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Abstract

We use Black and Scholes options theory to obtain market valuation of typical life
insurance contracts. The contracts are specified as in Grosen & Lochte Jorgensen
(2001), but with a slight extension where the guaranteed rate is simulated from market
models of short interest rate such as Vasicek, Cox-Ingesoll-Ross and Ho-Lee models.
Another extension is that we assume the guaranteed rate is equal to the risk free
interest rate. Except the above extensions, we keep other factors of model similar as
Grosen & Lochte Jorgensen (2001). First, the liability holders have prior claim for
company asset than equityholders. Second, a regulatory mechanism is added into the
model in order to reduce insolvency risk. Finally, we derive valuation formulas and
give numerical examples for initial fair contracts and market values of contracts at
different time points.
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1 Introduction

The fair valuation of life insurance liabilities has been discussed in the past decades.
One reason is how to give a suitable structure of liabilities contracts, which is also the
main purpose of this paper.

For example, most insurance companies will promise to give policy holders an
explicit interest rate added to their account, named as guaranteed interest rate. An
unsuitable guaranteed rate will certainly bring insolvency risk to insurance company.
The purpose of this paper is to discuss the effects of the variability of the guaranteed
rate on the insolvency risk, and we will make some extension in such point. In our
model, we assume that the guaranteed rate is a deterministic function, which means
we can use Black and Scholes option theory to derive price formulas. Then, we use
short rate models, such as Vasicek, Cox-Ingesoll-Ross, and Ho-Lee models, to
simulated the above guaranteed rate and obtain discrete time point valuations. Finally,
we inserted them into the formulas and obtain corresponding valuation results for this
simulated guaranteed rate. Furthermore, we will present a reasonable connection
between it and risk free rate.

Another mechanism we will introduce, which was also introduced in the literatures, is
regulatory restriction. However, the difference here is that the regulatory line is a
random process, rather than deterministic exponential function as in Grosen and
Jorgensen (2001).

Finally, we provide a conclusion about the valuations of policyholders’ claims under
the following interest rate models: Vasicek model, Cox-Ingesoll-Ross model and
Ho-Lee model.

2 Basic Model

In this section, we will present a model to deal with the problem discussed in the
introduction. The basic framework is based on Briys and de Varenne(1997), but we
test the short rate and guarantee rate by using stochastic process.

At t=0, policyholders and equityholders form a mutual company, the life insurance
company. The total Asset is Ag, a fraction Ly = aAy(0 < a < 1) isinvested by
policyholders and Ey, = (1 — a)A, is invested by equityholders. The parameter o is
called the wealth distribution coefficient.



Table 1

Assets Liabilities

AO LO = aAO
EO = (1 — O()AO

Then the agents acquire a claim for a payoff on or before the maturity date T.
Therefore, these claims are very similar to financial derivatives with the company’s
assets as the well-defined underlying asset. Hence, first, we will give a precise
description of claims and then use the powerful apparatus of contingent claims
valuation to price them. Second, we will choose suitable parameters in the valuation
formula in order to form a fair contract at t=0, which means that initial investments
equal to the time zero market value of the claims.

3 Contract Specifications

In this section we describe the details of the stakeholders’ claims on the company’s
assets, as suggested in Briys & Varenne(1997) and Lochte & Jorgensen(2001). We
begin with a specification of the liabilityholders’ claim.

3.1 The liabilityholders’ Claim

As mentioned in the introduction, the life insurance company promises the
liabilityholders a continuously compounded return on the initial market value of the

t
liabilities of r¢ during the life of the contract; L¢ = Lyelo "¢ )45 at time t,

Furthermore, another important assumption in our model is that the risk free rate
equals to interest rate guarantee: r= rg.

In Figurel, rg issimulated from the Vasicek short rate models:
drg =a (b-rg) dt+o.dW, (1)

where we fix the parameters at the following values a=0.25, b=0.06, o, = 0.02,
r0=0.04. These values imply a positively sloped curve rising from 4% towards
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approximately 6% as time to maturity tends to infinity.

Figure 1
Simulation of s
er = a{b-rG)dt+Urdw,a:O.25,b:0.06,cr:0.02,r0:0.04
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This translates into a guaranteed final payment of LS = Loefo . When there are

not any external guarantors, the company’s promise can be realized only if it turns out
that Ar > LS at time T. In the opposite case, Ar < L$, and in the event that the
company has not been declared insolvey by regulators, the policyholders receive

A 1 and the equityholders receive nothing.

Besides, in addition to the promised maturity payment L%, liabilityholders are also
generally given bonus if the market value of the assets evolves sufficiently favorable.

