rτ

∞
∫

K

fS(s)(s − K)ds, (3.1)

P (K, τ) = e−rτEQ
[

(K − S)+
]

= e−rτ

K
∫

0

fS(s)(K − s)ds, (3.2)

where r is risk-free rate, τ is time to maturity, fS(s) is the risk neutral prob-
ability density function for S and K is the strike. The following martingale
condition must be satisfied in an arbitrage free economy

F = EQ[S]. (3.3)
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where F is the forward price of the underlying asset.
To calibrate the model to observed option prices some optimization

method must be defined. The following optimization methods are outlined
in [17]

min
∑

i

[C(Ki, τ) − Ĉi]
2 +

∑

i

[P (Ki, τ) − P̂i]
2 quadratic, (3.4)

min
∑

i

[

C(Ki, τ) − Ĉi

Ĉi

]2

+
∑

i

[

P (Ki, τ) − P̂i

P̂i

]2

goodness of fit,

min
∑

i

|C(Ki, τ) − Ĉi| +
∑

i

|P (Ki, τ) − P̂i| absolute difference.

Quadratic will give higher precision in terms of percentage deviation for
deep in the money (ITM) calls and deep ITM puts. This is because these
have higher prices which results in large penalty in absolute terms for devia-
tion. Goodness of fit is basically the opposite of quadratic and will penalize
deviations in terms of percentage deviation instead of absolute terms. This
will result in a more accurate fit to for deep out of the money (OTM) calls
and deep OTM puts in terms of absolute difference. The third method,
absolute difference, is more like the quadratic method but will not penalize
large deviations in such way. This will create an overall good fit but tolerate
large deviations.

In [4] the author proposes the quadratic method with an extra penalty
term for the martingale-condition (3.3) in the case of a two lognormal mix-
ture model.

min
∑

i

[C(Ki, τ) − Ĉi]
2 +

∑

i

[P (Ki, τ) − P̂i]
2

+
[

θeα1+ 1
2
β2
1 + (1 − θ)eα2+ 1

2
β2
2 − erτ

]2
,

where θ is the weight and α1,2 and β1,2 are parameters of the lognormal
distributions.

3.4 Transforming the RND into a real world den-

sity

It is important to point out that the implied probability density extracted
from the option market is risk neutral. This means that there is no risk
premium to worry about. In reality investors are not risk neutral but risk
aversive which mean that the RND does not equal the true market distribu-
tion. To obtain a real world density one could specify the aggregate market
utility function and determine (estimate) the corresponding coefficient of
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risk aversion. Here one must separate between the transformation of aggre-
gate market utility and subjective preferences of single investors. One can
think of the market to be homogeneous or heterogeneous where investors
have the same beliefs or different.

This can also be much more complicated than just specifying a general
utility function because the investor’s beliefs can be hard to transform ex-
plicit. It can be done by just to define a real world shape and then assume
this from some unspecified utility function. For example by just changing
the drift (mean) of the distribution.

In this thesis the transformation is made with respect to the aggregate
market utility and the investor’s specific preferences are defined later in the
utility based portfolio optimization. The transformation between the risk
neutral world and the real world involves an adjustment to the discount
factor, [20]. Let ζ(s) be the stochastic discount factor for a payoff as

ζ(s) = k
dU(s)

ds
, (3.5)

where k is a constant and U(s) is a utility function. In the real world the
price of a European call option is

C(K, τ) = EP
[

ζ(S)(S − K)+
]

=

∞
∫

K

ζ(s)fS,real(s)(s − K)ds, (3.6)

where fS,real is the real world density function. Using (3.6) and (3.1), ζ(s)
yields

ζ(s) = e−rτ f(s)

fS,real(s)
. (3.7)

Using (3.5) and (3.7) with
∞
∫

0

fS,real(s)ds = 1, the relation between the real

world and risk neutral distribution is

fS,real(s) =
f(s)

U ′(s)

1
∞
∫

0

f(z)/U ′(z)dz

. (3.8)

To determine the coefficient of risk aversion is hard. It is well known from the
equity risk premium puzzle that in order to achieve the high risk premium
over government bonds, individuals must have implausibly high risk aversion
according to benchmark economic models, [26]. In [31] the author proposed
that the coefficient of risk aversion is instead calibrated from an assumed
expected return in implicit form according to

r =
EP [S]

S0
− 1 =

1

S0

∞
∫

0

sfS,real(s)ds − 1, (3.9)
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where S0 is the initial price of the asset.
In this thesis no assumption is made about the expected return, rather

derived from different coefficients. This is because the return has varied a
lot historically and makes a huge impact on the result. Thus, the portfolio
optimization is made with respect to different risk aversions corresponding
to different implied expected returns. However, consideration is taken to
historical risk premiums for a realistic comparison.

For doing this transformation some utility function must be specified.
The power utility is widely used in the literature. This falls in the category
constant relative risk aversion utility functions. One type of power utility is
given by

U(x) =

{

x1−λ

1−λ λ ≥ 0, λ 6= 1,

ln(x) λ = 1.
(3.10)

3.5 Extracting market data from options

When pricing derivatives some variables must be determined besides the
distribution of the asset. This is the dividend and the risk-free interest rate.
The dividend is in practice usually estimated by traders and financial an-
alysts for input in the model. The risk-free interest rate is in reality not
the corresponding government benchmark-rates but for example inter-bank
swap rates for longer maturities. Instead of doing subjective estimates of
these the implied data from the option market is used.

There exist some arbitrage conditions which can be exploited to deter-
mine the market’s anticipated dividend and interest rate. From the put-call
parity relation both the dividend and the risk-free interest rate can be es-
timated. The Box-spread relation is used to determine how accurate the
risk-free interest rate estimation is from the put-call parity relation. For
calculations of the implied volatility curve these variables are necessary to
satisfy certain conditions. This must be in a reasonable range or the volatil-
ity curve will be unrealistic. One easy way to check this is to compare the
curves calculated for calls and puts; they should be identical.

