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Abstract

During the last decade investors' interest in structured products, especially
Equity-Linked Notes(ELN), has increased dramatically. An ELN is a debt
instrument which di�ers from a typical �xed income security in that the �nal
payout is based partly on the return of an underlying equity, in this case the
Swedish equity index OMXS30

TM

. The ELN is speci�ed as a portfolio of a
bond and a call option on the index.

This thesis investigates the risks with investing in an ELN on the Swedish
market, and also compares the ELN to investing in portfolios of di�erent
combinations of the bond and the index. The risks are measured using Value-
at-Risk and Expected Shortfall with three di�erent approaches; historical
simulation, analytical solution and Monte Carlo analysis.

The ELN is found to have a risk pro�le that varies signi�cantly with
changing market conditions. Though, the major setbacks of the ELN seem
to be the risk of losing the interest rate normally paid by a bond, the high
upfront fee charged and for some investors the di�culty to easily adjust the
portfolio composition.
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Chapter 1

Introduction

1.1 Background

Despite subject to sharp criticism from media and the Swedish Financial
Supervisory Authority (FI), investors' interest in structured products, espe-
cially Equity-Linked Notes (ELN), continues to increase. Between 2001 and
2007, investments in ELNs on the Swedish market increased from just over
10 MM SEK to 95 MM SEK [4, 11]. By January 1, 2009 the total issued
volume was just short of 170 MM SEK [2].

1.2 The Market

The most popular ELNs on the Swedish market have a return linked to the
OMXS30

TM

. Handelsbanken, Nordea, SEB and Swedbank, who together
issued more than 60 percent of all ELNs in 2008 [3], all market the ELNs
in similar ways. They are said to be products that provide both safety and
opportunity. SEB in particular writes: "An ELN combines the opportunity
to a good return with the safety of the bond. You participate in possible
increases in the market and at the same time you have a protection against
decreases". Usually the various issuers o�er the same kind of products, for
instance an ELN with a return linked to the OMXS30

TM

. But often the
conditions di�er, and special features are applied di�erently by the issuers
making it hard to compare similar products. An example of a special feature
is that the return of each individual stock in an index is "caped", i.e. a
maximum return is set to a speci�c level.

1.3 Criticism

There are two main areas of criticism directed towards ELNs. The �rst is
the high fees associated with ELNs. According to an article from E24 [4],
the brokerage fee is between 1-2 percent of the invested capital. Then there
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are annual fees of between 0.5 and 1 percent. According to Handelsbanken,
the total fee is circa 1 percent annually [4]. By investing in an ELN, the
investor also takes on the risk of losing the interest rate normally paid by a
bond.

The second area of criticism concerns how ELNs are presented to in-
vestors. In a report from FI dated December 22, 2006 it is stated that they
have "found shortcomings in the way that information is presented to clients.
This applies foremost how risks are described in the marketing material...",
see [10]. According to FI, the risk on an ELN can be "divided into an interest
portion and an equity portion. The risk in the equity portion is that this
portion can be positive and then later weaken in a stress scenario".

1.4 The purpose of this thesis

I have decided to focus on the risks associated with investing in ELNs. I
believe many investors do not know what they have actually invested in, and
I think it is fair to assume that most of them would never buy an option.

"The opportunity to a good return with the safety of the bond" almost
sounds too good to be true, and in this thesis I will investigate the risks with
investing in an ELN on the Swedish market, and if there are any interesting
alternative investments.
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Chapter 2

Methods

2.1 Creating the structured product

The structured product examined in this thesis will be of the type Equity-
Linked Notes (ELN). An ELN is a debt instrument which di�ers from a
typical �xed income security in that the �nal payout is based partly on
the return of an underlying equity, in this case the Swedish equity index
OMXS30

TM

. A common feature of an ELN is that it has a guaranteed
payout, usually the same amount as the initial price.

I will de�ne the ELN as a portfolio Pt composed of a bond Bt and an
at-the-money call option Ct on OMXS30

TM

, both maturing two years after
issuance. On the Swedish market it is common that the bond is issued by
the seller of the ELN. For instance SEB write in their prospectus that even
though there is a guaranteed payout, the owner has a credit risk on SEB [9].
I will assume that the ELN, and hence the bond, is issued by an average
Swedish bank, and that the option is bought on the market.

I have speci�ed two requirements on the portfolio. The �rst is that
the initial price of the portfolio is the same as the face value of the bond,
which ensures the guaranteed payout. The second requirement is that the
return of the portfolio at maturity is zero or equal to the return of the
OMXS30

TM

multiplied by a participation rate wo, whichever is highest. The
participation rate varies with the market conditions, essentially the bond
yield and the implied volatility of OMXS30

TM

, and is set just before issuance.
It speci�es how many at-the-money (at time zero) options the portfolio con-
tains. In this thesis the participation rate is approximately 0.5. An indicative
payo� diagram of the ELN can be found in �gure 2.1. The construction of
the ELN portfolio is described in three steps below.
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1. The initial capital is IC.

2. Buy 1 bond B0 with face value equal to IC.

3. Spend the remaining capital IC - B0 on wo at-the-money options C0.

The value of the portfolio at time t is

Vt = wTt Pt = 1 ·Bt + wo · Ct. (2.1)
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Figure 2.1: The indicative pay o� against index level at maturity.

2.2 Maximizing expected utility

To put the ELN portfolio into a bigger perspective, one can consider a mar-
ket with three assets; the bond, the index and the at-the-money call option
on the index. On this market short selling is allowed. Given an investors
preferences, in terms of a utility function, one can calculate an optimal port-
folio allocation for the investor. To maximize expected utility can be thought
of as maximizing the investors satisfaction or happiness.

A utility function is a function on the real numbers that is typically
increasing and concave meaning that the investor always wants to have more
money, but the additional utility of one extra SEK decreases the wealthier
the investor gets [8]. The investors problem is

maximize E[U(W1)]

subject to wT1 = 1
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where U(W1) is the utility function, W1 = W0(1 + wT r) is the �nal wealth,
W0 is the initial wealth, r = (r1, r2, r3) are the returns of the assets and
w = (w1, w2, w3) are the portfolio weights. This is a typical nonlinear opti-
mization problem which, using Lagrange relaxation, can be rewritten into a
nonlinear equation system

E

[
dU(W1)
dwi

]
− λ = 0, i = 1, 2, 3

wT1− 1 = 0.

