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ABSTRACT 

The Chain-Ladder (CL) and the Bornhuetter-Ferguson (BF) reserve estimation methods are the most 

common in the general insurance reserving process. It is very important to know how accurate the 

resulting estimates are. Mack derived theoretical prediction error formulae for the CL method in 

1993 and for the BF method in 2008. Also, bootstrap technique for the CL method has been 

introduced and developed since England & Verrall published their work in 1999.  

In this thesis the theory behind all the calculations is first explained. Then, the personal accident (PA) 

insurance data from Trygg-Hansa Försäkrings AB is analyzed. First, the theoretical prediction error for 

both methods is calculated, according to the articles by Mack. Second, the most recently developed 

bootstrap procedure is applied for the CL method. Finally, a bootstrap procedure to calculate the 

estimation error of the BF method is constructed and applied on the PA data. A comparison study of 

all the performed computations is then given. 

 

Key words and phrases: Prediction error, Chain-Ladder, Bornhuetter-Ferguson, Stochastic claims 

reserving, Bootstrap in claims reserving. 
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1. Introduction 

Reserving actuaries in their daily work are trying to predict the future – what reserve amount is 

sufficient to pay the clients given that the future payments can vary. Trygg-Hansa is one of the largest 

general insurance companies in Sweden. Its whole variety of products is divided into several 

insurance classes with varying payment patterns. In particular, Personal Accident (PA) insurance 

classes often have late claim development which encourages actuaries to try a variety of prediction 

models. For example, in addition to the widely used Chain-Ladder (CL) method, which is build on 

historical claim development, it is recommended to also work with the Bornhuetter-Ferguson (BF) 

method which is built on an exposure measure. The combination of the two methods provides more 

reliable reserve estimates for this class. 

In the process of estimation it is very important to realize how accurate the estimated results are. 

The prediction error of the reserve estimate for each accident period as well as for the overall result 

shows how widely spread the future values might be. Trygg-Hansa actuaries are using the EMB ResQ 

Professional reserving tool for their analysis. In the software one can find standard error computed 

for the CL method. The BF method in ResQ provides actuaries with the estimated reserve but not 

with the standard error of the estimates. Analyzing PA insurance data actuaries estimate the reserve 

by combining the two methods. This is why it is important to implement the calculation of the 

prediction error for the BF method.  

The goal of this thesis is to compute the prediction error for the CL and the BF reserve estimates 

from already derived formulae; also, to apply the existing bootstrap technique for the CL method and 

to construct a similar bootstrap technique for the BF method. In the section 2 basic concepts used 

throughout the work will be introduced. In the section 3 the two reserving methods will be 

presented and the theoretical calculation of the prediction error explained. The bootstrap 

procedures for both methods are outlined in the corresponding subsections of the section 3, data 

analysis with results and comparison study follows in the section 4. The main concluding statements 

and further possible investigation is given in the section 5. In the appendix the most important proofs 

as well as some extra graphs for deeper understanding are attached. 
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2. Preparatory Concepts 

2.1 Run-off Triangle 

Before the reserving methods are discussed, the term run-off triangle must be presented. The run-off 

triangle is a convenient way to present observed data. It is an upper-triangle with accident period 

values in its rows and development period in its columns. In the following text the data will be 

analyzed quarterly, therefore both accident and development periods are quarters.  

An insurance company sells different kinds of insurances. Each contract has its own number with 

complementary variables showing the kind of insurance and other conditions of the agreement. Let 

us analyze one particular agreement A. Say, it was signed in 2008-01-14, and it is a personal accident 

insurance. In June, 2008, the insured person was camping and accidentally broke his arm when 

climbing a tree on 2008-06-20. After he got home, in 2008-06-27, he called the insurance company 

and claimed for a proper sum of money, say M, that would cover hospital and other costs. After the 

paper work was finished, the insured person received the money M from the insurance company on 

2008-10-03. In the insurance company’s database this would be depicted as follows: 

Accident date:  2008-06-20 

Registration date: 2008-06-27 

Payment date: 2008-10-03 

Now, say, we are at January 2009, and we want to place this claim into a proper place of run-off 

triangle for data analysis. The claim happened on 2008-06-20, therefore accident quarter is 2008Q2. 

The payment was done, i.e. the claim developed, on 2008-10-03, therefore development quarter is 

2008Q4, or 3rd development quarter for accident period 2008Q2. In the Figure 1 you can see where 

the amount of money paid, M, should be added. 

 

Figure 1. The Run-off triangle. 
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It is intuitively clear that an insurance company will get thousands of claims every quarter, and the 

run-off triangle is just the way how all these claims are summarized for the further analysis. 