S[aAr — LS] (2)

From (2) it is clear that in final states where the policyholders’ ‘share’ of total value
Ap exceeds the promised payment of LS they will receive a fraction, §, of this
surplus. The parameter & is called as the participation coefficient and should be in
the interval [0 1].



To sum up, the total maturity payoff to policyholders, ¥} (Ar), can be described as

Ar, A <15,
W (Ar) = 15, 1g<aq<tt ©
L§-+8[aAr — 1§], A,
or
W (Ar)= 8[aAr — Li]*+Li+[LT — Ar]™. 4

The first part of the right-hand side has already been named as the bonus option. The
two remaining terms are fixed maturity payment and shorted put option respectively.
Figure 2 is a graphical illustration of (4), where rg is given by the Vasicek model (1).

Figure 2
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In the next step, we will impose a regulatory restriction. Technically, suppose that in
the framework above, the asset must evolve above a certain level:

t
A, > ALgelore®ds = g (5)

The curve{B(t)}o<<r, Will be called the regulatory boundary.

The purpose of adding the regulatory boundary is to determine an absolute lower

t
bound of the assets, under which the company is declared insolvency: Lgeo*c®)ds js

the policyholders’ initial deposit compounded with the guaranteed rate of return up to
time t. Therefore, only if that the total assets A, at all times have been sufficient to

rg(s)ds

t
cover Loefo multiplied by some prerequisite constant, A, will the stakeholders’

options keep evolving.

In the opposite event, assets will at some point in time,t, equal to B;, A; = B.. In
this situation regulatory authorities close down the company immediately and
distribute the wealth to stakeholders.

At this point we note that there are two interesting cases. For A > 1 and in the event

rg(s)ds

of a boundary hit, liabilityholders receive LoefoT . At the same time

equityholders receive (A — 1)Lgelo )4 Conversely, for A < 1 and in the event of

rg (s)ds

a boundary hit, liabilityholders receive ALOefoT . At the same time equityholders

receive nothing. The various situations are illustrated in the figures below.



Figure 3a
For A<1
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Figure 3b
For A>1

Simulated Asset Value and random Boundaries
with A0=100,a=0.6,0=20% A=1.2,Step Number=1000

20

600 . . .

500

400

300

Yalues

200 -

100 ¥V---

0 5 10 15

20



As described above there will be a rebate to liabilityholders in the event of premature
closure at time . This rebate, O (1), is given as

LoefoTrG(S)d51 A1,
OL(0)= (6)
ALgelo ra()ds A< 1,
or
OL(T)= (A A 1) Lyelo 6 (&)ds @)

Before considering the valuation of claim, (W, (At),0, (1)), we describe the details
regarding the equityholders’ claim.

3.2 The Equityholder’s claim

As residual claimants, equityholders will receive a payoff at the maturity date
conditional on no premature closure as follows:

0, A < LS,
G
W (A= < Aq — 1S, Lf<Ar<t, (8)
G G Lt
AT — LT — S[QAT - LT], AT>?'
or
We (Ap)= [Ay — L§]*-8[any — LS]*. (9

The above payoff function is depicted in Figure 4 below.



Figure 4

Maturity Payoff to Equityholder

Delta=0.8 Alpha=0.6rG as in Figure(2),A0=100
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As described above there will be a rebate to equityholders in the event of technical
insolvency at time t. This rebate, ©g(t), is given as

(A — DLgelo e () A>1,
Op(T) = (10)
0, A< 1.

or

O (T)= [(A — 1)VO] Lgelo "e s (11)



4 Valuations

To these contracts we apply the basic framework of Black and Scholes (1973) where
all activity occurs on a probability space (Q, F, (F,), P). Under such assumption, the
dynamic evolution of the assets is described by the stochastic differential equation:

dA=pA.dt + cA dW (12)

where p and o are constants and {W'} is a standard Brownian motion under P.

Given the riskless interest rate, r., we have

dA; = riAddt + cA dW2 (13)

where {w_} is a standard Brownian motion under the risk-neutral probability measure

Q.

Here,V; (A, t),i = L, E, denote the time t value of the liability- and equityholders’
claims respectively. We can write (see e.g. Ingersoll (1987), p. 369-370)

T T
Vi(Apt) = B¢k TOB Y (A Loy + ek TS, (1) 1oy |Fl

T (o) T
e~ i r()ds J, Wi(Ar) - f(Ar, T A, DdA, + [ ek T @;(1) - g(T; A, t)dT (14)

where we assume r; in the above formula a deterministic function and the following
theorems are also based on the assumption.

Moreover, f(Ar,T; A, t) denotes the risk-neutral density for the value of the assets at
time T with an absorbing barrier{B,}o<<r. Similarly, g(t;A,t) denotes the
risk-neutral first hitting time density of asset through the absorbing barrier conditional
on the position A, at time t.