From a utility maximization perspective the ELN is just a standardized
portfolio choice made by the issuer. This choice probably corresponds to few
investors' optimal portfolios, just the ones with the exactly matching utility
function. An example of a portfolio optimization using a speci�c utility
function, not necessarily the one leading to the ELN, can be found in section
3.2.

2.3 Bond-Stock portfolios

Reasonable substitutes to the ELN are portfolios consisting of the bond and
the index. I will call these Bond-Stock portfolios. Below, I have de�ned
two Bond-Stock portfolios, both employing di�erent properties of the ELN.
These portfolios can also be thought of as standardized portfolio choices
from the utility maximization. They will later be compared to the ELN
with regards to risk and return.

2.3.1 Bond-Stock portfolio 1

The ELN has a return at maturity that is zero or equal to the return of the
OMXS30

TM

multiplied by a participation rate wo, whichever is highest. It is
natural to compare the ELN to a Bond-Stock portfolio that has the same
return in a positive market environment. Hence, this portfolio will consist
of approximately 50 percent bond and 50 percent index.

2.3.2 Bond-Stock portfolio 2

The second portfolio is created using a di�erent approach. The ELN contains
just over 91 percent bond, the rest is used to by options. This is to ensure the
requirement of a guaranteed payout. It is then equally natural to compare
the ELN to a Bond-Stock portfolio that has the same exposure to the bond.
Hence, this portfolio will consist of approximately 91 percent bond and 9
percent index.
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2.4 Pricing

2.4.1 Bond pricing

The bond pricing will be based on continuously compounded interest rate.

Bt = e−(rt+pt)(T−t)

where rt is the risk-free interest rate at time t and pt is the credit risk
premium of the bond at time t. Hence, the bond price can be modelled by

Bt = f1(t, rt, pt).

2.4.2 Option pricing

For the option pricing I will use the Black-Scholes formula [6]. The reason I
am choosing this pricing model is that it is the most well known method for
pricing options, and the fact that the formula itself as well as its derivatives
have closed form solutions. The price of the option at time t is given by

Ct = ItN(d1)−Ke−r(T−t)N(d2)

where

d1 =
ln It/K + (rt + σ2

t /2)(T − t
σt
√
T − t

d2 =
ln It/K + (rt − σ2

t /2)(T − t)
σt
√
T − t

= d1 − σt
√
T − t

and

rt = the risk-free interest rate at time t

It = the price of the underlying index

K = the strike price of the index

σt = the volatility of It.

Hence, the option price can be modelled by

Ct = f2(t, rt, ln It, σt).

2.5 Loss distribution of a portfolio

2.5.1 Modelling the value

Generally one can model the value of a portfolio with a function of a d-
dimensional random vector Zt = (Z1, ..., Zd) of risk-factors,

Vt = f(t,Zt).
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If we introduce the random vector Xt+1 = Zt+1 − Zt of risk-factor changes,
the loss of the portfolio can be expressed as

Lt+1 =− (Vt+1 − Vt)
=−

(
f(t+ 1,Zt + Xt+1)− f(t,Zt)

)
. (2.2)

For a more detailed description, see [7].

2.5.2 Choice of risk-factors

The loss of the ELN portfolio is dependent on the simultaneous loss of the
bond and the option. The values of the bond and the option can be modelled
as two separate functions as seen in sections 2.4.1 and 2.4.2,

Bt = f1(t, rt, pt)
Ct = f2(t, rt, ln It, σt).

To simplify the simulations that are the main part of this thesis I will use
logarithmic implied volatility instead of the plain implied volatility used in
Black-Scholes formula. This eliminates major complications in the calcula-
tions. With this adjustment, we have the risk-factors

Zt = (rt, pt, ln It, lnσt),

and introducing the notation ∆xt = xt+1−xt, I de�ne the risk-factor changes
as

Xt+1 = (∆rt,∆pt,∆ ln It,∆ lnσt).

Finally, the loss can be written as

Lt+1 =−
(
f(t+ 1,Zt + Xt+1)− f(t,Zt)

)
=−

(
f(t+ 1, rt + ∆rt, pt + ∆pt, ln It + ∆ ln It, lnσt + ∆ lnσt)

− f(t, rt, pt, ln It, lnσt)
)
.

In the same way as for the ELN above, the loss distributions of the Bond-
Stock portfolios become functions of the risk-factors rt, pt and ln It.

2.5.3 Linearized loss distribution

To simplify calculations it is convenient to have a linearized relation between
Lt+1 and Xt+1. This is done by di�erentiating f with respect to t and Zi.
The linearized loss becomes

L∆
t+1 = −

(
ft(t,Zt)∆t+

d∑
i=1

fzi(t,Zt)Xt+1,i

)
. (2.3)

7



With risk-factors Zt, risk-factor changes Xt+1 and the value of the portfolio
Pt, see (2.1), the linearized loss is written

L∆
t+1 =−

(
∂Bt
∂t

∆t+
∂Bt
∂rt

∆rt +
∂Bt
∂pt

∆pt

+ wo ·
(
∂Ct
∂t

∆t+
∂Ct
∂rt

∆rt +
∂Ct
∂It

It∆ ln It +
∂Ct
∂σt

σt∆ lnσt

))
.

(2.4)

To know how reliable the above expression is, I will test the robustness
of the linearization by comparing it to the non-linear loss. This is done by
stressing two risk-factors at the time which results in an error surface where
the linearization's deviation from the non-linear formula can be seen.

2.6 Data

2.6.1 Dependence structure of the risk-factor changes

To analyse the risk in a realistic way it is important to examine whether
the di�erent risk-factors are dependent or not. Also, even though a pair of
risk-factors might seem uncorrelated when data is aggregated and measured
over a large sample, it is possible that they behave as if correlated during one
or more shorter time periods. The dependence structure can be examined
using e.g. scatter plots and correlation calculations.

2.6.2 Fitting data to distributions

In many of the models used in �nancial theory data is assumed to be normally
distributed. A quick examination of almost any �nancial time series shows
that this assumption does not provide the best �t possible. According to
Broadie and Detemple [1] the probability of a crash equal to, or worse than
the Black Monday crash on October 19, 1987 is approximately 10−97 under
the assumption of normal distribution. Statistical tests show that in general
�nancial data has a kurtosis far larger (i.e. fatter tails) than implied by the
normal distribution.

