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Abstract
A market place system is a very complex software, which makes it very
diffucult to test. The functionalities of the system are at wide range
and theoretically the number of possible test cases is infinite.

Several methods are developed for the purpose of testing complex system
and make sure they meet the requirements of the customers. The most
commonly used test strategies are Static testing and Automated testing.

To be able to find low frequency failures and major critical failures,
which cause the system to crash, Random testing is agreed to be a very
useful tool of testing. For Random testing to be as efficient as possible
in detecting errors, the input domain has to be accurate for the system
and the output need to be analyzed carefully with an oracle that fits
the purpose.

For the input domain to be accurate, an extensive statistical analy-
sis of historical benchmark data is needed in order to validate under
which circumstances the software is operating.

The stock exchange market has increased exponentially the last few
years regarding the number of orders on the market place. A large
reason for this is the increasing number of markets in general and the
increasing number of electronical trading platform developed in particu-
lar. The ease at which a customer can trade and follow the market flow
has evolved enormously. This forces the developers of the software to
deliver a solid and robust trading software, that can handle a large va-
riety of orders and market participants at the same time without major
critical failures, such as a crash of the system. The consequences of a
system crash can be a huge economic disaster as well as a loss in trust,
which could lead to decreasing number of customers and in the end to
a loss of income.



Referat
Randomtester av handelssystem

Ett börssystem är ett stort och komplext mjukvarusystem, vilket med-
för svårigheter då systemet ska testas i sin helhet. Systemens funktioner
är omfattande, teoretiskt är antalet möjliga kombinationer av scenarion
oändliga.

Det finns ett flertal strategier då man vill utföra tester på komplexa
system med hänsyn till kravspecifikationen. Vanliga metoder för än-
damålet är statiska tester och automatiserade tester.

En strategi för att exponera lågfrekventa buggar och kritiska buggar,
vilka kan leda till att systemet kraschar, är Randomtester som visat sig
vara ett mycket användbart vertyg. Randomtester är som mest effektiva
då en relevant indatadomän är definierad för testerna samt att resultat-
en av testerna analyseras noggrant, vanligtvis med hjälp av ett orakel.

För att erhålla en tillförlitlig indatadomän krävs omfattande statis-
tiska analyser av historisk ursprungsdata. Analysen belyser under vilka
förhållanden mjukvaran är som mest aktiv.

Handeln på aktiemarknaden har ökat exponentiellt de senaste åren, med
avseende på antalet lagda ordrar på marknadsplatserna. En avgörande
orsak till trenden är att antalet börser har ökat generellt och att de elek-
troniska börserna har ökat i synnerhet. Att handla på börsen har blivit
enklare i takt med att tillgängligheten har ökat. Aktörerna på mark-
naden kan med enkla medel följa handelsmönster och exekvera ordrar
högfrekvent om aktiekursen fluktuerar. Den ökade närvaron på elektro-
niska börser ställer stora krav på mjukvarutillverkaren av börssystemen.
En nödvändighet för att dagens system ska vara konkurrenskraftiga är
att de kan hantera ett stort antal ordrar under ett kort tidsintervall
på ett snabbt, stabilt och korrekt sätt utan att systemet kraschar. De
ekonomiska konsekvenserna av en systemkrasch kan bli mycket omfat-
tande, dels direkt och dels indirekt genom minskat förtroende och färre
nytecknade kunder som använder sig av börssystemet.
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Chapter 1

Introduction

1.1 Background

A market place system is a very complex piece of software, which makes it very
diffucult to test. The market place systems have a large number of functionalities
and theoretically the number of possible test cases is infinite.

Several methods are developed for the purpose of testing complex system and make
sure they meet the requirements of the customers. The most commonly used test
strategies are Static testing and Automated testing. To be able to find low fre-
quency failures and major critical failures, such as a system crash, Random testing
is generally regardered a very useful complement of testing.

For Random testing to be as efficient as possible in detecting errors, the input do-
main has to be accurate for the system and the output need to be analyzed carefully.

For the input domain to be accurate, an extensive statistical analysis of histori-
cal benchmark data is needed in order to validate under which circumstances the
software is operating.

The stock exchange market has increased exponentially during the last few years
regarding the number of orders and trades. A major reason for this is the increasing
number of markets in general and the increasing number of electronical trading plat-
form developed in particular. The ease at which a customer can trade and follow
the market flow has evolved enormously. This forces the developers of the software
to deliver a solid and robust trading software, that can handle a large variety of
orders and market participants at the same time without major critical failures,
such as a crash of the system. The consequences of a system crash can be a huge
economic disaster as well as a loss in trust, which could lead to decreasing number
of customers and in the end a loss of income.
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CHAPTER 1. INTRODUCTION

1.2 Thesis description

A large part of developing a software is the procedure of testing and evaluating.
Usually both manual tests and automated regression tests are utilized during the
development of the software.

The input domain for a market place system is very large and it is impossible
to run every single test case. One important test case to develop is a Random test
that in a realistic way simulates a trading day to analyze the software’s functionality
under realistic circumstances.

This master thesis includes a theoretical study of Random testing, an analysis of
real trading data in order to get a realistic input domain for the test, implementa-
tion of market participants and a model that simulates a trading day. Finally all
parts come together in a test phase, where the simulated model is used for Random
testing.

At the moment Cinnober Finacial Technology is using a uniform distribution for
order volume and a normal distribution for order price to do simulations from. The
analysis of the real trading data focuses on whether this is an appropriate model or
not, or if it could be replaced by something more accurate.

1.3 Overview

The master thesis is divided in two studies, one theoretical study and one more
applied study. The theoretical part is found in chapters two, three, four and five. It
contains of general description of a market place and the trading system used in the
implementation. It also includes different strategies for software testing in general
and for Random testing in particular. The applied study is presented in chapter six
and it contains a mathematical analysis of real trading data and a simulation that
is used for the implementation of Random testing.

The first chapter gives a short introduction why this master thesis is needed and a
description and the goals for the project.

Chapter two describes the basics of an ordinary market place, including market
participants, order types and the procedure when placing an order.

The third chapter gives a summary over the trading system that is being used
for testing. The inner structure of the software is treated as well as order manage-
ment.

Chapter four presents an overview of software testing, such as functional and non-
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1.3. OVERVIEW

functional testing. Different types of strategies are described more or less in detail,
such as Static testing and Black box testing.

Chapter five is solely about Random testing. A detailed description of the input
domain, the software under test and the analysis if the output is presented. The
oracle strategy for output analysis, the definition of the Poisson process and how
to model the input domain are treated. A section about the reliability of Random
tests is also presented.

The fifth chapter deals with the implementation of the model. It contains the anal-
ysis of the historical values and the modeling of the results of the analysis aswell as
the implementation of market participants and Random testing.

3





Chapter 2

The Market Place

2.1 General

A marketplace is a space, actual or virtual, under the rules of a market. [Wikipedia
Marketplace]

A market consist of different systems, institutions etc. where persons and insti-
tutions can trade and exchanging goods and services, forming part of the economy.
[Wikipedia Market]

2.2 Market Participants

There are several actors on a market place. They all have specific roles to play, like
customers, dealers, brokers, market makers and specialist.[Schauer 2006]

Customers

People and institutions who invest or withdraw money when exchanging shares
are defined as customers. They are divided into retail customers and institutional
customers, where retail customers trade for smaller amounts than institutional cus-
tomers.[Schauer 2006]

Brokers

A broker is an agent who work for a fee on behalf of their customers to make trading
easier for the less experienced participants. Through a broker, buyers and sellers
can trade without revealing their interest to each other. The brokers’ strategy is
to trade risk-free and at the best possible price available. They are giving advice
and doing research as well. Brokers are divided into commission brokers and floor
brokers, where comission brokers are employees of a member firm and a floor broker
works for another member of the firm.[Schauer 2006]
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CHAPTER 2. THE MARKET PLACE

Dealers

A dealer is a risk-taking trader, who work for their own interest. Dealers are usually
counterparties to customer traders.[Schauer 2006]

Market makers and specialist

For a given security, Market makers keep a firms bid and ask orders, standing by to
exchange the shares at a pre-decided price. Market makers act on behalf of other
brokers and dealers or on behalf of their own customers. Their strategy is to sell
shares when others want to buy and to buy shares when others want to sell. Market
makers give depth and liquidity to the market.[Schauer 2006]

2.3 Orders and order books
An order at a market place is a stated intention from a market participant to buy
or sell securities. Several types of orders exists, each with their own characteristics
for their specific purpose.[Schauer 2006]

Dependent on the rules at a stock exchange different orders are available.[Schauer
2006] Some usual order attributes combined together add up to:

2.3.1 Orders Without Price Limit

Market Order

A Market order is a buy or sell order without price limitation. The buyer or the
seller specifies the quantity of shares to trade. At best obtainable price, according
to position (buy or sell), the trade is executed. A Market order has the highest
priority in the orderbook, in most cases. The downside is that a Market order can
not be cancelled and is executed regardless of how good or bad the price is for the
investor at the moment of the scheduled trade.[Schauer 2006]

2.3.2 Price Limit Orders

Limit Order

A limit order is a stated intention to buy or sell shares to a specific price or a
more favorable one. Both quantity and price are specified, in some cases even the
duration of the order, in terms of time limits (section 2.3.3). Limit orders have low
priority and for a trade to take place brokers must fill the order.[Schauer 2006]

Stop Order

A Stop order is also known as a stop-loss order. Stop order becomes a Market order
when a pre-decided trigger price is reached or exceeded.[Schauer 2006]

6



2.3. ORDERS AND ORDER BOOKS

Stop Limit Order

A Stop limit order becomes a limit order when a pre-decided trigger price is reached
or exceeded. Both the trigger price for the stop limit order and the price for the
limit order must be specified when placing the order.[Schauer 2006]

Peg Order

A Peg order is matched (pegged) against the current market’s best bid price, best
sell price or the midpoint between best sell price and best buy price. A Peg order
is somewhat similar to a Limit order in the sense that it could have a limit price
specified. If limit price is reached the order is cancelled.

2.3.3 Time Limit Orders

Time limit orders have a defined duration of time in which they are valid. Some
examples are as follows: [Schauer 2006]

Good for day

Good for day orders are valid during the rest of the trading day. They expire when
the market place is closed.

Good till cancelled

Good till cancelled order are valid until they are cancelled or if a trade is executed.

Market on opening

Market on opening regards Market orders. They must be traded in the beginning
of the trading day.

Market on close

Market on close regards Market orders. They must be traded in a time interval
before the market placed is closed.

2.3.4 Combined Orders

Market orders, Limit orders and Time limit orders can be combined in several ways,
which also can involve some volume restrictions. These combinations can be made
with varying complexity. Some examples of combined orders are: [Schauer 2006]

Fill-or-kill

The whole order must be filled. Otherwise the order is cancelled.

7
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Fill-and-kill

The whole order is filled and then cancelled.