The explanation of these two densities is deferred to the Appendix.



Theorem 1.

We have the following value of the Liabilityholders’ Claim W; (At): A bonus (call)
option element, a fixed payment, and a shorted put option element. If a premature
barrier is hit there will be a rebate payment specified by 0, (t) in (6). V.(A,t) is
the sum of the time t value of these four elements as given below in parts I-1V where
we used the notation:

- lnx+Trs—$lJst

63 (x, 0= x)+]; (j@)—_; 702)

I: The time t value of the bonus (call) option element is

fs(x{AtN<d;r (%t)) Lt oI r(®dsn(d, ( )

Bt Bt

_(t + At __T —f r(s)ds + At
( ) [ N(d < )] N(d, X -t DI

where, X= LA v é).
I1: The time t value of the conditional fixed payment element is

- (A A - (B
G o JI T(s)ds ot _ (B Dt
He [N(dm (Bt't» &) N<er<At't)>}'

I11: The time t value of the shorted put option element is

v () (i )

s () (i )
-(5)~

{LG ol ) (- e

s g ) e

IV: The time t value of the rebate is

b= (1))~ () (e (o))}

The proof relies on Black & Scholes formula and is presented in the Appendix.

—Ip<y {LTe I r)ds

_At

BZ
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Theorem 2.

We have the following value of the Equityholders’ Claim Wg (At): One residual
claim call option and another shorted bonus option. if a premature barrier is hit there
will be a rebate payment specified by 0 (t) in (10).

V1. (A, t) is the sum of the time t value of these three elements as given below.

I The time t value of the long residual claim (call option) element is
A LS T _ A
AtN (d: <7t,t>> - ?Te_ft T(S)dSN(dO (Yt,t))
o (%)) [ (e
(A |BE L | Al o fTrwdsy | - | A
<Bt>'|AtNKd0 T’t) LG -e ) deo vt )l'
l ]

where, Y = (BrVLS).
I1: The time t value of the shorted bonus option is given in part | of Theorem 1.

I11 The time t value of the equity holders’ rebate is

(A-1)v0) + (A AT+ (B
@DV (—at (50 - () (e (Rer))}

Proof of Theorem 2.

Part | is established by setting 8 = a = 1 in Part | of Theorem 1. Part Il is precisely
Part | of Theorem 1 with the sign reversed. Part Il rests on calculations similar to
those that established Part IV of Theorem 1.

5 Numerical Examples and Comparisons

5.1 Fair Contracts

The formulas for the values of the liability and equity claims are closed formulas that
can be calculated once the relevant parameters are given.

Just as discussed in the introduction part, it is clear that not every choice of
parameters will represent fair contracts. So the first question to ask is which

11



combinations of parameters will represent fair contracts. A fair contract should satisfy
the initial equation:
LO = (XAO = VL(A(), 0, Q, 6, }\, GT, r, rG),

The equation is obvious because the liability holders’ initial contribution to the total
assets L,, should equal to the initial market value of contingent claim.

Another equation is
Eo = (1 — Ay = Vg(A,0;0,8,4 0, T,r,rg).

Next, we provide some selected representative plots to illustrate some typical relations
between parameters of initially fair contracts, where r=r are simulated from
different short interest rate models such as Vasicek, CIR and Ho-Lee. This extends
the work by Grosen & Jorgensen(2001), who considered the case where r and r; are
held constant.

5.1.1 Using Vasicek model

Figures 5 illustrates the relation between fair values of the participation coefficient, 8,
and the wealth distribution coefficient, a, for some fixed and representative values of
the remaining parameters. It is noted that all these graphs are negatively sloped as a
higher wealth distribution coefficient will be associated with a lower participation
coefficient in order for the contract to be fair to both sides (note r and r; are
simulated from random process and valuations are averages in these examples).

Figure 5a
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Figure 5b
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5.1.2 Using CIR model

Figure 6 and Figure 7 illustrate similar comparison under CIR interest rate model and
Ho-Lee model. We find the results are little different when we use three different
interest rate models:

Cox_ingersoll_Ross short rate model:
dr = a(b-r)dt+o,./rdW
Here we set parameters as a=0.25, b=0.05, o, = 0.02 and r,=0.1.

Under such a setting, the short rate will start from ry=10% toward to 5% when time
is infinite. The purpose of such an initial parameter setting is to make short rate under
this model is much more different to VVasicek model. However, after careful
comparison, we find that the difference of comparison among three models is
negligible.

