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Credit risk is considered the dominant source of risk  in 
the world of banking and finance and is therefore the 
attention of both private and public actors. Thus, the 
need of a method to accurately estimate credit ratings 
migration probabilities is a necessity, but yet there is 
none deemed adequate. The aim of this thesis is to 
propose a proof of concept and suggest a method that, 
applied on internal rating data, estimates ratings 
migration probabilities while incorporating the state of 
the economy. The field of modelling of ratings migration 
as currently known is presented and aspects of 
importance will be highlighted. Further, the method of 
discrete-time Maximum Likelihood estimation is 
proposed and empirically applied with the incorporation 
of a macro economic variable. As a result, less diagonal-
dominant transition matrices that captures generated 
movements. Thus, the method renders possible stress 
testing of transition matrices for historical as well as 
fictive scenarios.  
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INTRODUCTION 

 
In the business of banking and finance, credit risk is considered the dominant source of risk and 
is therefore the attention of many,i both private and public actors. Changes in credit quality of 
counterparties, i.e. borrowers, are known as credit migration and are cardinal input to many risk 
management applications. As such, there are portfolio risk assessment, pricing of credit 
derivatives, modelling the term structure of credit risk premium and assessment of regulatory 
capital.ii Thus, in order to measure and monitor credit risk, there are many regulations concerning 
this constant advancing field. The most important are perhaps the Basel capital accords, which 
are recommendations on banking laws and regulations issued by the Basel Committee on 
Banking Supervision to promote stability in the financial system. Due to the fact that the Basel 
capital accords soon will allow certain financial institutions to use an internal ratings-based (IRB) 
approach to determine capital requirements for exposures, a method to accurately estimate credit 
ratings migration probabilities is of great necessity to financial institutions in general and to banks 
in particular. Empirically, the need has also been indicated by the financial situation that erupted 
all around the globe during the past year. 
 
The most commonly used methods for estimating credit ratings migration have proven 
inefficiencies, and the trend in research is to propose more and more complex methods. These, 
due to their intricate nature, are hard to grasp as well as to implement. In addition, these methods 
lull one into a false sense of security, when implying that they mirror the world to a greater extent 
than they actually do. In order to find a suitable method, one has to understand the basics of 
credit quality dynamics. These are often described as a stochastic process of credit grades, 
represented by a matrix whose elements represent current and future states of credit grades that 
are independent of the past states, i.e. a Markov chain. The independence of the process history 
is debated, but the general idea of a matrix, with elements representing a current rating grade and 
probabilities for ending up in another grade during a certain period of time, is representative. By 
intuition, one deems that these transitions are dependent on time, i.e. conditional on the state of 
the economy. However, there is no clearly discernible way of how to incorporate this. Even 
though there are many proposed methods, none have had great impact. Incorporating the state 
of the economy would render possible to stress test transition probabilities, and to see the impact 
of possible scenarios never historically experienced. This is a great advantage in financial 
applications, since history is known not to only repeat itself, but to do so due to constantly new 
reasons.  
 
The aim of this thesis is to give a proof of concept and to propose a method, which applied on 
internal rating data provided by a bank, estimates ratings migration probabilities while 
incorporating the state of the economy. In the forthcoming text, an overview of the field of 
modelling of ratings migration matrices as currently known is presented and aspects of utmost 
importance to the aim of this thesis will be highlighted. As a starting point, aspects regarding the 
data the estimations are to be applied upon are discussed, since these often bring about 
limitations not always regarded in literature. When established what aspects that ought to be 
taken into consideration when attempting to develop a method superior to the commonly applied 
– as well as those proposed in recent years – a refined method founded on the facts emerged is 
proposed; the discrete-time Maximum Likelihood (ML) estimation. The method is empirically 
applied on internal rating data supplied by Skandinaviska Enskilda Banken AB, publ. (SEB) in 
two steps; first in the case of time-homogeneity, i.e. there is no time-dependence, and compared 
with the widely applied cohort method. Second – in an extended model that incorporates the 

                                                 
i Typically, the risk taxonomy apart from credit risk includes market and operational risk. 
ii Jafry & Schuermann (2004) and Mählmann (2006) 
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state of the economy – in the application of different scenarios that demonstrates the possibilities 
of stress testing. The thesis concludes with remarks on the result.  
 
 

THEORETICAL FIELD 

 
When modelling credit ratings migration there are numerous ways to proceed. The first – and in 
literature often disregarded – step is to consider what data are available to base computations on. 
This is decisive when choosing if and what Markov model that is adequate for our modelling 
purposes. By intuition, one often deems that a credit rating may change at any point in time, and 
that therefore a discrete approach is incorrect – i.e. evaluating and/or reading off the rating at 
predetermined times. However, one may argue that the opposite – to continuously monitor the 
transitions – does not adequately describe what is actually taking place, particularly when using 
internal rating data.iii The monitoring of a borrower is in fact not continuous, why the exact time 
of a rating migration is not observed, and a credit grade could change without anyone noticing 
for quite a while. It should be noted that the Basel Committee on Banking Supervision, when 
formulating the minimum requirements for the application of the IRB approach, acknowledges 
the impossibility of a continuous monitoring of small and medium-sized borrower ratings. Banks 
are only required to refresh their borrower and facility ratings ‘‘at least on an annual basis’’iv, 
whereas the frequency of reviews must be risk-sensitive.  
 
Concerning external rating data, there are other aspects to consider that will not be discussed 
further due to the aim of this thesis. Regarding internal rating data, the above mentioned aspects 
should be considered sufficient to be acknowledged as the starting-point when evaluating the 
appropriateness of methods proposed in research publications as well as in books. To my 
knowledge, there have only been six research publications that to some extent discuss the 
properties of internal versus external rating data in connection to modelling rating migration 
matrices.v This is a minority regarding that there are forty or so research publications concerning 
credit ratings migration, all published during the 21st century.  
 
First and foremost, there are two properties of the data to consider when founding an opinion on 
how to best model ratings migration. One of them is the first-order Markov property, i.e. that 
transition probabilities from each rating class are independent of the process history, also known 
as non-existing rating momentum or path dependence. That no rating momentum exists is very 
convening when modelling the transitions, since it simplifies the model. Although, it is a very 
strong assumption which adequacy could – and should – be argued, which is also the case in a 
number of research publications.vi In none of these publications, existence of path dependence in 
rating data can be rejected, even though it cannot always be proven to exist either.vii The majority 
however, find statistical differences that indicate that rating momentum exists, which also follows 
from logical arguments concerning the data characteristic. However, in one publication it was 
                                                 
iii Mählmann (2006) considers that (A) exact times of movement between rating classes and the class occupancy in between 
observations are unknown and (B) observation and inter-examination times vary for different borrowers. He argues that the 
observation time of the rating depends on (a) the current rating (reflects the probability of default, PD), (b) the terms of the loan 
(reflect the loss given default, LGD), (c) the loan size (reflects the exposure at default, EAD) and (d) the closeness of the bank–
borrower relationship (reflects the moral hazard component of credit risk). Thus the structure of the monitoring times will vary 
for each borrower, depending on his level of expected loss (EL = PD x LGD x EAD). 
iv Mählmann (2006) points this out in Basel Committee on Banking Supervision, 2005, Section 425. 
v Araten et al. (2004), Feng et al. (2008), Lando & Skødeberg (2002) [consider both internal and external continuous, although 
without reflecting on what has been discussed in this text], Mählmann (2006), Rösch (2005) and Weissbach& Dette (2007) 
vi Mählmann (2006), Parnes (2007), Frydman & Schuermann (2008), Bangia et al. (2002), Lando & Skødeberg (2002), Gagliardini 
& Gourieroux (2005) 
vii Bangia et al. (2002) 
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found that the rating momentum effect of the previous move vanishes after about 2.5 years, but 
is significant up to that point in time.viii  
 
The other property to be considered is the aspect of time-homogeneity, i.e. that the transition 
probabilities are functions of the distances in time between dates, and that the same transition 
matrix could be used for each point in time, independently of the date’s position in time. This too 
is a strong assumption to impose, and rating data – at least external rating data – are shown to 
not have this property in numerous research publications,ix a property that is discussed in several 
others.x The fact that time-in-homogeneity most often has been shown for external data should 
be considered important, since external data often are ascribed to be through-the-cycle rather 
than point-in-time.xi Therefore, by logical argument, time-in-homogeneity – if existing – should 
be more pronounced when dealing with internal ratings, which have been shown to be more 
point-in-time than external ratings.xii However, for the sake of modelling ratings migration for a 
limited time frame, the important feature is not whether or not ratings possess time-homogeneity 
in an unlimited time frame, but if it approximately behaves like it for the time frame one is 
interested in.xiii The fact that this could be the case has been shown in research publications for 
time frames of 1-2 years.xiv However, this test was carried out for external rating data, which 
could reflect the stability of the through-the-cycle ratings. That this is the case is not contradicted 
by a publication that finds external rating data to exhibit a homogeneous process, and internal 
rating data to exhibit in-homogeneities.xv The aspect of limited time frames is likewise applicable 
on the first-order Markov property, although it is debateable whether the through-the-cycle rating 
has the same impact as it has on the homogeneity property. By logical argument, the difference in 
definition should – unlike in the case of time-homogeneity – be of no utmost importance. 
 
Disregarding whether or not a model with first order Markov properties is possibly suitable, it 
has been shown that the use of discrete-time data has larger impact than imposing time-
homogeneity on a continuous-time model. By comparison, it was found to be more damaging in 
terms of efficiency loss to use a so called discrete-time cohort method, than to use a continuous-
time duration model with an assumption of time-homogeneity.xvi This, however, can only be 
considered shown for these specific models, and not representing a universal disparity between 
discrete-time and continuous-time methods. Overall, it is not foregone how to compare different 
models proposed by research publications due to their complex nature, and thereby to what 
extent they are affected by the properties of the data. This concerns both the properties the 
model claims are taken into account and – perhaps more importantly – those that are not. 
 