2.2 Claims Reserving 

Considering the previous example, where the claim was closed so quickly (after 3,5 months), and the 

amount paid (M) was equal to the amount which the client claimed for, it might seem that employing 

actuaries to compute reserves is almost unnecessary. Here one should beware that not all the claims, 

or, very little part of the claims history end up so clearly and quickly as in the previous example. 

Depending on the insurance policy, claims to the insurance company might come after several years 

an accident has occurred, or, the client might claim for one sum of money, but in the end it appears 

that the company has to pay much more, or much less. All these scenarios must be predicted as good 

as possible, and this is where claims reserving methods come into hand.  

Recall the run-off triangle with the data observed (Figure 1). We do not know yet how many and how 

big claims will be in the cell for accident period 2008Q4 in the 2nd development period, or for 

accident period 2008Q2 in the 5th development period. Moreover, we do not know any of the figures 

in the lower triangle (red/colored cells in Figure 2). These numbers are random, and a good 

stochastic model is needed to make precise expectations about the future. The known claims 

development, the run-off triangle, is usually used for drawing conclusions about the future.  

  

Figure 2. The lower triangle of the expected claims development in the future. 

Assume that the run-off triangle is filled with the incremental claim amounts, then the future 

incremental claims (to be filled in the red/colored cells) is what a company did not yet register, but 

expects to register. It is the so called claims reserve. More common is to have a cumulative claims 

run-off triangle. In this case, the reserve is the difference between the figures in the last 

development period (in Figure 2 it is column 6) and the latest known cumulative claims (the last 

white color diagonal). Notice also that we are trying to fill in future claims only for those accident 

periods that already have passed, i.e. the claims we are predicting have already occurred (incurred) 

but were not reported. Due to this definition the term IBNR (Incurred But Not Reported) was 
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created. Various companies interpret the definition differently. Sometimes the IBNR might include 

not only reserve for the claims that have not yet been reported, but also those claims that have been 

not enough reported, i.e. it is believed that something more will happen with those claims. To 

conclude, the prediction of ultimate claims, the expectation of the level when all claims for a 

particular accident period are settled, is one of the most important tasks for a reserving actuary to 

make. As R. L. Bornhuetter and R. E. Ferguson indicate in their work The Actuary and IBNR 

(Bornhuetter&Ferguson, 1972), the IBNR reserve calculation is not only important for the company 

but is required by law. It is important to understand that inaccurate IBNR reserves will lead to non-

optimal management decisions.   

Quite a few methods were created so far for predicting the future claims. To mention some of them: 

the Chain-Ladder method, the Naïve loss ratio method, the Bornhuetter-Ferguson method, the Cape-

Cod method, the Benktander method. All these methods use historical claims development in one 

way or another, and provide actuaries only with the point estimate of the reserve. It is obvious that 

in order to choose good estimates actuaries might reach for knowledge about any statistical 

inference of the estimates, for example variability of them. To find out the variability of an estimate 

first, one has to have a stochastic model for the data and second, to understand the distribution of 

the estimator. Most investigation has been done on the two commonly used reserving methods, the 

Chain-Ladder (CL) method and the Bornhuetter-Ferguson (BF) method. In 1993 T. Mack has derived 

the formula for computing prediction error (variability) for the CL reserve estimate (Mack, 1993). The 

formula is very widely used and helps actuaries understanding the risk and responsibility of 

predicting the future. The investigation of the BF method estimates and derivation of the prediction 

error formula was published only a year ago in Mack (2008). This formula has not yet spread out as 

widely as the one for the CL method, but knowing the importance of the problem, the use of it 

should be implemented as soon as possible. 

In the next section the two reserving methods, the CL and the BF, will be introduced, meanwhile 

some commonly used notations (Mack, 2008) will be presented: 

 – cumulative claims amount of accident period  after  development periods 

 - premium volume of accident period  

 - most recent accident period 

 - incremental claims amount of accident period  
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 - the ultimate claims amount 

 - claims reserve for accident period  

 - incremental claims amount after development period  (tail development) 

 - the factor that would develop losses from development period  to the end for accident period  

 - claims relative to an exposure (ultimate loss ratio for accident period ) 

 – development factor for development period  

 – the estimated percentage of the ultimate claims amount that is expected to be known after 

development period  

 - proportionality constants for development period  

 - unknown parameters 

In the above, cumulative corresponds to claim amounts (paid or incurred) that had been registered 

during and up to the period, while incremental amount is the registered amount during the period. 