Another thing we want to mentioned here is that we will keep the above parameter
setting in the CIR model when we compare the difference among models in section
5.2 and section 5.3

13



Figure 6a

A0=100,A=0.9T=20,r is simulated by CIR model
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Figure 6b
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5.1.3 Using Ho-Lee model

Ho-Lee interest rate model:

dr=0.dt+o.dW,

Here we set parameters as: ©,= -0.05e*, 0,=0.02 and r, = 0.1

Under such a setting, the short rate will start from ry=10% toward to 5% when time
is infinite. The purpose of such an initial parameter setting is to make short rate under
this model is much more different to Vasicek model but similar as Cox-Ingersoll-Ross

model.

We want to mention is that we will keep the above parameter setting in the Ho-Lee
model when we compare the difference among models in section 5.2 and section 5.3

Figure 7a

A0=100,A=0.9,T=20ris simulated by Ho Lee model
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Figure 7b

A0=100,0=20%,T=20,r is simulated by Ho Lee model
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5.2 Components of Fair contracts

In Section 4 we derived value formulas for each of the components. The following
table shows some examples of how the total contract value decomposes into the
separate elements.

We will find that the results are little different when we use three different interest
rate models.

5.2.1 Using Vasicek model

Let r=r; be the values simulated from the following Vasicek short rate model:
dr = a-(b-r)dt+o,.dW, r=rg.

Table 2:

Decompositions of Contract Values
a=0.25, b=0.06, o, = 0.02, r0=0.04
Ay =100,r =rg,a=0.8T =20

| 8 |BO |SP |CFP |RL |V,(A,,0)RC [SBO |RE |Vy(Ay,0) |

16



010 [0553 |7.83 [-7.82 [79.99 [0 80.00 [27.83 |-783 |0 |20
015 [0708 |14.88 |-1488 |80 [0 80.00 [34.88 |-1488|0 |20
02 |0.795 |21.98 |-21.9679.98 |0 80.00 |41.98 |-21.98 |0 |20
025 |085 [2882 |-2882[80 |0 80.00 |48.82 |-2882[0 |20
A=0.8
01 |0482 [6.68 |-0.38 |[4856 |25.14 |80 2668 | 668 |0 |20
015 |0.534 [10.05 |-0.15 [30.52 |39.58 |80 30.05 |-1005|0 |20
02 |0547 [12.04 |-0.06 |[20.14 |47.88 |80 3204 |-1204 |0 |20
025 [0552 |13.28 |-003 |13.79 [52.96 |80 3328 |-1328 |0 |20
A=09
01 [0334 436 |-004 |3684 3884 |80 2436 |-436 [0 |20
015 [0351 |58 |-001 |22.16 [52.05 |80 2580 |58 [0 |20
02 [0355 |657 |0 14.37 [59.06 |80 2657 |-657 [0 |20
025 [0356 703 |0 9.76 [6321 |80 2703 |-703 [0 |20
A=
01 |o 0 0 25.17 | 54.82 |80 20 |0 0 |20
015 |0 0 0 1470 |653 |80 20 |0 0 |20
02 |0 0 0 9.43 |70.56 |80 20 |0 0 |20
025 |0 0 0 6.37 |73.63 |80 20 |0 0 |20
A =11
01 |0 0 0 14.24 | 65.76 | 80 1342 |0 6.58 |20
015 |0 0 0 817 |71.83 |80 1281 |0 7.18 | 20
02 |0 0 0 52 | 74.80 |80 1252 |0 7.48 |20
025 |0 0 0 35 [765 |80 12.35 [0 7.65 |20
A =12
01 |0 0 0 442 |7558 |80 488 |0 15.12 | 20.00
015 |0 0 0 252 | 77.48 |80 45 |0 155 | 20.00
02 |0 0 0 16 784 |80 432 |0 15.68 | 20
025 |0 0 0 107 |78.93 |80 421 |0 15.79 | 20
A =1.25
Al Al o Jo [o [so [s0 o o 20 |20

From the table several interesting observations can be made. For example:

*

*

*

If volatility is increased, & must be increased to maintain a fair value

distribution
A larger volatility tends to increase the value of the rebate element and to
decrease the value of the conditional fixed payment. This is, of course, explained
by the fact that generally a larger volatility is associated with a larger probability
of an early ‘barrier hit’.
As expected, the value of the equity rebate element is nilwhen A <1 and
positive when A > 1.
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5.2.2 Using CIR model