Immediate-or-cancel

The order is traded immediately or cancelled. It can be partitioned and the untraded
securities are cancelled.

All-or-none

Similar to Fill-or-kill, except that it is not cancelled if the order is not filled. The
order remains in the orderbook.

Iceberg

Also reffered to as a Hidden volume order. A part of the order volume is visible and
the rest of the volume is hidden. The visible part of the volume is updated after
trade.

2.3.5 Order Matching and Order Books
Order Routing

The procedure from placing an order to the order ends up in the order book is
known as order routing. [Schauer 2006]

Order Matching

The sell and buy orders are matched together before a trade takes place. Usually,
the price has the highest priority and after that follows time of entry in to the
orderbook. [Schauer 2006]

Order Book

The order book facilitates the opportunity for the market participants to watch the
development of the market. The order book contains all types of orders. The orders
are sorted with respect to priority. When a new order is placed in the order book,
order matching is done immediately. If no trade is possible, the new order is ranked
in the orderbook queue after priority, which corresponds to the orderbook’s order
depth. The orders can be visible, which means that other market participants can
see the orders, or they can be dark. A dark order is not visible to the public eye
and it is most common for very large orders. [Schauer 2006]

8



Chapter 3

The Trading System

The random tests will be executed on Cinnober Finacial Technologies trading plat-
form TRADExpress. This chapter deals with the parts of the trading system that
is of relevance for the implementation of random testing. [Cinnober 2009]

3.1 Order Management
The Order Management component of the trading system records incoming order
actions, validates the order, processes it and finally replies back to market partici-
pants. [Cinnober 2009]

3.1.1 Order Actions and Order Types

Depending on order type, orderbook and trading state, different strategies are ap-
plied. Orders can be placed from one or several order books. Table 3.1 shows some
of the order actions that are permitted, including a short description of what type
of action it is. [Cinnober 2009]

Order Action Description
Order Insert Insert a new order.
Update Order Modify an existing order.
Cancel Order Cancels an existing order.

Cancel All Orders Cancels all existing orders.
Suspend Order(s) Withdraw orders from the orderbook.

Orders remains in the Matching Engine.
Activate Order(s) Activate suspended orders.

Time priority equals current time.
Table 3.1. Order Actions available in TRADExpress
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CHAPTER 3. THE TRADING SYSTEM

There is a large variety of complexity when combining orders. Several attributes
are combined when creating the specific order to send in to the trading system.
These attributes are listed in table 3.2, along with the options available for each
attribute. Some examples of attributes added together gives a Limit order, Market
order, Iceberg order, Fill-or-Kill order, Fill-and-Kill order, Stop order and Market
on opening order. [Cinnober 2009]

Order Condition State
Transparency Dark

Visible
Price Limit

Market
Peg

Price Improvement Discretionary
Volume Fill-or-Kill

Fill-and-Kill
Hidden Volume (Iceberg)

Minimum Volume
All-or-None

Trigger Stop Orders
Validity From Immediate

Suspended
Good From Time

Include in Next Uncross
Validity Till Various
Combination Combination orders

Table 3.2. Order Conditions

Trancparency tells whether the order is visible for the public or not. [Cinnober
2009]

3.1.2 Trading State Model

The trading schedule contains a sequence of trading states, each with different
attributes. An orderbook can run several trading schedules simultaneously, with
varying time intervals and different functions. A simple model is illustrated in table
3.3, showing attributes, trading states and trading schedule in increasing order of
abstraction. [Cinnober 2009]
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3.2. EXECUTION SERVICES

Attributes ⇒ Trading State ⇒ Trading Schedule
Automatic Matching Pre Open Ordinary Market Hours
Processing Sequence Open
Allowed Transactions Post Open

Table 3.3. Example of a trade state model

3.2 Execution Services

Trading is continously matched in the orderbook. The order is either executed,
cancelled or stored, partially or in total. The price is calculated and the priority is
matched with existing orders in the orderbook. Price has the highest priority and
then follows time of entry. [Cinnober 2009]

3.3 Market Information and Market Management

The information available for the public eye is managed by the matching engine.

3.3.1 Public Order Flow

Market by Order

The order is shown in total.

Market by Level

The price levels are the only information of the order that is being shown.

Transparency

Trading states can have different attributes, such as visible and dark attributes.

3.3.2 Public Trade Flow

Information of public trades. The trades can be anonymous or visible to the public.

Users of the trading system can control different parts of it. If the trading sys-
tem is running on several markets simultaneously with Order routing, one can turn
on/off specific market if any problem occurs or if it is necessary for other purposes.
[Cinnober 2009]
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3.4 The platform and the architecture

Most of the generic functions exists in the TRADExpress Platform core, which is the
center of the running system. The running system contains a Trading Application
Multiplexor (TAX), which gather information from the matching engine (ME), data
server, query server and some other servers. TAX is the central system in the core
architecture. [Cinnober 2009]

3.4.1 Trading Application Multiplexor (TAX)

TAX is a router that redirect ingoing and outgoing messages. The user interact
with TAX and TAX interacts with the running systems components, which means
that TAX acts as an abstraction between the user and the components. The TAX
manages user authorization and authentication. [Cinnober 2009]

3.4.2 Matching Engine (ME)

The core server in the trading system is the ME. It preserves orderbooks and active
orders, aswell as perform matching and generating trades. The ME can handle
several transactions at the same time. It manages back-up of the system and sending
transaction copies to the standby server. If the system crashes, the standby server
takes over with very short response time. [Cinnober 2009]

3.4.3 Common Data (CD)

The CD contains product definitions, user database, authorization information,
trading schedules etc. It has a up to date backup data server, which takes over with
very short response time if there is a system crash. [Cinnober 2009]

3.4.4 Query Server (QS)

The QS preserves a copy of the active orderbooks and orders. It facilitates for ME
when large queries arrive. [Cinnober 2009]

3.4.5 History Server (HS)

The HS keeps the information of over night orders and handles queries of historical
information. [Cinnober 2009]

3.4.6 Vote Server (VS)

The VS establishes which server that is primary server and standby server, to avoid
business integrity issues. [Cinnober 2009]
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3.4.7 Daemon
Daemon handles system operations. [Cinnober 2009]
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Chapter 4

Software Testing

4.1 General
The purpose of software testing is to improve the quality of the software.[Spillner
2007] Software testing is done to ensure that the software under test meets the re-
quirements and that it works properly. The aim is to find the programs weaknesses
and reveal any extreme behaviors that may occur and to correct them.[NASA 2004]

Software testing deals with the question of establishing the (in most cases unknown)
level of confidence that is desired for a program in the sense of functionality.[Wooff
2002]

Software reliability is measured as the probability of a failure-free software operation
in a specific enviroment in a specific time interval. A failure refers to a behavior of
the software that is unsatisfactory with respect to the user’s requirements. A bug
is a static fault that occurs due to inaccurate code in the software.[Grottke 2001]

The softwares quality is measured with respect to 4.1.1 - 4.1.4: [Spillner 2007]

4.1.1 Functionality

The attributes that measure the qualifications of the software are contained in the
concept of functionality. The relation between input and output and specific reac-
tions to some inputs are described as functionality.

Some examples of subcategories to functionality are adequacy, correctness in re-
sult and security in terms of unauthorized use of software.

4.1.2 Reliability and Usability

Reliability can be subdivided into maturity, fault tolerance and recoverability. Ma-
turity describes the frequence of failure due to software defects. Fault tolerance is
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the ability to recover the software after a failure and stay stable at some desired
level of performance.

Recoverability measures the ability for the system to recover a certain level of per-
formance and recover the data lost due to system failure.
Usability describes how the interaction with the software is done in terms of under-
standability, ease of learning, operability etc.

4.1.3 Efficiency

Efficiency describes how well the software manage to perform its functions. Usually
this is measured in use of resources and time to execute the functions of the software.

4.1.4 Maintainability and Portability

Maintainability includes the area of adaptability, ease of installation, adaptation etc.

The absence of faults can never been shown with software testing. If that were
possible every single action would have to be tested, which is impossible due to the
fact that the input domain is in practice infinite.[Spillner 2007] One can only show
the attendence of an error.

4.2 Types of Testing

4.2.1 Functional Testing

Testing that takes the functions of input and output of a system into account is
denoted functional testing. The test method when dealing with functional testing is
the Black Box model. The functional requirements must be satisfied, which means
that the program must do what it is supposed to do. If a test is executed without
failures connected to the requirements, the software functionality is considered to
be valid. [Spillner 2007]

4.2.2 Non-Functional Testing

Non-functional testing is aiming on validation of the attributes of any given func-
tion of the software. The quality of the software is in focus and keywords under
nonfunctional testing are reliability, usability and efficiency. The customers satis-
faction in using the software are important and the capacity of fast implementation
to new hardware or changes in the program. Some examples of characteristics in
nonfunctional testing are: [Spillner 2007]
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Load test

Load tests validate the software’s ability to handle large loads, like handling many
users and transactions at the same time.

Performance test

Performance tests measure response time of the system and the ability of fast pro-
cessing, often connected to incresing loads.

Stability and reliability

Collection of measurements about the mean time to failure or failure rate for a
specified user profile. Non-functional testing is usually followed by further functional
tetsing.

4.3 Regression testing
Regression testing is done in order to test a software after modifications have been
implemented, to ensure that no failures have been introduced as a side effect. The
test is executed on already existing test cases. Regression testing can be functional
and nonfunctional. It can be executed on all levels of a software, such as component,
system and acceptance test.[Spillner 2007]

4.4 Static Testing
Static testing is a manual walkthrough of the parts that is being tested and the
result is static analyzed. No test data is used. The aim of static testing is to check
for deviations and failures in the specifications. The analysis is done manually. The
static test inludes different reviews dependent on what is being examined. A review
is a documentation over the test results.[Spillner 2007]

4.4.1 Walkthrough
The aim of a walkthrough is to expose defects, ambiguities and other problems
in the software documentation. The result of a walkthrough consists of proposals
to software improvements and suggestions of alternative implementations. The
program specifications are examined and reviewed. A walktrough is suited for "non-
critical" documents. [Spillner 2007]

4.4.2 Inspection
Inspection reminds of the walkthrough, but it is more structured in the approach of
the parts examined. The aim is to find vague areas and defects in the specification
of the software, to be able to improve the quality.[Spillner 2007]
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4.4.3 Technical Review
The technical review focuses on the similarity between the software documentation
versus the specifications, the qualifications and the standards.[Spillner 2007]

4.5 Automated testing
Automated tests are a program driven test, doing exactly the same actions each
time it is executed. Automation testing covers a very wide range of actions when
executed.[Kaner 2003] This can be utilized in regression testing for analyzing a
new implementation. The test is known for the old version of the software and
by executing the test on the recent updated software one can expose new failures.
Manual testing is the opposite to automation testing and the analysis is done by a
human being. An important part in automation testing is the use of an oracle. The
automation testing have severel advantages to manual testing. Some examples are:
[Kaner 2003][Hoffman 2000]

• The test is repeatable.