                                                 
viii Fledelius et al. (2004) 
ix Kiefer & Larson (2007), Parnes (2007), Mählmann (2006), Hanson & Schuermann (2006) 
x Jafry & Schuermann (2004), Bangia et al. (2002), Czado & Pflüger (2008) 
xi Through-the-cycle ratings are forward looking, and as such nearly constant over time and not conditioned on the point of the 
economic cycle, whereas a point-in-time rating incorporates all relevant information that influences the one year worthiness of a 
borrower, Rösch (2005). 
xii Mählmann (2006) 
xiii When representing ratings migration as a Markov model, default is considered an absorbing state, which strictly speaking 
implies that – in the long run – all assets are in default. This fundamental property is not adequate to ascribe to assets in the long 
run, but appropriate in the short run, why Kiefer & Larson (2007) consider it “ridiculous” to worry about if the ratings really have 
the non-homogeneity property for an unlimited time frame. 
xiv Kiefer & Larson (2007) 
xv Weissbach & Dette (2007) applied their test on external rating data on sovereigns, which should be taken into consideration 
when assessing their results significance. Regarding the internal rating data they found in-homogeneities for few transitions to 
neighbouring rating classes. 
xvi Jafry & Schuermann (2004) made a comparison between the discrete cohort method and one continuous-time duration model 
with an assumption of time-homogeneity and one without; between the latter two there were no statistical difference, but an 
efficiency gain was found in comparison to the cohort method.  
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Two final aspects regarding the data are the facts that the sample both is right-censored and left 
truncated, which concern internal and external credit ratings likewise. This is due to the fact that 
one does not know what happens to the firm after the sample window closes – e.g. does it 
default right away or does it live on until present – and that firms only enter sample if they have 
either survived long enough or received a rating.xvii These too are aspects that not too often are 
regarded in research publications,xviii mostly due to the fact that they are hard to do anything 
about.  
 
When contemplating the characteristics of credit migration data and one tries to settle which 
characteristics that cannot be disregarded at any time, and which that under certain circumstances 
can be disregarded, there are things to keep in mind; that there are other aspects than the – 
perhaps simultaneous – dependencies of the transitions on time and credit ratings that has to be 
considered. If time-in-homogeneity is a property to be regarded when modelling ratings 
migration, one has to ponder how to best reflect this behaviour in the model. There are several 
research articles that evaluate the usage of macro economic variables in order to take the time-in-
homogeneity into consideration.xix There are at least two clear discernable ways to do this; the 
model either condition the transition matrix on a macro economic variable considered relevant, 
e.g. the gross domestic product (GDP), interest rates or an economic cycle index etc,xx or there is 
a latent variable, which can be constructed in several different ways.xxi One of the latter actually 
back out what macro variable to be the most appropriate after the computations are done, and 
find that the GDP is the most suitable.xxii Over all, of all the made comparisons, the GDP is most 
often found significant, but regarding the economic cycle indexes there is no uniform 
conclusion.xxiii Other parameters are not compared to such extent that any conclusions can be 
drawn.  
 
Another important aspect regarding macro economic variables, not commonly discussed in 
research papers, are the aspect of time lags. Only a couple of the articles applying macro 
economic variables reflect on this issue,xxiv why its importance has not been examined to an 
extent sufficient to draw any conclusions. Although, this has to be taken into consideration, since 
its impact by logical reasoning could be significant.  
 
The aspect of including macro economic variables in the modelling of credit ratings migration is 
also reflected in the choice of discrete-time versus continuous-time modelling, an aspect not ever 
mentioned in literature. Macro economic variables are not observed on a continuous basis, why 
the modelling of such, if carried out, will contain a great uncertainness that will affect the 
modelling of transitions in general. Another aspect is the so to speak ‘reason’ that macro 
economic variables are not continuously observed; they often do not change that quickly. This 
further fortifies that continuous-time modelling regarding macro economic variables may be 
unsuitable, which in turn influences ones taken position on the discrete versus continuous aspect 
of the rating transitions themselves.    
 

                                                 
xvii Jafry& Schuermann (2004) 
xviii Mählmann (2006), Jafry & Schuermann (2004) 
xix Bangia et al. (2002), Parnes (2007), Koopman et al. (2008), Banachewicz et al. (2006), Duffie et al. (2007), McNeil et al. (2007), 
Trück (2008), Hanson &  Schuermann (2004), Gagliardini & Gourieroux (2005), Feng et al. (2008), Nickell et al. (2000), Frydman 
& Schuermann (2008) 
xx Bangia et al. (2002), Trück (2008), Frydman & Schuermann (2008) 
xxi Koopman et al. (2008), Feng et al. (2008) 
xxii Feng et al. (2008) 
xxiii Note that these evaluations often are based on external, as well as American, rating data. 
xxiv Czado & Pflüger (2008), Banachewicz et al. (2006), McNeil et al. (2007) 
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The conclusions one comes to regarding the above mentioned aspects are that time-in-
homogeneity should be taken into account when modelling internal credit ratings migration, due 
to their point-in-time property. Rating momentum, on the other hand, could initially be 
disregarded. Regarding the truncation and censoring aspects, truncation can be disregarded, 
whereas censoring to some extent could – and should – be taken into consideration, if there is 
additional knowledge about whether a borrower has defaulted or not after the sample window 
closes. The fact that defaults are rather rare, and also that the default probability is the most 
interesting probability in the transition matrix, makes one wants to capture the most of the 
information available. The main points of decision, concerning the discrete-time versus 
continuous-time modelling, become the aspects of how to most adequately take macro economic 
variables into consideration, and how one assesses the monitoring of internal rating data. Due to 
the fact that these are to be taken into consideration simultaneously, there are other aspects than 
those most frequently discussed in research publications that are of decisive importance. This 
unexplored area will therefore have to be entered without extensive previous delving.  
 
 

PROPOSITION OF A REFINED MATHEMATICAL METHOD FOR ESTIMATING 
TRANSITION PROBABILITIES 

 
Taking the properties of internal rating data as well as macro economic data into consideration, it 
is deemed most appropriate in this thesis to model ratings migration with time-in-homogeneity 
properties as discrete in time, and to use a parametric approach to incorporate macro economic 
variables to reflect the state of the economy.xxv The model is then based on as few assumptions 
regarding the data as possible, which minimizes the risk that one incorporates incorrect 
assumptions with devastating result. As well, one makes use of all data available – which is 
important in view of the limited sample. Taking these aspects into account, a model is proposed 
with extraction in a continuous-time Maximum Likelihood estimation of a time-homogenous 
Markov chain, proposed by Mählmann (2006), which is suitable when dealing with incompletely 
observed rating data. The method is capable of providing ML-estimates when the exact time of 
movement between rating classes, and the class occupancy in between the observation times, are 
unknown – which is the gist other methods do not take into consideration. The method 
proposed in this thesis – the discrete-time ML-estimation – differs from the method proposed by 
Mählmann by being discrete in time at quarterly intervals, which is more suitable when 
incorporating macro economic variables. However, it still takes into consideration that the inter-
examination times may vary for different counterparties, as well as for the individual. 
Furthermore, the discrete-time ML-estimation is then extended to incorporate macro economic 
variables, a feature not inquired by Mählmann.  
 

TRANSITION PROBABILITY ESTIMATION WITH AN ASSUMPTION OF TIME-
HOMOGENEITY 

                                                                                                                                                   
To deduce the ML-estimation methods and to show how the discrete- and continuous-time cases 

                                                 
xxv In line with previous reasoning, there will here on be an assumption of first-order Markov property.  If one, however, do not 
want to disregard the aspect of rating momentum, it is easy to incorporate by expanding the transition matrix to include not only 
the initial rating and the end rating, but expanding the initial rating to also include the previous rating. By doing this one multiplies 
the number of elements in the matrix by the number of states, and therefore the number of elements to be estimated will be 
multiplied. All this, while the amount of data to base the computations on is the same. This will convey greater uncertainty in the 
ratings migration estimation. Due to the fact that estimation accuracy carries great weight in this thesis, in order to being able to 
compare methods, this rather simple evolvement to consider rating momentum will not be carried out, but can be considered for 
future research. 
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differ, a first-order time-homogenous Markov chain ܺሺݐሻ denoting the rating class occupied at 
time ݐ ሺݐ ൒ 0ሻ serves as the starting point. Furthermore, the Markov chain assumes to have a 
finite number of states 1, 2, … , ݇஽, where 1, 2, … , ݇஽ିଵ are defined by decreasing levels of credit 
quality and ݇஽ is the default state, which is absorbing. Let  ܲሺݏሻ denote the ݇஽ ൈ ݇஽ transition 
probability matrix whose ሺ݇݇Ԣሻth element ݌௞௞ᇱሺݏሻ is the probability of migrating from state  ݇ to 
 ݇Ԣ within a time interval of length ݏ. Assuming that the data are discrete and that the observation 
times of the Markov chain are identical for each borrower, i.e. ݐ଴ ൏ ଵݐ ൏ ௝ݐ ൏ ڮ ൏  ௝೙ andݐ
equally spaced such that ݏ௝ ൌ ௝ݐ െ ௝ିଵݐ ൌ ݆  for all  ݏ ൌ 1, … , ݆௡ monitoring steps, the ML-
estimators of the stationary tra sit obabilities yn ion pr  given b   

ሻݏ௞௞ᇱሺ̂݌ ൌ ேೖೖᇲ

∑ ே ᇲ
ೖವ

భ
,    ݇, ݇ᇱ ൌ 1, … , ݇஽                                       [I] 

 

ೖೖೖᇲస
 
are the cohort estimators, where ௞ܰ௞ᇱ ൌ ∑ ௞ܰ௞ᇱ

௝೙
௝ୀଵ  is the total number of recorded transitions 

from  ݇  to  ݇Ԣ. The cohort estimators are the most commonly used in spite of well-known 
weaknesses; if observation times are not identical and equally spaced for all counterparties, the 
inadequacy of the cohort estimator is clear. This because the cohort estimator then is not the 
ML-estimation of ݌௞௞ᇱሺݏሻ, due to the fact that not all observations are used in this estimation – 
only those with identical and equal monitoring steps. In simple terms, the cohort approach just 
takes the observed proportions from the beginning of e.g. a year to the end of it as estimates of 
migration probabilities, which means that any observations within the year are not taken into 
consideration. The discrete-time ML method will incorporate these non-used observations. In 
order to elaborate on this, the continuous-time case is first considered. 
 