Here, Let r=rg be the values simulated from the following Cox_ingersoll_Ross short

rate model:
dr = a(b-r)dt+o,./rdW
Table 3:
a=0.25, b=0.05, o, = 0.02 and ry=0.1
Ay = 100,r =g, a = 0.8, T = 20
o | 8 |BO [sP |CFP |RL |V.(Ap,0JRC [SBO |RE [Vy(A,0)
A10.00
010 |0552 [78 [-7.84 [80.04 |0 8000 [278 [-78 o |20
015 |0.708 |14.86 |-14.9 |80.04 |0 80.00 |34.86 |-14.86|0 |20
02 |0.795 |21.95 |-21.8879.92 |0 80.00 |41.95 |-2195[/0 |20
025 |085 [2881 |-27.51]78.63 |0 80.00 |4881 |-2881[0 |20
A=08
01 |048 [664 |-038 4861 |25.13 |80 2664 |-664 |0 |20
015 [0533 |10.03 |-0.15 |30.54 |39.58 |80 30.03 [-1003 |0 |20
02 |0547 [12.03 |-0.06 |20.16 |47.88 |80 3203 |-1203]0 |20
025 |0551 [13.27 |-0.03 [138 |[5296 |80 3326 |-1326 |0 |20
A=0.9
01 [0333 [434 [-004 [36.87 |38.84 |80 2434 [-434 o |20
015 |035 [578 [-0.01 [2218 |52.05 |80 2578 |-578 [0 |20
02 |0354 [656 |0 14.38 |59.06 |80 2656 |-656 |0 |20
025 |0356 [7.02 |0 9.76 |63.22 |80 2702 |-702 |0 |20
A=
01 |0 -0.01 |0 25.19 |54.82 |80 1999 |001 [0 |20
015 |0 -0.01 |0 1472 | 65.29 |80 1999 |001 [0 |20
02 |0 -0.005 | 0 9.435 | 70.57 |80 1999 |001 [0 |20
025 |0 0 0 6.37 |73.63 |80 20 0 0 |20
A =11
01 o 0 0 14.24 | 65.76 |80 13.42 |0 6.58 | 20
015 |0 0 0 8.17 |71.83 |80 1281 |0 7.18 |20
02 |o 0 0 5207 | 74.80 |80 1252 |0 7.48 | 20
025 |0 0 0 35 |765 |80 1235 |0 7.65 | 20
A =12
01 |o -0.002 | 0 442 |7558 |80 488 |0 15.12 | 20.00
015 |0 -0.001 | 0 252 |77.48 |80 45 |0 155 | 20.00
02 o 0 0 16 |784 |80 432 |0 15.68 |20
025 |0 0 0 107 |78.93 |80 421 |0 15.79 |20
A =1.25

Al [Al [o Jo [o [s0o 80 o o 20 |20
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When Lambda is small the volatility is large, when Sigma is small the volatility is large.

5.2.3 Using Ho-Lee model

Here, Let r=rg be the values simulated from the following Ho-Lee short rate model:
dr=0.dt+c.dW

Table 4:
.= -0.05e™!, 6,=0.02 and ry = 0.1
Ay = 100,r =g, a = 0.8, T = 20
o | 8 |BO [sP |CFP |RL |V.(Ap,0JRC [SBO |RE |[Vy(A,0)
A10.00
010 |055 [7.82 [-7.83 [80.01 |0 80.00 |27.82 [-782 [0 [20
015 |0.708 |14.85 |-14.9 |[80.04 |0 80.00 |34.85 |-1485[/0 |20
02 |0.795 [21.98 |-21.8479.85 |0 80.00 |41.98 |-2198|0 |20
025 |085 |28.84 |-27.46|78.56 |0 80.00 |4884 |-2884|0 |20
A=0.8
01 |048 [661 |-039 |4864 |2513 |80 2661 |-661 |0 |20
015 [0533 |10.04 |-0.15 |30.53 |39.58 |80 30.04 |-1004 |0 |20
02 |0547 |12.02 |-007 |20.16 |47.88 |80 3203 |-1202|0 |20
025 |0551 |13.26 |-0.03 | 138 |52.96 |80 3326 |-1326 |0 |20
A=0.9
01 [0333 |435 |-004 [36.86 |3884 |80 2435 [-435 [0 |20
015 [035 [577 |-001 |[2219 |52.05 |80 2578 | 578 |0 |20
02 [0354 |655 |0 1439 [59.06 |80 2655 |-655 |0 |20
025 |0355 [7.01 |0 9.78 |63.22 |80 2701 |-701 [0 |20
A=
01 |o 00 |o 25.16 | 54.81 |80 2002 [-002 |0 [20
015 |0 -0 0 1470 | 65.29 |80 20 |000 |0 |20
02 |0 -0.00 |0 9.43 |70.57 |80 20 |000 |0 |20
025 |0 000 |0 6.37 |73.63 |80 20 o 0 |20
A =11
01 |0 0 0 14.25 | 65.75 |80 1342 [0 6.58 | 20
015 |0 0 0 817 |71.83 |80 1282 |0 7.18 | 20
02 |0 0 0 52 | 74.80 |80 1252 |0 7.48 | 20
025 |0 0 0 35 |765 |80 1235 |0 7.65 | 20
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A=12