3.5.1 Put-call parity

There is a theoretical relation between European call and put options. This
relation holds under no-arbitrage arguments. Put-call parity for an asset
providing a dividend yield, q, equals

C + Ke−r = P + Se−q, (3.11)

where C is the call price, P the put price, K the strike, S the spot price
and r the risk-free interest rate.

Under this relation the market’s anticipated interest rate and dividend
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yield can be obtained. This relation does not hold exactly in reality due to
spreads and different estimates. To perform this practically a mean square
optimization can be performed.

3.5.2 Box-spread

A box-spread is an arbitrage strategy. This means that the trade only takes
place if an arbitrage opportunity exists. The payoff in a long position in a
box-spread should equal lending at the risk free rate and a short position
should equal borrowing at the risk-free rate. This could sometimes for ex-
ample make that hedge funds have cheaper funding from this position then
borrowing other ways.

A box-spread is a combination of a call spread with strikes K1 and K2

and a put spread with the same two strikes. The payoff will always equal
K2 −K1. This implies that the price of a box-spread is the present value of
this position;

e−rτ (K2 − K1). (3.12)
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Chapter 4

Probability distributions

There have been many probability distributions described in the literature
for fitting the terminal RND to observed option prices. In [10] the authors
use a skewed Student-t distribution, [34] the generalized gamma distribution
and [22] the generalized extreme value distribution. For calibration purposes
analytical formulas are preferred but this is not always possible due to com-
plicated expressions for the density function. The following distributions are
reviewed:

• Mixture of two lognormal distributions.

• Generalized extreme value (GEV) distribution.

• Generalized gamma distribution.

• Normal inverse Gaussian (NIG) distribution.

• Skew Student-t distribution.

The lognormal distribution is outlined separately even though this is a spe-
cial case in some of the generalized distribution. This is because the log-
normal distribution is a benchmark distribution in financial literature and
is therefore easy to relate to in comparison with the other distributions.

4.1 Lognormal distribution

In the case of Black and Scholes assumption about the evolvement of the
price as a GBM the terminal distribution is lognormal and log returns are
normally distributed. The lognormal density function is

fX(x|α, β) =
1

xβ
√

2π
e
−

(log(x)−α)2

2β2 ,

where α is the mean and β the volatility of log(x). Figure 4.1 shows the
probability density for the price and logarithmic returns. The price of a
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Figure 4.1: The figure shows the shape for price and log return for the
lognormal distribution.

European call option, Black and Scholes option formula, is given by, in the
usual form,

C(K, τ) = Φ

[

(µ + σ2/2)τ − log[K]

σ
√

τ

]

− Ke−µτΦ

[

(µ − σ2/2)τ − log[K]

σ
√

τ

]

,

(4.1)
where µ is continous compounding interest rate and σ is the volatility.

4.2 Mixture of two lognormal distributions

The mixture of two lognormal distributions is a linear combination of two
lognormal distributions. This makes that different shapes can be obtained.
The probability density function is

fX(x|α1, β1, α2, β2) = θ
1

xβ1

√
2π

e
−

(log(x)−α1)2

2β2
1 +c(1−θ)

1

xβ2

√
2π

e
−

(log(x)−α2)2

2β2
2 ,

where θ is the weight. The price of a European call option is thus a linear
combination of (4.1) according to

C(K, τ) = θC1(K, τ |α1, β1)) + (1 − θ)C2(K, τ |α2, β2)).

4.3 Generalized extreme value distribution

The GEV is a family of distributions that combines distributions within
extreme value theory. This is a robust framework to model the tail behavior
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of distributions. For this reason the loss distribution is modeled. The GEV
distribution takes three parameters. The probability density function is

fX(x|ξ, µ, σ) =
1

σ

(

1 + ξ
x − µ

σ

)

−1−1/ξ

exp

(

−
(

1 + ξ
x − µ

σ

)

−1/ξ
)

, ξ 6= 0

(4.2)

for 1 + ξ x−µ
σ > 0 and when ξ → 0 then (1 + ξx)−1/ξ → ex we have

fX(x|0, µ, σ) =
1

σ
exp(−e−(x−µ)/σ−(x − µ)/σ), ξ = 0. (4.3)

When ξ > 0 the associated distribution is called Fréchet. In the case when
ξ → 0 the distribution is the Gumbel class. If ξ < 0 we have the distribution
class Weibull. Figure 4.2 shows the PDF for the price and for log returns for
the special case when ξ > 0. A closed form solution can be obtained for the
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Figure 4.2: The figure shows the shape for price and log return for the GEV
distribution.

price of a European option. This is derived in [22] and is for a call option

C(K, τ) = e−rτ

[(

(1 − µ + σ/ξ)e−H−1/ξ − σ

ξ
Γ
(

1 − ξ,H−1/ξ
)

)

− Ke−H−1/ξ

]

,

where Γ(·, ·) is the incomplete gamma function and H is 1 + ξ
σ (1 − K − µ).

