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Abstract 
We use Black and Scholes options theory to obtain market valuation of typical life 

insurance contracts. The contracts are specified as in Grosen & Lochte Jorgensen 

(2001), but with a slight extension where the guaranteed rate is simulated from market 

models of short interest rate such as Vasicek, Cox-Ingesoll-Ross and Ho-Lee models. 

Another extension is that we assume the guaranteed rate is equal to the risk free 

interest rate. Except the above extensions, we keep other factors of model similar as 

Grosen & Lochte Jorgensen (2001). First, the liability holders have prior claim for 

company asset than equityholders. Second, a regulatory mechanism is added into the 

model in order to reduce insolvency risk. Finally, we derive valuation formulas and 

give numerical examples for initial fair contracts and market values of contracts at 

different time points.  
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1 Introduction 
The fair valuation of life insurance liabilities has been discussed in the past decades.  

One reason is how to give a suitable structure of liabilities contracts, which is also the 

main purpose of this paper. 

 

For example, most insurance companies will promise to give policy holders an 

explicit interest rate added to their account, named as guaranteed interest rate. An 

unsuitable guaranteed rate will certainly bring insolvency risk to insurance company. 

The purpose of this paper is to discuss the effects of the variability of the guaranteed 

rate on the insolvency risk, and we will make some extension in such point. In our 

model, we assume that the guaranteed rate is a deterministic function, which means 

we can use Black and Scholes option theory to derive price formulas. Then, we use 

short rate models, such as Vasicek, Cox-Ingesoll-Ross, and Ho-Lee models, to 

simulated the above guaranteed rate and obtain discrete time point valuations. Finally, 

we inserted them into the formulas and obtain corresponding valuation results for this 

simulated guaranteed rate. Furthermore, we will present a reasonable connection 

between it and risk free rate. 

 

Another mechanism we will introduce, which was also introduced in the literatures, is 

regulatory restriction. However, the difference here is that the regulatory line is a 

random process, rather than deterministic exponential function as in Grosen and 

Jorgensen (2001). 

 

Finally, we provide a conclusion about the valuations of policyholders‟ claims under 

the following interest rate models: Vasicek model, Cox-Ingesoll-Ross model and 

Ho-Lee model. 

 

 

 

2 Basic Model 
 

In this section, we will present a model to deal with the problem discussed in the 

introduction. The basic framework is based on Briys and de Varenne(1997), but we 

test the short rate and guarantee rate by using stochastic process. 

 

At t=0, policyholders and equityholders form a mutual company, the life insurance 

company. The total Asset is A0, a fraction L0 = αA0(0 ≤ α ≤ 1) is invested by 

policyholders and E0 = (1 − α)A0 is invested by equityholders. The parameter α is 

called the wealth distribution coefficient.  
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Table 1 

Assets Liabilities 

 A0 L0 ≡ αA0 

  E0 ≡ (1 − α)A0 

 

Then the agents acquire a claim for a payoff on or before the maturity date T. 

Therefore, these claims are very similar to financial derivatives with the company‟s 

assets as the well-defined underlying asset. Hence, first, we will give a precise 

description of claims and then use the powerful apparatus of contingent claims 

valuation to price them. Second, we will choose suitable parameters in the valuation 

formula in order to form a fair contract at t=0, which means that initial investments 

equal to the time zero market value of the claims. 

 

 

 

3 Contract Specifications 
In this section we describe the details of the stakeholders‟ claims on the company‟s 

assets, as suggested in Briys & Varenne(1997) and Lochte & Jorgensen(2001). We 

begin with a specification of the liabilityholders‟ claim. 

 

3.1 The liabilityholders‟ Claim 

As mentioned in the introduction, the life insurance company promises the 

liabilityholders a continuously compounded return on the initial market value of the 

liabilities of rG  during the life of the contract: Lt
G = L0e rG

t
0 (s)ds  at time t. 

 

Furthermore, another important assumption in our model is that the risk free rate 

equals to interest rate guarantee: r≡ rG . 

 

In Figure1, rG  is simulated from the Vasicek short rate models: 

 

drG  = a (b-rG) dt+σrdW,                                           (1) 

 

where we fix the parameters at the following values a=0.25, b=0.06, σr = 0.02, 

r0=0.04. These values imply a positively sloped curve rising from 4% towards 
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approximately 6% as time to maturity tends to infinity.  