A useful tool when studying the extremal properties of a sample is
quantile-quantile plots (qq-plots). A sample X1, ..., Xn is compared to a
reference distribution F by plotting{(

Xk,n, F
←
(
n− k + 1
n+ 1

))
: k = 1, ...n

}
with the sample sorted according to Xn,n ≤ Xn−1,n ≤ ... ≤ X1,n. If F is a
more heavy tailed distribution than the sample the plot will curve down at
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the left and/or up at the right, and the other way around if F has lighter
tails. If the sample comes from the same distribution as F , the plot appears
linear. More info on qq-plots can be found in Hult and Lindskog [7].

2.7 Risk measurement

The two risk measures that will be used in this thesis are Value-at-Risk and
Expected Shortfall. They are de�ned as follows:

VaRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α}
= inf{l ∈ R : 1− FL(l) ≤ 1− α}
= inf{l ∈ R : FL(l) ≥ α}
= F−1

L (α).

ESα(L) = E(L|L ≥ VaRα(L))

=
E(LI[qα(L),∞)(L))
P(L ≥ qα(L))

=
1

1− α
E(LI[qα(L),∞)(L))

=
1

1− α

∫ ∞
qα(L)

ldFL(l).

As stated in the introduction, according to FI the risk on an ELN can be
"divided into an interest portion and an equity portion. The risk in the
equity portion is that this portion can be positive and then later weaken
in a stress scenario". What this basically means is that if the underlying
index has increased drastically, a "crash" in the index will cause a lot more
damage than if it occurs with the index at approximately the same level as
at issuance. With the intention to give a comprehensive risk pro�le of the
ELN, two risk scenarios are presented below.

2.7.1 Risk scenarios

The ELN portfolio has an initial term to maturity of two years. During this
period, two risk scenarios will be considered. One will take place one month
after issuance, the other one year after issuance. The two scenarios are based
on stressing the two risk-factor pairs (rt, pt) and (ln It, lnσt) one at the time
with the other held constant. The reason for the choice of these pairs is the
fact that they are the only two found correlated, see section 3.3.2. Note that
the scenarios are constructed to show how the risks of the portfolio change
due to changes in the risk-factors, i.e. market conditions, during the period
from issuance until just before risk measurement.
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Risks will be measured for 1-day losses and also 20-day losses where
applicable. The 1-day losses are chosen to give a sense of the magnitude of
the day-to-day losses, while the 20-day losses are supposed to represent the
frequency at which a typical investor reviews an investment.

2.7.1.1 Scenario 1 - Stressing (rt, pt)

One month after issuance, the probability that the underlying index has
increased heavily is low. Therefore, I will consider a scenario where the pair
(ln It, lnσt) is held constant (i.e. the same as at issuance) while I allow rt
and pt to vary. This leads to a risk function that, instead of being one single
number, becomes a surface. This risk surface is dependent on how rt and pt
move during the �rst month. An example of a situation that this scenario
covers is if the Swedish central bank, Riksbanken, decides to change the repo
rate during this �rst month, and how this changes the risk of the ELN.

2.7.1.2 Scenario 2 - Stressing (ln It, lnσt)

After one year, with one year to maturity, the other scenario takes place.
Holding the pair (rt, pt) constant, ln It and lnσt are allowed to vary. This
gives a risk surface dependent on how ln It and lnσt have moved during the
�rst year. For instance, this scenario will show whether the risk increases a
lot after a period of bullish stock market behaviour.

2.7.2 Historical simulation

Calculating the risk measures with historical simulation is a rather straight
forward exercise. Historical data of the risk-factor changes has to be col-
lected. Then, the data is simply plugged in to (2.2) which gives the empirical
loss distribution Ln. The empirical VaR and ES can be written

V̂aRα(Ln) = L[n(1−α)]+1,n

ÊSα(Ln) =
∑[n(1−α)]+1

k=1 Lk,n
[n(1− α)] + 1

where [x] is the integer part of x, and with the empirical loss distribution
ordered such that L1,n ≥ ... ≥ Ln,n.

2.7.3 Analytical solution

For the analytical solution the linearized loss in (2.4) can be used. The partial
derivatives of Bt are easily calculated using the bond pricing expression in
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section 2.4.1. For Ct we need the partial derivatives of the Black-Scholes
formula who are the well known Greeks,

∂Ct
∂t

is called theta
∂Ct
∂rt

is called rho

∂Ct
∂It

is called delta
∂Ct
∂σt

is called vega.

The partial derivatives become constants used as weights in the equation.
To calculate the risk analytically using one of our preferred risk measures we
need to �nd a multidimensional distribution FXt+1 of the risk-factor changes.
This can be done with help of qq-plots, described in section 2.6.2. (2.4) can
now be written

L∆
t+1 =−

(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t−

(
∂Bt
∂rt

+ wo
∂Ct
∂rt

)
∆rt

− ∂Bt
∂pt

∆pt − wo
∂Ct
∂It

It∆ ln It − wo
∂Ct
∂σt

σt∆ lnσt

=−
(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTXt+1.

If FXt+1 is multivariate elliptically distributed with mean vector µ and co-
variance matrix Σ, VaR and ES can be written

VaRα(L∆
t+1) =−

(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣwVaRα(Xt+1)

=−
(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣwF−1
Xt+1

(α)

and

ESα(L∆
t+1) =−

(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣwESα(Xt+1)

=−
(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣw
1

1− α

∫ ∞
F−1
Xt+1

(α)
xdFXt+1(x)

where FXt+1 is a one-dimensional standardized elliptical distribution of the
same kind as FXt+1 . For instance, if FXt+1 is multivariate normally dis-
tributed then FXt+1 is the standard normal distribution.
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2.7.4 Monte Carlo simulation

In the Monte Carlo simulation, the value change of the ELN is modelled
with the help of a copula, CR. This is done to achieve a certain dependence
structure of the risk-factor changes. Thereafter, using the best �tted dis-
tribution for each of the risk-factor changes one can simulate values of the
risk-factor changes from the copula and get simulated "historical data". The
risks are then calculated in the same way as in the historical simulation, see
section 2.7.2. A more detailed description of copulas can be found in Hult
and Lindskog [7].
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Chapter 3

Results

3.1 Creating the structured product

The ELN is created as a portfolio Pt of a bond and wo at-the-money call
options, see section 2.1. The initial value of the portfolio is set to 100 SEK.
The risk-factors were chosen as Zt = (rt, pt, ln It, lnσt). rt is represented
by Swedish Treasury bills, SSVX, with 12 months maturity. For the credit
risk premium, pt, I use the so called TED-spread as a proxy. The TED-
spread is used as a measure of credit quality and is de�ned as the di�erence
between the interest rate on interbank loans, in the Swedish case STIBOR,
and Treasury bills for a given time to maturity. Applied to the Swedish
market the equation becomes

TED-spread = STIBOR− SSVX.