The ultimate claims amount is the total amount of claims for accident period . It is expected that all 

claims’ development is included in the ultimate amount. The latest run-off triangle diagonal is the 

current claims amount, and subtracting it from the ultimate claims gives the reserve. In other words, 

the reserve is the expectation of further development of claims. Finally, the ultimate loss ratio is one 

of the key ratios in actuarial mathematics. It is calculated as ultimate claims divided by premiums, 

and it shows how good the business is. The lower the ultimate loss ratio, the better the business is. 

Having presented the notations and concepts from the actuarial field, let us proceed with introducing 

the bootstrap technique.  

2.3 Bootstrap Technique 

Statisticians often find themselves in situations when they have gathered data and they need to 

estimate some parameters from the data, preferably not only the point estimates, but also 

confidence intervals and as many as possible other statistics. The task is rather difficult when one 

does not know the distribution of the parameter. Moreover, it might seem almost impossible, if one 

does not even know how the parameter is calculated, he/she is just having a hard-coded function 

calculating the parameter from the data. In the end of the 20th century a technique making all this 
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possible was developed. It is called bootstrapping, and, as one could expect, it requires powerful 

computers to implement statistical inferences about the parameters. 

A very good theoretical background as well as plenty examples of bootstrap technique can be found 

in the book An Introduction to the Bootstrap by Efron & Tibshirani (1994). Bootstrap technique is 

based on making a copy of the original experiment. One can choose whether to use parametric or 

non-parametric bootstrap. In the parametric bootstrap a parametric model for the data should be 

chosen, parameters should be estimated, and then new datasets should be generated. This method 

depends heavily on the chosen parametric model. Instead, one could choose to use non-parametric 

bootstrap. In that case the empirical distribution  is used as an estimate of . The new datasets are 

generated from the empirical distribution, which is done by random sampling with replacement from 

the original dataset.  

In this work the non-parametric bootstrap technique will be used on incremental claims data to 

obtain a distribution of the prediction error. Since the incremental claims data form a linear model, 

the bootstrap procedure has to be adjusted to that. In the theory (Efron&Tibshirani, 1994) two ways 

of bootstrapping in the linear model are presented:  

- Paired bootstrap, or bootstrap of points – the resampling is done directly from the 

observations. 

- Bootstrap of residuals – the resampling is applied to the residuals of the model. 

Which of the two ways should be chosen depends a lot on the situation. In general, the paired 

bootstrap is more robust than the residuals bootstrap. Moreover, the residuals are not necessarily 

outcomes from independent and identically distributed random variables. Most common is that the 

residuals are larger in the central areas, and smaller in the tails. Despite all the disadvantages, the 

residuals bootstrap only can be used in claims reserving, given the dependence between some 

observations and the parameter estimates. Therefore, a good way of standardizing residuals will 

have to be found to be able to assume the independence. To conclude, assuming the computed 

residuals are outcomes from independent and identically distributed random variables, we can 

bootstrap the residuals, and generate a new sample of observations by calculating backwards in the 

residuals’ formula. The latter approach will be used in bootstrapping the Chain-Ladder prediction 

error estimator, as well as the Bornhuetter-Ferguson one. 

In the following section both reserving methods will be presented, and formulae as well as bootstrap 

procedures for the methods will be outlined. 

 



13 
 

 

3. Reserving Methods 

3.1 The Chain-Ladder Method 

The most common method for claims reserving is the Chain-Ladder (CL) method. It does not require 

any advanced programs, one can implement the method in any spreadsheet, therefore, it is simple to 

use. One more advantage of the method is that it is possible to fit a distribution-free stochastic 

model to the method (Mack, 1993).  

Much investigation has been made on the CL method. As mentioned above, it is very important to 

have not only a reserve estimate but also the volatility of the estimate. Many papers have been 

published with the same attempt – to fit the best stochastic model for the CL method. With a proper 

stochastic model one can estimate the prediction error of an estimate fairly easily. Already 

Hachemeister & Stanard (1975) offered Poisson distributed incremental claims stochastic model 

which led to the estimates very close to the original CL estimates. A least squares regression 

approach was used in a few papers (Taylor & Ashe (1983), Zehnwirth (1989), Renshaw (1989), 

Christofides (1990), Verrall (1991)). Wright (1990) tried the generalized linear model and the method 

of scoring, and gamma distribution and maximum likelihood estimation was offered by Mack (1991). 

A distribution-free formula for the standard error of the CL reserve estimates was presented by Mack 

(1993). The author was awarded as a joint winner in the Casualty Actuarial Society (CAS) prize paper 

competition on variability of loss reserves. The latter, distribution-free, model is used as a base when 

computing variability of the estimate in the previously mentioned program EMB ResQ Professional, 

and was also chosen to be analyzed in this work with personal accident claims data.  