 

 

 

 

Figure 1 

 

 

 

This translates into a guaranteed final payment of LT
G = L0e rG

T
0 (s)ds . When there are 

not any external guarantors, the company‟s promise can be realized only if it turns out 

that AT > LT
G

 at time T. In the opposite case, AT ≤ LT
G , and in the event that the 

company has not been declared insolvey by regulators, the policyholders receive 

A T  and the equityholders receive nothing. 

 

Besides, in addition to the promised maturity payment LT
G , liabilityholders are also 

generally given bonus if the market value of the assets evolves sufficiently favorable. 

 

                       δ[αAT − LT
G ]                              (2) 

 

From (2) it is clear that in final states where the policyholders‟ „share‟ of total value 

AT  exceeds the promised payment of LT
G   they will receive a fraction, δ, of this 

surplus. The parameter δ is called as the participation coefficient and should be in 

the interval [0 1].  
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To sum up, the total maturity payoff to policyholders, ΨL(AT), can be described as 

 

 

 

 

                      A T ,                      AT < LT
G , 

     ΨL(AT)  =         LT
G ,                       LT

G <AT<
LT

G

α
,         (3) 

                           LT
G +δ[αAT − LT

G ],           AT>
LT

G

α
, 

 

or 

        

         ΨL(AT)= δ[αAT − LT
G ]++LT

G +[LT
G − AT]+.                      (4) 

 

The first part of the right-hand side has already been named as the bonus option. The 

two remaining terms are fixed maturity payment and shorted put option respectively. 

Figure 2 is a graphical illustration of (4), where rG  is given by the Vasicek model (1). 

 

 

Figure 2 
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In the next step, we will impose a regulatory restriction. Technically, suppose that in 

the framework above, the asset must evolve above a certain level: 

 

                   At > 𝜆L0e rG
t

0 (s)ds ≡ Bt                          (5) 

 

The curve{B(t)}0≤t≤T , will be called the regulatory boundary.  

 

The purpose of adding the regulatory boundary is to determine an absolute lower 

bound of the assets, under which the company is declared insolvency: L0e rG
t

0
(s)ds

 is 

the policyholders‟ initial deposit compounded with the guaranteed rate of return up to 

time t. Therefore, only if that the total assets At  at all times have been sufficient to 

cover L0e rG
t

0 (s)ds  multiplied by some prerequisite constant, λ, will the stakeholders‟ 

options keep evolving. 

 

In the opposite event, assets will at some point in time,τ, equal to Bτ, Aτ = Bτ . In 

this situation regulatory authorities close down the company immediately and 

distribute the wealth to stakeholders. 

 

At this point we note that there are two interesting cases. For λ ≥ 1 and in the event 

of a boundary hit, liabilityholders receive L0e rG
τ

0 (s)ds . At the same time 

equityholders receive (𝜆 − 1)L0e rG
τ

0 (s)ds . Conversely, for λ < 1 and in the event of 

a boundary hit, liabilityholders receive 𝜆L0e rG
τ

0 (s)ds . At the same time equityholders 

receive nothing. The various situations are illustrated in the figures below. 
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Figure 3a 

For λ < 1 

 

 

Figure 3b 

For λ ≥ 1 
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As described above there will be a rebate to liabilityholders in the event of premature 

closure at time τ. This rebate, ΘL(τ), is given as 

 

                     L0e rG
τ

0 (s)ds ,       λ ≥ 1, 

       ΘL(τ)=                                                   (6) 

                     𝜆L0e rG
τ

0 (s)ds ,      λ < 1, 

 

or  

       ΘL(τ)= (λ ∧ 1) L0e rG
τ

0 (s)ds .                                  (7) 

 

Before considering the valuation of claim, (ΨL(AT),ΘL(τ)), we describe the details 

regarding the equityholders‟ claim. 

 

 

 

 

3.2 The Equityholder‟s claim 

 

As residual claimants, equityholders will receive a payoff at the maturity date 

conditional on no premature closure as follows: 

 

                     0,                                       AT < LT
G , 

      ΨE AT =     A T  – LT
G ,                          LT

G <AT<
LT

G

α
,     （8） 

                     A T  – LT
G  – δ[αAT − LT

G ],             AT>
LT

G

α
. 