01 |o 000 |0 44 755 |80 488 |0 15.12 | 20.00
015 |0 00 |o 25 [775 |80 45 |0 155 [ 20.00
02 |0 0 0 161 [784 |80 432 |0 15.68 | 20
025 |0 0 0 1.07 [78.93 |80 421 |0 15.79 |20

A =1.25
Al Al [o [o [o |80 80 o o 120 |20

When Lambda is small the volatility is large, when Sigma is small the volatility is large

Ho-Lee model has a higher volatility

5.3 Contract component prices

It is an important property of our model that it can identify fair contracts for a given
set of initial conditions. However, it is equally important that the model can price
contracts and their constituting elements at any given point in time given the initially
specified terms.

Now, we present the following numerical examples in which the values of the
components of the liability holders’ contracts as a function of the state variable, A, at
different times during the life of the contract. The contract parameters have been set
so that the contract was fair at t=0 and the contract elements values are plotted for
t=0.1 (right after inception), t=10, t=19 and t=20(see Grosen & Jorgensen (2001)).

We will find that the results are little different when we use three different interest
rate models.

5.3.1 Using the Vasicek model

The corresponding rg:
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Figure 8a

Simulation of s
er = a{b-rG}dt+UrdW,a:D.25,b:0.06,crr:0.02,r0:0.04
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Figure 8b

Liability Value components as Function of Total Asset Value
1=0.1
A0=100,0=0.8,0=15%,A=0.8,Step Number=1000,T=20
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Figure 8d

Liability Value components as Function of Total Asset Value
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Figure 8e
Liability Value components as Function of Total Asset Value
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For each time t=0.1,10,19,20, we assume A, start from corresponding B; to 450.
For different simulated values of rg, the corresponding prices are different at time
t=0.1,10,19.20.

To obtain fair prices at different time, we should simulate r sufficient many times and
choose averages.

5.3.2 Using the Cox_Ingersoll_Ross model

The corresponding rg:

Figure 9a
Simulation of s
er = a(b-rG}dt+Ur*\"rdW,a:O_25,b:O_05,Ur:O_02,rO:O_1
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Figure 9b

Yalue of Liability Elements

Figure 9c

Walue of Liability Elements

Liability Value components as Function of Total Asset Value
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Figure 9d

Liability Value components as Function of Total Asset Value
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Figure 9e
Liability Value components as Function of Total Asset Value
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5.3.3 Using the Ho-Lee model

The corresponding rg:

Figure 10a
Simulation of s
er = E](t)dt+UrdW,8{t}:-O.D5*exp{-t),crr:0.02,r0:0.1
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Figure 10b

Yalue of Liability Elements

Figure 10c

Walue of Liability Elements

Liability Value components as Function of Total Asset Value
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Figure 10d

Yalue of Liability Elements

Figure 10e

Walue of Liability Elements

Liability Value components as Function of Total Asset Value
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Appendix

The process of the liability holders’ claim valuation

In this appendix we present a series of corollaries each of which can lead to the theorem
which gives the closed-formula for fair value of every component of the liability holders’
claim in main context. We begin to research on the time t valuation of the maturity
payment elements. Here most methods are based on Grosen and Jergensen (2002).

First refer to Grosen and Jergensen (2002) who show the derivation of the defective
transition density for Brownian motion with drift and an absorbing barrier at the origin in
appendix A. Here we use their results directly. Namely:

) _ 1 png2=ze—n(T—t) _%' Z+z—p(T—t)
f(Z,T; 2., t) GJ(T_&N( T )-e N(—Gm )} (C.1)
Note that the above density function is for Brownian motion of the form like

z, = p(U—-t)+oW, -W,) +z,

Recall that we have

u 1,
Au _ A .eL rst—EG (u=t)+o(W,-W,) ,
and the exponential barrier:

B, = Bel ™ —Bel ©* = AL eh™® — aLeh " u e [t,T] (A1)
Through the whole article we assume that at the valuation date the barrier has not yet
been reached i.e A > B, .Further we let that r =r; are deterministic function.