One may argue if the so called “distribution-free” model is really free of distribution, since it still has 

quite strong assumptions on the raw data. In the following section the assumptions (Mack, 1993) will 

be presented. 

3.1.1 Stochastic Model 

The first assumption indicates that the data from one development period to the other should 

construct a linear regression with the factor . The factors are called development factors, link 

ratios, or age-to-age factors. They are the core estimation for the CL method. As can be seen from 

the formula (1) below, they are computed in a very simple way. In the Figure 3 one can see the first, 

third and fifth development factors’ construction. On the other hand, one should look at it as a 

weighted average of development factors in different accident periods for the same development 

period: 
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CL1 , with  

  (1) 

  

Figure 3. The construction of the 1
st

, 3
rd

, and 5
th

 development factors. 

Secondly, the distribution-free model assumes that cumulative claims in one accident period are 

independent from cumulative claims in another accident period.  

CL2 Vectors  and  are independent . 

This is a strong assumption and practically one must be very careful about it. In real life there might 

be changes in claims handling or case reserving internally, as well as changes in court decisions and 

inflation externally. This would create dependencies among different accident quarters. In this case 

the actuary should make himself/herself aware of that and adjust the reserving methodology to the 

events in the market.  

The final assumption of the method is about the variability of the raw data. It is assumed that there 

exists a proportionality factor , which relates variance of cumulative claim amount with a 

cumulative claim amount one development period earlier.  

CL3  , where  is unknown parameter, estimated by 

  (2) 

  (3) 

Dev qtr

Acc qtr 1 2 3 4 5 6

2007Q3

2007Q4

2008Q1

2008Q2

2008Q3

2008Q4
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Formula (3) is needed because there is too little data to calculate standard deviation for the latest 

period in a regular way. The  can be extrapolated using the calculated series, or, like Mack 

(1993) suggested, it can be calculated requiring that  

 

which leads to the (3) formula (Mack, 1993). 

Notice, under (CL1) and (CL2) the estimators , are unbiased and uncorrelated. The 

proof can be found in the Appendix I, or Mack (1993).  

3.1.2 Check of Assumptions 

There is a way to check if the data to be analyzed fulfils the three assumptions. The procedures are 

taken from Mack (1994) and will be described here, also implemented for the chosen data later.  

First, we have to check if there is a linear relation between data in two adjacent development 

periods. The values of  are to be considered as non-random values and 

equations in (CL1) can be interpreted as an ordinary regression model of the type 

 

where  and  are regression coefficients and is the error term with . In the CL 

assumption case , and  at the points  for . The 

regression coefficient  could be estimated by the usual least squares method, but in that case 

we would not get an estimator for  which would be in line with later variance assumption. Mack 

(1994) indicates that one should bear in mind that the least squares method implicitly assumes equal 

variances . If variances do depend on accident period, one should use a 

weighted least squares approach which consists of minimizing the weighted sum of squares 

 

where the weights  are in inverse proportion to . In order to agree with (CL3) regression 

weights proportional to  should be used. Then the following should be minimized: 

 

Since  is fixed,  does not add to the minimization problem, therefore, minimizing  
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with respect to  yields to the CL estimator .  

After the estimation of the development factors into the regression framework, the usual regression 

analysis instruments are available to check the underlying assumptions of linearity and the variance. 

Plotting  against , , linear relationship between data in two development 

periods can be checked. If the points are located around a straight line through the origin with slope 

, the (CL1) assumption is accepted. Secondly, if linearity was accepted, the weighted residuals  

 

should be plotted against . To accept the variance assumption the plot of residuals should not 

show any particular trends but appear purely random. 

We can now turn to investigating the independence of accident quarters. The reasons which could 

disturb the independence were mentioned above. It is important to realize, that the effect in the 

data would be seen on calendar quarters (diagonally). Mack (1994) offered the following testing 

procedure.  

A calendar period influence affects one of the diagonals 

 

and therefore also influences the adjacent development factors 

 

and 

 

where the elements of  form either the denominator or the numerator. Thus, if due to a calendar 

period influence the elements of  are larger (smaller) than usual, then the elements of  are 

also larger (smaller) than usual and the elements of  are smaller (larger) than usual. 



17 
 

 

Therefore, in order to check for such calendar quarter influences we only have to subdivide all 

development factors into ‘smaller’ and ‘larger’ ones and then to examine whether there are 

diagonals where the small development factors or the large ones clearly prevail. For this purpose we 

divide the column of all development factors observed between development quarters  and  

into two groups  of larger factors being greater than the median of the column, and  of 

smaller factors below the median of the column. If the number of elements  in a column is odd 

there is one element which is equal to the median of the column and is not assigned to any of the 

two groups.  