And for a put option

P (K, τ) = e−rτ

[

K
(

e−h−1/ξ − e−H−1/ξ
)

+
σ

ξ
Γ
(

1 − ξ, h−1/ξH−1/ξ
)

(4.4)

− (1 − µ + σ/ξ)
(

e−H−1/ξ − e−h−1/ξ
)

]

,

where h is 1 + ξ/σ(1 − µ).
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4.4 Generalized gamma distribution

The generalized gamma distribution is a three parameter distribution. This
distribution is not very common in the statistics literature but it incorpo-
rates a wide range of distributions, which are well known. The probability
density function is

fX(x|α, β, k) =
1

Γ(k)

β

α

(x

α

)kβ−1
e−( x

α)
β

,

where Γ(·) is the gamma function. Special cases are the gamma distribution
when β = 1, the Weibull distribution when k = 1, the exponential distri-
bution when k = 1 and β = 1, the Rayleigh distribution when k = 2 and
β = 2 and the lognormal distribution when k = 0. Thus, a wide range of
well known distributions. Figure 4.3 illustrates the shape for the special case
gamma distribution. A closed form solution can be obtained for the price
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Figure 4.3: The figure shows the shape for price and log return for the
generalized gamma distribution.

of a European option. This is for a call option

C(K, τ) = e−rτ 1

Γ(k)

[

αΓ

(

1 + kβ

β
,

(

K

α

)β
)

− KΓ

(

k,

(

K

α

)β
)]

and for a put option

P (K, τ) = e−rτ 1

Γ(k)

[

KΓ(k) − αΓ

(

k +
1

β

)

− KΓ

(

k,

(

K

α

)β
)

+ αΓ

(

k +
1

β
,

(

K

α

)β
)]

.
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4.5 Normal inverse Gaussian distribution

The NIG distribution is a special case of the generalized hyperbolic (GH)
family. It is a normal variance-mean mixture where the mixing density is the
inverse Gaussian distribution. This is a four parameter distribution which
can describe a wide range of shapes of the distribution. The probability
density function is

fX(x|α, β, µ, δ) =
δαeδγ+β(x−µ)

π
√

δ2 + (x − µ)2
K1

(

α
√

δ2 + (x − µ)2
)

,

where γ =
√

α2 − β2 and K1 is the modified Bessel function of the third
kind. Figure 4.4 illustrates the shape for the NIG distribution. A closed
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Figure 4.4: The figure shows the shape for price and log return for the NIG
distribution.

form solution for the price of an European option can not be obtained so
pricing must be integrated numerically according to (3.1) and (3.2).

4.6 Skew Student-t distribution

The skew Student-t distribution is also a special case of the GH family. This
distribution has been proposed in the literature but its statistics is not well
known, specifically its special tail behavior that one tail has polynomial and
the other exponential behavior. The skew Student-t distribution is a normal
variance-mean mixture where the mixing density is the inverse chi-square
distribution. This is a four parameter distribution which can describe a wide
range of shapes. The probability density function is

fX(x|ν, β, h, µ) =

{

fX(x − µ|ν, β, h) β 6= 0,
1
h tν
(x−µ

h

)

β = 0.
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where

fX(x|ν, β, h) = eβx
hννν/2|β|(ν+1)/2K(ν+1)/2

(

|β|
√

x2 + h2ν
)

√
πΓ(ν/2)2(ν+1)/2−1

(√
x2 + h2ν

)(ν+1)/2

and where tν is the Student-t distribution with ν degrees of freedom and
Kν(·) is the modified Bessel function of the second type of order ν. Figure
4.5 illustrates the shape for the skew Student-t distribution. A closed form
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Figure 4.5: The figure shows the shape for price and log return for the skew
Student-t distribution.

solution for the price of an European option can not be obtained so pricing
must be integrated numerically according to (3.1) and (3.2).
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Chapter 5

Model calibration

In this chapter the market option data is described which the RND is extract-
ing from. The result from the fitting procedure is presented and described in
detail. Finally, the transformation from the RND to a real world density is
depicted and described. It is this probability density function that is further
used in the portfolio optimization.

5.1 Market option data

The Dow Jones Euro Stoxx 50 index futures and options traded on Eurex1

are considered as the most liquid derivative assets in the world. Options
are available at a wide range of strikes with high liquidity which secures low
spreads and reliable prices. This is the reason why in this thesis have chosen
to use option prices from this market.

Two states are composed which defines a low volatility and a high volatil-
ity state. The background of this choice is described later in Chapter 7.

The options have a time to maturity of two years. The low volatility
set has 41 calls and 41 puts and the high volatility set has 39 calls and 39
puts. The sets are chosen so there is a similar distance between strikes so
the fit is not over weighted to close ATM strikes where usually more options
are traded. This would cause the optimization to prioritize this area. The
high volatility set has wider range of strikes than the low volatility. This
is because of the large moves in the underlying index between the sets and
may also be explained by that the probability for large moves are higher
with high volatility that increases the demand for more and wider strikes.

Before the fitting procedure is started the market’s anticipated interest
rate and dividend yield is estimated using a least square optimization with
the arbitrage conditions, (3.11) and (3.12), mentioned in Chapter 3. Equa-
tion (3.12) is only used to check the result. This confirms deviations from

1For further information see www.eurexchange.com
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the theory which indicates that a perfect fit is not obtainable but this error
is very small so it should not cause any problems.

5.2 Fitting

In this part the actual fitting is described and the result is presented. All of
the distributions described in Chapter 4 are evaluated. The fitting is divided
into two parts with respect to the volatility sets. This is because one could
expect different properties of these and then also the result of fitting for
different distributions. The optimization method used is (3.4), described in
Chapter 3. Because of the wide range of strikes that includes deep ITM
calls and puts the martingale condition, (3.3), will be satisfied enough for
not adding an extra penalty term. All numeric procedures are performed in
Matlab where Optimization Toolbox and Statistics Toolbox are required.

To evaluate the result of each individual fit the mean square error (MSE)
is presented and also the implied volatility from the model compared to the
market volatility. The comparison of the volatility is more easy to relate
to and gives a good overview of the fit from comparing the actual option
prices.

The implied volatility as a function of strike, also known as volatility
smile, is illustrated in Figure 5.1.
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Figure 5.1: The figure shows the implied volatility curve for the two volatility
sets.
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5.2.1 Low volatility set

The mixture of two lognormal distributions turns out to have a somewhat
good fit, the MSE is 0.305. However, the shape where the two distributions
mix, even though it is not so apparent, does not show a reasonable behavior
and shape. The RND is shown in Figure B.1 and in Figure B.2 the fitted
volatility is shown. The inconsistency in the fitted curve below around 90
% strike is caused where the two lognormal mixes.