 

 

or 

      ΨE AT = [AT − LT
G ]+–δ[αAT − LT

G ]+.                              （9） 

 

The above payoff function is depicted in Figure 4 below. 
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Figure 4 

 

 

 

As described above there will be a rebate to equityholders in the event of technical 

insolvency at time τ. This rebate, ΘE(τ), is given as 

 

                   (𝜆 − 1)L0e rG
τ

0 (s)ds ,       λ ≥ 1, 

        ΘE(τ) =                                                  (10) 

0,                      λ < 1. 

 

 

or 

        ΘE(τ)= [(λ − 1)∨0] L0e rG
τ

0 (s)ds .                               (11) 
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4 Valuations 
To these contracts we apply the basic framework of Black and Scholes (1973) where 

all activity occurs on a probability space (Ω,ℱ,  ℱt , P). Under such assumption, the 

dynamic evolution of the assets is described by the stochastic differential equation: 

  

                        dAt=μAtdt + σAtdWt
p
                        (12) 

where μ and σ are constants and {Wt
p
} is a standard Brownian motion under P. 

Given the riskless interest rate, rt , we have 

 

dAt = rtAtdt + σAtdWt
Q

                  (13) 

where {Wt
Q} is a standard Brownian motion under the risk-neutral probability measure 

Q. 

 

Here,Vi At , t , i = L, E, denote the time t value of the liability- and equityholders‟ 

claims respectively. We can write (see e.g. Ingersoll (1987), p. 369–370) 

 

  Vi At , t  = EQ[e− r
T

t (s)dsΨi AT 1τ≥T +  e− r
τ

t
 s dsΘi(τ)1τ<𝑇|ℱt]= 

 e− r
T

t (s)ds  Ψi(AT)
∞

0
∙ f(AT, T; At, t)dAt  +  e− rτt (s)dsT

t
 Θi(τ) ∙ g(τ; At , t)dτ        (14) 

 

where we assume rt  in the above formula a deterministic function and the following 

theorems are also based on the assumption.  

 

Moreover, f(AT , T; At , t) denotes the risk-neutral density for the value of the assets at 

time T with an absorbing barrier Bt 0≤t≤T . Similarly, g(τ; At, t) denotes the 

risk-neutral first hitting time density of asset through the absorbing barrier conditional 

on the position At  at time t. 

 

The explanation of these two densities is deferred to the Appendix. 

 

 

 

 

 

 

 

 

 



10 
 

Theorem 1. 

We have the following value of the Liabilityholders‟ Claim ΨL(AT): A bonus (call) 

option element, a fixed payment, and a shorted put option element. If a premature 

barrier is hit there will be a rebate payment specified by ΘL(τ) in (6). VL At , t  is 

the sum of the time t value of these four elements as given below in parts I-IV where 

we used the notation: 

                      dγ
∓(x, t)= 

ln x + (𝑟(𝑠)−𝛾∓
1

2
𝜎2)𝑑𝑠

𝑇
𝑡

σ (T−t)
, 

I: The time t value of the bonus (call) option element is 

 

δα{AtN do
+
 

At

X
, t  −

LT
G

α
e− 𝑟(𝑠)𝑑𝑠𝑇

𝑡 N(d0
−

(
At

X
, t)) 

−(
At

Bt

) ∙ [
Bt

2

At

N(do
+

 

 
 

Bt
2

At

X
, t

 

 
 

) −
LT

G

α
e− 𝑟 𝑠 𝑑𝑠𝑇

𝑡 N(do
+

 

 
 

Bt
2

At

X
, t

 

 
 

)]}. 

where, X≡ LT
G (λ ∨

1

α
). 

 

II: The time t value of the conditional fixed payment element is 

 

LT
G e− 𝑟(𝑠)𝑑𝑠𝑇

𝑡  N drG

−
 

At

Bt
, t  −  

At

Bt

 ∙ N drG

−
 

Bt

At
, t   . 