The Markov chain in the continuous-time case introduces the concept of transition intensities 
,ݐ௞௞ᇲሺݍ ሻݏ ൌ ௞௞ᇲݍ . This means that given that class  ݇ is entered at calendar time  ݐ, and is still 
occupied at  ݐ ൅ the transition out of  ݇ is determined by the set of ݇஽ ,ݏ െ 1 transition 
intensities ݍ௞௞ᇱ, with ݍ௞௞ᇱ ൒ ௞௞ݍ ,0 ൌ െ ∑ ௞௞ᇱ௞ᇱஷ௞ݍ , let  ܳ denote the ݇஽ ൈ ݇஽ intensity matrix. 
For a time-homogenous Markov chain l ship between the intensity matrix ܳ  and the 
transition matrix  ܲሺݏሻ is given by  

the re ation

 ܲሺݏሻ ൌ ݁ொ௦                                                                [II] 
 
The ML-estimator of the transition intensity is in this case given by  

ܳ௞௞ᇱ ൌ ∑ ேೖೖᇲ
೔೙

೔సభ

ೖ்
೔೙

೔సభ
, ݇Ԣ ് ݇

 
                                                   [III] 

 

∑
 
where ݊௞௞ᇱ

௜  denotes the number of  ݇ ՜ ݇Ԣ transitions made by borrower  ݅ and ௞ܶ
௜  is the total 

time spent by  ݅ in class  ݇.xxvi This so called duration estimator counts all rating changes over the 
course of e.g. a year, and divides by the total time spent in each rating – i.e. the exact transition 
times have to be known. If the data are discrete, in the sense that observations consist of the 
classes occupied by the borrowers at a sequence of discrete time points, the duration intensities 
cannot be used to estimate transition intensities. With no information about the timing of events 
between observations times, or about the exact transition time, neither the denominator nor the 
numerator can be calculated. Assuming that the data is discrete, one also must assume that the 
observation times are identical and equally spaced for the cohort estimator [I] to give the most 
probable estimations, i.e. the maximum likelihood. 

                                                 
xxvi For details, see Lando & Skødeberg (2002). 
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Mählmann (2006) outlines a method that provides ML-estimates of the intensity matrix ܳ. The 
method takes into consideration that exact times of movement between rating classes, and the 
class occupancy in between the observation times, are unknown and that observation times are 
assumed to be arbitrary. In order to derive the ML-estimates of the intensities, the key point is to 
formulate the transition probabilities ݌௞௞ᇱ in terms of intensities, i.e. it is the vector ߠ of 
intensities ݍ௞௞ᇱሺ݇ ് ݇Ԣሻ that is to be estimated.xxvii Using a canonical decomposition and 
assuming  ܳሺߠሻ has distinct eig u , from [II] one has  enval es ߣଵ, … , ௞ವߣ

 ܲሺݏሻ ൌ ,଴diag൫݁ఒభ௦ܣ … , ݁ఒೖವ௦൯ܣ଴
ିଵ                                       [IV] 

 

 
where ܣ଴ is a ݇஽ ൈ ݇஽ matrix whose ݇th column is the right eigenvector for ߣ௞.xxviii Of the in 
general complicated function of  ܲሺݏሻ of  ߠ it is possible to numerically obtain the eigenvalues 
making up ܣ଴ and then ܲሺݏሻ. The individual contribution to the total likelihood function that is 
to be maximized is then divided in observations of counterparties that defaults during the 
observed time period ݐ௜଴ ൌ 0, ,௜ଵݐ … , ௜௝೔ݐ , with the rating of counterparty ݅ as ݔ௜଴, ,௜ଵݔ … ,  ௜௝೔ݔ
respectively and ݔ א  ሼ݇, … , ݇஽ሽ, and those that are censored at the end of the observation time. 
Assuming that the exact time of default is known, but that the rating class on the previous instant 
before default is unknown, the censored observationsxxix – known only to be a state in the set 
 ܴ ൌ  ሼ1, … , ݇஽ െ 1 w ditio l infor tion n ibutes to the likelihood by ሽ ith no ad na ma  – co tr

ߠ ∏ ቂ݌௫೔ೕ௫೔ೕశభ൫ݐ௜௝ାଵ െ ௫೔ೕ೔݌௜௝൯ݐ
# ൫ݐ௜௝ାଵ െ ௜௝൯ቃ௝೔ିଵݐ

௝ୀ଴                           [V] 
 

௜ሺܮ ሻ  ൌ

where for  ݇ ൌ 1, … , ݇஽ െ 1
 

, 

௞݌
#൫ݐ௜௝ାଵ െ ௜௝൯ݐ ൌ ∑ ௜௝೔ାଵݐ௞௥൫݌ െ ோא௜௝೔൯௥ݐ                                    [V’] 

 

 
The non-censored observations, i.e. those counterparties ݅ who enter default during the observed 
period at ݐ௜௝, contri u  like ood fu tion b tes to the lih nc by  

ሻ ቂ݌௫೔ೕ௫೔ೕశభ൫ݐ௜௝ାଵ െ ௫೔ೕ೔௞ವ݌௜௝൯ݐ
¤ ൫ݐ௜௝ାଵ െ ௜௝൯ቃ௝೔ିଶݐ

௝ୀ଴                        [VI] 
 

ߠ௜ሺܮ  ൌ ∏

where for  ݇ ൌ 1, … , ݇஽ െ 1, 
 

௞௞ವ݌
¤ ሺݐሻ ൌ  ∑ ݐ௞௞ᇱሺ݌ െ 1ሻݍ௞ᇱ௞ವ

௞ವିଵ
௞ᇱୀଵ                                       [VI’] 

 

 
The total likelihood function is then simply the product of the likelihood contributions over all  ݊ 
counterparties, conditional on the distribution of counterparties among the states at ݐ௜଴

xxx 

ሻߠሺܮ  ൌ ∏ ሻ௡ߠ௜ሺܮ
௜ୀଵ                                                       [VII] 

 

 
In order to transmit [VII] into the discrete-time case in quarterly intervals, notice that [II] can 
easily be rewritten as  
                                                 
xxvii Mählmann (2006) 
xxviii Mählmann here leans on the work of Cox & Miller (1965). 
xxix The censoring aspect can to some extent be taken into consideration if  there is known fact of the survival status of the 
counterparties even after the original observation period is closed, which then quite easily can be included in the non-censored 
observations. 
xxx For additional notes, see Mählmann (2006) pp 3246-3247. 
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ቁ
௡

ൌ ௤ܲ௨௔௥௧௘௥
௡                            [VIII]  ܲሺݏሻ ൌ ݁ொ௦ ൌ  ݁ொ೙

ర  ൌ ቀ݁ொభ
ర

 
where  ݊ ൌ 1, … . , ݉ quarters, e.g. the one-year transition matrix corresponds to  ݊ ൌ 4, and 

௤ܲ௨௔௥௧௘௥ is the one-quarter transition matrix. 
 
In accordance with the line of reasoning for the continuous-time case, the contribution to the 
total likelihood function for counterparty ݅ is 

௜൫ܮ ௤ܲ௨௔௥௧௘௥൯ ൌ ∏ ௞௞ᇱ݌
൫௧೔ೕశభ ௧೔ೕ൯௝೔ିଵ

௝ୀ଴                                        [IX] 
 

ି

where ݌௞௞ᇱ ൌ  ௤ܲ௨௔௥௧௘௥ሺ݇, ݇Ԣሻ, regardless if the counterparty ݅ is in default at the end of the 
period or not. The total likelih functio r ten as  

 

ood n can then be w it

൫ܮ  ௤ܲ௨௔௥௧௘௥൯ ൌ ∏ ∏ ௞௞ᇱ݌
௧೔ೕశభି௧೔ೕ௝೔ିଵ

௝ୀ଴
௡
௜ୀଵ                                      [X] 

 

 
and the logarithmic likelihood function 

 ln ൫ܮ ௤ܲ௨௔௥௧௘௥൯ ൌ  ∑ ∑ ൫ݐ௜௝ାଵ െ ௜௝൯௝೔ିଵݐ
௝ୀ଴

௡
௜ୀଵ ln  ௞௞ᇱ                           [XI]݌

 

 
This, like in the continuous-time case, means that the one-quarter transition matrix is estimated 
with all available observations taken into consideration, and that only the exact time of default is 
assumed to be known.xxxi Thus, the rating class on the previous instant before default is unknown 
– i.e. one has to know when the counterparties have been evaluated, but not the exact time of 
transition from one rating class to another. Note that in the discrete-time case there is no need to 
iterative compute eigenvalues to obtain a solution, which makes the discrete-time ML method 
more straightforward. In order to obtain a solution to the ML-function in the general case of 
݇஽ ൒ 2, a Quasi-Newton algorithm can be employed that uses finite differences to obtain 
numerical approximations of the derivatives.xxxii As the Quasi-Newton algorithm is an iterative 
process, a starting value is required. For this, the cohort-estimation will be used. The cohort-
estimation will also be useful for comparative purposes, in order to establish a difference between 
the cohort estimation and discrete-time ML-estimation. 
 

INCORPORATION OF THE STATE OF THE ECONOMY IN THE ESTIMATION OF 
TRANSITION PROBABILITIES 

 
In order to extend the time-homogenous Markov chain estimated by the discrete-time ML 
method to incorporate the state of the economy, there is no extensive research to lean upon.  By 
reflection, one can deduce two main lines of reasoning, which for simplicity are illustrated 
assuming only one macro economic variable.xxxiii   
 

                                                 
xxxi In this specification an ‘exact’ time is defined as the true quarter of the year that the default took place. This is a great strength 
of the discrete-time ML-estimation, in relation to the continuous-time case, in light of the properties of data discussed previously; 
even though a default can be assumed not to go unnoticed for long, it is still not foregone to know the exact date. In case of a 
default it is most probable that the counterparty is trying to stall the default, while hoping for a last minute salvation.  
xxxii This is also the case with the continuous-time ML-estimation, Mählmann (2006). 
xxxiii The line of reasoning can easily be extended to include any number of variables one may deem desirable. 
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[i] The ratings migration matrix with a time dependent factor is estimated in one step by 
parametrizing the macro economic variable by adding it to every row, with coefficient weights 
that add up to zero – i.e. each row still sums up to one after the macro economic variable is 
added.  
 