Corollary 1 The bonus (call) option element:
- TrS d +
E {e J (aA -L3) 1T>T}

- Trsds +
=e -[t Eé|:<0{Ar—L$) 1T>-|—:|

- Trsds ® +
ek I&[aa—L$] f (AL T;At)dA
_ —J.Trsds 0

=e Lm§%WA—$HU%PAMW¥ (A2)

|nf(*+jtT rsds+;az(T 1)
oy 1)

=a{AN
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A (T 1.,
_L_$67J~1TrstN Iny‘f‘J‘t I’SdS—EG -(—t
a o (T -t)

BZ/A T 1, BZ/A T 1,
AlEE In= +L rds+2 0" (T 1) L ey In= +L rds—2 " (T 1)

B.| A oy(T-1) a ay(T -t)

}

where f (A;,T; A,t)is the density of A with an absorbing barrier B, as given in (A.1).

Proof of Corollary 1:
We first perform a change of variables in order to be able to use the result (C.1). Note
first that

A > B,
0
u 1, u
A ) rds—2 0% (u=t)+o (W, W) B e | rets
0
u B u
rds—lo-z(u—t)+0'(W —-W,)>In—+| rsds, since we choose r=r,
t S 2 u t A t G ¢
0

Loty row, W)+ I 0
2 B,
Hence, passage of A(-) through B(-) is equivalent to passage of the Brownian motion

A

Z, = —%02 (U—t)+o (W, -W,)+ InE through zero. Define now z, = Ing and note that:
t t

A> (B VD) =X
a
0

T
P2 +L r,ds—z,

A-e > X

0

X T
Z >InK+Zt_L r.ds

0
X T
Z, > Ingt—_[t rds=q

Therefore we can write (A.2) as
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_ (T 0 T LG
ae” e Tsds fq (BteZT+ft rsds —?T) f(zr, T; 2, 1) d,p

where f (z;,T;z,t) is the defective density of Brownian motion with drift and absorbing
barrier at zero. Substituting (C.1) for this, the rest is just tedious calculations. Note that

o1,
the drift is —= o in our formula. So we get:
2
(T 0 T LG
aeJ Tsds fq (BteZTJrft rsds —?T) f(zr, T; z, ©) dgyp
T T G
:ae_'[‘ rsdsJ- (BteZT+‘[‘ ryds _i)x
a a

1 1
1 Z—zt+Eaz(T—t) . 1 Z+Zt+50'2(T ~1)

Yy T o JT-1) S e S Y s

2
1[ZT z—=o°(T t)}
T T 2 oo
-| rds _po ryds+z 1 o
— e {j Btef‘ ——————¢ dz
q

o\27(T —t) !

7 -1, +lo-2(T—t) ’
T Y
2 o(T-1)
J. dz

27z(|'

2
1{2T+Zl—o' (T—t)}
T 2| oJT-n
P e A
t T
q 27 (T -t)
1[ZT +Z,+%O'Z(T—t)

ERr ) J
dz; }

J. Q/27I(T
—q+zt+;az(T—t)
o(T -1)

rds

el el
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1
LG _q_zt_EO-Z(T—t)
+—Le"*N
a o(T -t)

A (T 1.,
InY+J‘t rds+ - o"(T 1)
o(T -1)

}

=a{AN

A (Mrds— Loz -
18 In >+ nds—2 0" (T-)
a o -t)

BZ/A (T 1 BZ/A (T 1
IN=/—2 4| rds+=c*(T -t . In=—2Y 4| rds—=o?(T -t
Ale "y J rds+2 0T AR L J rds—2o*(T-1)

Bf
B.| A oy(T-1) a ay(T -t)

Corollary 2 The conditional fixed payment element

As a part of the maturity payoff, the liability holders’ receive L® on the condition that the
knock-out barrier has not been hit. At time t with A > B,and r = r; are deterministic this
payoff element is valued as follows:

el it

J.T r,ds

=e " EQ[ 151, |

=L$e_L "j; (AT A A

A1 o w AL o
e T InBt 2a(T t) [A] InBt 20'(T t)
=L7e " x4N —| — [N

O'\/(T —t) B, a\f(T —t)

Proof of Corollary 2:
Changing variables as in Corollary 1 and using (C.1) yields

Jo f(ALT:A 1A

=I: f(z;,T;z,t)dz,
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2 1 2
:J‘m 1 Z, -2, +—=o° (T -t) . 1 ) zT+zt+§g (T -
0 o(T-1) o -1) o —t) o (T -t)
AL gl AL g
InBt 20'(T t) _(AJN InBt 20'(T t)
oJ(T -t) B, o+J(T -t)

which establishes the result.