 

III: The time t value of the shorted put option element is 

−1 λ<1  LT
G e− 𝑟(𝑠)𝑑𝑠𝑇

𝑡  N(−d0
−
 

At

LT
G

, t  −N −drG

−
 

At

Bt
, t    

−At  N(−d0
+
 

At

LT
G

, t  −N −drG

+
 

At

Bt
, t  ] 

− 
At

Bt

 × 

 LT
G e− 𝑟(𝑠)𝑑𝑠𝑇

𝑡  N(−d0
−
 

Bt
2

AtLT
G

, t  −N −drG

−
 

Bt

At
, t    

−
Bt

2

At

  N(−d0
+
 

Bt
2

AtLT
G

, t  −N −drG

+
 

Bt

At
, t  ]}}. 

 

IV: The time t value of the rebate is 

(λ ∧ 1)

λ
At  N −drG

+
 

At

Bt
, t  −  

At

Bt

 
−1

N drG

+
 

Bt

At
, t   . 

The proof relies on Black & Scholes formula and is presented in the Appendix. 
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Theorem 2. 

We have the following value of the Equityholders‟ Claim ΨE(AT): One residual 

claim call option and another shorted bonus option. if a premature barrier is hit there 

will be a rebate payment specified by ΘL(τ) in (10).  

VL At , t  is the sum of the time t value of these three elements as given below. 

 

I. The time t value of the long residual claim (call option) element is 

AtN do
+
 

At

Y
, t  −

LT
G

α
e− 𝑟(𝑠)𝑑𝑠𝑇

𝑡 N(d0
−

(
At

Y
, t)) 

− 
At

Bt

 ∙

 
 
 
 
 
Bt

2

At

N

 

  
 

do
+

 

 
 

Bt
2

At

Y
, t

 

 
 

 

  
 
− LT

G ∙ e− 𝑟 𝑠 𝑑𝑠𝑇
𝑡 N

 

  
 

do
−

 

 
 

Bt
2

At

Y
, t

 

 
 

 

  
 

 
 
 
 
 

, 

where, Y = (BT⋁LT
G ). 

 

II: The time t value of the shorted bonus option is given in part I of Theorem 1. 

 

III The time t value of the equity holders‟ rebate is  

 

((λ − 1) ∨ 0)

λ
At  N −drG

+
 

At

Bt
, t  −  

At

Bt

 
−1

N drG

+
 

Bt

At
, t   . 

 

Proof of Theorem 2. 

Part I is established by setting δ = α = 1 in Part I of Theorem 1. Part II is precisely 

Part I of Theorem 1 with the sign reversed. Part III rests on calculations similar to 

those that established Part IV of Theorem 1. 

 

 

 

 

 

 

 

5 Numerical Examples and Comparisons 
 

5.1 Fair Contracts 

 

The formulas for the values of the liability and equity claims are closed formulas that 

can be calculated once the relevant parameters are given. 

 

Just as discussed in the introduction part, it is clear that not every choice of 

parameters will represent fair contracts. So the first question to ask is which 
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combinations of parameters will represent fair contracts. A fair contract should satisfy 

the initial equation: 

L0 = αA0 = VL(A0, 0;α, δ, λ,σT, r, rG ), 

 

The equation is obvious because the liability holders‟ initial contribution to the total 

assets L0, should equal to the initial market value of contingent claim. 

 

Another equation is 

E0 =  1 − α A0 = VE A0, 0;α, δ, λ,σ，T, r, rG . 

 

Next, we provide some selected representative plots to illustrate some typical relations 

between parameters of initially fair contracts, where r=rG  are simulated from 

different short interest rate models such as Vasicek, CIR and Ho-Lee. This extends 

the work by Grosen & Jorgensen(2001), who considered the case where r and rG  are 

held constant. 

 

 

5.1.1 Using Vasicek model 

Figures 5 illustrates the relation between fair values of the participation coefficient, δ, 

and the wealth distribution coefficient, α, for some fixed and representative values of 

the remaining parameters. It is noted that all these graphs are negatively sloped as a 

higher wealth distribution coefficient will be associated with a lower participation 

coefficient in order for the contract to be fair to both sides (note r and rG  are 

simulated from random process and valuations are averages in these examples). 

 

Figure 5a 
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Figure 5b 

 

 

 

 

 

 

5.1.2 Using CIR model 

Figure 6 and Figure 7 illustrate similar comparison under CIR interest rate model and 

Ho-Lee model. We find the results are little different when we use three different 

interest rate models: 

 

Cox_ingersoll_Ross short rate model: 

 

dr = a(b-r)dt+σr rdW 

 

Here we set parameters as a=0.25, b=0.05, σr = 0.02 and r0=0.1. 