It is as previously stated the Swedish equity-index OMXS30
TM

. The implied
volatility σt of the index is represented by DVIS, which is an indicator of the
expected market volatility the following 30 calendar days, calculated from
the price of OMXS30

TM

options.
What remains is to set the initial values of the risk-factors in agreement

with the requirements speci�ed in section 2.1.

Risk-factor Initial value
rt 4.4 %
pt 0.2 %
It 100 SEK
σt 24 %

rt and pt are set to their market averages during the examined period. It is
chosen out of simplicity, and �nally the implied volatility is set to obtain a
participation rate, wo, of approximately 0.5.
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3.2 Maximizing expected utility - An example

Assume that, on a market with three assets, an investor has the utility
function U(W1) = ln(W1). Recall that W1 = W0(1 + wT r) is the �nal
wealth where W0 is the initial wealth, r = (r1, r2, r3) are the returns of the
assets and w = (w1, w2, w3) are the portfolio weights. The investor faces the
nonlinear equation system

E

[
W0(1 + ri)
W0(1 + wT r)

]
− λ = 0, i = 1, 2, 3 (3.1)

wT1− 1 = 0.

This can be solved using e.g. MATLAB R©and Newtons Method [5]. 20-
day returns of the bond, the index and the call option calculated from the
historical data, see section 3.3.1, are used to compute the expectation values
of (3.1). Finally, this yields the portfolio

w1 = 1.4 w2 = −2.1 w3 = 1.7.

The interpretation of this portfolio is that the investor with utility function
ln(W1) should short sell 2.1 units of the index, buy 1.4 units of the bond and
buy 1.7 units of the call option on the index. Note that in this example it is
assumed that the assets all have the same price.

3.3 Data

3.3.1 Data collection

Data has been collected from a 15 year period, January 1, 1994 to De-
cember 31, 2008. 616 days has been left out due to missing data, leaving
a total of 3152 days of observations to use in the analysis. rt, pt and It
can all easily be collected in the market from e.g. www.riksbank.se and
finance.yahoo.com. Regarding σt, the implied volatility-indicator DVIS is
published on a daily basis by www.derivatinfo.com.

3.3.2 Dependence structure of risk-factor changes

I have investigated the dependence structure of the following pairs of daily
risk-factor changes.

(∆ ln It,∆ lnσt) (∆rt,∆pt) (∆ ln It,∆rt)
(∆ ln It,∆pt) (∆ lnσt,∆rt) (∆ lnσt,∆pt)

Scatter plots of all pairs can be found in �gure 3.1, placed in the same
order as they are listed above. 250 day rolling correlations for the whole
data set of each pair above have been calculated and can be found in the
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Figure 3.1: Scatter plots of all pairs of risk-factor changes.

appendix, section 5.2. The only pairs that are systematically correlated are
(∆ ln It,∆ lnσt) and (∆rt,∆pt), these will instead be presented below and
examined more thoroughly.

3.3.2.1 (∆ ln It,∆ lnσt)

Figure 3.2 shows a 250 day rolling correlation between ∆ ln It and ∆ lnσt.
The correlation is negative throughout the whole 15 year period, has an
average of -0.27 and varies over time between [-0.61, 0].
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Figure 3.2: 250 day rolling correlation of (∆ ln It,∆ lnσt).
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3.3.2.2 (∆rt,∆pt)

The pair (∆rt,∆pt) has a higher correlation with an average of -0.58, varying
between [-0.92 -0.22]. The 250 day rolling correlation can be found in �gure
3.3.
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Figure 3.3: 250 day rolling correlation of (∆rt,∆pt).

3.3.3 Fitting data to distributions

Histograms of all four risk-factor changes can be found in �gure 3.4. All
histograms show a signi�cant di�erence from normal distribution in the way
that they have heavier tails. In �gure 3.5 the reader as a reference �nds
histograms from four di�erent tν-distributions.

3.3.3.1 Distribution of ∆ ln It

In �gure 3.6 ∆ ln It is plotted in qq-plots against nine di�erent tν-distributions.
The best �t is provided by the t5.0-distribution, found in the middle of �gure
3.6.

3.3.3.2 Distribution of ∆ lnσt

∆ lnσt has heavier tails than ∆ ln It, see �gure 3.4. When qq-plotted against
di�erent tν-distributions in �gure 3.7, the t2.4-distribution is found to be the
best �t.
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Figure 3.4: Histograms of risk-factor changes. From upper left corner: ∆ ln It,
∆ lnσt, ∆rt, ∆pt.
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Figure 3.5: Histograms from four tν-distributions. From upper left corner:
t2, t4, t6, t8
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Figure 3.6: QQ-plots of ∆ ln It vs. tν-distributions. From upper left corner:
ν = (1, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 100).
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Figure 3.7: QQ-plots of ∆ lnσt vs. tν-distributions. From upper left corner:
ν = (1, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 100).

18



3.3.3.3 Distribution of ∆rt

When making a qq-plot with ∆rt one notices that it is hard to determine
which distribution provides the best �t, see �gure 3.8, due to the most ex-
treme points in the lower left of the �gure. However, the t3.5-distribution is
found to be the best �t.
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Figure 3.8: QQ-plots of ∆rt vs. tν-distributions. From upper left corner: ν =
(1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 100).

3.3.3.4 Distribution of ∆pt

In �gure 3.4 we see that ∆pt is the most heavy tailed risk-factor. The qq-
plots in �gure 3.9 indicate that the t2.5-distribution provides the best �t.