[ii] Two time-homogenous ratings migration matrices are estimated conditioned on the state of 
the economy, i.e. one transition matrix is estimated on historically known times of expansion and 
one transition matrix is estimated on historically known times of recession. In the second step, 
the overall transition matrix estimated on all available observations is used as the average 
probabilities of transition. Depending on the macro economic variable, the average matrix will be 
shifted towards better or worse times by a relationship between the macro economic variable and 
the difference between the two state of the economy dependent matrices. 
 
Before entering more deeply into the specifications of these methods to establish a transition 
matrix that incorporates the state of the economy, there are aspects even now distinguishable that 
are decisive when determining the most adequate way to proceed. In [i], one has to have a 
preconceived notion about how to distribute the weight among the elements in each row, i.e. one 
cannot let the data alone decide the specification of the function in an e.g. ML-estimation of the 
coefficients. While [i] therefore has the attraction of estimating the whole function at once, the 
drawback of having to specify the weights for each row outweigh the attraction. In [ii], one does 
not have to have a preconceived notion about the properties of the specification, other than what 
degree of relationship one wants to set – i.e. the data will on its own determine the most 
appropriate coefficients. Due to this, a specification in line with [ii] will be further developed and 
set up.  
 
The first aspect to be considered is how to estimate matrices conditioned on the state of the 
economy. Conditioned matrices is a field that has been investigated in literature,xxxiv and the 
approach deemed most appropriate for this thesis purposes is described in Bangia et al. (2002).  
Bangia et al. condition their matrices on the business cycle and whether it can be considered to be 
in a recession or an expansion.xxxv These conditioned matrices are found to be significantly 
different. In order to obtain two matrices – conditioned on the state of the economy – one apply 
a chosen estimation method on two subsets of observations that reflect the desired states of the 
economy.  
 
In order to specify a function in accordance with [ii], what remains is to establish the relationship 
between the macro economic variable and the economy-reflecting matrices. The most 
straightforward way is to assume a linear relationship between these, .e.  xxxvi i

௤ܲ௨௔௥௧௘௥ሺܿሻ ൌ  ௔ܲ௩௘௥௔௚௘ ൅ ሺߙ ߚ ൈ ൫ ௘ܲ௫௣௔௡௦௜௢௡ െ  ௥ܲ௘௖௘௦௦௜௢௡൯                [XII] 
 

 ൅ ܿሻ

where  ܿ is a macro economic variable and  ߙ and  ߚ are to be estimated. Note that  ܲሺܿሻ is a 
one-quarter transition matrix, and therefore the matrices part of the function are as well. The 
estimation of  ߙ and  ߚ is done by e.g. a ML-estimation, where the log-likelihood function, in 
accordance with the time-homogenous case [X], is 

 

                                                 
xxxiv Bangia et al. (2002), Trück (2008), Frydman & Schuermann (2008) 
xxxv Bangia et al. (2002) use the cohort-estimation method and have only obtained external data, however one can conclude from 
previously discussed properties that their results are transferable to our circumstances.   
xxxvi There is no limitation that requires a linear relationship, but since the aim of this thesis is to descry an adequate method to 
incorporate the state of the economy as a factor influencing the transition probabilities – and the line of reasoning deemed most 
appropriate has resulted in an inquire into a field previously not delved – it is found the most agreeable by way of introduction to 
make an as simple specification as possible. 
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ൣܮ  ௤ܲ௨௔௥௧௘௥ሺܿሻ൧ ൌ ∏ ∏ ൫ ௝ܿ൯௧೔ೕశభି௧೔ೕ௝೔ିଵ
଴

௡
௜ୀଵ                             [XIII] 

 
௞௞ᇱ௝ୀ݌

with the same notation as previously and ݌௞௞ᇱ൫ ௝ܿ൯௧೔ೕశభି௧೔ೕ the  ݇݇Ԣth element of  

௤ܲ௨௔௥௧௘௥൫ ௝ܿ൯௧೔ೕశభି௧೔ೕ ൌ ൣ ௔ܲ௩௘௥௔௚௘ ൅ ൫ߙ ൅ ߚ ൈ ௝ܿ൯൫ ௘ܲ௫௣௔௡௦௜௢௡ െ  ௥ܲ௘௖௘௦௦௜௢௡൯൧௧೔ೕశభି௧೔ೕ, where ௝ܿ 
is the macroeconomic variable at the time ݐ௜௝. The reason for this specification of ௝ܿ is that at 
time ݐ௜௝, one cannot know the value of  ܿ at the future observations, why in this thesis the ܿ at 
the ‘current’ time will be used in order to predict the future movements.  

 

 
In the case where ated to ݅ macro economic variables are incorporated, [XII] is easily accommod

௤ܲ௨௔௥௧௘௥ሺܿଵ, … , ܿ௜ሻ ൌ  ௔ܲ௩௘௥௔௚௘ ൅ ∑ ൫ߙ௝  ൅ ௝ߚ ൈ ௝ܿ൯൫ ௘ܲ௫௣௔௡௦௜௢௡ െ  ௥ܲ௘௖௘௦௦௜௢௡൯௜
௝ୀଵ      [XIV] 

 

 
Hereafter, in order to establish the appropriateness of the method, the focus will be the simple 
case with only one macro economic variable incorporated. 
 

COMPARATIVE MEASUREMENT AND STATISTICAL DIFFERENCE 

 
In order to statistically assess differences between ratings migration matrices, a bootstrap 
technique is applied in combination with a metric designed to measure the scalar differences 
between matrices. There are several appropriate metrics to apply of which the metric defined as 
the average of the singular values of the mobility matrix has been chosen.xxxvii A statistical 
difference by the bootstrap technique is achievable only in the time-homogenous case, although 
the metric, without confidence intervals, can always be obtained.xxxviii The bootstrap method is 
preferable to analytical confidence intervals due to the fact that these are not clear how to obtain 
for the ML-estimation methods.xxxix An important advantage with the bootstrap, in comparison 
with e.g. a Monte-Carlo approach, is that one does not have to have a preconceived notion about 
what distribution the sample originates from, i.e. the data speak all for itself.xl  
 

The comparative measure of the average of the singular values of the mobility matrix 

 
The metric as the average of the singular values of the mobility matrix, called the singular value of 
decomposition metric ܯௌ௏஽, indicates what in simple terms can be expressed as the average amount 
of migration contained in a matrix.xli ܯௌ௏஽ is distribution discriminatory, which means that the 
metric discriminates between matrices having the same diagonal probabilities, but different off-
diagonal distributions. This distinction between matrices with the same amount of mobility is 
important in the context of credit risk, since a migration to the far right or left of the transition 

                                                 
xxxvii The metric was proposed by Jafry & Schuermann (2004), who has conducted a thorough exploration and exploitation of 
transition matrices structure’s to obtain a scalar metric that takes the properties of migration matrices into consideration. Their 
proposed metric is therefore preferable to metrics such as the cell-by-cell distance metrics, and eigenvalue and eigenvector based 
metrics. This metric was also used by Mählmann (2006), why it is suitable for comparative reasons.   
xxxviii “A bootstrap based on resampling presumes that the data are serially uncorrelated or independent as the resampling process 
naturally reshuffles the data” Hanson & Schuermann (2006) p 2286. This is an assumption not easily transferred to the case of 
time-dependence.  
xxxix In line with the reasoning in Hanson & Schuermann (2006). 
xl This is also the case of the Jackknife resampling, where one has to add the assumption of the distribution in order to generate 
confidence intervals. 
xli Jafry & Schuermann (2004) 
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matrix has significantly different consequences than near migrations in an economic and financial 
sense.xlii Given that the ratings migration matrix  ܲ is of dimension ݇஽ ൈ ݇஽, and the identity 
matrix of the same  ܫ, and ߣ௝ሺܩሻ is the ݆th eigenvalue of a ݇஽ ൈ ݇஽ matrix  ܩ, the metric is given 
by 

ௌ௏஽ሺܲሻܯ  ൌ
∑ ඥఒ೔ሺሾூି௉ሿᇱሾூି௉ሿሻೖವ

೔ సభ
௞ವ

                                             [XV] 
 
Note that only the dynamic part of the matrix  ܲ is left when the identity matrix is subtracted, 
which reflects the ‘magnitude’ of  ܲ in terms of implied mobility. The distance metric between 
the migration matrices ூܲ ூܲூ r b ma iff n methods, is then  and , prefe a ly esti ted with d ere t 

 Δܯௌ௏஽ሺ ூܲ, ூܲூሻ ൌ ௌ௏஽ሺܯ  ூܲሻ െ ௌ௏஽ሺܯ ூܲூሻ                                   [XVI] 
 

 

The Bootstrap Method and Statistical Measurements 

 
A non-parametric bootstrap is conducted by resampling the counterparties’ rating histories, i.e. a 
sample is created by sampling with replacement counterparties with histories from the original 
sample until the bootstrap sample is of the same size as the original sample. However, there are 
two different ways to compare the size of a sample; the number of counterparties or the amount 
of rating history, i.e. the number of observation pairs. The latter is instinctual the most adequate 
way, since one is not interested in the counterparties as such, but their total rating history. Alas, 
there are great disadvantages when a sample is to be divided into subsamples, representing 
different times of economy, since there is no sensible way to affect the number of observation 
pairs in each subsample in this case.xliii Another aspect is that, due to the in general large number 
of counterparties, the irregular length of the rating histories does not result in large variations in 
the number of observation pairs anyway.xliv The slight variation of the number of observation 
pairs can also be considered to be a property with an intrinsic value, due to the fact that the data 
already have been established to not contain the complete rating transition history. Taking these 
aspects into consideration, it is deemed most appropriate to consider the sample size as the 
number of counterparties.xlv  
 