 

Under such a setting, the short rate will start from r0=10% toward to 5% when time 

is infinite. The purpose of such an initial parameter setting is to make short rate under 

this model is much more different to Vasicek model. However, after careful 

comparison, we find that the difference of comparison among three models is 

negligible. 

 

Another thing we want to mentioned here is that we will keep the above parameter 

setting in the CIR model when we compare the difference among models in section 

5.2 and section 5.3 
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Figure 6a 

 

 

 

 

 

 

Figure 6b 
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5.1.3 Using Ho-Lee model 

Ho-Lee interest rate model: 

 

dr=Θtdt+σrdW, 

 

Here we set parameters as: Θt= -0.05e−t, σr=0.02 and r0 = 0.1 

 

Under such a setting, the short rate will start from r0=10% toward to 5% when time 

is infinite. The purpose of such an initial parameter setting is to make short rate under 

this model is much more different to Vasicek model but similar as Cox-Ingersoll-Ross 

model.  

 

We want to mention is that we will keep the above parameter setting in the Ho-Lee 

model when we compare the difference among models in section 5.2 and section 5.3 

 

 

 

Figure 7a 
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Figure 7b 

 

 

 

 

5.2 Components of Fair contracts 

In Section 4 we derived value formulas for each of the components. The following 

table shows some examples of how the total contract value decomposes into the 

separate elements. 

 

We will find that the results are little different when we use three different interest 

rate models. 

 

5.2.1 Using Vasicek model 

Let r=rG  be the values simulated from the following Vasicek short rate model:  

dr = a∙(b-r)dt+σrdW, r=rG . 

 

 

Table 2: 

Decompositions of Contract Values 

a=0.25, b=0.06, σr = 0.02, r0=0.04 

A0 = 100, r = rG ,α = 0.8, T = 20 

 

σ δ BO SP CFP RL VL(A0, 0) RC SBO RE VE(A0, 0) 



17 
 

                                  λ ↓ 0.00 

0.10 0.553 7.83 -7.82 79.99 0 80.00 27.83 -7.83 0 20 

0.15 0.708 14.88 -14.88 80 0 80.00 34.88 -14.88 0 20 

0.2 0.795 21.98 -21.96 79.98 0 80.00 41.98 -21.98 0 20 

0.25 0.85 28.82 -28.82 80 0 80.00 48.82 -28.82 0 20 

                                  λ = 0.8 

0.1 0.482 6.68 -0.38 48.56 25.14 80 26.68 -6.68 0 20 

0.15 0.534 10.05 -0.15 30.52 39.58 80 30.05 -10.05 0 20 

0.2 0.547 12.04 -0.06 20.14 47.88 80 32.04 -12.04 0 20 

0.25 0.552 13.28 -0.03 13.79 52.96 80 33.28 -13.28 0 20 

                                  λ = 0.9 

0.1 0.334 4.36 -0.04 36.84 38.84 80 24.36 -4.36 0 20 

0.15 0.351 5.8 -0.01 22.16 52.05 80 25.80 -5.8 0 20 

0.2 0.355 6.57 0 14.37 59.06 80 26.57 -6.57 0 20 

0.25 0.356 7.03 0 9.76 63.21 80 27.03 -7.03 0 20 

                                 λ = 1 

0.1 0 0 0 25.17 54.82 80 20 0 0 20 

0.15 0 0 0 14.70 65.3 80 20 0 0 20 

0.2 0 0 0 9.43 70.56 80 20 0 0 20 

0.25 0 0 0 6.37 73.63 80 20 0 0 20 

                                 λ = 1.1 

0.1 0 0 0 14.24 65.76 80 13.42 0 6.58 20 

0.15 0 0 0 8.17 71.83 80 12.81 0 7.18 20 

0.2 0 0 0 5.2 74.80 80 12.52 0 7.48 20 

0.25 0 0 0 3.5 76.5 80 12.35 0 7.65 20 

                                 λ = 1.2 

0.1 0 0 0 4.42 75.58 80 4.88 0 15.12 20.00 

0.15 0 0 0 2.52 77.48 80 4.5 0 15.5 20.00 

0.2 0 0 0 1.6 78.4 80 4.32 0 15.68 20 

0.25 0 0 0 1.07 78.93 80 4.21 0 15.79 20 

                                 λ =1.25 

All All 0 0 0 80 80 0 0 20 20 

 

From the table several interesting observations can be made. For example: 

 

 If volatility is increased,  δ must be increased to maintain a fair value 

distribution 

 A larger volatility tends to increase the value of the rebate element and to 

decrease the value of the conditional fixed payment. This is, of course, explained 

by the fact that generally a larger volatility is associated with a larger probability 

of an early „barrier hit‟. 