3.4 Risk measurement - ELN

In this section the results of the di�erent simulations are presented. Through-
out the analysis, the con�dence level α = 0.99 will be used.

Recall that the risks will be measured using the two scenarios de�ned in
section 2.7.1 where the risk-factor pairs (rt, pt) and (ln It, lnσt) are stressed
one at the time.

3.4.1 Historical simulation

A table with the underlying data for the VaR plots of this section can be
found in section 5.3 in the appendix.
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Figure 3.9: QQ-plots of ∆pt vs. tν-distributions. From upper left corner: ν =
(1, 1.6, 1.9.2.2, 2.5, 2.8, 3.1, 3.4, 100).

3.4.1.1 Scenario 1 - Stressing (rt, pt)

The results can be found in �gures 3.10 and 3.11.
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Figure 3.10: Scenario 1 with historical simulation, 1-day VaR and ES. The risk
levels are fairly constant throughout the whole surfaces.

3.4.1.2 Scenario 2 - Stressing (ln It, lnσt)

The results are found in �gures 3.12 and 3.13.
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Figure 3.11: Scenario 1 with historical simulation, 20-day VaR and ES. As in the
case for the 1-day risks, the changes in the risks over the surfaces are small.
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Figure 3.12: Scenario 2 with historical simulation, 1-day VaR and ES. Note that
the changes in the index have a large e�ect on the risk level. The level of the implied
volatility has di�erent e�ects on the risk depending on the index level.
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Figure 3.13: Scenario 2 with historical simulation, 20-day VaR and ES. As in the
case of the 1-day risks, the index has a huge impact on the risk level. Note that
the risks dependence on the implied volatility is weaker than in the 1-day case.
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3.4.2 Robustness of the linearization

The error of the linearization is calculated as the relative di�erence between
the linearized loss (2.3) and the non-linear loss (2.2), (L∆

t+1 − Lt+1)/(Lt+1).
Hence, the error is a function of the risk-factors. The linearization is tested
by stressing the risk-factor pairs (rt, pt) and (ln It, lnσt) one at the time. The
results can be found in �gures 3.14 and 3.15. Note that the centre points of
the x-axis and y-axis corresponds to a zero loss where naturally the error is
zero. Due to the characteristics of these �gures the 20-day risks calculated
with the linearized analytical solution will not be used.
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Figure 3.14: Robustness of the linearization. The relative error caused by stress-
ing the risk-factor pair (rt, pt).

3.4.3 Analytical solution

Using the distributions found in section 3.3.3 one can conclude that the mul-
tivariate elliptical distribution FXt+1 , and hence the marginal distribution
FX1 , can be approximated by a t3 distribution. The analytical VaR and ES
is then written

VaR0.99(L∆
t+1) =−

(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣwVaR0.99(Xt+1)

=−
(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣwF−1
t3

(0.99)
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Figure 3.15: Robustness of the linearization. The relative error caused by stress-
ing the risk-factor pair (ln It, lnσt).

and

ES0.99(L∆
t+1) =−

(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣwES0.99(Xt+1)

=−
(
∂Bt
∂t

+ wo
∂Ct
∂t

)
∆t+ wTµ

+
√

wTΣw
1

1− 0.99

∫ ∞
F−1
t3

(0.99)
xdFt3(x).

3.4.3.1 Scenario 1 - Stressing (rt, pt)

The result is found in �gure 3.16.

3.4.3.2 Scenario 2 - Stressing (ln It, lnσt)

The result is found in �gure 3.17.
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Figure 3.16: Scenario 1 with analytical solution, 1-day VaR and ES. As in the
historical simulation, the risk surfaces are quite �at.
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Figure 3.17: Scenario 2 with analytical solution, 1-day VaR and ES. The be-
haviour is quite similar to the historical simulation, although the surfaces are
smoother.
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3.4.4 Monte Carlo simulation

As in section 3.4.3 we approximate the multivariate distribution as t3. The
generation of the 4-dimensional t-copula Ct3,R can be summarized in the
following eight steps:

1. Measure pairwise dependence between risk-factor changes.

2. Collect in a 4-by-4 dependence matrix R.

3. Find the Cholesky decomposition A of R where R = AAT.

4. Simulate 4 independent random variates Z1,...,Z4 from N(0,1).

5. Simulate a random variate S from χ2
3.

6. Set Y = AZ and X =
√

3√
S
Y.

7. Set Uk = t3(Xk) for k = 1, ..., 4.

8. Start over from 4.

This is iterated a desirable number of times to yield a sample from the
copula Ct3,R. In �gure 3.18 pairwise scatter plots of the risk-factor changes
simulated from the copula can be found. If these are compared with the
pairwise scatter plots of the original data in �gure 3.1 one can see that they
are quite similar.
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Figure 3.18: Pairwise scatter plots of copula parameters, ordered in the same way
as originally listed in page 14.
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3.4.4.1 Scenario 1 - Stressing (rt, pt)

Value-at-Risk and Expected Shortfall calculated with a Monte Carlo simu-
lation can be found in �gures 3.19 and 3.20.
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Figure 3.19: Scenario 1 with Monte Carlo simulation, 1-day VaR and ES. The
Monte Carlo analysis con�rms the results provided by the previous methods.
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Figure 3.20: Scenario 1 with Monte Carlo simulation, 20-day VaR and ES.

3.4.4.2 Scenario 2 - Stressing (ln It, lnσt)

Value-at-Risk and Expected Shortfall calculated with a Monte Carlo simu-
lation can be found in �gures 3.21 and 3.22.
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Figure 3.21: Scenario 2 with Monte Carlo simulation, 1-day VaR and ES. Also
in this second scenario, the results of the previous sections are con�rmed. The risk
surfaces are a�ected drastically by changes in the index.
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Figure 3.22: Scenario 2 with Monte Carlo simulation, 20-day VaR and ES.
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3.4.5 A recapitulation of the ELN results

The stress tests are divided into two di�erent scenarios where the risk-factor
pairs (∆rt,∆pt) and (∆ ln It,∆ lnσt) are stressed one at the time. The
stress tests are performed with historical simulation, computed analytically
and with a Monte Carlo simulation. All three methods give approximately
the same results throughout the analysis for both VaR and ES. Therefore,
only the 1-day VaR from the historical simulation will be referred to below.