In order to obtain the standard deviation for the estimated transition probabilities, and to obtain 
a confidence interval for the comparative metric ܯௌ௏஽, a number of  ܤ ൌ 1000 replications are 
conducted.xlvi In short, counterparties and their rating histories are picked randomly and replaced 
until the number of counterparties is the same as in the original sample. Then, cohort- and 
discrete-time ML-estimations are conducted. Then the resampling and estimations are repeated 
ܤ  െ 1 times. For each estimation, the comparative metric is computed and the confidence 
interval of magnitude  ߙ, e.g.  ߙ ൌ 95%, is obtained by sorting the comparative metrics in 
descending order and examining the breakpoints of the top and bottom ሺ1 െ ሻߙ 2⁄  -percentiles, 
i.e. the lower boundary is the ሾሺ1 െ ܤሻߙ 2⁄  ሿth element of the vector and the upper boundary is 

                                                 
xlii Mählmann (2006) 
xliii This is the case when estimating matrices representing economic expansions and recessions, since the subsamples have to 
originate from the same total sample. 
xliv Hanson & Schuermann (2005) found the coefficient of variation – i.e. the standard deviation divided by the expected value – 
of the number of their equivalence to observation pairs to be just under 1%. 
xlv This in contrast to Mählmann (2006), who kept the same number of observation pairs for each and every bootstrap sample. 
However, Mählmann (2006) had no need to consider the aspects of subsample properties.  
xlvi In literature, 200 replications for standard errors and 1000 replications for confidence intervals are suggested, but also two or 
three fold the numbers are discussed. [Efron & Tibshirani and Andrews & Buchinsky].  The number of 1000 replications was in 
this case considered sufficient. 
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the ሾሺܤ െ ሺ1 െ ሻܤሻߙ 2⁄  ሿth element of the vector. The standard error  ߪ of the transition 
probabilities is obtained by taking the standard deviation 
 

௝௝ߪ  ൌ  ඨ ଵ ∑ ൤ݔ௜ െ ∑ ௫೔
ಳ
೔సభ

஻௡ିଵ
൨

ଶ
஻
௜ୀଵ                                             [XVII] 

of the ratings migrations elements ݔ௝௝ ൌ   .௜  in turnݔ 
 

 
 

EMPIRICAL APPLICATION 

 

SAMPLE DATA 

 
The sample data used to empirically evaluate the proposed method of discrete-time ML-
estimation is here described. In order to apply the time-dependent function, a subsample 
corresponding to Swedish industry counterparties is extracted and a suitable macro economic 
variable that reflects the state of the economy is chosen.  
 

Total Sample 

 
The data come from the internal rating system of Skandinaviska Enskilda Banken AB, publ. 
(SEB) and consist of quarterly rating history over a ten year period. In addition, there is also 
information about the counterparties’ sector and their country of origin.xlvii Counterparties of all 
sizes are chosen to be considered, i.e. not to draw a limit of e.g. a minimum annual turnover, in 
order to obtain the maximum amount of data. For comparative purposes, a five-position rating 
system is created by consolidating the internal risk grades.xlviii The new system also contributes to 
a higher degree of certainty in the transition probability estimations, due to the fewer elements to 
be estimated in the matrix, while the amount of data remains the same.xlix In the new rating 
system, grade 1 corresponds to the lowest and grade 5 to the highest degree of credit risk. 
 
The data have been assembled quarterly, when the ratings of all presently existing counterparties 
have been either evaluated and set to an appropriate grade, or no evaluation has been conducted 
and the same grade as previously remains. A thorough evaluation is normally conducted once a 
year, with the starting quarter of when the counterparty was first rated, if there is no occurrence 
of a reason that implies otherwise.l The fact that not all counterparties have been under a 
profound evaluation every quarter is not a problem, however the fact that one cannot tell which 

                                                 
xlvii As a starting point, the dividing up of sectors done by Statistiska Centralbyrån (SCB) in Sweden according to SNI2007 and 
Kadam & Lenk (working paper) and Banachewicz et al. (2006) have been used. Further, counterparties have been chosen to be 
considered as belonging to the sectors Industrials, Service, Finance or Government. Further. A counterparty is also considered to 
be international or national, depending on if they have subsidiaries and/or mainly operate worldwide or not.  
xlviii The number of grades treated in literature varies, but are usually below ten and above five and consolidated from a larger 
number of grades. Mählmann (2006), when applying the continuous-time ML-estimation method, used a six-position rating 
system, which while being the benchmark for this study is leading. Due to the properties of the internal data, it is not suitable to 
create a six-position rating system in the case of the SEB data, whereas a five-position rating system is created instead.  
xlix This can also be interpreted as the amount of data to base the estimations on for each element is greater, since the data for 
each original rating class is added to the new class. 
l A counterparty can have several ’first’ ratings due to the fact that a counterparty can come and go in a sample; when it after a 
period of non-settlements – and no rating –  enter an agreement, it receives a newly evaluated rating.  
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counterparties that have been thoroughly evaluated and which whose grades have been set solely 
on the notion of the previous grade, is a considerable problem. The reason is twofold: (i) the data 
now imply that the exact quarter of a transition is known, even when it is not and (ii) if there is 
no history of rating changes, one cannot be sure that the interpolated grades are always true.li The 
reason that these aspects are considered problems, originate from the fact that there is a lot of 
non-information masquerading as information in these interpolations, which significantly lower 
the value of the true – hidden – information. In (i), the knowledge of the latest evaluation – and 
not having to assume an exact transition time – is the strength of our proposed estimation 
method, but it is drowned by the noise of the interpolated grades. The same goes for (ii), even if 
it is highly probable that the rating grade – if evaluated – should have been the same. Still, it is 
assumptions of the data one should not have to make. 
 
In order to manage the existence of concealed non-information, a decision to wash the data was 
taken in order to disclose the real information. There is no way of revealing all the true 
information and remove all the noise, but regarding the circumstances it is the best option 
available. The knowledge that a yearly evaluation, starting at the quarter of the first occurrence of 
a rating, is the basic principle means that a change in rating grade before the yearly evaluation is 
due to a special evaluation. When a special evaluation has been conducted, it is set as the new 
quarter for the yearly evaluation.lii This is the algorithm by which the original data sample is 
washed, and thereafter the new five-position rating system is applied.liii An effect of the washing 
is that counterparties rated with the same grade for only two, three or four quarters in a row 
contain no pair of observations, and are therefore of no use and excluded. The data sample after 
the washing consists of approximately 50 000 counterparties and contains approximately 200 000 
observation pairs. Of these, 78% had an inter-examination time of one year, i.e. four quarters, 
18.5% of less than one year and 3.5% of more than one year.liv  
 

Subsample 

 
When applying the time-dependent discrete-time ML-estimation method, a macro economic 
variable that relates to the counterparties as well as reflects the state of the economy is required. 
The sample consists of counterparties that cannot be considered a homogenous group, why a 
single macro economic variable cannot be assumed to relate to the whole sample. Therefore, a 
subsample consisting of only Swedish industry counterparties is engendered  that, after washing, 
consists of approximately 4 000 counterparties.lv The washed sample contains approximately 
25 000 observation pairs. Of these 79% had an inter-examination time of one year, 18.5% of less 
than one year and 2.5% of more than one year.  
 
A suitable macro economic variable is considered to be the capacity utilization in industry, a 
percentage that measures how much of the available production capacity that is utilized in 

                                                 
li There is no guarantee that a reason for an earlier evaluation is actually discovered, and if a yearly evaluation is due soon it is 
possible that the evaluation is postponed until that time. It also occurs that a long-time counterparty, with a stable rating grade, is 
not in fact yearly evaluated, but even less frequently.   
lii Corollary, special evaluations that do not result in a change in rating grade are unfortunately not captured. 
liii In the case of a default, the counterparty is allowed to re-enter the sample after a period of not rated.  
liv Only inter-examination times of the maximum length of five years – i.e. 20 quarters – have been allowed due to that the 
likelihood function results in high-degree terms that with the higher degree, the greater the risk of cancellation is, which will add 
to the uncertainty of the estimation. Therefore, a limit to inter-examination times have been set in accordance with what seems a 
reasonable time frame to be considering a company, without such changes made that it is not adequate to say that it is the same 
company in the beginning as in the end of the period – a company not rated for years is highly probable to have gone through 
major changes.    
lv There is no easy way to distinguish between national and international counterparties in the data, but the majority is assumed to 
be considered national due to that national counterparties ought to be more common.  

 15



industry. The capacity utilization in industry (CUI) is not mentioned in literature regarding time-
in-homogenous Markov models representing ratings migration, but in this thesis it is deemed 
superior to the commonly used GDP and other macro economic variables previously mentioned. 
This is because the CUI is done by queries, whereas e.g. the GDP is estimated and often revised 
years after. Another important aspect to consider is that the CUI can be assumed not to be 
lagged in relation to occurrence in time, but it might be lagged in relation to the occurrence of the 
actual time of a rating – e.g. a defaulted counterparty does not default immediately when its 
definite problems occur, but is lagged to some extent. This means that even if a counterparty is 
evaluated and set to a certain rating grade at the time, it is just the lagged rating that is observed, 
due to the inertia that is inherent to the information flow. Due to the aim of this thesis there will 
be no entering into this area, but it can be considered for future research to further investigate 
these aspects. lvi  
 
In order to estimate two matrices, corresponding to times of economic expansion respective 
recession, two additional subsamples have to be engendered by parting the original subsample in 
accordance with what the macro economic variable indicates. There are several varieties of a 
straightforward way of constructing threshold values of the macro economic variable; to calculate 
the average, or the median, value of the macro economic variable during the observed period and 
interpret the ‘better’ part of the sample as times of expansion, and vice versa with the ‘worse’ 
part.  Another is to take the limits of the top respective the lowest thirds of the macro economic 
values as the threshold values.lvii Due to the limited amount of data, it is preferable to use as 
much of the available data as possible, and therefore the threshold value is chosen to be set to the 
median.lviii Due to the fact that some of the counterparties do not end up with a pair of 
observations when the sample is parted in time, the expansion subsample consists of 
approximately 4 000 counterparties and contains approximately 13 000 observation pairs. The 
recession subsample consists of approximately 3 000 counterparties and contains approximately 
9 000 observation pairs. Of the expansion subsample, 55.5% of the observation pairs had an 
inter-examination time of one year, 18% less than one year and 26.5% of more than one year. 
The corresponding numbers of the recession subsample was 48%, 15% and 37%. There is also a 
considerable increase in number of defaults during the times defined as recessions, which 
indicates that an adequate macro economic variable has been chosen. 
 