 As expected, the value of the equity rebate element is nil when λ ≤ 1 and 

positive when λ > 1. 
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5.2.2 Using CIR model 

Here, Let r=rG  be the values simulated from the following Cox_ingersoll_Ross short 

rate model: 

dr = a(b-r)dt+σr rdW 

 

Table 3: 

a=0.25, b=0.05, σr = 0.02 and r0=0.1 

A0 = 100, r = rG ,α = 0.8, T = 20 

 

σ δ BO SP CFP RL VL(A0, 0) RC SBO RE VE(A0, 0) 

                                  λ ↓ 0.00 

0.10 0.552 7.8 -7.84 80.04 0 80.00 27.8 -7.8 0 20 

0.15 0.708 14.86 -14.9 80.04 0 80.00 34.86 -14.86 0 20 

0.2 0.795 21.95 -21.88 79.92 0 80.00 41.95 -21.95 0 20 

0.25 0.85 28.81 -27.51 78.63 0 80.00 48.81 -28.81 0 20 

                                  λ = 0.8 

0.1 0.48 6.64 -0.38 48.61 25.13 80 26.64 -6.64 0 20 

0.15 0.533 10.03 -0.15 30.54 39.58 80 30.03 -10.03 0 20 

0.2 0.547 12.03 -0.06 20.16 47.88 80 32.03 -12.03 0 20 

0.25 0.551 13.27 -0.03 13.8 52.96 80 33.26 -13.26 0 20 

                                  λ = 0.9 

0.1 0.333 4.34 -0.04 36.87 38.84 80 24.34 -4.34 0 20 

0.15 0.35 5.78 -0.01 22.18 52.05 80 25.78 -5.78 0 20 

0.2 0.354 6.56 0 14.38 59.06 80 26.56 -6.56 0 20 

0.25 0.356 7.02 0 9.76 63.22 80 27.02 -7.02 0 20 

                                 λ = 1 

0.1 0 -0.01 0 25.19 54.82 80 19.99 0.01 0 20 

0.15 0 -0.01 0 14.72 65.29 80 19.99 0.01 0 20 

0.2 0 -0.005 0 9.435 70.57 80 19.99 0.01 0 20 

0.25 0 0 0 6.37 73.63 80 20 0 0 20 

                                 λ = 1.1 

0.1 0 0 0 14.24 65.76 80 13.42 0 6.58 20 

0.15 0 0 0 8.17 71.83 80 12.81 0 7.18 20 

0.2 0 0 0 5.207 74.80 80 12.52 0 7.48 20 

0.25 0 0 0 3.5 76.5 80 12.35 0 7.65 20 

                                 λ = 1.2 

0.1 0 -0.002 0 4.42 75.58 80 4.88 0 15.12 20.00 

0.15 0 -0.001 0 2.52 77.48 80 4.5 0 15.5 20.00 

0.2 0 0 0 1.6 78.4 80 4.32 0 15.68 20 

0.25 0 0 0 1.07 78.93 80 4.21 0 15.79 20 

                                 λ =1.25 

All All 0 0 0 80 80 0 0 20 20 
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When Lambda is small the volatility is large, when Sigma is small the volatility is large. 