3.4.5.1 Analysis of Scenario 1 - Stressing (∆rt,∆pt)

Figure 3.10 shows that the risks are fairly constant over the whole surface,
which is almost a plane. The lowest risk on the surface is in the corner
with high interest rate rt and high credit risk premium pt. The maximum
di�erence over the whole VaR surface is 2.5 percent and hence, the changes
in the risks are very much controllable.

3.4.5.2 Analysis of Scenario 2 - Stressing (∆ ln It,∆ lnσt)

Changes in the index It has large implications to the risk level. The 1-day
risk surface, see �gure 3.12, shows that from the starting point at It = 100,
the risk increases with 219 percent when It is doubled to 200. And if It is
halved to 50, the risk decreases with 93 percent. The implied volatility σt
does also have an e�ect on the risk, but it varies with It. With index between
50 and 100, a high implied volatility causes higher risk. Then with index
between 120 and 150, the exact opposite occurs. Hence, this scenario causes
major changes to the risk level of the ELN.

3.5 Risk measurement - Bond-Stock portfolios

Risks are, as in the case with the ELN, measured using the two scenar-
ios de�ned in section 2.7.1. Since the results of the ELN were consistent
throughout the analysis above, the risks of the Bond-Stock portfolios will
only be measured with historical simulation.

As for the ELN, a table with the underlying data for the 1-day VaR plots
of this section can be found in section 5.3 in the appendix.

3.5.1 Bond-Stock portfolio 1

3.5.1.1 Scenario 1 - Stressing (rt, pt)

The results of the scenario 1 simulations of Bond-Stock portfolio 1 can be
found in �gures 3.23 and 3.24.
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Figure 3.23: Scenario 1 with Bond-Stock portfolio 1, 1-day VaR and ES. The risk
surfaces look similar to the ones of the ELN.
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Figure 3.24: Scenario 1 with Bond-Stock portfolio 1, 20-day VaR and ES.
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3.5.1.2 Scenario 2 - Stressing (ln It, lnσt)

Results of the historical simulation of Bond-Stock portfolio 1 done according
to the speci�cations of scenario 2 can be found in �gures 3.25 and 3.26.
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Figure 3.25: Scenario 2 with Bond-Stock portfolio 1, 1-day VaR and ES. The
dependence of the index is the same as in the case of the ELN.
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Figure 3.26: Scenario 2 with Bond-Stock portfolio 1, 20-day VaR and ES.
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3.5.2 Bond-Stock portfolio 2

3.5.2.1 Scenario 1 - Stressing (rt, pt)

Scenario 1 results of the historical simulation of Bond-Stock portfolio 2 can
be found in �gures 3.27 and 3.28.
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Figure 3.27: Scenario 1 with Bond-Stock portfolio 2, 1-day VaR and ES.
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Figure 3.28: Scenario 1 with Bond-Stock portfolio 2, 20-day VaR and ES.
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3.5.2.2 Scenario 2 - Stressing (ln It, lnσt)

Results of scenario 2 simulations of Bond-Stock portfolio 2 can be found in
�gures 3.29 and 3.30.

60
80

100
120

140
160

180
200

10

20

30

40

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Index [SEK]Volatility [%]

1D
 V

aR
 &

 E
S

 [S
E

K
]

Figure 3.29: Scenario 2 with Bond-Stock portfolio 2, 1-day VaR and ES. The risk
surfaces shows the same behaviour as Bond-Stock portfolio 1.
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Figure 3.30: Scenario 2 with Bond-Stock portfolio 2, 20-day VaR and ES.

3.5.3 A recapitulation of the B-S portfolio results

The risk pro�les of the two Bond-Stock portfolios, below called B-S 1 and
B-S 2, are examined in the same way as the ELN. Recall that B-S 1 has the
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same participation rate as the ELN, and that B-S 2 has the same guaranteed
payout as the ELN. In this recapitulation only 1-day VaR from the historical
simulation is considered.

3.5.3.1 Analysis of Scenario 1 - Stressing (∆rt,∆pt)

Just like in the case of the ELN, the risk surfaces on both B-S 1 and B-S
2 are very close to being planes. The maximum di�erence between any two
points on the two portfolios' risk surfaces are 0.4 percent for B-S 1 and 4.7
percent for B-S 2. As in the case for the ELN, the lowest risk on the surfaces
is found at high interest rate rt and high credit risk premium pt. Hence, this
scenario only causes small changes in the risk level.

3.5.3.2 Analysis of Scenario 2 - Stressing (∆ ln It,∆ lnσt)

In contrary to the ELN, the implied volatility does not have an e�ect on the
risk surfaces. Changes in the index has a big impact on both portfolios. B-S
1 shows an increase of risk with 106 percent when the index is doubled, and
a decrease of 45 percent when the index is halved. B-S 2 shows the same
pattern but the numbers are a 112 percent increase and a 44 percent decrease
respectively. This scenario causes signi�cant changes in the risk level of the
portfolios, but not to the extent of the ELN case.

3.6 Comparing the ELN to the B-S portfolios

3.6.1 The risk surfaces

The most extreme changes in the risks, both for the ELN as well as the
Bond-Stock portfolios has occurred when stressing according to Scenario 2.
Therefore, a graphical comparison of the 1-day VaR of the ELN and each
of the Bond-Stock portfolios can be found in �gures 3.31 and 3.32. The
comparisons are presented as di�erences between the ELN and each of the
Bond-Stock portfolios and calculated as VaRELN −VaRB-S i, where i = 1, 2.

3.6.2 The portfolios' values

To put the risk measurement of all three portfolios, ELN, B-S 1 and B-S 2,
into a bigger picture it is valuable to have an idea about how the values of
the portfolios change with the index. This is done both with one year to
maturity as well as at maturity and can be found in �gures 3.33 and 3.34.