• The test has faster running time and it is easy to generalize.
The disadvantages are:

• Automated testa are time consuming to develop.

• Difficult to know what results to expect when analyzing the output.

• Automated tests do the exact same thing each time they are executed.

4.6 Dynamic Testing
Dynamic testing is a computer driven test, which contains of an input data that is
analyzed and an executable test program, the object. The test strategy is to choose
test cases one by one until it is terminated by a termination criterion, usually when
a failure is exposed.[Mayer 2006]

Dynamic testing is done in a systematic way, which means that a well defined
test domain is chosen. The procedure of dynamic testing is to define the conditions
and the goal for the test, define specific test cases and determine which method that
are being used for the test.

The most common ways to approach dynamic testing is either through Black box
testing or White box testing. Black box testing regards the software under test as a
box where the relation between input and output is being compared and analyzed.
How the result is achieved is of minor importance. White box testing on the other
hand take the source code in to account when a test is designed and executed. The

18



4.6. DYNAMIC TESTING

importance when analyzing a White box test is to check the internal process and
the output.[Spillner 2007] The road that leads towards the results is of interest.

4.6.1 Black Box Testing/Functional

Black box testing is also known as functional testing.

Black box testing is divided in three segments: an input, a black box (unknown
internal structure) and an output. From a functional point of view this can be
regarded as defining a test case, doing the test and evaluating the results.[Fu 2003]

When designing a Black box test, the specifications are considered when select-
ing the appropriate test cases. A functional partition of the input domain collects
the parts and the partition classes that the software processes in the same way.
The input domain consists of all possible values that are eligible as input and those
who are ineligible as input. They are partitioned into equivalent classes according
to functionality. Each class can then be substituted with a representative num-
ber when testing, even the ineligible equivalent classes must be tested. The same
procedure can be made for the output values. By defining the preconditions and
calculating the expected values, the result can be evaluated and analyzed.[Spillner
2007]

The probability of finding failures depends on the quality of the partitioning and
type of test case executed.[Spillner 2007]

Due to the complexity in finding equivalent classes from the specification, the bound-
ary values can be evaluated instead. The boundaries are often critical when testing,
due to incorrect interpretations by the software.[Spillner 2007]

If there exist well defined boundaries, evaluating them is a solid way to expose
failures.[Spillner 2007]

The degree of test coverage describes the overall software examined. If there ex-
ists 20 equivalent classes, then one gets 75% test coverage by examining 15 of
them.[Spillner 2007]

State transition testing take historical actions, events and inputs in to account.
Historical state diagrams are used in order to design the test. The software un-
der test is executed from its initial state and it changes states depending on which
events that are triggered until it hits the end state and the test is evaluated. It is
preferable if the test manage to trigger all defined functions in that state at least
once.

Partion testing is an abstraction of systematic testing, that divides the input space
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into disjoint subdomains. One example of partion testing is path testing.[Hamlet]
The purpose of black box testing is to verify that every requirements of the software
is fulfilled.[Fu 2003]

4.6.2 White Box Testing/Structural
White box testing is heavily dependent on the internal structure when a test is
designed. The source code need to be available. The softwares logic and data flow
are examined. The methods of white box testing are Statement coverage, Branch
coverage, Path coverage and Test of conditions.[Spillner 2007]

Statement coverage

The coverage level of the test is determined by the quantity of executed statements
during a test. To consider a test to be finished the coverage level need to be
reached.[Spillner 2007]

Branch Coverage

Instead of focusing on the number of statement executed, branch coverage deals
with in which order the statements are executed by the software. Every possible
decision of a statement must be examined that it occurs or be determined that it is
not covered.[Spillner 2007] For example, this means that both true and false must
be evaluated in a boolean statement.[Edvardsson 1999]

Test of Conditions

If a decision of a statement rely on many conditions connected by logical oper-
ators, then the test of conditions take the complexity of these decisions into ac-
count.[Spillner] This means that both true and false must be executed in an if-
statement.[Edvardsson 1999]

Path Coverage

Path coverage is a test to evaluate all possible paths that a software can take when
executed, such as repetitions and loops.[Spillner 2007]
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Chapter 5

Random Testing

5.1 General
The main goal of random testing, or all testing in that matter, is to hit the failure
domain.[Gutjahr 1999] An input is failure-causing if the software under test exposes
a failure for this input.[Mayer 2006]

Random generation of test cases does not necessarily have to include software spec-
ifications or source code. Random testing is efficient when there is a lack of input
data [Hoffman 1998] [Harmen 1995]. The largest benefit of random testing is that
a statistical prediction can be made of the significance of a successful test [Hamlet
1994]. It can expose specific failures, which can not be detected by deterministic
approaches, due to the randomness in the testing process [Kuo 2007].

The stochastic approach focuses on a probability distribution as input data to the
software under test (SUT). The output is treated as a stochastic variable and is
analyzed statistically. The analysis is done in comparison with an oracle, where the
results from the SUT and the oracle should coincide for the test to be successful
[Hoffman 1998] [Harmen 1995].

The uniqueness of random testing is the ability to quantify the significance of a
testcase which does not fail, which means that even a successful test is significant
[Hamlet 1994].

For a realtime program, as TRADExpress in this case, random testing is not only
dependent on the random input and their sequence. A necessarity is also their in-
put spacing and overlap in time, due to the streams of input that is required for a
realtime program [Hamlet 1994].

A short description of how Random testing is done as follows:[Hamlet 1994]

1. The input domain is defined. It is usually an infinite input domain, but it can
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be restricted to match the software requirements. For example, only define
the price of a stock as positive values.

2. The test points are generated pseudo-randomly from the input domain.

3. The test case is executed on the software under test.

4. The output is analyzed. A answer without any failures equals a success. An
output including errors equals a failure. To judge whether the result is a
failure or a success, a comparison of the result is made towards an oracle. An
oracle can have different levels of abstraction.[Gundemark 2005]

5.2 The input domain

A randomly generated input domain characterizes random testing. From a statis-
tical point of view this means that the test can be statistically analyzed and that
the test is unbiased in the sense that any systematic error is eliminated due to the
absence of human interactions.[Mayer 2006]

The domain is practically of infinite size for a complex system like a market place
system. In order to define an appropriate subdomain for the test, the domain is
quantified and qualified with respect to the software requirements into different
partitions. The pseudo-random input is generated from the subdomains, which can
be partioned even further to get an appropriate division of the input domain. A
common way to partition the domain is to divide after functionality, which means
that each subdomain contains software actions that are more or less the same. Then
it is possible to assign a probability to each partition, which is weighted according
to how likely each action may occur. This makes the operational profile, where the
frequencies in each partition can be seen of as an empirical distribution over the
input domain. The operational profile is also called a ’user profile’, because it acts
like a software user would.[Hamlet 1994, 2006] The operational profile is used to
create a model for the test, which describes the expected actions of the software in
use. When this model is defined a pseudo-random input is generated. The model
in Random testing is a model for the whole input domain.

Hamlet states that the benefits of choosing "unsystematic" input data is: [Ham-
let 1994, 2006]

1. "Because there are efficient methods of selecting random points algorithmi-
cally, by computing pseudorandom numbers; thus a vast number of tests can
be easily defined".

2. "Because statistical independence among test points allows statistical predic-
tion of significance in the observed results".
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If a measurement is repeated over many trials the systematic variations are "av-
eraged out" and the systematic error is removed. When systematization is given
up, the significance of testing is measurable.[Hamlet 1994] If an operational profile
is available, the test is pretty straight forward. On the other hand if the inner
structure and the functionality of the software is totally unknown, one can use the
uniform distribution to generate the pseudo-random input. Hamlet states that be-
cause the domain is infinite and the random input only is a very small part of it,
the use of the uniform distribution can be adequate as a modell. The test can be a
success in pointing out failures, but in worst case a mismatch with no significance
at all.[Hamlet 2006]

For a interactive, realtime program like a market place system the input must
be chosen so it contains a sequence of events. The time between events and the
different actions that follow after each other must be evaluated aswell. The time
between the events can be simulated through a pseudo-random input from an uni-
form distribution or any other appropriate distribution.[Hamlet 1994, 2006] The
conclusion is that a random test with an existing operational profile may test the
software’s functionality in a more adequate way. But if no operational profile is
available, the use of any other distribution at hand is more efficient in exposing fail-
ures than if the random test is not used, due to the lack of knowledge of the software.

The operational profile in this master thesis is simulated from a model that is
based on real historical trading data, collected from a similar software in use.

5.3 Software under test (SUT)

5.3.1 Modeling the Input

When creating an input for the test, historical data is analyzed. The aim of the anal-
ysis is to gain distribution functions and time dependent processes of the relevant
parameters, such as order volume and order price for the actors on a marketplace.
The input is generated from simulated model. For a realistic model, one should
even include some time variant parameter when simulating a trading day, such as
different loads on the trading system during a trading day. When the simulation
is executed, the underlying time variant parameter decides the frequency of the
trades, randomly or deterministic.

5.3.2 Modeling actors

The input domain for a market place system is very large, due to a large variety of
order combinations for each actor. The actor on a marketplace is known as a mar-
ket participant with a specific user profile. The user profile contains around 20-30
probabilistic actions, each with 2-3 randomized parameters such as order volume,
order size, distance from spread etc. A simulation scheme for order insertion is used
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for the actors. They execute their actions independently and they are able to trade
with each other. This is possible because the actors only regarding their own profile
and the current market condition.[Sellberg 2003]

When preparing a simulation different actors and probabilities are pre-defined.[Sellberg
2003] The pre-defined probabilities is determined by the analysis of the historical
data.

Random simulations requires post-analysis of the output. Trading simuations are
usually very complex due to the interactions between the actors and the different
combinations of order types, order prices etc., which makes it difficult to evaluate.
Sellberg is listing three types of evaluation that are commonly used: [Sellberg 2003]

1. Trivial tests, whwich are easy to evaluate. An example of a trivial test could
be to do a test case with negative values for order volume or order price.

2. The actors can contain simple explicit tests, such as evaluating if a trade takes
place after an order is sent into the system.

3. Major failures, like system crash.

5.4 The Oracle
The oracle’s role in random testing is to generate the expected values for the pre-
defined software actions. This is used to evaluate the test results from the software
under test (SUT). Some characteristecs for an oracle in order to evaluate a test case
are according to Hoffman: [Hoffman 2001]

Completeness of the information

The completeness of the information covers all the information of a test case that
involves the input, the output, a successful test and a test failure. Completeness
can be at a wide range, from no prediction to a complete prediction of the software
under test (SUT).[Höjeberg 2007]

Completeness is a measure whether the information is sufficient and what type
of error that is expected.

Accuracy of information gathered from a test

The oracle’s correspondence to SUT, both arithmetic accuracy and statistically sim-
ilarity.

Independence between the oracle and the SUT in the meaning of algorithm, system
platforms and operating enviroment etc.
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More resemblance between the oracle and SUT implies a more complex oracle,
which causes more errors.