The GEV distribution fit is rather good with a MSE at 0.243. The best
fit is when K is larger than zero which suggests a Frechet distribution. In
Figure B.3 the RND is illustrated and in Figure B.4 the fitted volatility is
shown. The fit is pretty good but with some errors in both low and high
strikes compared to the market. The shape outside the observed volatility
shows to be reasonable.

The fit with the generalized gamma distribution has a MSE at 0.368. The
best fit is none of the special cases. In Figure B.5 the RND is illustrated and
it shows that the left tail is more fat than the best fit GEV distribution while
the right tail is less fat. The implied volatility curve, Figure B.6, shows a
large underestimation for higher strikes compared to the market.

The NIG proofs to be an excellent fit with a MSE of 0.0836. Compared to
the other distributions this fitting process takes a longer time to converge to
the best fit. The estimation error is very small and can partly be described
by inconsistencies in the market option data. The RND is shown in Figure
5.2 and is rather symmetric but with a less fat right tail. In Figure 5.3 the
implied volatility curve is illustrated. The fit is overall very good except a
short range for low strikes. However, this difference is very small.
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Figure 5.2: The figure shows the RND best fit with the NIG.
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Figure 5.3: The figure illustrates comparison between best fit implied volatil-
ity.

Skew Student-t has a MSE of 0.161 and shows to be a pretty good fit.
Similar to the NIG distribution this fitting process takes longer time to
converge to the best fit, even longer than the NIG. The shape of the RND
is depicted in Figure B.7 and shows similar behavior as the NIG RND. In
Figure B.8 the implied volatility curve is illustrated. As shown is it a relative
poor fit for low strikes which mean that the best fit with the skew Student-t
distribution has a to fat left tail for this data set.

5.2.2 High volatility set

The MSE with the mixture of two lognormal distributions is 0.206 and it
is a very good fit. Again with a problem with the shape where the two
distributions mix, this time very clear. This does not show a reasonable
behavior and shape, the RND is shown in Figure B.9. Figure B.10 shows
the implied volatility, the lognormal mixture has an excellent fit except
where the two distributions mix and the extrapolation for low strikes.

The GEV distribution has a MSE of 0.550 which is a very poor fit. K
is again larger than zero which suggests a Frechet distribution. In Figure
B.11 the RND is illustrated. In Figure B.12 this poor fit is explained, where
the implied volatility is showed. The GEV distribution can not capture the
flattening in volatility for high strikes.

The fit with the generalized gamma distribution is very bad, MSE showes
to be 0.621. The best fit is none of the special cases. In Figure B.13 the
RND is illustrated and in Figure B.14 the volatility.

The fit with the NIG is not very good but not as worse as GEV and
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Figure 5.4: The figure shows the RND best fit with the skew Student-t.

the generalized gamma, the MSE is 0.477. Figure B.15 illustrates the RND.
NIG can not capture the overall shape and has errors across all strikes. The
fit seems to show similar errors as GEV and the generalized gamma except
they are not as large, see Figure B.16

Skew Student-t has a MSE at 0.272. It takes very long time for the
solution to converge to the best fit. The fit is very good but not as good as
the mixture of two lognormal distribution. The RND is illustrated in Figure
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Figure 5.5: The figure illustrates comparison between best fit implied volatil-
ity.
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5.4. In Figure 5.5, where one can see the implied volatility, the fit is proven
to be very good. There are a few larger errors in the low strike area but
rather small in the high strike area.

5.2.3 Summary

The best fit to the low volatility set is the NIG distribution. It showed an
outstanding fit, superior to the other distributions evaluated. The comple-
tion of the RND shows a good and reasonable shape.

The best fit to the high volatility set is the two lognormal mixture. It
showed a very good fit somewhat better than the Student-t distribution.
However, the shape of the two lognormal mixture distribution is question-
able with inconsistencies in the curve. Because of this the two lognormal
distribution is not used, instead the skew Student-t is. The fit with the skew
Student-t is slightly worse than the two lognormal mixture but much better
than the other distributions. This distribution explains the shape very well
outside the observed prices.

On the high volatility data set it is several options with strikes that have
almost zero probability to be reached, according to the RND. This is all
the calls with a strike of higher than 300 %. This causes that these option
prices are not so important to get a good fit to for explaining the shape
of the RND. This is more in terms of having the correct inputs of interest
rate and dividend. The NIG and skew Student-t have similar properties and
have been showed to provide a much better fit than the other distributions
on these data sets. The NIG distribution can in these terms been seen as
a low volatility distribution and the skew Student-t as a high volatility dis-
tribution. These distributions have been shown to be well suited to model
this kind of data presented. Table 5.1 shows a summary of the fitting MSE.

Table 5.1: Summary of the MSE.

Distribution MSE high vol. set MSE low vol. set

Two lognormal mixture 0.206 0.304

GEV 0.550 0.243

Generalized gamma 0.621 0.368

NIG 0.480 0.084

Skew Student-t 0.272 0.161
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5.3 Calibrating the real world distribution

In the scenarios two different states of interest are used. On both option data
sets the interest rate does not match and the dividend yield is larger than
zero. To be able to model these distributions the expected value with the
RND should equal the corresponding interest rate. This is accomplished by
refitting the best fit distributions on recalculated option prices corresponding
to each interest rate and the dividend set to zero. With this the expected
value with the RND will equal the corresponding interest rate.