ESTIMATION OF TRANSITION PROBABILITIES 

 
An empirical application of the methods proposed is conducted on the sample data as presented 
above.lix  
 

Time-homogeneity 

                                                                                                                                                    
By maximizing the logarithmic likelihood function [XI] using all available ~200 000 rating 

                                                 
lvi Since the aim of this thesis is to establish an improved method, it can be considered for future research to further investigate 
the impact and suitability of other macro economic variables, such as the GDP. Also the case when several macro economic 
variables are incorporated and the possible impact of lags should be investigated, but for this thesis the purpose is to investigate 
the method and therefore an as ‘simple’ macro economic variable as possible is suitable. 
lvii It is also possible to not only use the macro economic values corresponding to the observation period when setting the limits, 
but all available data – SCB started to record the CUI in 1980 – but in this case the amount of rating data are not extensive 
enough to result in enough observation pairs in each subsample for this to be considered. 
lviii The median is chosen over the average due to the limited amount of data and the desire to reduce the effect of possible 
outliers. 
lix All estimations and related work were implemented in MATLAB®. 
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observation pairs, a one-quarter transition matrix was estimated. Taking the one-quarter 
transition matrix to the fourth power, a one-year transition probability matrix is obtained.lx The 
one-year cohort estimator and the discrete-time ML-estimator, with standard errors obtained by a 
non-parametric bootstrap, is reported in Panel I and Panel II of Table I. The delta of the singular 
value of the decomposition metric is calculated with statistical significance at the 1% levellxi to 
0.0781 with a standard error of less than 0.001, which can be considered to represent a 
substantial difference between the two matrices.lxii  
 
 
 
 

      Table I 
Transition probabilities with different estimation methods   

       
From  To      
 1 2 3 4 5 Default 
              
       
Panel I: The one-year cohort estimated transition matrix    
       

1 0.018416 0.0025728 0.0012187 0 0 0.97779 
0.0017376 0.0015776 0.00061017 0.00039946 0 0  
       

2 0.012286 0.035834 0.010385 0.0011701 0.000438790.93989 
0.00095821 0.0020357 0.0015721 0.00085825 0.00030085 0.00018342 
       

3 0.00028629 0.0049724 0.033662 0.0034355 0.000572580.95707 
6.8131e-05 0.00027831 0.00080998 0.00070823 0.00023209 9.0771e-05  
       

4 0.00025675 0.00071619 0.023296 0.012445 0.0030539 0.96023 
5.7238e-05 0.00010323 0.00055866 0.00070511 0.00040707 0.00020531 
       

5 0.0002553 8.5099e-05 0.0041699 0.053698 0.017956 0.92384 
0.00014735 8.3929e-05 0.00058472 0.0021015 0.002483 0.0012283  
       

Default 0 0 0 0 0 1 
       

 
 
 
 
 

                                                 
lx The one-year cohort estimator was used as the starting value for the iterative process due to the fact that there were not enough 
data to obtain reasonable one-quarter estimations. Observation pairs of a period of four quarters were used for the one-year 
cohort estimation and overlapped observations, i.e. observation pairs that start and/or ends during another observation pair’s 
four quarter period, were allowed due to the time-homogeneity assumption, and that one wants to use as much available data as 
possible. However, the likelihood function turned out not to be convex, why a good starting value is a necessity. Therefore also 
the fourth root of the one-year cohort estimation, as well as the average of the one-year and the one-quarter cohort estimated 
matrix, were considered as starting values. Empirically it turned out that the one-year cohort estimation always found the best 
optimum. Alas, even the best local optimum turned out to be flat, and therefore the absolute optimum solution cannot be 
established. Even if one therefore cannot be certain of finding either the global optimum or the definitely ‘best’ probabilities, one 
always finds a better estimation than the available cohort.  
lxi The 99% confidence interval was calculated to 0.0758 – 0.0810 and obtained by a non-parametric bootstrap as outlined above. 
lxiiAs a comparative value, Mählmann (2006) calculated a statistically significant at the 5% level delta of the singular value of the 
decomposition metric to 0.00047 when comparing a cohort and continuous-time ML-estimation.  

 17



 
Panel II: The one-year discrete-time ML-estimated transition matrix  
       

1 0.046932 0.0081713 0.0031352 0.00027286 0.000347620.94114 
0.0025518 0.0022415 0.00088766 0.0005314 0.00013313 0.0002483  
       

2 0.033982 0.081308 0.022454 0.0023591 0.000474810.85942 
0.0013912 0.0027947 0.0021078 0.0010787 0.00032629 0.00015149 
       

3 0.0013128 0.01448 0.099323 0.0065818 0.0014561 0.87685 
0.00014644 0.00047353 0.001283 0.0011107 0.00027686 0.00012497 
       

4 0.00062057 0.0023687 0.069051 0.037119 0.0076108 0.88323 
8.6174e-05 0.0001725 0.00091402 0.0011862 0.00066437 0.000294  
       

5 0.00046421 0.00056183 0.010031 0.15295 0.070657 0.76534 
0.00017942 0.00017905 0.00069527 0.003101 0.0039626 0.0021599  
       

Default 0 0 0 0 0 1 
 
 
Table I Panel I presents the cohort estimated one-year transition matrix, based on all yearly observation 
pairs, and Panel II presents the discrete-time ML-estimated one-year transition matrix, based on all 
observation pairs with an inter-examination time of less than or equal to five years. Note that the ML-
estimated one-year transition matrix was obtained by raising the estimated one-quarter transition matrix to 
four. The diagonal elements are bolded for convenience and the standard errors obtained by a non-
parametric bootstrap are in italics.  
 
 
With the naked eye, note the important difference that the discrete-time ML method generated 
probabilities for all transitions at a one-year interval,lxiii whereas the cohort method estimates two 
transition probabilities to zero in the one-year transition matrix. Also, only the transition 
probability from 1 to 5 in the ML-estimated transition matrix is marginally below the limit of 
0.03% that is set by the Basel accords. Further, the cohort estimated transition matrix is 
considerably more diagonal dominant than the ML-estimated transition matrix, which indicates 
that the ML-estimation is better capturing mobility. Most importantly, the methods generate 
different default probabilities. For all rating grades, the less efficient cohort method 
underestimates the default risk. This is due to the fact that the one-year cohort estimator only 
uses the yearly noted transitions, whereas the ML-estimation makes a difference between events 
that occurred during the year, and those that actually took place at the end of the year.lxiv Note 
that the ML-estimation captures the greater uncertainty of remaining in the highest degree of risk 
for more than a year; the probability of remaining in the same rating class, i.e. 5, is more than ten 
percentage points less than every other probability of keeping the same grade. In fact, the 
possibility of recovering from the worst rating grade, i.e. transfer from 5 to 4, is much higher – 
15.3% – than for any other grade, even in the cohort estimated transition matrix. When 
considering the created five-positions rating system, this is probably due to that the risk classes 
                                                 
lxiii Note that non-zero estimates also were obtained at the one-quarter estimation. 
lxiv Due to that only yearly observation pairs were used to conduct the cohort estimation, defaults that did not occur on a one-year 
basis since a recorded rating grade are not taken into account due to that they are then set to not-rated. In the original sample, 
there was no standardized time frame before the defaulted counterparty was set to not-rated, why it sometimes would have been 
taken into account and sometimes not. One may argue that once a counterparty has entered default it should stay there and 
therefore be recorded by the cohort-estimator, which was the case in Mählmann’s study. Due to that definition of default, he 
instead got an overestimation in default risk for the cohort estimator, see Mählmann (2006) p 3247.  The cohort estimator 
therefore can be concluded to either over- or underestimate the default probabilities.   
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translated into grade 4 are monitored closely enough to register the more volatile nature of these 
grades. 
 

Time-dependence 

 
In order to write out a time-dependent function, the subsample of the Swedish industry 
counterparties is used and time-homogenous average and expansion respective recession matrices 
are estimated. The one-year average transition matrices estimated with the cohort respective the 
discrete-time ML method, with standard errors obtained by a non-parametric bootstrap, is 
reported in Panel I and Panel II of Table II. The delta of the singular value of the decomposition 
metrics is calculated to 0.0983 with a standard error of 0.005, and is statistically significant at the 
1% level,lxv representing a considerable difference. This average transition matrix calculated on 
the subsample presents the same characteristics as the average transition matrix estimated on the 
total sample, i.e. less diagonal-domination – and therefore capturing greater mobility – as well as 
non-zero estimates of the one-year transition probabilities. The one-year transition matrices for 
times of expansion respective recession, estimated with the discrete-time ML method, are 
presented in Panel I and Panel II of Table III, with standard errors obtained by a non-parametric 
bootstrap. A statistically significant delta of the singular values of decomposition at the 6% level 
is calculated to 0.0165 with a standard error of 0.008,lxvi a substantial difference that represents 
the capturing of diverse states of the economy.lxvii  

 
      Table II 

Transition probabilities with different estimation methods, subsample 
       

From  To      
 1 2 3 4 5 Default 
              

       
Panel I: The one-year cohort estimated transition matrix    

       
1 0.037383 0.03271 0.0046729 0 0 0.92523 

0.019004 0.012913 0.013439 0.0046912 0 0  
       

2 0.0026397 0.045315 0.012319 0.0017598 0 0.93797 
0.0011007 0.0051492 0.0044375 0.0023512 0.00087969 0  
       

3 0.00047744 0.0056099 0.040224 0.0041776 0.0005968 0.94891 
0.0002394 0.00082724 0.002472 0.0021569 0.00070102 0.00027279 
       

4 0 0.00047642 0.031324 0.014173 0.0015484 0.95248 
0 0.00023634 0.0019968 0.0023132 0.0013272 0.0004261  
       

5 0 0 0.004085 0.073529 0.0081699 0.91422 
0 0 0.0018907 0.0075156 0.0082814 0.0025211  
       