Usability of the oracle and/or its results

The usability of the oracle describes what type of information the oracle is gener-
ating and the location of the exposed failures.

Maintainability of the oracle

Maintainability covers the modification possibilities by the oracle when changes in
SUT are implemented. Less complex oracle means that it is easier to modify, which
is also less expensive to develop and has less internal errors.

Complexity

Complexity describes the interaction between the oracle and SUT and how much
of the functions and the domains that are covered during the test case.

Temporal relationships

Executable time of the oracle in means of generating results and comparing those
results to that of the test case. It is correlated with the abstraction of the oracle.

Costs

The oracle’s total costs in means of development, maintenance and analysis.

The more complex an oracle is, the more accurate and complete it is, which means
that it provides better expected results. The downside is that the more complex the
oracle is, the more errors will be traced to the oracle and not to SUT. This means
that the discrepancy in the result between SUT and the oracle is due to the oracle’s
internal structure. [Hoffman 2001]

An oracle can have different abstractions dependent on the requirements of the
test. The varity of the oracle streches from the strategy of no oracle in one end
to a true oracle in the other end. Some of the oracles that Hoffman discusses are:
no oracle, true oracle, consistent oracle, self-referential oracle (SVD) and heuristic
oracle. [Hoffman 2001]

5.4.1 No oracle
The advantages of a no oracle strategy are a fast test run and that it is easy to
implement. The costs are minimized in the aspect of development and maintaining
the oracle. The disadvantages are that the results from the SUT never can be
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compared to an oracle, which implies that only spectacular errors can be detected,
such as a system crash. The correctness of the result is never verified. Hamlet
states that useful testing must rely on an effective oracle. That is not the case
for the strategy of no oracle. Though, it can be a way of testing the softwares
functionality and reliability. [Hoffman 2001] [Hamlet 1994]

5.4.2 True oracle

The true oracle is an independent implementation of the SUT, using different algo-
rithms, platform etc. It is given the same input as the software under test. The true
oracle verifies the results from the SUT by comparison between the test results and
the oracle’s reproduced expected results of the test. The correctness of the results
gain more confidence the less the true oracle have in common with the SUT.

A small input is preferred to be used when running a test because true oracles
can be slow. This can be done by generating the random input from a domain
where the true oracle is solid and accurate. True oracles are expensive to develop
and to maintain. [Hoffman 2001]

5.4.3 Consistent oracle

A consistent oracle is based on previous test results when it is defined. The strategy
of consistency is well used in automated regression tests, particularly when evalu-
ating the changes from an old version of the software to a more recent one. The
evaluated result should expose the changes and differences between the oracle and
the SUT.

A consistent oracle does not state whether the result is correct or not. The advatage
of this approach is that the correctness is irrelevant, which means that enormous
quantity of pseudorandom data can be generated and compared. The changes and
differences will be exposed, but old undetected error may go unnoticed. Consistent
oracles can be an equivalent product, a software from a different platform or an
older version of the software under test. [Hoffman 2001]

5.4.4 Self-Referential oracle(SVD)

For a self-referential strategy the input data contains the expected output. The
output is verified through data matching. Repeatable testing is done by adding a
"seed" in generated pseudo-random input. The advantage with the "seeding" is to
create a record of input populations with specific characteristics, the characteris-
tics are embedded in the record itself. Independent analysis reveals problems and
inconsistencies.[Hoffman 2001] [Höjeberg 2007] [Gundemark 2005]
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5.4.5 Heuristic oracle

A heuristic oracle picks up the results likelihood of being incorrect or correct. The
strategy aims on verifying the major characteristics in the test domain. For the
major characteristics exact test results are produced. The results can be verified by
consistency checks and simple algorithms based on a heuristic approach. A heuristic
oracle is quick and simple to implement. It can reveal many classes of errors in short
time, especially efficient in finding boundry conditions and special values failures.
The downside is that correct results can be flagged as errors and incorrect results
can be accepted. A heuristic oracle can not reveal all type of errors. A heuristic
oracle can be built into the software under test.[Hoffman 1998, 1999, 2001]

5.5 Reliability and theory

5.5.1 Reliability and prediction

Software reliability is defined as "the probability of failure-free operation of a com-
puter program for a specified time in a specified environment". In practice, the
modelling is based on establishing the probability of failures in that specified inter-
val of time, and what the expected time to and between those failures are.[NASA
2004] There are two types of reliability models:[NASA 2004]

Prediction models

The model predicts the reliability of the software under development. The goal
is to predict a fully developed software’s reliability. One can start this reliability
modelling as soon as the requirements of the software are determined.

Estimation models

The approach is to evaluating the most recent software in operation, usually done
under the test phase. The aim is to estimate the quantity of remaining failures and
the time to and between failures.

The major advantage of random testing is that statistical prediction can be made of
the significance of a successful test. For a realtime program this means, according
to Hamlet that a valid statement after random testing could be: "It is 99% certain
that the program, PR, will have a meantime to failure that is greater than 10000
hours of continuos operation", or equivalently P(PR > 10000) > 0.99.

Meantime to failure, MTTF, is the expected time to failure of a system, when
not regarding the time it takes to repair it.

Again, regard a program, PR, with a (constant) failure rate, θ, denoted as the
percentage of the inputs that causes failures within the input domain.[Mayer 2006]
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MTTF can be derived as:

Define θ as:
θ = f

d

where f is the number of inputs in the domain d that causes failures. d is the size
of the input domain.[Gutjahr 1999]

θ denotes the probability of a failure for one test point, which gives the proba-
bility (1-θ) that the test is a success.

For k number of tests, from the same input domain, the probability that a test
is successful is:

Psuccess = (1− θ)k (5.1)

This is equivalent to say that in 1
θ test runs only one failure will be expected. 1

θ
is referred to as the confidence probability.

The probability of the detecting at least one failure with k test points is then:
[Hamlet 1994]

Pfailure = 1−Psuccess = 1−(1−θ)k = 1−( |D
fail|
|D|

)k = 1−(1−f
d

)k = 1−(1−
∑k
i=1 fi∑k
i=1 di

)k,

where ∑k
i=1 fi is the sum over k subdomains in f , according to the partition of

f . The sum of fi over k subdomains is equivalent to f . The same statement is valid
for the failure-causing domain d.

Derivation of 5.1 gives:

Psuccess = (1− θ)k ⇒ k = log(1− Psuccess)
log(1− θ) (5.2)

Solving 5.1 for 1
θ yields:

1
θ
>= 1

1− (Psuccess)
1
k

, (5.3)

which is equivalent to Mean time to failure (MTTF), because 1
θ is the expected

value.
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k can be intepreted as the quantity of the input domain that is required in the-
ory to gain a confidence level of Psuccess.[Gutjahr 1999, Hamlet 1994] This is valid
for a non-realtime program and realtime programs if a more complex operational
profile is available.[Hamlet 1994] For real-time programs there is a sequence of input
data arriving randomly.

Suppose that the number of occurrences of an event E in the time interval (0,t]
are independent. In this case the event E is whether a customer place an order
or not. Each single occurrence is Bernoulli distributed, either the event E occurrs
or it does not, with some probability p. If an event occurrs it is a success and
otherwise it is a failure. The Binomial distribution is the number of successes in
independent repetitions of Bernoulli distributed trials. If the time interval is divided
in n disjoint subintervals like, (0, tn ], ( tn , 2

t
n ], ..., ( tn t, t], where n is very large. The

probability that an order is placed in such time interval is then very small. The
events are independent in the disjoint time intervals and the number of time inter-
vals is very large. Then it is possible to approximate the number of occurences of
inserted orders in the time interval (0,t] as being Poisson distributed. The Poisson
approximation is valid for at most one occurence of event E (an order is inserted)
in each small time interval. The Poisson process is a discrete stochastic process in
continous time, {X(t), t ≥ 0}, and is defined as:[Gut 1995]

X(t) = # occurrencies in (0,t]. (5.4)

5.5.2 Definition and properties of the Poisson Process

• The Poisson process is denoted as,

X(t) ∈ Po(λt), t ≥ 0, (5.5)

where λ is the intensity of the process.

• X(0)=0 and there exists a λ > 0 such that

X(t)−X(s) ∈ Po(λ(t− s)), for 0 ≤ s < t. (5.6)

At time zero the process equals zero and the equation implies that the incre-
ments are independent for some λ > 0.

• The time to the k:th occurence τk, for k ≥1, are independent Exp( 1
λ)-distributed

random variable.

• The probability function of a Poisson process is:

P (X(t) = k) = e−λt
(λt)k
k! , for k = 0, 1, 2, ... (5.7)
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5.6 Discussion of random testing versus systematic
testing/partition testing

There are especially two cases where random testing is a viable choice: [Hamlet
2006]

Sparse sampling

When the input domain is large and unstructured, which means that it is pointless
to partition it into subdomains. This statement is theoretically established due to
many studies in the field.

Persistent state

The majority of softwares have a storage of information that is preserved between
each test case. This storage is utilized when testing by forcing the software un-
der test to enter that persistent state and perform the desired tests from an initial
condition. In general, the test contains a data sequence, which makes the software
go through different states whlie the test is active. The final state terminates the
test, where the result is gathered. The input sequence is preferably random, due to
some advantages in analyzing the test results, which makes Random testing viable.
[Hamlet 2006]

Systematic testing is more expected to expose failure than random testing in gen-
eral. The conclusion for this statement is that systematic testing aiming on a
pre-judgement of a high risk section where failures can arise. The priority of such
a test is to trigger a "pre-defined" failure on the selected partition. Random test-
ing on the other hand does not make such assumption, which intuitively leads to
the conclusion that systematic testing expose more failures than random testing.
But in practical use of the methods stated it is not that big difference between the
methods, even though the assumptions are favorable to systematic testing.[Hamlet
1994] [Gutjahr 1999] For systematic testing one must know before the test case is
permuted what type of failure one want to expose. Random testing on the other
hand is more suited to expose failures that are complex and unique for the system
under test.

According to Hamlet partition testing is more efficient to expose failures than ran-
dom testing in a general case. The difference between the methods can be decreased
through selecting more test points in random testing and the difference can be in-
creased by choosing a partion that is known to have a high failure rate in the selected
domain. The conclusion is that if the system has subdomains with a high failure
rate, then partion testing is a good choice in the sense that it concentrates the
failures within the chosen subdomain. [Hamlet 1994]
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TESTING/PARTITION TESTING

Random testing is the favorable choice over partion testing if one makes the as-
sumption that the failure rates are deterministic. This conclusion is even stronger
if the partition includes few large or many small subdomains.[Gutjahr 1999]

Hamlet states that for successful use of random testing the following conditions
are neccessary:

• The test is at system level.

• There exists an operational profile.

• Representative pseudo-random input domain.

• Use of an effective oracle.