When going from the RND to a real world density a utility function must
be defined according to (3.8). This transformation is done with the power
utility defined to (3.10) and the expected return is calculated using (3.9).
Figure 5.6 shows real world distributions for different λ for the low volatility
set. As can be seen, the expected return increases with λ while the downside
risk decreases. There are two distributions for this set but only one is shown
because they a very similar. Figure 5.7 shows the implied annual expected
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Figure 5.6: The graph shows the transformation for different λ for the low
volatility set.

return corresponding to different λ. When λ = 0 then the implied expected
return equals the expected return of the RND, that is the risk-free interest
rate2. The increase in return with λ shows the same behavior between the

2The interest rate is recalculated to annual compounding which causes a larger value
from the stated that is continuous compounding.
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low interest rate but with a bump upwards.
Figure 5.8 shows real world distributions for different λ for the high
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Figure 5.7: The graph shows implied expected return for different λ for the
low volatility set.

volatility set. Because of the same reason as before, only one is shown.
The increase in return is very sensitive to λ. This is why a smaller range
of λ is used to illustrate the relation. This could be expected when the
high volatility implies greater probabilities for larger returns. Figure 5.9
shows the implied annual return corresponding to different λ. The increase
in return with λ shows the same behavior between the low interest rate but
with a bump upwards. Compared to the low volatility set this show much
higher returns for smaller λ.
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Figure 5.8: The graph shows the transformation for different λ for the high
volatility set.
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Figure 5.9: The graph shows implied expected return for different λ for the
high volatility set.
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Chapter 6

Utility theory

There is no unique definition of risk but risk is a very important part in the
financial world. To be able to clarify the relation between risk and reward
is essential to make good investment decisions. It is very common in the
financial community to define risk as standard deviation, or volatility, when
talking about financial assets. The relation between risk and reward then
becomes the relation between the volatility and future expected returns.
Another way to do this is to define a function that measures or ranks future
returns and losses. This is achieved by using a utility function.

In this chapter the basics of utility theory is outlined and the represen-
tative investor is defined that is later used in the portfolio optimization.

6.1 Basic utility theory

Utility is a measure of happiness for the investor. A utility function can
describe the relation between happiness and future wealth. The investor
can systematically rank different investment opportunities corresponding to
different wealth levels, thus a way to apply the principle of risk aversion.
Risk aversion means that the investor prefers less risk against more wealth.
For a utility function to illustrate risk aversion it is required to be concave.

There are some measures that describe how a utility function can explain
the investor’s behavior in the financial market. These are:

• Risk aversion – explains how the investor behaves in the equity market.

• Prudence – explains the investor’s behavior when he makes precau-
tionary savings.

• Cautiousness – explains the investor’s tendency to trade derivatives,
according to [15].

The authors in [28] and [2] developed the measure of risk aversion. The
higher risk aversion an investor has the larger risk premium he demands for
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taking risk. This is for absolute risk aversion

ARA(W ) = −u′′(W )

u′(W )

and for relative risk aversion

RRA(W ) = −W
u′′(W )

u′(W )
.

The author in [18] developed the measure of prudence. The higher prudence
an investor has the more precautionary savings he makes in relation to risk
in his wealth. This is

P (W ) = −u′′′(W )

u′′(W )
.

The measure of cautiousness was introduced by [35]. This is the first deriva-
tive of risk tolerance, where risk tolerance is the inverse of absolute risk
aversion. This is

P (W ) = −
(

1

ARA(W )

)

′

.

It is now widely accepted that investors should have decreasing ARA be-
haved utility function, [15]. It has also been shown in [14] that increasing
cautiousness may be more likely if increasing cautiousness implies decreasing
relative risk aversion given that marginal utility of zero wealth is infinity.

6.1.1 Utility and derivatives

How to motivate the existence of derivatives in the economy is not obvious
from a theoretical point of view. The optimal allocation in derivatives in
this sense has only been addressed in a few papers. This is partly because
of the complexity of the problem and partly because of the major success
of arbitrage based models for pricing derivatives. The optimal position in
derivatives is usually either indeterminate or infinite based on these models.
This is because if the investor agrees with the price of the derivative then
he could either buy the derivative or dynamically trade the underlying asset
to obtain the same pay off. If the investor disagrees with the price then he
buys or sells infinite of the contract.

The authors in [8] set up a framework with a single period economy
with the existence of three asset classes, a risk less asset, a risky asset and
European options of all strikes. The inability to trade continuously in this
framework makes it possible to invest in all investment classes. The objec-
tive is to maximize the expected utility of terminal wealth. They showed
that under reasonable market conditions derivatives comprise an important,
interesting and separate asset class imperfectly correlated with other asset
classes.
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6.2 The representative investor

The representative investor in this thesis will have a utility function on the
form

U(W ) =

{

1
1−λ (τλ + W )1−λ W ≥ −λτ,

−∞ W < −λτ,

for some 0 < λ < 1. When τ is zero than we the have power utility, see
(3.10). If τ is less than zero will the investor invest as to create a floor on
terminal wealth, the floor becomes −λτ .

Figure 6.1 illustrates the shape for different floors with λ equal to 0.6.
When creating a floor on terminal wealth the investor will first choose be-
tween the bond and the structured product for securing the floor. Then will
the investor also consider the asset with downside risk, the equity index.
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Figure 6.1: The figure illustrates different shapes of the utility function for
different floors.

To be able to determine what kind of investor who would prefer to buy
the structured product two portfolios are created. This with starting point
that the investor wants to secure all amount invested. The first portfolio
is the package of the bond and option with 100 % capital guarantee, which
is the structured product. The second portfolio is created with the same
idea about 100 % capital guarantee but to a traditional portfolio consisting
of the bond and equity index. This creates a position where 100 % of the
capital is secured. However, large losses in the risky part have very small
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probabilities. This also makes that large profits are very limited. Profit and
loss diagram is showed in Figure 6.2.
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Figure 6.2: Profit and loss diagram for the two portfolios.