Default 0 0 0 0 0 1 

                                                 
lxv The 99% confidence interval was calculated to 0.0854 – 0.1123 and obtained by a non-parametric bootstrap as outlined above. 
lxvi The 94% confidence interval was calculated to 0.0007 – 0.0325 and obtained by a non-parametric bootstrap as outlined above. 
lxvii As a comparative value, Jafry & Schuermann (2004) – who proposed the metric – calculated a delta of the singular value of 
the decomposition metric of 0.0434, when comparing transition matrices estimated with the parametric time-homogenous 
duration method for expansion and recession periods based on data from Standard &  Poor from 1981-2002. The greater amount 
of data is probably the reason for the slightly greater difference when comparing the two duration estimated matrices.  
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Panel II: The one-year discrete-time ML-estimated transition matrix   
       

1 0.82947 0.12928 0.01861 0.022099 0.00049731 4.3073e-05 
 0.025422 0.022574 0.007986 0.0084107 0.00015686 1.5988e-05 
       
2 0.0068321 0.85372 0.11219 0.024973 0.0021779 0.00011101
 0.0015362 0.0068367 0.0059682 0.0026489 0.00078691 2.7768e-05 
       
3 0.0015719 0.018074 0.86027 0.1111 0.0080123 0.00096913
 0.00044153 0.0014504 0.0038642 0.0033361 0.0008093 0.00029418
       
4 0.00054665 0.0014436 0.080927 0.87405 0.038661 0.0043665 
 0.00022138 0.00032102 0.0030474 0.0036627 0.0020035 0.00064699
       
5 5.2635e-05 0.00069625 0.0090504 0.19902 0.73415 0.057027 
 2.0313e-05 0.00063881 0.0012721 0.010494 0.012929 0.0059341 
       

Default 0 0 0 0 0 1 
 
 
Table II Panel I presents the cohort estimated one-year transition matrix, based on all yearly observation 
pairs of the subsample, and Panel II presents the discrete-time ML-estimated one-year transition matrix, 
based on all observation pairs with an inter-examination time of less than or equal to five years in the 
subsample. Note that the ML-estimated one-year transition matrix was obtained by raising the estimated 
one-quarter transition matrix to four. The shaded elements are those where there are too few observations 
to obtain a one-quarter probability estimate above the lower limit of 10-6. The diagonal elements are 
bolded for convenience and the standard errors obtained by a non-parametric bootstrap are in italics.  
 
 

Table III       
The discrete-time ML method applied to the subsamples representing expansion and 
recession 
       

From  To      
 1 2 3 4 5 Default 
              

       
Panel I: The one-year ML-estimated transition matrix of times of expansion   
       

1 0.85567 0.11091 0.0065303 0.026248 0.00062456 2.1212e-05 
 0.027606 0.025096 0.0049772 0.012238 0.00024168 9.2359e-06 
       
2 0.0058386 0.84541 0.11506 0.030236 0.0033856 6.3269e-05 
 0.0018934 0.009193 0.0086456 0.0043707 0.0013988 2.3483e-05 
       
3 0.00081461 0.017959 0.85223 0.12339 0.0054712 0.00013058
 0.00034726 0.001851 0.0050249 0.0045594 0.00099826 4.268e-05 
       
4 0.00057791 0.0017902 0.083545 0.8703 0.041917 0.0018647 
 0.00027389 0.00044991 0.0037792 0.0045834 0.0026469 0.00046351
       
5 6.2601e-05 0.0010733 0.0085225 0.22508 0.73243 0.032828 
 2.8605e-05 0.00094745 0.00069059 0.014547 0.016274 0.0057104 
       

Default 0 0 0 0 0 1 
       

       



Panel II: The one-year ML-estimated transition matrix of times of recession   
       

1 0.1842 0.016536 0.015657 0.78314 0.0004303 3.3314e-05 
0.036725 0.03353 0.0088721 0.010328 0.00023157 1.9616e-05  
       

2 0.0072018 0.84726 0.12094 0.022539 0.0019597 0.00010395
0.0021932 0.0087858 0.0081867 0.0035732 0.001181 3.9097e-05  
       

3 0.0015069 0.017845 0.10682 0.011707 0.0010775 0.86104 
0.00053616 0.001816 0.0051788 0.004508 0.0015068 0.00038422 
       

4 0.00030205 0.00068131 0.084445 0.043444 0.0046662 0.86646 
0.0002341 0.00019159 0.0048548 0.0058968 0.0033622 0.0010095  
       

5 3.2818e-05 7.7602e-05 0.013446 0.20668 0.059687 0.72007 
2.2881e-05 3.7025e-05 0.0040448 0.016292 0.019431 0.0090354  
       

Default 0 0 0 0 0 1 
 
 
Table III Panel I presents the discrete-time ML-estimated one-year transition matrix, based on all 
observation pairs with an inter-examination time of less than or equal to five years in the expansion 
subsample. Panel II presents the discrete-time ML-estimated one-year transition matrix, based on all 
observation pairs with an inter-examination time of less than or equal to five years in the recession 
subsample. Note that the ML-estimated one-year transition matrix was obtained by raising the estimated 
one-quarter transition matrix to four. The shaded elements are those where there are too few observations 
to obtain a one-quarter probability estimate above the lower limit of 10-6. The diagonal elements are 
bolded for convenience and the standard errors obtained by a non-parametric bootstrap are in italics.  
 
 
Unfortunately, four probabilities of the average one-quarter transition matrix could not be 
estimated, and were therefore set to the lower limit of 10-6,lxviii see Table II. This was the case for 
seven respective six probabilities for the expansion and recession matrices, see Table III. Out of 
these, three probabilities of the average one-year transition matrix, and four respectively out of 
the expansion and recession matrices, were below the limit of transition probabilities set by the 
Basel accords to 0.03%. The reason that these probabilities could not be estimated is because the 
amount of data for these transitions was not enough to generate a probability, i.e. the transition 
did not occur. This belief was further supported by the fact that there were only four non-
estimated probabilities for the estimation founded on the greatest amount of data – ~25 000 
observation pairs – and three respectively two more for the estimations based on less, i.e. 
~13 000 observation pairs for the expansion subsample and ~10 000 observation pairs for the 
recession subsamples.lxix In comparison, note that the one-quarter transition matrix estimated on 
all ~200 000 observation pairs did not result in a single probability set to the lower limit.  
 
The statistically significant differences in default probabilities for the expansion and the recession 
ratings migration matrices – the default-probabilities are all higher for the recession transition 
matrix – indicate that our chosen macro economic variable CUI is an adequate variable to 
condition on, in order to obtain transition matrices reflecting different states of the economy. 
Also, note that the probability of remaining at the lowest risk grade 1 is significantly larger for the 
                                                 
lxviii Due to that there is no logarithm of zero, the probabilities are not allowed to smaller than a set limit, which in this case was 
set to 10-6. 
lxix The fact that the recession matrix had fewer elements set to the lower limit than the expansion matrix, in spite of the lesser 
amount of data, is due to the distribution of observation pairs and not the number of pairs as such, even though the greater 
number of observations pairs, the more likely observations of rarer transitions. 
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expansion transition matrix than for the recession transition matrix. Other non-diagonal 
transition probabilities indicate more ambivalence; only for grades 4 and 5 are there in total 
greater probability of an improvement than deterioration in credit risk, for the expansion 
transition matrix in comparison to the recession transition matrix. Overall, three out of five risk 
classes behave according with expectations, which is found satisfactory to hold to our 
specification conditioning on the macro economic variable CUI. Since there is no way of 
obtaining a prediction interval when applying the method that takes the state of the economy into 
consideration, these results are deemed sufficient when establishing the appropriateness of our 
specification. 
 
By maximizing the likelihood function [XIII], using all available ~25 000 rating observation pairs, 
a value of  ߙ ൌ -5.773 and ߚ ൌ 0.0652 were estimated. The maximum and minimum historically 
recorded values of  ܿ were used as the upper and lower values  ܿ is allowed to take, i.e.  ܿ can be 
set to any value between 72.9% and 92%.lxx The minimum and maximum values have been set in 
accordance to all available data from 1980-2008, but if one deems other values should be 
included, the bounds can easily be expanded.lxxi The time-dependent one-quarter transition 
matrix is thus determined by  

௤ܲ௨௔௥௧௘௥ሺܿሻ ൌ  ௔ܲ௩௘௥௔௚௘ ൅ ሺെ5.773 ൅ 0.0652 ൈ ܿሻ൫ ௘ܲ௫௣௔௡௦௜௢௡ െ ௥ܲ௘௖௘௦௦௜௢௡൯        [XII] 

 
 

 
 
with the previous notation. In order to appraise the time-dependent function, an application of 
empirical scenarios is conducted. In Table IV Panels I, II, III, IV, V and VI, six different 
historical scenarios are constructed of mediocre as well as more extreme times, reflecting the 
state of the economy, in order to estimate one-year transition matrices representing such times. 
The deltas of the singular value of the decomposition metric for these one-year matrices are 
presented in Table V. The delta values are of similar size in comparison to the previously 
established statistically significant delta values. 
 