• "The worst misuse of random testing occurs when the method is not used at
all".
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Chapter 6

Implementation and Results

6.1 Introduction
This chapter contains the implementation of a market participant. The content in
the development of the actor is an analyze of historical trading data, which is used
for modeling a stock market, in which the traders places their orders. The purpose
is to get a realistic input domain for random testing of the software.

The simulation is done as a part of Random testing. The test model is sent into
the trading system, which should be able to simulate a realistic trading day, where
the actors trade with each other. A short description of the process is presented
in section 6.1. A more detailed description of each moment of the development is
presented in separate sections. The theory in this section is found in [Ljung 1987]
and [Brockwell 2002].

6.1.1 Historical values

Log-files over past transactions are filtered and sorted with respect to orderbooks
and type of bid order. The type of bid orders are buy and sell orders. The result is
presented in three columns: Order price, order volume and time for order.

6.1.2 Modeling and simulation

From the sorted log-files, several mathematical models are estimated and analyzed.
The aim is to find a suitable model that simulates an actor well, when it comes to
forecast the parameter of the next trade. The goal is to find any appropriate model
that can be utilized for pseudo-random simulations of the input domain.

For a time dependent model, the autoregressive time series of order one is ana-
lyzed. The restriction to order one is due to the test framework’s lack of memory.
Only the most recent trade is saved in the test framework.
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The analysis of the residuals is concentrated to determine whether or not the resid-
uals can be regarded as uncorrelated and what type of distribution that can be
applied to them.

Another way of analyzing the benchmark data is to assume that the data orig-
inates from pure noise, which implies that the sample is independent identically
distributed noise. The analysis in that case focusing on finding an appropriate prob-
ability distribution function, from which pseudo-random numbers can be generated.

At the moment Cinnober FT is using a normal distribution when generating order
price and an uniform distribution when generating the order volume for random
testing. Price and volume are assumed to be independent. The frequency of orders
sent into the system is assumed to be Poisson distributed.

6.1.3 The market participants

Under test, several actors are logged into the market place system under test with
a predefined number of actions before logging out. The actions are in general
different types of orders, where the actor can insert a new bid or ask order, change an
excisting order or cancel one or all orders. When a new order is inserted or changed,
the order volume and the order price is randomly generated from the probability
models determined from the analysis of the benchmark data. The frequency of
order insertion is generated from a Poisson distribution. The market participants
trades with each other independently. They listen to the market flow and put orders
according to the market price.

6.1.4 Implementation of market participants and random testing

The implementation is made with close attachment to reality. The mathematical
analysis of the historical trade data is used to imitate a real trading day as well
as possible. The market participant that are implemented is a trader, that runs as
a thread in Java. This makes it possible to create several actors, that can trade
independent of each other. The Random test program is run towards Cinnober
finacial technology’s trading system TRADExpress.

6.2 Historical values
To get a realistic model, real trade data is needed to be analyzed. The trading
data is collected from the trading platform Turquoise, during a period from 9th of
February to 19th of February 2009. The log-files contains a lot of information that
is unnecessary and it is submitted in an unfriendly way with respect to analysis of
the data. Therefor a major filtration is required. Due to the characteristics of an
actor, the most important values to filter are the order price, the order volume and
the time for inserting the order, recalculated to seconds. Time t=0 corresponds to
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trade-day-opening, 09:00:00 CET.

The filtering was made in Java in three steps. The first program makes a rough
filtration, sorting out unnecessary data and data sensitive for integrity reasons. The
second filtration is aiming on the keyword INSERT, which means that only orders
of the type INSERT is passing through. The type INSERT means that a market
participant is placing a new order or changing an existing one. The third and final
program filtrates each order with respect to orderbook. It also creates three diifer-
ent textfiles, one with bid orders, one with ask orders and one where bid and ask
order are combined.

Each orderbook contains a specific type of instrument, so it is possible after the
filtration to view the fluctuations of a specific instrument. The bid and ask order
filtration is made to illuminate the differencies between the bid and the ask order,
if there are any. The final result is presented in a three column textfile for each
orderbook, for example: XXXXBID.txt, XXXXASK.txt, XXXX.txt etc.

6.3 Fitting a model to order data and simulation
The main purpose for this section is to estimate appropriate models for order price
and order volume at some time t, when the market participant is at time (t-1). This
can be seen of as a one step prediction of a certain instrument, where the prediction
is equivalent to placing an order.

For time variant assumption, AR(1)-processes are analyzed for both order price
and order volume. As stated above, the analysis is concentrated to determine if the
residuals are uncorrelated and independent. If it can be stated that the residuals
are uncorrelated, a probability distribution function is fitted to the residuals. Sev-
eral tests to validate the probability distribution function is executed in order to
determine it’s correctness.

For the assumption of independent identically distributed noise, IID-noise, a prob-
ability distribution function is fitted to the benchmark data. As for the residual
analysis, several tests are done to determine the appropriateness of the model.

The most important aspects of the model are simplicity when implementing and
accuracy in the predictions as far as it is possible. The trading data is collected
from stock exchange trading, which makes the model appropriate for stock exchange
simulations.

6.3.1 Preparing the benchmark data for analysis
Due to the large amount of data gathered under each trading day, it is necessary
to screen off the test set of data. This was done by choosing one orderbook to
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estimate a model from and another orderbook to validate the estimated model
with. For time series, trend and/or seasonality of order volume and order price
were eliminated using box-cox transformation, with λ=0, equation 6.1[Brockwell
2002]. The arithmetic mean was subtracted from the data in order to normalize the
time series around zero.

fλ(Ut) =
{
λ−1(Uλt − 1), Ut >= 0, λ > 0,
ln Ut, Ut > 0, λ = 0 (6.1)

The data that are being used for estimation of a model are displayed in figure 6.1
and figure 6.2. The data that are being used for validation of the estimated model
are illustarated in figure 6.3 and figure 6.4.

By using the System Identification Toolbox in MATLAB it is possible to fit a model
to a data set, by choosing the corresponding data set for estimation and validation.
The autoregressive processes are applied on order volume and order price. The
Yule-Walker estimation of an autoregressive process is also applied to the bench-
mark data, section 6.3.2. The Yule-Walker estimation is mainly used for reason of
simplicity. It is a simple way to get an opinion about the process, according to the
order of magnitude one could expect when analyzing the time-series.

The theory of the time series models is treated in section 6.3.2. The analysis of
the estimated models focuses on prediction efficiency and residual analysis.

6.3.2 Notation and theory

This section lines up the major definitions and notations used in the analysis of the
benchmark data, such as the definition of the autoregressive process and so forth.

The notation for the parameters in the autoregressive process of order p is:

• X(t) equals the output argument at time t.

• φ(B) equals the backward shift operator B, operationg on X(t). The esti-
mated constants is included in vector φ.

• Z(t) is the white noise at time t, which has some distribution with mean 0
and variance σ2 under the assuption that the estimated model is correct.

• θ(B) equals the backward shift operator B, operationg on Z(t). The estimated
constants is included in vector θ. This is only used for autoregressive moving
average processes, ARMA-process. The autoregressive process is an ARMA-
process, with θ = 1.
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Figure 6.1. Order price - Estimation data

Figure 6.2. Order volume - Estimation data
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Figure 6.3. Order price - Validation data

AR-model

The AR(p)-model is a stationary autoregressive process of order p. The process
depends on p former output values and is defined as:

φ(B)X(t) = Z(t) (6.2)

φ(B)X(t) = Xt + φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p (6.3)

Z(t) ∼ N(0, σ2
WN ) (6.4)

The Yule-Walker estimation of an autoregressive process of order p is defined as:
[Brockwell 2002]

φ̂ = (φ̂1, ..., φ̂p)′ = R̂−1
p ρ̂p (6.5)

and
σ̂2 = γ̂(0)[1− ρ̂′pR̂−1

p ρ̂p], (6.6)

where
ρ̂p = (ρ̂(1), ..., ρ̂(p))′ = γ̂p

ρ̂(0) (6.7)
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Figure 6.4. Order volume - Validation data

6.3.3 Residual Analysis
There are a number of ways to validate a selected model. The residual analysis
focuses on which conclusions that can be drawn from the prediction errors, when a
stochastic process is the underlying process. From the analysis, one want to show
that one or more of the following statements are approximately fullfilled for the
estimated model: [Brockwell 2002]

• The residuals are uncorrelated, which is equivalent to {Zt} ∼ WN(0,σ2).

• The residuals are independent if {Zt} ∼ IID(0,σ2).

• The residuals are normally distributed, as in {Zt} ∼ N(0,σ2)

The tests that are used for the analysis of the residuals are presented in section
6.3.4 - 6.3.8.

6.3.4 Plot of {R̂t, t = 1, ..., n} against time
Plots of the rescaled residuals versus time. The rescaled residuals should corre-
sponds to that of a white noise sequence for the estimated model. Trends and
nonconstant variation are analyzed, simply by noticing the behavior of the process.
The plots are displayed with confidence levels ±1.96. If at least 5% of the rescaled
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residuals lies outside the bounds or if some values are exceeding the accepted limits
very much, this might be a sign of a non-gaussian noise. Otherwise gaussian noise
can be assumed as a starting point. There is no major conclusion that can be made
from the plots. It is more a way to analyse extreme behaviors, if further analysis is
worthwhile or not. [Brockwell 2002]

6.3.5 Histogram of {R̂t, t = 1, ..., n}

Histogram of the rescaled residuals. For the estimated model to be valid, the his-
togram should be centered around zero. If the histogram is not centered at origo,
the model may not be appropriate as an approximation of the benchmark data.
If the histogram have a shape that resembles with that of a normal distribution,
with mean 0 and variance 1, one can suspect that the prediction error is normally
distributed. This is a rough approximation about the distribution of the residuals
and is only valid if the data really has a normal distribution. [Brockwell 2002]

6.3.6 QQ-plots
Quantile-Quantile plots, also refered to as QQ-plots, compares the quantiles be-
tween the benchmark data and an arbitary probability function. QQ-plots is a
way to visualize the resemblances between the residuals and the distribution one
suspects that residuals originates from. For example, a QQ-plots of the rescaled
residuals against that of a t-distribution and/or that of a normal distribution gives
an indication if the noise is normally distributed.

The QQ-plot should form a straight line with slope one for the probability distribu-
tion functions to be alike. The presentation of the QQ-plots is done in comparison
with a straight line, with slope one, in the same figure. If the line coincides with
QQ-plot further analysis is motivated. One major problem with the QQ-plot is that
if the sample do not include that many values in a given intervall, the plot is going
to be skewed.

The QQ-plot is a good tool for strengthening the thesis that the sample could
have been generated from the distribution function, but the opposite is not true.
The QQ-plot is defined as: [Hult, Lindskog 2007]{(

Xk,n, F
−1
(
n− k + 1
n+ 1

))
: k = 1, ..., n

}
, (6.8)

where Xk,n is the ordered sample number k of a total number of n. F−1 is the
inverse of distribution F , which the sample is compared to.