In this example the bond and the option mature in two years. The
present value of the bond and the option price1 is approximately 92 % re-
spectively 18 %. These figures correspond to an interest rate of 4 % and
volatility at 25%. This means that the traditional portfolio would consist of
92 % bond and 8 % equity index. A structured product, the package of a
bond and an option, would have a participation rate of 43 %. Break even is
given by

1 − B

k − (1 − B)
,

where B is the price of a zero coupon bond and k the participation rate.
Break even is 21 % according to the numbers presented in the example. Fig-
ure 6.3 illustrates break even for different values for volatility and interest
rate.

It is obvious from the relation shown in Figure 6.2 that an investor who
wants to preserve capital and does not value high returns wants to invest
in a portfolio consisting of a bond, which grows to the floor, and the equity
index that can give a higher pay off. An investor who is satisfied with just
preserving all of his initial wealth but wants higher return chooses the com-
bination of a bond and an option.

1Valued with Black and Scholes formula.
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Figure 6.3: The surface diagram shows break even for different volatility
and interest rate.

These types of structured products have grown massively during the last
years so there is real world evidence that investors like or prefer these kind
of products. It could be the combination of regret and greed which these
products capture very well. The investor does not loose any money but he
can still earn a lot compared to the same downside exposure in traditional
investments, bond and equity index. We also have the aspect of an investor
that have a short period of time until retirement where he cannot afford to
loose any money but he still wants to participate in the performance of the
equity market.

So what investor would prefer this pay off function? The following as-
sumptions can be made:

• Preserve capital – the investor does not want to loose any money.

• High returns – the investor believes that the equity market will perform
well (better than the market thinks) or fear bad (worse than the market
thinks). This might be translated into a high future volatility view.

• Not low returns – the investor does not value small returns or think
they have small probability to occur. (Practically the same preference
as previous).

The utility function is calibrated to the investor’s preferences who would
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prefer the structured product instead of the the combination of the bond
and equity index. Because of both portfolios are 100 % capital guaranteed
so makes it no sense to calibrate the floor, only λ.

This relation is of course dependent on the probability of each event so
some calibration distribution must be selected. A lognormal RND is se-
lected, with an interest rate of 4 %, volatility at 20 % and a time period of
two years. The transformation to a real world density is made with (3.8),
where the transformation parameter is calibrated for different excess returns.

It turns out that the level of λ so the investor would prefer the struc-
tured product is highly dependent of the expected excess return. The higher
expected excess return the more the investor wants the structured product.
The difference in expected utility as a function of λ is illustrated in Figure
6.4 for different excess returns. The values on the y-axis represent the differ-
ence in expected utility between the two portfolios. When the difference is
positive then the investor would prefer the structured product to the other
portfolio.

For expected excess returns of slightly higher than 4% and smaller the
investor would prefer the bond and equity index portfolio for all λ . For
expected excess returns from around 5% and up the investor prefers the
structured product for all λ. Given historical risk premiums a reasonable
range would be between 4% and 8%, see next section.
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Figure 6.4: The figure illustrates the difference in expected utility for the
two portfolios for different parameters.
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λ is chosen to be 0.6 as a good reference. This procedure works just as
a guideline for having some understanding of what parameter of λ that is
reasonable to use. Because it is possible to create a third portfolio consist-
ing of the bond and the structured product which would also create a 100
% capital guaranteed portfolio but with infinite number of weights between
the two assets.

Further on is the floor set to 70 % which makes it possible to invest in
the equity index as well. If the floor would be set to 100 % then the equity
index has an upper bound equal one minus the price of a zero coupon bond.

6.3 Risk Premium

Risk premium is the excess return earned by a risky asset over a risk-free
asset. During the post World War II period the U.S. stock market had a
mean real return2 of 8.4 % while a relatively risk less T-bill earned 0.6 %.
This means an equity risk premium of 7.8 %. Other developed countries
show the same pattern of high risk premiums. Table 6.1 shows numbers for
different countries.

Table 6.1: Historical returns for markets worldwide, data are from [25].

Country Period Equity Index T-bill Risk Premium

United Kingdom 1947-99 5.7% 1.1% 4.6%

Japan 1970-99 4.7% 1.4% 3.3%

Germany 1978-97 9.8% 3.2% 6.6%

France 1973-98 9.0% 2.7% 6.3%

U.S.A. 1947-00 8.4% 0.6% 7.8%

The equity risk premium puzzle originates from [26] work. They con-
cluded that the historical U.S. equity premium is an order of magnitude
greater than can be explained in the context of the standard neoclassical
economics. The relation to this in this thesis is the transformation from
the RND to a real world density with the link to the investor’s utility. To
obtain the high risk premium observed historically would equal implausible
high risk aversion.

The risk premium has varied a lot during time, in some periods negative
and in some very large. The authors in [26] addressed the ex post (realized)
risk premium but what is more interesting from an investor’s point of view is
the ex ante (expected) risk premium given the current state of the economy.
In relation, after a bull market the ex post risk premium is high but the ex
ante equity premium is likely to be low. This should be clear when returns

2Real return is inflation adjusted return.
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to stock have been documented to be mean reverting, [25]. In this thesis no
consideration will be taken to the current state of the economy but accept
the ex post risk premium to be a good reference for future risk premium.
The purpose is not to show relations of the current state of the economy in
terms of expected return but to build a generalized model based on prior
stated criteria.

In this thesis a transformation with rather high risk aversion will be ac-
cepted to be able to obtain a reasonable high risk premium. As [25] states,
over the long term, the equity premium is likely to be similar to what it
has been in the past and returns to investment in equity will continue to
substantially dominate returns in T-bills for investors with a long planning
horizon.
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Chapter 7

Portfolio optimization

Modern portfolio theory was originated by Markowitz work who presented
the mean-variance approach to asset allocation in 1952, see [23]. This is
still a cornerstone in teaching and practice of classical financial theory. The
mean-variance approach rests on firm theoretical grounds if either investors
exhibit quadratic utility1 or returns are multivariate normal. If investors
exhibit quadratic utility then they ignore non-normality in the data. How-
ever, quadratic utility is not always plausible because utility is not strictly
increasing in wealth from some scenarios. It means that investors will not
always prefer more wealth to less. In practice there are many known short-
falls with this approach discussed in [31].