 

 

 

5.2.3 Using Ho-Lee model 

Here, Let r=rG  be the values simulated from the following Ho-Lee short rate model: 

dr=Θtdt+σrdW 

 

 

Table 4: 

 

Θt= -0.05e−t, σr=0.02 and r0 = 0.1 

A0 = 100, r = rG ,α = 0.8, T = 20 

 

σ δ BO SP CFP RL VL(A0, 0) RC SBO RE VE(A0, 0) 

                                  λ ↓ 0.00 

0.10 0.55 7.82 -7.83 80.01 0 80.00 27.82 -7.82 0 20 

0.15 0.708 14.85 -14.9 80.04 0 80.00 34.85 -14.85 0 20 

0.2 0.795 21.98 -21.84 79.85 0 80.00 41.98 -21.98 0 20 

0.25 0.85 28.84 -27.46 78.56 0 80.00 48.84 -28.84 0 20 

                                  λ = 0.8 

0.1 0.48 6.61 -0.39 48.64 25.13 80 26.61 -6.61 0 20 

0.15 0.533 10.04 -0.15 30.53 39.58 80 30.04 -10.04 0 20 

0.2 0.547 12.02 -0.07 20.16 47.88 80 32.03 -12.02 0 20 

0.25 0.551 13.26 -0.03 13.8 52.96 80 33.26 -13.26 0 20 

                                  λ = 0.9 

0.1 0.333 4.35 -0.04 36.86 38.84 80 24.35 -4.35 0 20 

0.15 0.35 5.77 -0.01 22.19 52.05 80 25.78 -5.78 0 20 

0.2 0.354 6.55 0 14.39 59.06 80 26.55 -6.55 0 20 

0.25 0.355 7.01 0 9.78 63.22 80 27.01 -7.01 0 20 

                                 λ = 1 

0.1 0 0.0 0 25.16 54.81 80 20.02 -0.02 0 20 

0.15 0 -0 0 14.70 65.29 80 20 0.00 0 20 

0.2 0 -0.00 0 9.43 70.57 80 20 0.00 0 20 

0.25 0 0.00 0 6.37 73.63 80 20 0 0 20 

                                 λ = 1.1 

0.1 0 0 0 14.25 65.75 80 13.42 0 6.58 20 

0.15 0 0 0 8.17 71.83 80 12.82 0 7.18 20 

0.2 0 0 0 5.2 74.80 80 12.52 0 7.48 20 

0.25 0 0 0 3.5 76.5 80 12.35 0 7.65 20 



20 
 

                                 λ = 1.2 

0.1 0 0.00 0 4.4 75.5 80 4.88 0 15.12 20.00 

0.15 0 0.0 0 2.5 77.5 80 4.5 0 15.5 20.00 

0.2 0 0 0 1.61 78.4 80 4.32 0 15.68 20 

0.25 0 0 0 1.07 78.93 80 4.21 0 15.79 20 

                                 λ =1.25 

All All 0 0 0 80 80 0 0 20 20 

 

When Lambda is small the volatility is large, when Sigma is small the volatility is large 

 

Ho-Lee model has a higher volatility 

 

 

 

5.3 Contract component prices 

 

It is an important property of our model that it can identify fair contracts for a given 

set of initial conditions. However, it is equally important that the model can price 

contracts and their constituting elements at any given point in time given the initially 

specified terms. 

 

Now, we present the following numerical examples in which the values of the 

components of the liability holders‟ contracts as a function of the state variable, At , at 

different times during the life of the contract. The contract parameters have been set 

so that the contract was fair at t=0 and the contract elements values are plotted for 

t=0.1 (right after inception), t=10, t=19 and t=20(see Grosen & Jorgensen (2001)). 

 

We will find that the results are little different when we use three different interest 

rate models. 

 

5.3.1 Using the Vasicek model 

 

The corresponding rG : 
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Figure 8a 
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Figure 8b 

 

 

Figure 8c 
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Figure 8d 

 

 

Figure 8e 
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For each time t=0.1,10,19,20, we assume At  start from corresponding Bt  to 450. 

For different simulated values of rG , the corresponding prices are different at time 

t=0.1,10,19.20. 

To obtain fair prices at different time, we should simulate r sufficient many times and 

choose averages. 