6.3.7 Plot of the Autocorrelation function
The analysis of the autocorrelation function is done by checking if the autocorre-
lation function is inside the limits of a confidence interval. Not more than 5% of
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the observed residuals should fall outside the bonds of ±1.96/
√
n for the model to

be appropriate. Otherwise the estimated model should be replaced by some other
model that fits the observation values better. One can suspect white noise when
most of the values is lying inside the confidence levels. [Brockwell 2002]

6.3.8 Test of randomness and distribution test

Test of randomness is done to validate whether or not the residuals are independent
identically distributed random variables. The distribution tests are utilized to con-
firm or reject the hypothesis that the sample data originates from the distribution
they are tested against. The tests used for this purpose are:

Portmanteu test of randomness

The statistic to test the hypothesis that the sample is independent identically dis-
tributed is

Q = n
h∑
j=1

ρ̂2(j), (6.9)

where n is the total number of observations. The statistic is the sum of squares of
the sample autocorrelation function, with elements ρ̂(j). The theory behind the test
is that if the random variables, (X1, ..., Xh), are N(0,1)-distributed, then it follows
that the sum ∑h

j=1X
2
i is χ2(h)-distributed, with h degrees of freedom.

For the test to be valid, the random variables are assumed to originates from a
normal distribution, with mean zero and variance one.

The rescaled residuals, under the assumption that the estimated model is correct,
is approximately N(0,1)-distributed.

The statistic Q is asymptotically χ2(h)-distributed. The null hypothesis about the
sample of the residuals is that the sample is a independent identically distributed
(IID) sequence of normal distributed random variables. The confidence level of the
test is denoted α.

The null hypothesis is accepted at confidence level α if Q < χ2
1−α(h) and rejected

otherwise. χ2
1−α(h) is the 1 − α quantile of the chi-squared distribution with h

degrees of freedom. [Brockwell 2002] [Ljung 1987]

Ljung and Box Portmanteau test of randomness

Ljung and Box Portmanteau test of randomness is a modification of the Portman-
teau test, named after Greta M. Ljung and George E. P. Box, which is more suitable
for chi-square approximations with h degrees of freedom. The statistic is defined
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as:

QLjung−Box = n(n+ 2)
h∑
j=1

ρ̂2(j)/(n− j), (6.10)

which is asymptotically chi-squared distributed with h degrees of freedom. The
null hypothesis is defined as the null hypothesis for the regular Portmanteau test.
[Brockwell 2002] [Ljung 1987]

Jarque-Bera test

The Jarque-Bera test is done in order to check if the sample is normal distributed.
The statistic is defined as:

QJargue−Bera = n[m2
3/(6m3

2) + (m4/m
3
2 − 3)2/24], (6.11)

where mr = ∑n
j=1 (Xj − X̄)r/n and n equals the total number of observations.

If {Xt} ∼ IID N(µ, σ2), then QJargue−Bera is asymptotically χ2(2)-distributed. The
null hypothesis about Xt is defined as the assumption that {Xt} ∼ IID N(µ, σ2).
The test is rejected at confidence level α if QJargue−Bera > χ2

1−α(2). Rejecting the
null hypothesis of the Jarque-Bera test indicates that the observed residuals are not
gaussian.

Two-sample Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov test is a distribution test. The hypothesis
that the sample originates from a certain distribution is tested.

The null hypothesis of the two-sample Kolmogorov-Smirnov test states that the
sample is generated from the probability distribution function that one wants to
test the sample against. Rejecting the null hypothesis implies that the equivalence
between the sample and the tested distribution is not significant at the confidence
level of α =0.05. The test statistic is defined as:

QK−S = max(|F1(x)− F2(x)|), (6.12)

where F1(x) is the propotion of F−1
1 values less than or equal to x. F2(x) is the

propotion of F−1
2 values less than or equal to x.

6.3.9 Fitting an AR(1)-model to order price
The estimated AR(1)-process is presented in equation (6.13), with the corresponding
one-step prediction plot in figure 6.5. The mean value and some interesting quantiles
are presented in table 6.1.

Xt − 0.9682Xt−1 = Zt (6.13)
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data sample N(0,1)
5% quantile: -1.7313 -1.6449
10% quantile: -1.3491 -1.2816
Mean value: 0.0298 0
Median: 0.0823 0
90% quantile: 1.4459 1.2816
95% quantile: 1.6645 1.6449

Table 6.1. Mean value and 5%, 10%,50%, 90% and 95% quantiles for the rescaled
residuals and corresponding values for the N(0,1)-distribution.

Figure 6.5. Plot of order price versus time

The forthcoming analysis is made for the order price. The same analysis is done
both for order price of a bid order order aswell as for a ask order.

If one compares the figures in table 6.1, the mean value and the median are close
to zero. The median is a little skewed to positive values. The quantiles for the data
sample resemble with that of a normal distribution. The reason for a comparision
against the normal distribution because the gaussian distribution is the most com-
mon distribution to start with. Table 6.4 gives a good approximation of the data
sample, where the values are centered and the length of the quantiles can tell how
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Figure 6.6. Plot of the rescaled residuals of order price versus time

Figure 6.7. Histogram of the rescaled residuals to order price.
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Figure 6.8. Autocorrelation function of the rescaled residuals of order price

the data sample is distributed.

The one step prediction, figure 6.5 is catching up the fluctuations of the data sam-
ples. The estimated model seems to predict the upcoming values well.

The residual analysis starts with a glance at the left plot of the rescaled residu-
als in figure 6.6. One can see that a few values exceed the confidence limit at ±1.96,
but by comparing with the right figure, which is simulated, there is still a good
fit according to that the residuals could be a white noise sequence. There are no
major differencies between the figures, which indicates that the estimated model is
appropriate. If more than 5% of the peaks are outside the confidence interval one
can not assume normally distributed residuals.

No major conclusions can be made of the residual plot. The first distribution to
test the rescaled residuals towards will be the normal distribution.

The distribution of the rescaled residuals is visualized through a histogram, fig-
ure 6.7. The most important information that can be gathered from a histogram is
if the estimated model is an appropriate one and if the shape of the histogram can
imply which distribution the rescaled residuals could be a sample from.

The histogram is clearly centered at origo. Table 6.1 gives the mean value of the
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Figure 6.9. QQ-plot of the rescaled residuals of order price versus a normal distri-
bution.

Value of test Critical
Test p-Value statistic Value Reject H0
Jarque-Bera 0.0703 4.9340 5.7667 NO
Kolmogorov-Smirnov 1 - - NO
Portmanteau - 37.4549 31.4104 YES
Ljung-Box Portmanteau 0.01* 160.6376 31.4104 YES
Runstest 0.01* - - YES
*Smaller than the presented p-values.

Table 6.2. Results of the tests of randomness and the distribution tests of order
price

residuals, 0.0298. As stated in the previous section, a histogram centered at origo
indicates an appropriate model for the sample. Some values that are not centered
at origo are very frequent, but the large mass implies a gaussian shape.

The shape of the histogram is reminding of a normal distribution with mean zero
and variance equal to one, due to the fact that most values are inside the limits of
± 2 standard deviations. The model seems to be appropriate and so far the normal
distribution can not be rejected as the underlying stochastic process that drives the
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order price.

The autocorrelation function implies whether the model is appropriate or not. If
the values fall inside the confidence interval of ±1.96/

√
n, the underlying stochastic

process could be assumed to be a white noise sequence. The autocorrelation func-
tion of the rescaled residuals are illustrated in figure 6.8. Most of the values are well
inside the confidence interval. Even though, the value at lag one is extremely over
the permitted value and several other values is on the border of confidence interval.
The conclusion is that the model is fairly inappropriate and that there probably
exists another model that fits the data more accurate.

The shape of the histogram, figure 6.7, implies normal distributed residuals, aswell
as the figures presented in table 6.1. The quantiles between the sample and the
normal distribution are very much alike. To get a closer look at the resemblence
between the data sample and the normal distribution a quantile-quantile plot , QQ-
plot, is presented in figure 6.9. The QQ-plot fits the straight line well.

So far the analysis has included illustration tools for getting a feeling of which
distribution that seems to be appropriate for more analytically analysis. The ana-
lytically tests were described in section 6.3.3.

First of all, the estimated model is not the best model available nor is it based
on a certain model validation theory. The important conlusion to make is whether
or not the model is useable in terms of giving an accurate one-step prediction and de-
termine the properties of the underlying stochastic process. The conclusions based
on the underlying stochastic process must be relevant and true.

The analytical distribution tests are computed by comparing the sample data against
a normal distribution. Both the Jarque-Bera test and the Kolmogorov-Smirnov test
do not reject the null hypothesis that the data sample comes from a normal dis-
tribution. This means that there is no significant difference between the residuals
and the gaussian distribution. The Jarque-Berra test statistic equals 0.0703, which
is close to the permitted value at 0.05. The underlying stochastic process will be
defined as:

Zt ∼ N(0, σ2), σ2 = 0.0053, (6.14)

where σ2 is estimated with the Yule-Walker method.

The three tests of randomness will show whether or not the residuals are inde-
pendent identical distributed random variables. All tests of randomness reject the
null hypothesis that the residuals are IID-noise, table 6.4.
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data sample N(0,1)
5% quantile: -2.0923 -1.6449
10% quantile: -1.4294 -1.2816
Mean value: -0.0035 0
Median: 0.4418 0
90% quantile: 1.0215 1.2816
95% quantile: 1.1047 1.6449

Table 6.3. Mean value and 5%, 10%,50%, 90% and 95% quantiles for the rescaled
residuals and corresponding values for the N(0,1)-distribution.

The autoregressive model of order one fits the benchmark data. There are probably
more suitable models that fit the benchmark data with more accuracy. The ques-
tion is still how much the autocorrelation function’s bad fit influences the simulation.

The same analysis, as stated in the beginning of the section, was made for or-
der price of an ask order and for a bid order. The results were similar. Both models
had residuals with a normal distribution.

6.3.10 Fitting an AR(1)-model for order volume

The estimated AR(1)-process is in equation (6.15). The same procedure as in section
6.3.10 is applied to analyze the order volume. The one-step prediction is shown in
figure 6.10 and the mean value and the quantiles in table 6.3.

Xt − 0.2464Xt−1 = Zt (6.15)

The order volume plot, 6.10, is very noisy. This can be seen by looking directly
at the plot. The one step prediction does not follow the data sample at all, even
though it is catching up some small trends. The one-step prediction is plotted with-
out any underlying stochastic process, which by looking at equation (6.15) explains
the mismatch between the benchmark data and the one-step prediction.

The underlying stochastic process, if the estimated model is appropriate, proba-
bly has a large variance. By the figures in table 6.3, one can notice that the median
is positive, 0.4418, and the quantiles at 5% and 95% are -2.0923 and 1.1047. This
gives that equally amount of samples are in the span of 0.4418-(-2.0923)=2.5341 to
the left of the median as in 1.1047-0.4418=0.6629 to the right of the median. This
indicates a skewness towards the positive values. The resemblance with the normal
distribution is poor, as far as table 6.3 goes.