Having done this procedure for each column in the run-off triangle every development factor 

observed is  

- either eliminated (as equal to the median) 

- or assigned to the set of larger factors  

- or assigned to the set of smaller factors  

In this way every development factor which is not eliminated has a 50% chance of belonging to either 

 or .  

Now we count for every diagonal  of development factors the number  of large 

factors and the number  of small factors. Intuitively, if there is no specific change from calendar 

period  to calendar period ,  should have about the same number of small factors as of large 

factors, i.e.  and  should be of approximately same size apart from pure random fluctuations. But 

if  is significantly larger or smaller than  or, equivalently, if  is significantly smaller 

than , then there is some reason for a specific calendar period influence.  

A formal test was designed in Mack (1994) and here we give only the resulting formulae. Consider 

 

Since under null-hypothesis different ’s are (almost) uncorrelated we have 

 

 

It can be shown (Mack, 1994) that 
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with  and . 

We can assume that  has approximately (check with the article) a normal distribution. This means 

that we reject (with an error probability of 5%) the hypothesis of having no significant calendar 

period effects only if not 

 

3.1.3 Calculating the Prediction Error 

Having stochastic model assumptions for the CL method stated and checked, the formula for 

computing the prediction error of the reserve estimate for each accident quarter as well as total will 

be given. All formulae presented in this section were derived by Mack (1993). In the Appendix I the 

proofs (Mack, 1993) with minor clarifications added can be found. 

Before stating the main result some important things have to be observed. When evaluating the 

mean square error we will not be using the unconditional mean squared error. Instead, we are more 

interested in the conditional mean squared error of the particular estimated amount  based on 

the specific data set  observed. This will just give us the average deviation between  and  

due to future randomness only. Therefore, the mean squared error  we want to estimate is 

defined to be , where  is the set of all 

data observed so far.  

First, notice 

 

Next, because of the general rule  we have 

  (4) 

which shows that the mean square error is the sum of two terms – the stochastic error (process 

variance)  and the estimation error .  

Theorem 1. Under the assumptions (CL1), (CL2), and (CL3) the mean square error  can be 

estimated by  
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  (5) 

where ,  are the estimated values of the future  and 

. 

 

The standard error, or as called earlier, the prediction error of the reserve estimator is the square 

root of the mean squared error: 

 

So far a formula for calculating the prediction error of the reserve estimate for each accident quarter 

was presented. It is often the case, that one is interested in the overall reserve estimate and its 

variability. The overall reserve estimate by itself is very simple: 

 

To compute the standard error for the overall reserve estimate we have to take into account that 

’s are correlated via the common estimators  and .  

Corollary 1. With the assumptions and notations of Theorem 1 the mean squared error of the overall 

reserve estimate  can be estimated by 

 (6) 

Theoretical estimates are good to have, but so far we cannot conclude anything about the 

distribution of the prediction error. The bootstrap technique will help us to answer some more 

questions about the CL prediction error. 

3.1.4 Bootstrapping the Prediction Error 

There have been several investigations made concerning the estimation of the prediction error for 

the CL method. In 1999 the article Analytic and bootstrap estimates of prediction errors in claims 

reserving by P. England and R. Verrall was published (England & Verrall, 1999). The authors discuss 

one possible way to implement bootstrap technique and then compare it with the parametric 

models’ estimates of the prediction error. Another approach to use the bootstrap methodology in 

estimating the prediction error of the CL method was presented in the article Bootstrap Methodology 
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in Claims Reserving written by Paulo J.R. Pinheiro, João M. Andrade e Silva, and Maria de Lourdes 

Centeno in 2001 (Pinheiro et al., 2001). The main difference between the two bootstrapping 

techniques is estimation of the process error. If the one presented by England & Verrall (1999) is 

applicable only for plain chain-ladder technique, the Pinheiro et al (2001) technique allows for 

adjustments to any development factors’ method. The difference is explained more thoroughly by 

Susanna Björkwall in her licenciate thesis (Björkwall, 2009). The generalized version of bootstrap 

technique from the thesis (Björkwall, 2009) was borrowed to construct the following procedure: 

I. The preliminaries 

 Estimate the development factors  for the triangle of the data as in (1) 

 Calculate the fitted values , ,  and the future 

expected values , ,  

 Calculate the residuals  

 Calculate the outstanding claims  and  

II. Bootstrap world (to be repeated  times) 

i. The estimated outstanding claims 

 Resample the residuals obtained in the first stage using replacement  

 Create pseudo-data by solving the residuals’ formula backwards with , , 

 