 

 

 

5.3.2 Using the Cox_Ingersoll_Ross model 

 

The corresponding rG : 

 

Figure 9a 

 

 

 

―――――――   Total Liability Value 

…………………   Bonus call option  

―∙―∙―∙―∙―∙―∙ Conditional Fixed Payment 

………… Shorted put option 

―――― Rebate 
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Figure 9b 

 

 

Figure 9c 
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Figure 9d 

 

 

Figure 9e 
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5.3.3 Using the Ho-Lee model 

 

The corresponding rG : 

 

Figure 10a 
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…………………   Bonus call option  

―∙―∙―∙―∙―∙―∙ Conditional Fixed Payment 
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Figure 10b 

 

 

 

Figure 10c 
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Figure 10d 

 

 

 

Figure 10e 
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Appendix 
 

The process of the liability holders’ claim valuation 
 

In this appendix we present a series of corollaries each of which can lead to the theorem 

which gives the closed-formula for fair value of every component of the liability holders’ 

claim in main context. We begin to research on the time t valuation of the maturity 

payment elements. Here most methods are based on Grosen and Jørgensen (2002). 

 

First refer to Grosen and Jørgensen (2002) who show the derivation of the defective 

transition density for Brownian motion with drift and an absorbing barrier at the origin in 

appendix A. Here we use their results directly. Namely: 

 

 f(Z, T; zt , t) = 
1

σ (T−t)
{N(

Z−zt−μ(T−t)

σ (T−t)
)-e−

2ztμ

σ2 ∙N(
Z+zt−μ(T−t)

σ (T−t)
)}                     (C.1) 

Note that the above density function is for Brownian motion of the form like 

( ) ( )u u t tz u t W W z       

Recall that we have 

   21

2
uA

u

s u t
t

r ds u t W W

tA e
    

  ， 

and the exponential barrier： 

              0 0

0 0

u u u u

G G G G
t t

r ds r ds r ds r ds

u t tB B e B e L e L e        ,  ,u t T        (A.1)      

Through the whole article we assume that at the valuation date the barrier has not yet 

been reached i.e t tA B .Further we let that Gr r are deterministic function. 

 

 

Corollary 1 The bonus (call) option element: 
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where  , ; ,T tf A T A t is the density of
TA with an absorbing barrier uB as given in (A.1). 

 

 

 

 

Proof of Corollary 1:  

We first perform a change of variables in order to be able to use the result (C.1). Note 

first that 

          u uA B  

           

            
   21

2

u u

s u t G
t t

r ds u t W W r ds

t tA e B e
         

           

               21
ln

2
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B
r ds u t W W r ds

A
        , since we choose Gr r  
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ln 0

2

t
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t

A
u t W W

B
        

Hence, passage of ( )A  through ( )B  is equivalent to passage of the Brownian motion  

   21
ln

2

t
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t

A
Z u t W W

B
        through zero. Define now ln t

t

t

A
z

B
  and note that: 

             ( )
G

T
T T

L
A B X


    

             

             

T

T s t
t

z r ds z

tA e X
    

             

           ln
T

T t s
t

t

X
z z r ds

A
     

             

           ln
T

T s
t

t

X
z r ds q

B
    

Therefore we can write (A.2) as 
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     αe− rs
T
t ds   Bte

zT+ rs
T
t ds −

LT
G

α
 f(zT , T; zt , t)

∞

q
dzT  

  

where ( , ; , )T tf z T z t is the defective density of Brownian motion with drift and absorbing 

barrier at zero. Substituting (C.1) for this, the rest is just tedious calculations. Note that 

the drift  is 
21

2
 in our formula. So we get: 
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Corollary 2 The conditional fixed payment element 

 

As a part of the maturity payoff, the liability holders’ receive
G

TL  on the condition that the 

knock-out barrier has not been hit. At time t with t tA B and Gr r are deterministic this 

payoff element is valued as follows: 
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Proof of Corollary 2:  

Changing variables as in Corollary 1 and using (C.1) yields 
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which establishes the result.                                              

_ 
 

 

Corollary 3 The put option element  

 

Note first that this payoff element can only be strictly positive when 1  , i.e. when the 

barrier lies below the curve 0

0

u

Gr ds

L e , [0, ]u T . The time t value of the put option element 

is given as follows: 
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Proof of Corollary 3:  

Change variables as before. First T TA B implies that 0Tz  .Also we should have  
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Corollary 4 (The rebate) 

The time t value of the rebate payment to the liability holders assuming t tA B  is 
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where ( ; , )tg z t  is the first hitting time density which will be derived below. 

 

 

Proof of Corollary 4  
First we would like to present the first passage time density of geometric Brownian 

motion through an exponential barrier: 
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Now substituting for ( ; , )tg z t  in (A.4) we get 
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