Variance as a measure of risk also has a big disadvantage in the sense
that it treats both good and bad outcomes in the same way. Even Markowitz
realized this and mentioned in the footnotes that other measures can be used
like semi-variance. There have been many attempts to replace variance as
a measure of risk such as Value-at-Risk (VaR), minimum regret and con-
ditional Value-at-Risk (CVaR). All of these risk measures have in common
that focus is on the left tail of the distribution, which means extreme losses.

When dealing with investment products that have non-linear payoffs this
must be considered in terms of how risk is measured. Risk measures such
as CVaR and VaR is suitable for this. One shortfall by just focusing on
extreme events is that the whole distribution is not considered. When using
a utility function every possible outcome is considered, not only the really
bad ones. This is the reason in this thesis to consider an utility function to
represent the investor’s preferences.

Portfolio optimization involving structured products has been treated
for example in [19] and [24]. Both of their focus is to create a simulation
model where CVaR is minimized in the portfolio optimization.

1Quadratic utility is on the form u(x) = x −

b

2
x

2.
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7.1 Optimization algorithm/problem

Consider an investment universe where three assets are available: a risk less
asset, a risky asset and a structured product on the risky asset. Assume
a single period investment, where investments are made at time 0 with all
payoffs received at time 1. The objective is to maximize terminal expected
utility and the problem becomes

max
z1,z2,z3

∞
∫

0

U [W (s)] fS(s)ds

s.t. B0

∞
∫

0

W (s)fS(s)ds = W0

zi ≥ 0
∑

izi = 1

where z1, z2 and z3 are the weights for each asset, W (s) is the pay off func-
tion, W0 initial wealth, fS(s) the RND and fS(s) the real world density. The
first constraint ensures that all assets are priced according market conditions
so that real world probabilities are consistent with risk neutral probabilities.
It also ensures not to overspend on assets. The other two constraints make
that all initial wealth is spended and that short selling is restricted.

7.2 Scenario definition

The four scenarios are defined in this part. This is two volatility regimes
and two states of interest rates.

The volatility regimes are defined with respect to historical implied
volatilities derived from the VSTOXX Volatility Index2. This is an index
which reflects the Euro Stoxx 50 option market implied volatility. Histori-
cal volatilities from VSTOXX are shown with the short term index, which
has more history, and the 24 month index, Figure 7.1. The defined periods
are a low volatility period in December of 2006 and a high volatility period
during the credit crisis in December of 2008. These volatility regimes define
points in time where the implied RND reflects the market sentiment from
one normal and one distressed market.

In opposite from the volatility the interest rate is assumed with respect
to historical interest rates in the Swedish fixed income market. Figure 7.2
shows historical 2 year Swedish swap rates and the level of the interest rates
that are selected for the scenarios.

2For further information see www.stoxx.com
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Figure 7.1: The figure illustrates historical implied volatilities.
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7.3 Case study

Four scenarios have been created, summarized in Figure 7.3. These include
two volatility regimes and two states of interest-rates. The corresponding
interest rate, ATM implied volatility and the participation rate are shown.
It is important to point out that the ATM implied volatility is risk neutral
and also does not say anything about the shape of the distribution but only
to outline the relation. The representative investor is defined to have the

Distressed market

Participation rate 44%

Normal market

Participation rate 72%
Normal market

Participation rate 35%

Distressed market

Participation rate 17%

Low interest rate 2% High interest rate 6%

High volatility
37%

Low volatility
17%

Figure 7.3: The figure summarize the four different scenarios.

utility function as discussed in Chapter 6, illustrated in Figure 7.4. This is
with λ equal to 0.6 and the floor set to 70 %.

The optimal allocation for the scenarios is shown in Figure 7.5. The im-
plied expected excess return on the x-axis is with respect to the equity index,
not the optimal portfolio. The implied expected excess return is calculated
with a range of λ between zero and one, (this λ used in the transformation
must not be confused with the λ for the representative investor). When the
implied expected excess return is calculated with the same variables means
that the range on the x-axis is assumed to be equivalent across the different
scenarios.

The optimal allocations show the same pattern. For lower excess return
no allocation is made to the structured product but after a threshold the
allocation goes from zero weight quick up to 70 %, where the floor is. This
level is reached for the highest transformation value in the low volatility and
high interest rate scenario.

One way to see if there is any difference is to determine the points where
the allocation in the structured product first differ from zero. The thresh-
old when allocation is made to the structured product is dependent on the
relation discussed in Chapter 6. This means for lower excess returns the
portfolio consisting of only bond and equity index is preferred against the
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Figure 7.4: The figure illustrates the shape of the representative investor’s
utility function used in the scenarios.

structured product. For higher expected excess returns the structured prod-
uct is prefered. From the figure there is no significant difference at all. The
range where the allocation in bonds are flat for a short range and then low-
ers are almost identical across the scenarios. The difference in allocation is
independent on the market climates but only if one would assume different
expected excess return in different market climates. That is, the parameter
which transforms the RND to a real world density is the same.

Another way to to see if there is any difference is to determine the range
where the allocation in the structured product first equal the floor. The
difference is most significant between the two interest rate states. In the
high interest state scenarios the increase from zero allocation is more flat.
The low interest rate scenarios show a more steep rise. This means that
the investor demands a higher expected excess return for investing a large
proportion in structured products in a high interest rate market.

The optimal weights are highly dependent of the choice of parameters,
floor and λ. However, the weights show the same pattern and have the
impact one can expect. For example, if one lower the floor then the weight
in the structured product lowers and vice versa. The weight in the structured
product is decreasing in λ. That is if λ decreases the weight in the structured
product increases.
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Figure 7.5: The figure illustrates the optimal allocation across the scenarios.