Corollary 3 The put option element

dz;

Note first that this payoff element can only be strictly positive when A <1, i.e. when the

. . LIr d
barrier lies below the curve LOeL °
is given as follows:

1{/1<1} Eé) {e_jt rSds (L$ - Ar )+ 1{T>T}}
=1, The Eq [(L'r Ar) {rsT }
_ —Jj rds (o /g
_1{,1<1} e IBT ( LT
210 (S A A TiA DA

—A ) (AT AL D)dA,

r.ds

| f—j rds+= a(r t)
{L7e

|ni+102(r—t)

l<1 O'\/:—)

B

2
ou/(T —1)

In——j rds——a(l' t) Int—;az(T—t)
_A N A —(ﬁ X
ou/ —-t) ou/(T —1)
e LGA* J.rds+ o2(T -t) In2+;az(l'—t)
[LSe ™ "N ~N

B

ouf(T —1)
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“ue [0,T]. The time t value of the put option element
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| A 1
In=—t—| rds—=c?(T -t In=2t-=o?(T —t

N -N
A oy(T 1) ay(T -1)

Proof of Corollary 3:
Change variables as before. First A. > B, implies that z; >0 .Also we should have

A <LS
g

I
g

z; <In J' r.ds
g

LS ¢
zT<In—T—I r.ds
B t°

G
setting q= Inllj%—T—'[[T r.ds we can rewrite (A.3) as
t

- Trsds q T+ Trsds—zt
1u<1;-ef‘ L[L?—A-e } jfmz;tdz)
l<l _‘rdSJ. (LG zT+J‘rds)><

1 1
1 Z—zt+502(l'—t) . 1 Z+zt+Eaz(T—t)

m/(T—t)n o JT—1) - m/(T—t)n o JT-1)

1[21- L +-0 (T—t)}

2 oy

- rds

/I<1 t {'[ dz

ou/Zﬂ'(T —1) o d2r T !

_J-q B ezt+j: rds o
o o\2x(T —t) !
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[ZT +2, J%az (T-t)

q . 1 2 U\/ﬁ
—_eh (.[ LT _ ¢
o o 27(T -t)
q jTrsds—z, 1 2 T
-[0 ' O'JZﬂ(T —1) o
_1 ef'[:rsds
{2<1}
G
: Ini—rrsds+102(T—t) In 2”6 (T -)
G 7_‘. ryds ' 2 A 2
{Le N N
O'\/(T —t) 6\/(1- —1)
1 2 1 2
I S U Y e S U

_ -N
Ae ouf -t) U\f ~1)

U N ER e L

—e* (L[N - '_—t) -N - V_—t)

1 2 1 2
Y N e il ) e sl |
A o J(T-1) o (T -1)
Inl‘gﬁ—.[tT rsds+;02(T—t) In i +262(|'—t)

G j r,ds _
1{/1<1}{ Lre N U\/ﬁ N o(T-t)

812

In=t _ ds— = 2 —t In—=t — —t
AR n Irs o’ (T )—N nA (T-1) _(ﬁ]x
o(T-t) oy/(T -1) B,
. ni? —J.:rsds+;62(|'—t) |n2+2020——t)

sl -
[Lre o JT -0 N o\ -1)
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T |ni?*-frsds—;az(r—t) InA: Loy )
A oy(T 1) ay(T -1)

Corollary 4 (The rebate)
The time t value of the rebate payment to the liability holders assuming A > B, is

E, [e_jt (AL, }
-l [(AAD)L01, ]
Q T —T<T
:efIt rsdsf (A A1) LoeIO o g(z;z,,t)dz (A.4)
—|ng‘—;az(T —1) —Ing+;o-2(l'—t)

x| AN oy o +B,-N T

where g(z;z,t) is the first hitting time density which will be derived below.

Proof of Corollary 4
First we would like to present the first passage time density of geometric Brownian
motion through an exponential barrier:
‘ &l 710'2 u-t)+o (W, -W,
Since Auzﬁyej‘r g el ),
and the exponential barrier:

u
. reds

BU _ Boejo reds _ Bte".‘ reds _ /’LLOGJ‘O rgds _ ﬂL[eJ.
A

1
Let 7 denote the smallest u such that A, =B,.Set z, = InE and =—§a2 .Do
t

exactly the same calculation as Grosen and Jergensen (2002) did in appendix B. We can
establish that

9(z;z,,t) = 4 > n[Z‘Jrﬂ(T_t)] (C.2)
o(r-t)2 o\(r-1)

,u e[t,T]

Now substituting for g(z;z,,t) in (A.4) we get
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_J't lrsdsejt r5ds . Z, i 5 ode ) dr

;
(’1/\1)|-th e ;¢
t J(r—t)5 27
:(/1 /\1) L?JT ei.[t rsdseJ; fads . Zt 3 ie 2[ : (z-t) J dT
t o(r-t)? 2m

=(AAL %f 9“7 (r;7,,t)dz

AL g WAL o
Int =2 o*(T-1) ng+50°T 0

r AT o[(T-1) iR Ry oy
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