The residual analysis starts with a comparison of the rescaled residuals against
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Figure 6.10. Plot of order volume versus time

Figure 6.11. Plot of the rescaled residuals versus time.
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Figure 6.12. Histogram of the rescaled residuals of order volume.

Figure 6.13. Autocorrelation function of the rescaled residuals of order volume.
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Figure 6.14. QQ-plot of the rescaled residuals of order volume versus a normal
distributiom.

a simulated white noise sequence, figure 6.11. There are no major differences be-
tween the sequences, the data sample could be a white noise sequence. No obvious
trends or cycles are apparent.

For the model to be appropriate the histogram, 6.12, needs to be centered at origo.
The mean value is -0.0035, which is close to zero and the most of the values in the
histogram are centered at origo, even though it is not quite obvious. The resem-
blances in shape between a normal distribution and the data sample is absent. One
can suspect that the residuals have another distribution than Gaussian, which will
be shown by the QQ-plot and the analytical analysis.

The autocorrelation function, 6.13, is lying inside the confidence interval at±1.96/
√
n,

even though some values are close to the border. This implies that the estimated
model could be regarded as an appropriate model and that the underlying stochas-
tic process may be a white noise sequence.

The QQ-plot, 6.14, confirm the proposition that the residuals do not originate
from a normal distribution. It differs alot from the straight line, that is showing
the theoretical values for an ideal match between the sample data and the normal
distribution.
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Figure 6.15. QQ-plot of the rescaled residuals of order volume versus an extreme
value distributiom.

Figure 6.16. Empirical distribution of the rescaled residuals of order volume versus
the extreme value distribution.
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Figure 6.17. Histogram and probability distribution function of the extreme value
distribution of the rescaled residuals of order volume.

Value of test Critical
Test p-Value statistic Value Reject H0
Jarque-Bera 0.01* 34.5128 5.6506 YES
Kolmogorov-Smirnov 0.0195 - - YES
Portmanteau - 20.4429 31.4104 NO
Ljung-Box Portmanteau 0.5827 18.0715 31.4104 NO
Runstest 1 - - NO
*Smaller than the presented p-values.

Table 6.4. Results of tests of randomness and normal distribution of the rescaled
residuals.

Value of test Critical
Test p-Value statistic Value Reject H0
Two-sample Kolmogorov-Smirnov 0.0963 - - NO

Table 6.5. Results of tests against Extreme value distribution of the rescaled resid-
uals.
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The analytical tests against a normal distribution, table 6.4, reject the null hypoth-
esis that the residuals and the simulated normally distributed sample is derived
from the same distribution. This is shown by the Kolmogorov-Smirnov test and by
the Jarque-Bera test, which both have p-values that implies a significant difference.

The tests of randomness do not reject the null hypothesis that the residuals are
IID-noise. The test statistics in all three tests of randomness are assumed to be
normally distributed, which means that a comparision between the statistics and
normal distribution is made. The accuracy of the test may be questionable because
of that. Maybe the autocorrelation function should be weighted in instead, which
implies non-correlated residuals. Further analysis of the residuals are needed to be
able to determine which distribution the residuals may be originated from.

As stated above, the histogram, figure 6.12, illustrates a skewed distribution, weighted
towards the positive values.

One distribution that have these properties is the Extreme value distribution, de-
fined as:[Mathworld Wolfram]

f(x) = e(α−x)/β−e(α−x)/b

β
, (6.16)

where α is the location parameter and β is the scale parameter. f(x) is the proba-
bility density function of the extreme value distribution.

To get a feeling of how well the residuals are fitting the extreme value distribu-
tion, the empirical distributions between the data sample and the theoretical values
are compared to each other in figure 6.16. There is a decent fit in shape. Their
values may differ, but the shape follows the distributions sufficient.

The next step is to illustrate the QQ-plot in figure 6.15. The QQ-plot differs from
the straight line a little bit less than against a normal distribution, especially at the
smaller and larger quantiles. The mismatch of the smaller and the larger quantiles
are still obvious.

The analytical test, Two-sample Kolmogorov-Smirnov test, against an extreme value
distribution, table 6.5, is not rejected at the confidence level of 5%. The p-value is
0.0963, which implies that there is no significance between the sample data and the
extreme value distribution.

Finally, the fitted distribution is presented together with the histogram over the
residuals in figure 6.17. The curve fits the histogram sufficiency well. The shapes
are very much alike and the peak is centered at the same value. The underlying
stochastic process of order volume is defined as:
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Data sample True values
µ̂: 6.3514
σ̂: 1.3991
5% quantile: 95 57.4
10% quantile: 105.2 95.4
Mean value: 1312.3 1525.5
Median: 489 573.3
90% quantile: 3633 3443.9
95% quantile: 4121 5725.3

Table 6.6. Mean value and 5%, 10%,50%, 90% and 95% quantiles for the data
sample and true values generated from a Log-normal distribution, with the estimated
parameters.

Zt ∼ EV (0, β2), (6.17)

where β2 is the variance of Zt.

This model is based on the assumption that the order volume is time dependent.
One can argue if this really is the case. Due to the fact that the market partici-
pants are filtered and not regarded when analysing the data, the argument about
a time independent order volume could be valid. If the market participants were
taken into account, there could have been a dependece between an actor and the
quantity at which they trade. But the current case is that the order volume does
not have an identity, nothing that states who places the order. If there was a mark
at each order, one could analyze individual frequency at which each trader makes
their trades and through that get a dependence between the order volume and time.
This is only true if it can be shown that different actors place different quantities
in orders, which means that maybe some actors have more liquidity than others. In
section 6.3.11 a time-invariant model for order volume is presented.

6.3.11 Fitting an independent identically distributed noise model for
order volume

The procedure of determine a probability density function is somewhat similar to
that in section 6.3.10, where a normal distribution was inappropriate to describing
the residuals. The reason to analyze the volume as IID-noise is that it is not obvious
that the best way to simulate order volume is by fitting the benchmark data to an
AR(1)-process. For a market place system that treats different orders from market
participants, the order volume may as well be dependent on which actor that is
placing the order, rather than which volume last inserted order had. This section
gives another approach of simulating an actor. Instead of simulating the order vol-
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Figure 6.18. Histogram of order volume for the IID-model.

ume according to an AR(1)-process as in section 6.3.10, the order volume can be
simulated from the probability distribution function determined in this section.

Several distributions were tested, such as Gamma distribution, Exponential dis-
tribution and Log-normal distribution. The only one presented here is Log-normal
distribution, hence the Log-normal distribution was the best fitting distribution for
this sample data. Due to the assumption that the order volume is both IID-noise
and price independent, several orderbooks were used to gather the data sample. The
last assumption is not self-explanatory. It could be argued that a low stock-price
allow the market participants to buy a larger amount of stocks, which is neglected
here. The assumption is more based on trends in the market, such as low relative
price on a stock implies a larger order volume.

The estimated parameters are illustrated in table 6.6, together with quantiles simi-
lar to the analysis of the AR(1)-process. The probability density function is defined
as: [Wikipedia Log-Normal distribution]

f(x;µ, σ) = 1
xσ
√

2π
e

(ln(x)−µ)2

2σ2 ; for x > 0, (6.18)

where µ is the mean value and σ is the standard deviation of the corresponding
normal distribution.
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Figure 6.19. Empirical distribution of order volume against a Log-normal distribu-
tion for the IID-model

The analysis starts with a histogram, 6.18. The purpose is give a schematic picture
of the shape of the distribution. As stated above, the Log-normal distribution has
the same properties that are visualized in the histogram. It has the highest proba-
bility at lower values and decreases rapidly as the values increases. The log-normal
distribution is characterized by a long tail with small probabilities for large values.

Some tests were done on orderbooks with small mean values of the order volume
aswell as on orderbooks with large mean values of order volume. The estimated
parameters were very much alike with fairly small differencies. This implies that
the order volumes have small impact on estimated model and that the log-normal
distribution is very flexible.

The empirical distribution of the data sample is compared with the Log-normal
cumulative distribution function to the left in figure 6.19. One can notice that log-
normal cdf does not increase to one as fast as the data sample. For smaller volumes
the estimated distribution is more accurat.

As shown in the histogram, large order volumes are rare. This creates a prob-
lem which is well illustrated in the QQ-plot in figure 6.20. One can fairly see any
resemblance between the straight line and the line that includes the sample data.
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Figure 6.20. QQ-plot of order volume against the Log-normal distribution for the
IID-model

The QQ-plot divides the data sample into quantiles. If the data sample do not
have that many large values, the quantiles act in a skewed manner. For example,
the 95%-quantile for the data sample has the value of 4121 and for the same quantile
for the true distribution, with the estimated parameters, the value is 5725. That
is a huge difference. On the other hand, the 5%-quantile give the values 95 respec-
tively 57 from the previous mentioned example. The median for the data sample is
489 and for the true distribution it is 573. For clarification, the QQ-plot illustrates
values from zero to values larger than 5000. That is a large domain of sample data
and if the median have values equal to around 500, that would mean that as many
values are gathered below 500 as above.

The mismatch could depend on the lack of large values in the benchmark data.
The quantiles in the sample data "consumes" the few large values, which makes the
QQ-plot inaccurat.

Further analysis is done analytically through the Kolmogorov-Smirnov test against
a log-Normal distribution, which gave the p-value according to table 6.7. The test
does not reject the null hypothesis that the data sample originates from a Log-
normal distribution.

58



6.4. IMPLEMENTATION OF THE MODELS

Figure 6.21. Histogram and probability distribution function of the Log-normal
distribution for order volume for the IID-model

Value of test Critical
Test p-Value statistic Value Reject H0
Kolmogorov-Smirnov 0.9998 - - NO

Table 6.7. Results of tests versus a Log-normal distribution of order volume.

6.4 Implementation of the models

The aim of this master thesis is to make a realistic input domain for random testing
in order to validate the functionalities of a version of TRADExpress.

The benchmark data was filtered and prepared for a mathematical analysis. The
analysis was made by fitting an autoregressive process of order one to the bench-
mark data of order price.

For order volume, both a time independent analysis and a time dependent anal-
ysis were made. As for order price, the time dependent model for order volume is
adapted to an AR(1)-process. The probability distribution function for the time in-
dependent assumption is approximated by a log-normal distribution. These results
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are implemented in this section, along with the simulation tools that are being used
in order to perform random tests.

6.4.1 Market participants

The market participants in this implementation are a number of traders. The
traders were implemented as all functionality in one, which means that each trader
is able to do everything that a trader should do. Each trader has the ability to put
every single order available in the simulation, both buy and sell orders. The trader
is executed as a thread, which makes it possible for them to trade independently of
each other. They have a "listener" implemented, that keeps track of the last traded
price on the market for each orderbook. The orders are placed stochastically, with
a frequency according to the intensity of a Poisson process. The procedure of each
trader is that they login into the system, place a pre-defined number of orders and
finally logout.