 Estimate the development factors with the pseudo-data and obtain the bootstrap 

forecast , ,  

 Calculate the estimated outstanding claims  and  

ii. The true outstanding claims 

 Resample again the residuals obtained in the first stage and select with replacement  

 Create pseudo-reality  by solving the residuals’ formula backwards with , 

,  

 Calculate the true outstanding claims  and  

 Store the prediction errors  and  

III. Bootstrap data analysis 

 Obtain the predictive distribution of  and , the true outstanding claims in the real 

world, by plotting the  values of  and  

The procedure is shown visually in the Figures 4, 5, and 6 below. Some steps in the procedure need 

an extra discussion. First, it is important to notice, that the residuals are calculated for incremental 

claims data. Having the cumulative claims, the development factors are calculated. The fitting step is 
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made by taking the latest diagonal of cumulative data triangle and computing backwards using the 

estimated development factors. Now, having the fitted cumulative claims we have to calculate the 

incremental claims, and only then compute residuals between the fitted incremental claims and the 

original incremental claims. This manipulating of data is clearly depicted in the Figure 4 below. 

The second subject to discuss is how the residuals are computed. Mostly Pearson residuals are used, 

but various authors suggest various ways of standardizing or scaling the residuals. Pinheiro et al. 

(2001) investigation offers using Pearson residuals: 

 

standardizing it with the factor , where  is the corresponding element of the diagonal of the 

“hat” matrix (Clarke, 2008). On the other hand, England & Verrall (1999) suggested using unscaled 

Pearson residuals: 

 

with a global adjusting factor , where  stands for the number of observations and  – the 

number of parameters to estimate.  

The Capital Modelling team in Trygg-Hansa are using EMB Igloo Professional software for bootstrap 

simulations, where residuals are calculated as unscaled Pearson with a chosen parameter  and a 

certain adjustment for negative incremental claims. Further the calculated residuals are standardized 

with chosen coefficients. The exact formulas for these calculations cannot be given due to 

confidentiality reasons.  

To choose the best residuals’ formula various ways were tried and the one giving the most 

independent and identically distributed residuals for the data was chosen. 

When using the England & Verrall (1999) suggested residuals calculation with  rather 

dependent residuals were obtained. In the Figures 7 and 8 below the plotted residuals are presented. 

If paid claims residuals could be thought of as independent, the incurred claims residuals are clearly 

dependent, therefore a better residuals formula should be used. The best result was received using 

the formula from EMB Igloo Professional. The plotted residuals are presented in the Figure 9 for paid 

claims data and Figure 10 for incurred claims data. The graphs allow us to assume independent and 
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identically distributed residuals. Therefore, using the Trygg-Hansa Capital team’s formula we can 

implement the bootstrap procedure for the CL method. 

Even though the CL method is widely used in practice, the method has some disadvantages also. As 

Mack (2008) indicates, the CL reserve is directly proportional to the claims amount known so far, and 

it only considers the development until a given last development period (no tail development). As for 

prediction error, the results might be very volatile especially for the latest accident periods due to 

too little data observed. To deal with the disadvantages of the CL method Bornhuetter & Ferguson 

(1972) introduced a different method for claims reserving. The method is called by the two scientists’ 

names: the Bornhuetter-Ferguson (BF) method.  

 

Figure 4 

Bootstrap technique for the CL method
I. The Preliminaries
Incremental claims S

Cumulative claims C
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Figure 5 

Figure 6 
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Figure 7. Paid claims data residuals ( , adjusted to parameters). 

 

Figure 8. Incurred claims data residuals ( , adjusted to parameters). 
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Figure 9. Paid claims data residuals (Igloo formula). 

 

Figure 10. Incurred claims data residuals (Igloo formula).
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3.2 The Bornhuetter-Ferguson Method 

Using the notations introduced in the section 2, the BF method will be presented. Since it is 

important to see how this method deals with the weaknesses of the CL method, the presentation will 

start by showing the differences.  

CL uses development factors  in order to project the current claims amount  to the 

ultimate 

 

Therefore, the CL reserve is  

 

Notice that the reserve strongly depends on the current claims amount. It might very well happen so 

that the current claims amount is 0, then the reserve for that particular accident quarter will be 

estimated to be 0, which might lead to very wrong results. 

This weakness of the CL method is avoided in the BF reserve estimate (Mack, 2008)  

   (7) 

where  which is clearly independent from the current claims amount . In the 

formula  is the prior estimate of ultimate claims, computed with a prior estimate  for the 

ultimate claims ratio  of the accident period , and  is the estimated percentage 

of the ultimate claims amount that is expected to be known after development period . We see 

now that the BF reserve estimate is strongly dependent on the choice of prior ultimate, but not on 

the current claims amount.  