      Table IV 
The discrete-time ML method applied to the subsamples representing expansion and 
recession 
       

From  To      
 1 2 3 4 5 Default 
              
       
Panel I: The one-year ML-estimated transition matrix of average times 
 

c  88.8 88.8 88.8 88.8  
       
1 0.12825 0.018477 0.022248 0.00049939 4.2911e-05 0.83049 
2 0.0068131 0.1121 0.025079 0.0021979 0.000110690.85368 
3 0.0015624 0.018075 0.11133 0.0079248 0.000955780.86014 
4 0.00055055 0.0014589 0.080916 0.038639 0.0043282 0.87409 
5 5.3021e-05 0.00071004 0.0089816 0.19928 0.056656 0.73433 

Default 0 0 0 0 0 1 
 
       

 
                                                 
lxx A restriction to  ܿ has to be set in order to make sure  ܲሺܿሻ fulfils the requirements of a transition matrix, i.e. in this case that 
the elements of each row cannot be set to negative values. The fact that each row has to um to one is self-fulfilled by t  
definition of the function.   

 s he

lxxi When testing for different values of  ܿ, it turned out that if increasing the interval,  ߙ too increased in value, while  ߚ 
decreased. 
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Panel II: The one-year ML-estimated transition matrix of combined average times 
 

c 91.9 88.8 88.8 72.9   
       
1 0.13692 0.018934 0.020953 0.00049913 5.3247e-05 0.82265 
2 0.006921 0.11286 0.024052 0.0021187 0.000139660.85389 
3 0.0016261 0.018043 0.1093 0.0087356 0.0010579 0.86122 
4 0.00052201 0.0013413 0.081135 0.038839 0.0046874 0.87346 
5 4.5675e-05 0.00058874 0.0096078 0.19768 0.058978 0.73311 

Default 0 0 0 0 0 1 

 
       
Panel III: The one-year ML-estimated transition matrix of combined average-and-expansion times 
 

c 91.9 91.9 88.8 88.8   
       

1 0.12093 0.017327 0.023284 0.00051883 4.4504e-05 0.8379 
2 0.0066624 0.11155 0.025787 0.0023672 0.000116740.8535 
3 0.00149 0.01808 0.11293 0.0073335 0.000859570.85929 
4 0.00057968 0.0015706 0.080867 0.038492 0.0040719 0.8744 
5 5.4461e-05 0.00080568 0.0085104 0.20125 0.053765 0.73562 

Default 0 0 0 0 0 1 

 
       

Panel IV: The one-year ML-estimated transition matrix of combined average-and-recession times 
 

c 88.8 88.8 72.9 72.9   
       

1 0.1507 0.022026 0.019043 0.00043509 3.7091e-05 0.80776 
2 0.0072755 0.11381 0.022886 0.0016755 8.9615e-05 0.85424 
3 0.001785 0.018065 0.10635 0.0097536 0.00126 0.86277 
4 0.00046115 0.0011123 0.081068 0.039093 0.0051237 0.87313 
5 4.8869e-05 0.00041503 0.010439 0.19317 0.065592 0.73035 

Default 0 0 0 0 0 1 
 
 
 
 
 

Panel V: The one-year ML-estimated transition matrix of times of expansion  
 

c  91.9 91.9 91.9 91.9  
       

1 0.11307 0.01654 0.024424 0.0005281 4.0154e-05 0.8454 
2 0.0065351 0.11092 0.026631 0.00249 0.000105020.85332 
3 0.0014231 0.018098 0.1147 0.0066498 0.000764060.85835 
4 0.00060801 0.0016822 0.080738 0.038323 0.0037713 0.87486 

0.051218 5 5.8831e-05 0.00091179 0.0079745 0.203 0.73685 
Default 0 0 0 0 0 1 
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Panel VI: The one-year ML-estimated transition matrix of times of recession 
 

c 72.9 72.9 72.9 72.9   
       

1 0.17396 0.024459 0.015544 0.00038842 4.6585e-05 0.78561 
2 0.0076509 0.1158 0.020258 0.0013036 0.000115470.85485 
3 0.0019842 0.01802 0.10083 0.01186 0.001584 0.8657 
4 0.00037741 0.00076251 0.08147 0.039612 0.0060617 0.8717 
5 3.7006e-05 9.1896e-05 0.012091 0.18781 0.073406 0.72658 

Default 0 0 0 0 0 1 
 
 
Table IV Panel I-VI present discrete-time ML-estimated one-year transition matrices, based on all 
observation pairs with an inter-examination time of less than or equal to five years in the subsample, with 
the value of the macro economic variable CUI  ܿ set to four different values, representing different 
scenarios during a year. In order of presentation there is an overall average, a combined average, a 
combined average-and-expansion, a combined average-and-recession, an overall expansion and an overall 
recession scenario. Note that the ML-estimated one-year transition matrix was obtained by taking the 
product of the four estimated one-quarter transition matrices representing a scenario. The diagonal 
elements are bolded for convenience, but no standard errors can be obtained in the case of time-in-
homogeneity.  
 

 
 Table V 

The deltas of the single value decomposition metric for the matrices in Table IV 
Panel I-VI 
    
  
Delta MSVD Average – Expansion -0.0033682 
Delta MSVD Average – Recession 0.01052 
Delta MSVD Expansion – Recession 0.013888 
Delta MSVD Combined Average - Combined Expansion -0.0035003 
Delta MSVD Combined Average - Combined Recession 0.0034053 
Delta MSVD Combined Expansion - Combined Recession 0.0069056 
Delta MSVD Combined Average – Average -0.0018 
Delta MSVD Combined Average – Expansion -0.0052 
Delta MSVD Combined Average – Recession 0.0087 
Delta MSVD Combined Expansion – Average 0.0017 
Delta MSVD Combined Expansion – Expansion -0.0017 
Delta MSVD Combined Expansion – Recession 0.0122 
Delta MSVD Combined Recession – Average -0.0052 
Delta MSVD Combined Recession – Expansion -0.0086 
Delta MSVD Combined Recession – Recession 0.0053 

 
 
Table V The deltas of the singular values of decomposition metric for the different scenarios. For 
convenience, the notations of the combined average-and-recession and the combined average-and-
expansion transition matrices have been abbreviated. Note that they are all in the same size as the 
previously established statistically significant deltas, and that the largest deltas are obtained when a 
recession scenario is a part of the difference. 
 
 
Note the difference between the two average one-year transition matrices; the one constructed of 
only the average value has for all risk classes, except the lowest, a lower degree of default risk 
than the average transition matrix, constructed with a combination of average times and one 

 24



period of expansion and one of recession. This indicates that stability is rewarded, which is in line 
with common sense regarding default risk. When comparing the risk of default from risk class 5 
of all six matrices representing different scenarios,lxxii the probability of default increases for the 
different scenarios. The lowest risk is for the overall expansion transition matrix followed by the 
combined average-and-expansion transition matrix, the overall average transition matrix, the 
combined average transition matrix, the combined average-and-recession transition matrix and 
the overall recession transition matrix. This result is in line with sensibleness; the worse and/or 
unstable the state of the economy is, the greater is the risk of default.  
 
When comparing the deltas of the singular value of the decomposition metric for these ratings 
migration matrices, the largest deltas are the ones for the overall average vs. overall recession 
transition matrices, the overall expansion vs. overall recession transition matrices and the 
combined average-and-expansion vs. overall recession transition matrices. These are the three 
transition matrices one, by common sense, expects to find the largest difference between. Note 
that the combined average-and-recession vs. the overall expansion matrices and the combined 
average vs. the overall recession matrices, are only slightly smaller. The slightest differences are 
between the combined average vs. average transition matrices, the combined average-and-
expansion vs. expansion transition matrices and the combined average-and-expansion vs. the 
overall average transition matrices. The rest of the deltas are in absolute values of the same size, 
which is expected due to the construction of the scenarios,lxxiii which indicate that the differences 
in scenarios are mirrored in the estimations, and therefore the time-dependent function ought to 
be useful in stress tests.  
 
The small difference between the average and combined-average transition matrices is expected, 
but not the small difference between the transition matrices in differently composed scenarios of 
expansion. This difference is also represented by the fact that even in the scenario representing 
the best state of the economy, the estimated ratings migration matrix has a higher default risk 
from risk class 5 than the time-homogenous estimated expansion transition matrix. This indicates 
that the time-dependent function is over-estimating the probabilities of default in times of 
expansion. The reason for this behaviour of the time-dependent function might be connected to 
that the recession transition matrix’ default probabilities are only slightly larger than the average 
in the time-homogenous case. Since one above all is interested in transition probabilities in times 
of recession, it is preferable that the probabilities of default are over-estimated in times of 
expansion, to under-estimated in times of recession. Due to this, it is not considered a problem 
for using the current specification for stress testing.lxxiv  
 
 

CONCLUDING REMARKS 

 
As recounted, in the world of banking and finance credit ratings migration that measures the 
expected changes in credit quality of counterparties is of the greatest importance. The most 
commonly applied methods have proven inefficiencies and the trend in research is to propose 
even more complex methods, which due to their intricate nature are hard to grasp as well as to 
                                                 
lxxii The comparison of default transitions is restricted to the transition from 5 to default since these are most probably the best 
estimated default probabilities, due to the greater amount of data for defaults from risk class five than from any other risk class.  
lxxiii The scenarios are representing states of the economy that are ‘equally’ distributed over historical times of expansion, recession 
and four states in between.  
lxxiv If one for some reason wants to keep the transition probabilities between the values estimated in the time-homogenous case, 
the specification of the time-dependent function can be changed, e.g. replace the average matrix with the expansion matrix.  The 
evaluation of other such specifications can be considered for future research. 
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implement. Moreover, the need of a method that takes the state of the economy into account – 
in order to render stress testing of not yet historically known scenarios – is great, while hitherto 
there is no such method recognized. 
 
The method of ML-estimation in discrete-time proposed in this thesis rectifies many of these 
predicaments. As shown in this thesis, it is straightforward in theory as well as in implementation 
and attends to the shortages of the commonly used methods, as it uses all available sample data, 
while not imposing preconceived notions about their properties. It is an important feature due to 
the unfortunately often-limited sample, with characteristics seldom acknowledged. This is 
mirrored in that the discrete-time ML-estimated transition matrices differs significantly from the 
ones estimated with the cohort method, which only uses a fraction of the available information. 
The ML-estimated matrix is also much less diagonal dominant, which indicates that the 
movements even in less frequently observed transitions are better captured. The ML method also 
renders non-zero probability estimates for all one-year transition matrices.  
 
The forthright and flexible way to implement macro economic variables as presented in this 
thesis has not been seen in literature before, and due to the directness of the method one is not 
deceived to impose a too great belief in the mathematics. But still, the method captures the 
extreme stressed movements one hoped to generate, and even between only slightly different 
scenarios a difference was discerned. The incorporation of macro economic variables opens for 
the possibilities of stress testing ratings migration matrices, with historically as well as fictive 
scenarios, one of the aims of this proof of concept.  
 
The discrete-time ML-estimation method ought to supersede the cohort method in the case of 
time-homogeneity. In the field of further work in evolving the incorporation of the state of the 
economy, the use of several macro economic variables and their appropriateness for different 
subsamples should be investigated. Also the specification of the time-dependent ML-function 
can be further inquired into, as also the aspect of rating momentum, which also is of interest in 
the case of time-homogeneity.   
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