Order price

Figure 6.22. Order pricing

When simulating the order price, the trader calls on an AR(1)-process, which
determines the forthcoming market price. Whether it is a buy order or a sell order,
the pricing of the order is determined from the current market. A buy order is
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Type of order Subcondition Probability
Limit None 1/4

Iceberg 3/20
Fill-Or-Kill 1/20

Fill-And-Kill 1/20
Peg-Order None 1/4

Iceberg 3/20
Fill-Or-Kill 1/20

Fill-And-Kill 1/20
Table 6.8. Probabilities when simulating order types.

settled as Xt − σ2

2 and a sell order is priced as Xt + σ2

2 . A schematic figure of how
the orders are settled is illustrated in figure 6.22.

Xt, the order price, is simulated from:

Xt = 0.9682Xt−1 + Zt; Zt ∼ N(0, σ2); σ2 = 0.0053 (6.19)

Xt−1 is the reference price that corresponds to the last inserted order in the
current orderbook and Zt is the underlying stochastic process, or equivalently the
prediction error.

Order volume

The order volume was implemented according to the independent identically dis-
tributed model, section 6.3.11. Simulations are generated from a Log-normal dis-
tribution with µ = 6.5634 and σ = 1.3863, where µ and σ corresponds to the
parameter in a normal distribution. For this purpose, the Log-normal distribution
is a smooth distribution to do simulations from, due to the definition that excludes
negative sample values.

For very large orders the transparancies of the orders are dark. This is valid for or-
ders worth over five millions Swedish kronors and they are not visible to the public
eye.

Placing an order

The orders available for the traders are Limit orders and Peg-orders with proba-
bility p = 0.5 for each order. The frequency of each order are calculated from the
historical trading data, by counting the occurencies of each order as if they were
placed according to an uniform distribution with probability p = 1

Total number of trades .

One could interpret it like a sample from an empirical distribution of Limit orders
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and Peg-orders. When a Limit order or a Peg-order is assigned, another simulation
is made whether the order should remain as it is or if it should have properties ac-
cording to that of an Iceberg-, Fill-or-Kill or Fill-and-Kill order. The probabilities
that are assigned to each particular order are presented in table 6.8.

For large orders, as stated above, the total order is not visible for the public eye.
When the limit of five millions swedish kronor is exceeded, the order is generated
according to a Dark order or a Minimum volume order. They have probability
p = 0.5 each.

When these attributes are set, the order is inserted in the orderbook. The or-
derbook chosen is simulated pseudo-randomly from an uniform distribution with
probability p = 1

Number of Orderbooks for each orderbook. The number of orderbooks
is the amount of orderbooks implemented when testing.

The orderbook keeps track of the different tradable instruments, one for each or-
derbook. In the implementation the orderbook is used for scaling the amount of
orders to each orderbook. The total number of orders during one day is calculated
as the total amount of orders into the trading system. If one orderbook is used, all
orders will be placed in that orderbook. If three orderbooks are implemented, one
third of the total amount of orders will be placed in each orderbook.

The same goes for the traders. The more traders implemented, the longer the
time between inserted orders from each trader is. The amount of orders per second
is still the same.

The orders are inserted with pseudo-random frequency, generated from a Poisson-
process with three different intensities.

The first intensity corresponds to the opening hours for the market place, the
first two and a half hours. The intensity of the Poisson process was calculated
to λ1 = 31.6717 orders per second.

The second time interval is during the day. The calculated intensity is λ2 = 23.2533
orders per second.

The third time interval corresponds to the two last hours of the trading day. The
intensity of that interval is λ3 = 40.9400.

The intensity is calculated as the total amount of orders inserted to the system
per second. The time between each order done by the trader is calculated as the
inverse of the randomly generated expected value for orders per second. This figure
is multiplied by the number of traders implemented.
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Analysis of results

The results of a Random test can be analyzed in several different ways using some
of the Oracle strategies. To test the functionality of a market place system, the
No Oracle strategy is suitable and can expose rare event errors that can cause the
system to crash, which is of major importance. The No oracle strategy was used
for the simulation of this master thesis.

6.5 Simulation and Results

6.5.1 Simulation

Figure 6.23. Simulation of order price

The simulations were executed with ten traders, placing their orders in three
different orderbooks. Several simulations were executed from the 27th of April to
the 15th of May. The system under test was a newly developed trading system,
which went public the 8th of May.

The simulated model is illustrated in figure 6.23. The plot describes the pattern
from which the trades generate their orders. The traders were placing their orders
according to the actual price described in section 6.4.1.
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Figure 6.24. Simulation of order price for bid and ask order

An illustration of order insertion is shown in figure 6.24. The plot is schematic
to illustrate the differencies. The variance of the process was manipulated so that
the differencies are more obvious. The most important to notice in the figure is that
the ask order insertion is higher than the bid order inserted. One early simulation,
shown in figure 6.25, illustrates the opposite situation. In that case, every inserted
order gave an execution of the order. The real situation that corresponds to that
behavior would be that every trader that wants to buy the stock as expensively
as possible and every trader that wants to place a sell order will sell as cheaply as
possible, which is a contradiction. The reason for the behavior was that the order
prices were updated separately according to if it was an ask order or a bid order
that triggered the trade. In the later version, one index curve was simulated in
order to determine the price from which the orders were priced, which gave a more
realistic trading pattern.

The time series represented in figure 6.23 was analyzed aswell, just to verify the
process. The same analysis as in section 6.3.9 was made to the simulated data.
The mean value and corresponding quantiles are shown in table 6.9. The similar-
ity between the simulation and the normal distribution with mean value zero and
standard deviation one is obvious, regarding the spread of the sample.
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Figure 6.25. Simulation of order price for bid and ask order, bad implementation.

data sample N(0,1)
5% quantile: -1.6669 -1.6449
10% quantile: -1.2706 -1.2816
Mean value: 0.0015 0
Median: -0.0238 0
90% quantile: 1.2636 1.2816
95% quantile: 1.6430 1.6449

Table 6.9. Mean value and 5%, 10%,50%, 90% and 95% quantiles for the rescaled
residuals and corresponding values for the N(0,1)-distribution.

The Histogram, figure 6.26, illustrates the correspondence even more. The his-
togram is centered at origo, with a shape very similar to that of a normal distribu-
tion. The curve that follows the histogram is the true normal probability function
with µ = 0 and σ = 1.

Finally, the QQ-plot is presented in figure 6.27. The quantile-quantile curve fol-
lows the straight line very well. The two sample Smirnov-Kolmogorov test did not
reject the null hypothesis that the sample data is generated from a normal distri-
bution.

65



CHAPTER 6. IMPLEMENTATION AND RESULTS

Figure 6.26. Histogram of rescaled residuals for the simulation of order price

The simulation of the trading pattern corresponds to the model implemented. The
implemented model on the other hand is based on benchmark data from a real
trading day, which implies that the simulation is appropriate to simulate a trading
day of stock exchange markets.

The sample data from the simulation of the order volume is illustarted by a his-
togram in figure 6.28. The curve in the figure represents the true Log-normal prob-
ability function with µ = 6.5634 and σ = 1.3863. The order volume is simulated
according to the estimated model, which corresponds to an approximation of the
real benchmark data. The probabilities seem to be accurate with respect to the real
trading data.

6.5.2 Results of Random Testing

The random tests did not expose any failures. No major critical errors that should
have caused the system to crash were found. The major reason for this is proba-
bly that the tests were executed on a system that has already been tested due to
functionality, at least for tests as complex as the implemented random tests. The
system under test has been tested frequently and very rigidly for a long time, so
no major errors were expected to be found. Mean time to failure can for obvious
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Figure 6.27. Histogram of rescaled residuals for the simulation of order price

reasons not be measured.

The functionality can still be analyzed. The implemented market participants
traded independently with each other. While testing, the tester can follow the
market in real-time and make sure that orders are inserted and executed. If any
problems occur under the simulation, a message of the error is printed and saved in
a textfile. An example of the most frequently showed error-message was:

Tue May 12 09:21:38 CEST 2009 CFT8 Order cannot be priced since there is noth-
ing to base pricing off

The messages states that a Peg-order can not be inserted, because it can not be
priced according to any price in the current orderbook. This is not a failure, just a
message that the system under test will not allow an order that can not be priced in
the orderbook. Similar messages were found for orders that have hidden volumes,
where for example the open order quantity was larger than the total order.
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Figure 6.28. Histogram of order volume for the simulation and the probability
distribution function of the Log-normal distribution.
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Chapter 7

Discussion

The aim for this master project was to analyze real benchmark trading data in order
to fit an appropriate model to the data. The purpose was to get a realistic input
domain for random testing and test the software’s functionality. The simulation
did show similar behaviors to that of a real trading day. The simulated results are
adequate for the purpose. The random tests did not expose any failures with the
implemented model. In that sense another model may have been at least equally
efficient in finding errors. The currently used model would have performed just
aswell as the simulated model.

Due to the fact that the model is based on real trading data, the random tests
is still a good way of testing the functionalities of the system. The magnitude of
which the benchmark data is analyzed can be extended further, according to the
complexity of order insertion. There are a lot of order combinations that can be
analyzed in order to increase the complexity of the orderbook’s order depth. This
could be a way of trigger rare events that cause the system to crash. Instead of
using the No oracle strategy, one could use some other oracle strategy in order to
analyze the results more efficient. Some minor failures that not causes the system
to crash may have been found in that way.

The AR(1)-processes were not validated by any model validation theory, such as
AIC, Akaike Information Criterion, or BIC, Bayesian Information Criterion, which
may have improved the resembles between the model and the benchmark data. It
would probably not have exposed more failures, but the model’s accuracy may have
been improved. Some other AR(p)-processes and ARMA(p, q)-processes were fitted
to the benchmark data. They are not included in the rapport and were never ana-
lyzed as rigorously as the implemented models.

The functionalities of the software under test were tested. The software performed
the functions according to the specifications. The software that was tested is in
use and should manage to work under normal circumstances, which this test has
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shown that it can. Normal circumstance is equivalent to a trading pattern from
an ordinary trading day, which is the case for the implemented model. In order to
find rare events that causes failures, the tests need to be executed often under very
long periods of time and the model may have to be broader, so that rare events are
triggered more often.

7.1 Conclusion
The hypothesis of the master thesis was to find a model that works as a realistic
input domain for random testing. The implemented model, under the given re-
strictions given by the test framework, simulates a real trading day well. Random
testing is efficient when testing a software’s functionality.

7.2 Further work
This master thesis is just the beginning for creating a framework for random testing.
As stated in chapter 7, the complexity of the orderbook can be analyzed further
in order to cover more of the possible orders and the pattern at which they are
traded. A more extensive model can be implemented in order to cover more market
participants and make the trading schedule even more realistic. The implemented
model could be extended with a master project that develops an Oracle that covers
the features of realistic trading events and the corresponding events that are not
permitted.
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