To choose the proper prior ultimate loss ratios is the most important task in the BF method, but still 

not enough for calculating the BF reserve – the development pattern is also needed. Practitioners 

usually select the CL development pattern and construct ’s in the following way: 

 

with  being the selected tail factor. This selection contradicts to the BF fundamental assumption 

that the reserve estimate does not depend on the current claims amount. Mack (2008) in his article 
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presents a different approach to estimate the development factor for the BF method, which makes 

the BF method a stand-alone reserving method. The latter approach was chosen to be used in this 

work. 

The main problem of the thesis being the prediction error of the reserve estimate brings us to 

presenting the stochastic model for the BF method. The required prior belief in the ultimate claims 

strongly offers to use the Bayesian model. Verrall (2001) showed how Bayesian models within the 

framework of generalized linear model can be applied to claims reserving. Very recently Mack (2008) 

suggested a frequentist approach stochastic model, constructed in a similar manner as the one for 

the CL. The Mack (2008) model was chosen to be investigated in the thesis. In the following the Mack 

model and the prediction formulae will be presented. 

3.2.1 Stochastic Model 

First, it is assumed that all incremental claims  of the same accident quarter are independent, as 

well as the accident quarters themselves. This assumption rises up much questioning, because in 

practice it is very rarely so. Nevertheless, the assumption must be satisfied in order to obtain the 

formula to calculate the prediction error. Therefore, we obey and assume the independence. 

BF1 All increments  are independent. 

Since the reserve estimate is understood as the difference between the expected ultimate and the 

latest known claims amount, the second assumption follows from the BF reserve formula and claims 

that . This can also be expressed for the incremental claims: , 

 and . Since the  and  parameters are unique only up to a constant 

factor, without loss of generality it is possible to assume . This yields to 

 and therefore the parameter  can be 

considered as a measure of volume for accident period .  

BF2 There are unknown parameters  with  and . 

Third, the variance of the ultimate claims  should be proportional to , or  

proportional to . This is the usual assumption for the influence of the volume on the variance. 

Since we assumed earlier that all the increments are independent, the variance of the incremental 

amount must also be proportional to . 

BF3 There are unknown proportionality constants  with . 
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Then  is 

proportional to  as intended.  

To confirm that the assumptions work for the BF method we check: 

 

 with . The latter shows that the expected claims reserve has the same form as the 

BF reserve estimate (7). Since all the increments are independent,  

 

Having the stochastic model for the BF method, the reserve estimate itself will be first calculated, 

and then formulae for the prediction error of the estimate will be presented. 

3.2.2 Parameter Estimation 

First step to a good reserve estimate is a proper choice of prior ultimate claims. The most important 

when making this choice is to bear in mind that the claims amount known so far should not be the 

main basis for the estimate . There are a few ways of obtaining the priors. In practice the 

estimation is mainly based on additional pricing and market information. Unfortunately, this 

information is not always available. Then it is not that uncommon among practitioners to use the CL 

ultimate claims as basis for the prior estimates. It is also possible, having premiums and run-off 

triangle data , derive the prior loss ratios. The procedure of derivation is described in Mack 

(2006) and was implemented in the calculations for this work.  

Since the raw claims data was available in the analysis of the personal accident claims, another 

approach was tried for computing the prior loss ratios. A distribution for the homogeneous classes of 

claims data (paid or incurred) was planned to be fitted, and the prior loss ratios would be simulated. 

Unfortunately, it appeared to be very difficult to fit a really good distribution for the data. The 

incremental claims triangles appeared to be rather sparse, and no distribution was found to be able 

to simulate enough zeroes. As a result, too large prior ultimate claims were simulated. Finally, it was 

decided not to develop this approach further due to the unrealistic reserve estimates it provided. 

Instead, to get the feeling of the prediction error when the BF method is used in practice, the prior 

ultimate claims were estimated as the CL ultimates, both raw and after the premiums’ indexation. 

Now, assuming that the prior loss ratios are estimated, denote it , the following task is to estimate 

the two unknown parameters,  and  . In Mack (2008) two ways of estimating these parameters 
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are discussed – one mostly based on actuary’s experience, and the other based on theoretic 

knowledge. In the numerical calculations the theoretical way was used, therefore, this method is 

presented here.  

First, it is important to mention that due to the lack of data it is not possible to estimate the tail ratio 

 without further assumptions. One way to get it is from similar portfolios where the claims 

experience of later development is available. Another way is to extrapolate the series . 