No transaction fees has been taken into account for the two Bond-Stock
portfolios, but for the ELN a 2 percent upfront fee has been applied to re�ect
the di�erence in brokerage fees between the ELN and the B-S portfolios. To
�nd a reasonable number to use, this has been discussed with a previous
employee at one of the larger issuers of ELNs in Sweden.
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Figure 3.31: Comparing the risk surfaces of the ELN and B-S 1. This illuminates
the di�erence in how the two portfolios depend on the implied volatility. The risk
of the ELN is lower at almost the whole surface, although at low volatility and high
index levels the di�erence is approximately zero.
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Figure 3.32: Comparing the risk surfaces of the ELN and B-S 2. Note that the
risk of the ELN is higher at almost the whole surface, but at low volatility and low
index levels the di�erence is approximately zero.
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Figure 3.33: Comparing the values of the portfolios as the underlying index change
with one year to maturity. Note that the ELN never has the highest value, and
that between the index values of 89 SEK and 118 SEK it actually has the lowest
value. The dashed line is the ELN without the upfront fee.
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Figure 3.34: Comparing the values of the portfolios as the underlying index change
at maturity. Note that the ELN never has the highest value, and that between the
index values of 86 SEK and 127 SEK it actually has the lowest value. The dashed
line is the ELN without the upfront fee.
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Chapter 4

Conclusions and Discussion

4.1 ELN versus Bond-Stock portfolios

First of all, the goals with this thesis are to give a comprehensive risk pro�le
of the ELN and to compare the ELN to alternative investments. To a large
extent the risk pro�les of the ELN as well as the two Bond-Stock portfolios
are presented in the results chapter in terms of �gures and the two recapitu-
lations. Therefore, this section will most of all be focused on comparing the
ELN to the Bond-Stock portfolios. This can be done using table 4.1 which
provides a summary of the two recapitulations of the results chapter. From
the results of the analysis it can be seen that the risk-factor with the largest
in�uence on the risks of both the ELN and the Bond-Stock portfolios is the
index. As we see in table 4.1 the risk of the ELN can change signi�cantly

Portfolio Scenario 1 Scenario 2 Scenario 2
Max ∆ It: 100 → 200 It: 100 → 50

ELN 2.5% 219% -93%
B-S 1 0.4% 106% -45%
B-S 2 4.7% 112% -44%

Table 4.1: The table provides a summary of the two recapitulations in the pre-
vious chapter. Max ∆ denotes the maximum di�erence in risk over a Scenario
1 risk surface. It: 100 → 200 and It: 100 → 50 shows how much the risk in-
creases(decreases) when the index is doubled(halved) in Scenario 2.

with changing market conditions. When it is stressed according to scenario
2 and the index is doubled, the risk level increases by 219 percent. When the
index is halved, the risk level decreases to 7 percent of the initial value. The
same behaviour occurs for both of the Bond-Stock portfolios, although not
to the same extent. As seen in section 3.6.1, at high index levels the ELN
has a risk level approximately equal to B-S 1, and at low index levels the
risk level is similar to B-S 2. This behavior is repeated if we look at �gure
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3.33 showing the values as functions of the index of the three portfolios. The
characteristics of this �gure shows that at low index levels the value func-
tions of the ELN and B-S 2 are approximately parallel and at high index
levels the value functions of the ELN and B-S 1 are parallel.

The ELN can be thought of as an "insurance" that gives the behavior
of a B-S 1 portfolio in a bull market, and the behavior of a B-S 2 portfolio
in a bear market. For this insurance the investor has to pay a premium. In
�gure 3.34 the ELN never has the highest value of the three portfolios, and
between the index levels of 86 SEK and 127 SEK it has the lowest value.
An analysis of the 15 years of OMXS30

TM

data used in this thesis shows that
with a probability of 67 percent the index, starting at 100, gives a two year
return within the interval [86 127], the interval in which the ELN gives the
lowest return.

I believe that an ELN would be considered a safe investment by most
investors, since with a two year time horizon the worst thing that can happen
is that the investor gets the initial capital back. Two major setbacks of the
ELN seem to be the risk of losing the interest rate normally paid by a bond
and the high upfront fee charged.

4.2 Final re�ections

Some investors might be looking for "The opportunity to a good return with
the safety of the bond", meaning they will refrain the interest rate normally
paid by a bond to instead bet on an eventual market increase. Other investors
will set a risk level according to their �nancial goals, and others again will
specify their utility function and optimize their portfolio accordingly.

For the second category of investors, an ELN will cause some problems.
To keep the risk at a nearly constant level, the opportunity to easily rebal-
ance the portfolio is important. The same problem occurs for the investor
who has optimized a portfolio given a utility function. Once the values of
the portfolio components starts to move, a rebalancing is needed. Easy re-
balancing includes both low transaction costs as well as a liquid market for
the assets, of which neither are typical features of the ELN.

Finally, for a very passive investor, i.e. one that wants to buy a portfolio
and forget about it for two years, the risk of losing the interest rate and
getting charged the upfront fee are premiums worth paying, but for investors'
who keeps fairly good track of their portfolios it appears more rational to
invest in a portfolio consisting of a combination of the bond and the index.
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Chapter 5

Appendix

5.1 Plots of the Risk-factors
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Figure 5.1: Daily quotes of It between January 1 1994 to December 31 2008 with
bad data removed.
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Figure 5.2: Daily quotes of σt between January 1 1994 to December 31 2008 with
bad data removed.
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Figure 5.3: Daily quotes of rt between January 1 1994 to December 31 2008 with
bad data removed.

40



25−Oct−1994 19−Mar−1998 05−Dec−2001 15−Jul−2005 30−Dec−2008

0

0.5

1

1.5

2

2.5

[%
]

Figure 5.4: Daily quotes of pt between January 1 1994 to December 31 2008 with
bad data removed.
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5.2 Additional rolling correlations
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Figure 5.5: 250 day rolling correlation of (∆ ln It, rt).
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Figure 5.6: 250 day rolling correlation of (∆ ln It, pt).
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Figure 5.7: 250 day rolling correlation of (∆ lnσIt
, rt).
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Figure 5.8: 250 day rolling correlation of (∆ lnσIt
, pt).
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5.3 Risk measurement - Data from �gures

In this section, underlying data of the VaR from the �gures in the historical
simulation section in the Results chapter are presented.