7.4 Conclusion

Modeling the risky asset by the implied risk neutral density from the option
market permits to capture the market’s sentiment. However, the transfor-
mation from the risk neutral world to the real world can be hard to interpret.
It is possible to get a deeper understanding when translating this to an ex-
pected return instead of referring to different coefficients of risk aversion.

Several probability distributions were fitted to the two different implied
volatility sets. The fit with the Normal inverse Gaussian distribution was
selected to represent the low volatility set and the skew Student t distribu-
tion the high volatility set. These distributions have good properties and
showed very good fits to the option prices but only to respective volatility
set.

In the portfolio optimizaton a representative investor was considered
who would prefer the structured product. It is obvious that the optimal
allocation becomes biased towards the structured product but the aim is to
show the difference with respect to the market climates not to motivate the
existence of structured products in an effective portfolio.

The difference in optimal allocation between the four scenarios is shown
to be negligible. That is, if one compare the points where allocation in the
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structured product first differ from zero. If one compare the points where
the allocation in the structured product first equal the floor is the result
somewhat different. Between the two interest rate states the difference is
most significant. In the high interest state the increase from zero allocation
is more flat. The low interest rate scenarios show a more steep rise. This
means that the investor demands a higher expected excess return for invest-
ing a large proportion in structured products in a high interest rate market.

It was difficult to determine how the scenarios should be compared. The
question about equivalence between expected excess return or the same cal-
ibration parameter arose. The latter was preferred because it seems to be
a more reasonable assumption about different expected excess returns in
different market climates than the same.

The result is thus based on the assumption that different market climates
have different expected excess return but over the same transformation pa-
rameter, coefficient of risk aversion. Thus, the aggregate market utility risk
aversion is the same independent of market climate.

The argument for high volatility implies higher probability for higher
returns must hold. This is perhaps not true when equity prices tend to fall
when volatility is high. Volatility is usually not regarded as a good thing in
the financial world. With this assumption it does not matter for the investor
what the volatility is. The investor can just rebalance his portfolio to match
his risk preferences when the expected return increases with volatility.

The impact of using the risk neutral density implied by the option market
in the portfolio optimization was not reviewed in detail. These distributions
were accepted and assumed to be the best predictions of future movements.
One alternative would be to use historical densities but this cannot reflect
the market’s expectation in the same way.

The level on allocation in structured products is shown to not be sig-
nificantly dependent on the market climate. The participation rate is then
not of crucial importance for investment decisions. It is shown that the
most important factor is the expected excess return. If the expected excess
return is low, relative to the transformation parameter, then no allocation
is made to the structured product. If it is high then the structured prod-
uct is preferred. However, this pattern is clear across the scenarios which
imply independence between optimal allocation in structured products and
the market climate.

In conclusion, the optimal allocation is not significantly dependent on
the market climate, thus the participation rate. If an investor has invested
in a structured product when the participation rate was high then there
is no reason for him not to do it when the participation rate is low. The
large excess return we have seen historically should justify and argue for
investments in structured products regardless of what market climate that
prevails.
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Appendix A

The related result by
Breeden and Litzenberger

In [6] the authors show that if the underlying price at time T has a continuous
probability distribution, then the state price at state is determined by the
second derivative of the call pricing function for the underlying asset with
respect to the exercise price, X. This means

q(S) = erτ [C(S + ∆S, τ) − C(S, τ)] − [C(S, τ) − C(S − ∆S, τ)]

(∆S)2

where r is risk-free rate, τ is time to maturity, ∆S is the ’spread’ and C(S, τ)
is the price of a European call option with strike S.

The state price was introduced by [2] and [11] and it is the price of an
elementary claim, also known as ’Arrow-Debreu’ security. An elementary
claim is an asset that pays one unit at a future time if the underlying asset
takes a certain value or state. The state price is directly proportional to the
risk-neutral probabilities of each possible state.

The elementary claim can be replicated using a butterfly spread. The
price of a butterfly spread, centered on state S = X is

P (S, τ |∆S) =
[C (S + ∆S, τ) − C (S, τ)] − [C (S, τ) − C (S − ∆S, τ)]

∆S

and when

lim
∆S→0

P (S, τ |∆S)

∆S
=

∂C2 (X, τ)

∂X2

∣

∣

∣

∣

X=S

follows the risk neutral probability for every state

lim
∆S→0

q(S) = e−rτ [C (S + ∆S, τ) − C (S, τ)] − [C (S, τ) − C (S − ∆S, τ)]

(∆S)2

∣

∣

∣

∣

X=S

where ∆S is the ’spread’.
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Appendix B

Fitting result
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Figure B.1: The figure shows the RND best fit with the two lognormal
mixture.
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Figure B.2: The figure illustrates comparison between best fit implied
volatility.
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Figure B.3: The figure shows the RND best fit with the GEV.
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Figure B.4: The figure illustrates comparison between best fit implied
volatility.
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Figure B.5: The figure shows the RND best fit with the generalized gamma.
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Figure B.6: The figure illustrates comparison between best fit implied
volatility.
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Figure B.7: The figure shows the RND best fit with the skew Student-t.
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Figure B.8: The figure illustrates comparison between best fit implied
volatility.
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Lognormal 1
Lognormal 2
Mixture

Figure B.9: The figure shows the RND best fit with the two lognormal
mixture.
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Figure B.10: The figure illustrates comparison between best fit implied
volatility.
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Gev

Figure B.11: The figure shows the RND best fit with the GEV.
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Figure B.12: The figure illustrates comparison between best fit implied
volatility.
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GenGamma

Figure B.13: The figure shows the RND best fit with the generalized gamma.
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Figure B.14: The figure illustrates comparison between best fit implied
volatility.
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NIG

Figure B.15: The figure shows the RND best fit with the NIG.
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Figure B.16: The figure illustrates comparison between best fit implied
volatility.
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