5.3.1 ELN - Scenario 1

pt -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
rt
2.90 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
3.20 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
3.50 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53
3.80 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53
4.10 1.55 1.55 1.55 1.55 1.55 1.54 1.54 1.54 1.54 1.54 1.54
4.40 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55
4.70 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
5.00 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53
5.30 1.53 1.53 1.53 1.53 1.53 1.52 1.52 1.52 1.52 1.52 1.52
5.60 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
5.90 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51

Table 5.1: Underlying data from Scenario 1, �gure 3.10 showing 1-day losses from
the historical simulation.

pt -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
rt
2.90 3.07 3.07 3.07 3.06 3.06 3.06 3.06 3.05 3.05 3.05 3.05
3.20 3.10 3.10 3.09 3.09 3.09 3.09 3.09 3.08 3.08 3.08 3.08
3.50 3.13 3.13 3.13 3.12 3.12 3.12 3.12 3.11 3.11 3.11 3.11
3.80 3.15 3.15 3.15 3.15 3.14 3.14 3.14 3.14 3.13 3.13 3.13
4.10 3.19 3.19 3.18 3.18 3.18 3.18 3.18 3.17 3.17 3.17 3.17
4.40 3.22 3.22 3.21 3.21 3.21 3.21 3.21 3.20 3.20 3.20 3.20
4.70 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.21 3.21 3.20 3.20
5.00 3.25 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.23 3.23 3.23
5.30 3.28 3.28 3.28 3.28 3.27 3.27 3.27 3.27 3.26 3.26 3.26
5.60 3.30 3.30 3.29 3.29 3.29 3.29 3.29 3.29 3.28 3.28 3.28
5.90 3.32 3.32 3.32 3.32 3.32 3.32 3.31 3.31 3.31 3.31 3.31

Table 5.2: Underlying data from Scenario 1, �gure 3.11 showing 20-day losses
from the historical simulation.
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5.3.2 ELN - Scenario 2

It 55 70 85 100 115 130 145 160 175 190 205
σt
4 0.09 0.09 0.09 1.40 2.36 2.66 2.96 3.27 3.57 3.88 4.18
8 0.09 0.09 0.12 1.15 2.27 2.66 2.96 3.27 3.57 3.88 4.18
12 0.09 0.09 0.27 1.11 2.02 2.63 2.95 3.27 3.57 3.88 4.18
16 0.09 0.10 0.45 1.10 1.84 2.46 2.94 3.26 3.57 3.88 4.18
20 0.09 0.15 0.61 1.18 1.71 2.29 2.81 3.24 3.57 3.88 4.18
24 0.10 0.28 0.78 1.31 1.64 2.15 2.63 3.12 3.53 3.88 4.18
28 0.11 0.42 0.95 1.38 1.63 2.07 2.53 2.95 3.41 3.81 4.18
32 0.15 0.57 1.10 1.49 1.70 1.99 2.44 2.85 3.25 3.69 4.06
36 0.24 0.73 1.24 1.55 1.88 2.00 2.32 2.75 3.14 3.53 3.96
40 0.34 0.88 1.38 1.66 1.90 1.99 2.30 2.68 3.06 3.42 3.80
44 0.46 1.04 1.49 1.81 2.05 2.11 2.31 2.61 2.98 3.35 3.69

Table 5.3: Underlying data from Scenario 2, �gure 3.12 showing 1-day losses from
the historical simulation.

It 55 70 85 100 115 130 145 160 175 190 205
σt
4 0.15 0.15 0.11 2.11 7.50 9.03 10.08 11.13 12.18 13.22 14.27
8 0.15 0.15 0.15 2.36 6.65 8.83 10.04 11.13 12.18 13.22 14.27
12 0.15 0.13 0.37 2.54 5.85 8.42 9.89 11.08 12.15 13.22 14.27
16 0.15 0.12 0.65 2.66 5.44 7.71 9.58 10.90 12.12 13.18 14.23
20 0.13 0.17 0.94 2.74 5.03 7.15 9.02 10.62 11.87 13.07 14.22
24 0.12 0.30 1.22 2.78 4.84 6.81 8.54 10.11 11.62 12.81 14.06
28 0.12 0.46 1.47 2.92 4.62 6.38 8.09 9.73 11.13 12.60 13.72
32 0.17 0.65 1.70 2.99 4.52 6.16 7.75 9.18 10.78 12.11 13.43
36 0.25 0.88 1.91 3.08 4.41 6.04 7.34 8.96 10.18 11.79 13.08
40 0.36 1.12 2.12 3.19 4.42 5.84 7.21 8.62 9.99 11.14 12.76
44 0.50 1.35 2.31 3.28 4.42 5.68 7.11 8.33 9.65 10.97 12.07

Table 5.4: Underlying data from Scenario 2, �gure 3.13 showing 20-day losses
from the historical simulation.
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5.3.3 Bond-Stock portfolios - Scenario 1

pt -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
rt
2.90 2.05 2.05 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
3.20 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
3.50 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
3.80 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
4.10 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
4.40 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
4.70 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
5.00 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
5.30 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
5.60 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
5.90 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04

Table 5.5: Underlying data from Scenario 1, �gure 3.23 showing 1-day losses from
the B-S 1 portfolio.

pt -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
rt
2.90 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.36 0.36 0.36 0.36
3.20 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
3.50 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
3.80 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
4.10 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
4.40 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
4.70 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.35 0.35
5.00 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
5.30 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
5.60 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
5.90 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Table 5.6: Underlying data from Scenario 1, �gure 3.27 showing 1-day losses from
the B-S 2 portfolio.
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5.3.4 Bond-Stock portfolios - Scenario 2

It 55 70 85 100 115 130 145 160 175 190 205
σt
4 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
8 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
12 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
16 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
20 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
24 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
28 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
32 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
36 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
40 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18
44 1.12 1.42 1.73 2.03 2.34 2.65 2.95 3.26 3.57 3.87 4.18

Table 5.7: Underlying data from Scenario 2, �gure 3.25 showing 1-day losses from
the B-S 1 portfolio.

It 55 70 85 100 115 130 145 160 175 190 205
σt
4 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
8 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
12 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
16 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
20 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
24 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
28 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
32 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
36 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
40 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71
44 0.19 0.24 0.29 0.34 0.39 0.44 0.50 0.55 0.60 0.66 0.71

Table 5.8: Underlying data from Scenario 2, �gure 3.29 showing 1-day losses from
the B-S 2 portfolio.
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