Similarly, an estimate of  could be also obtained by extrapolation. Having this in mind, an iterative 

procedure was constructed in Mack (2008). We choose the following starting values: 

   (8) 

The next step is to decide on the formula for a smoothing regression. Here we chose the Mack’s 

(2008) offer  for  above some . The smoothened regression is then 

extrapolated until some final development period . Now, the  can be calculated using the 

smoothened  for : 

  (9) 

The resulting values should now be kept fixed and used in the following minimization of : 

   (10) 

under the two constraints: 

 

After the minimization is done, the selection for all  is ready: the values for  are 

obtained directly, those for  are taken from the smoothing regression and  is 

obtained by adding up the extrapolated values of the regression up to development period . Using 

the latest selection  we calculate ’s again with the (9) formula. Now  for  should be 

plotted against  or  in order to select appropriate values for , especially for  and 

. The iteration could be continued, but Mack (2008) indicates that the continuation would 

not change values much at all; therefore, the latest selections are taken as estimates of the 

parameters.  



30 
 

 

The goal – the resulting development pattern being different from the CL development pattern – is 

achieved. Now, the BF reserve estimate can be calculated: 

 

with . Mack (2008) lists 6 properties of the estimated parameters: 

  are pairwise (slightly) negatively correlated as they have to add up to unity. 

  and therefore also  are practically independent from  as the 

latter do not really influence the size of any  because these have to add up to unity in any 

case and because of selections and regressions used. 

  and  are independent (due to (BF1)). 

 . 

 , and therefore . 

 . 

From the unbiasedness of the unknown parameters it follows: 

 

which means that the BF reserve estimate is unbiased. 

3.2.3 Calculating the Prediction Error 

Having stochastic model assumptions for the BF method stated and the procedures of estimating 

unknown parameters derived, the formula for computing the prediction error of the reserve 

estimate for each accident quarter as well as total will be given. All formulae presented in this 

section were derived in Mack (2008). In Appendix II the proofs (Mack, 2008) with minor clarifications 

added are presented. 

As discussed earlier, we are interested in the mean square error of the prediction given the data 

observed so far, i.e. we are interested only in future variability. Therefore, the mean square error of 

the prediction of any reserve estimate  is defined by 

 

Since  is independent from  according to (BF1), also, the BF 

reserve estimate can be taken as independent of the increments. Therefore, 
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Notice, the mean square error of prediction of the BF reserve estimate is the sum of the squared 

estimation error  and of the squared process error . 

Theorem 2. Under the assumptions (BF1), (BF2), and (BF3) the mean square error  can be 

estimated by  

  (11) 

 

The estimation error can be examined more thoroughly.  

 

Dividing it by the prior ultimate claims amount the following can be noticed: 

 for  close to 1 

 for  close to 0 

This can be interpreted as follows: for the accident quarters where there is almost no development 

left the uncertainty of the initial ultimate claims estimates is directly transferred to the reserve 

estimate.  

By now we have presented how to compute the error of prediction for the reserve estimates for 

each accident period. Just like in the CL method, it might be so, that one is interested in the overall 

reserve estimate and its variability. The overall BF reserve is just a sum of all reserve estimates for 

each accident period . Again, when summing the prediction error the 

covariance among the reserve estimates must be taken into the account. 

Corollary 2. With the assumptions and notations of Theorem 2 the mean squared error of the overall 

reserve estimate  can be estimated by 

 (12) 

3.2.4 Bootstrapping the Estimation Error 

The bootstrap methodology for the BF method has not yet been introduced in any literature that was 

available during the time of writing this work. Some underlying thoughts, though, were found in 
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England & Verrall (2004) presentation. Adding this, own understanding of the method and the 

bootstrap methodology for the CL method, the procedure presented below was derived. 

Unfortunately, the furthest we were able to arrive is the estimation error, not the process error. The 

problem here is that all the derived procedures for the CL method bootstrapping computes the 

process error by building  lower triangles. The BF method has no way of building a lower triangle. It 

was decided to stop at this point, and leave the estimation of the process error for the BF method 

outside the scope of the thesis. The constructed procedure for bootstrapping the estimation error of 

the BF method is the following: 

I. The preliminaries 

 Estimate the development pattern  for the triangle of the data 

 Calculate the fitted values , ,   

 Calculate the residuals  

 Estimate the prior ultimate claims  for the triangle of the data 

 Calculate the outstanding claims  and  

II. Bootstrap world (to be repeated  times) 

i. The estimated outstanding claims 

 Resample the residuals obtained in the first stage using replacement  

 Create pseudo-data by solving the residuals’ formula backwards with , , 

 

 Estimate the development pattern and the prior ultimate claims with the pseudo-data 

 Calculate the estimated outstanding claims  and  

To be able to fit the values the development factors from the estimated development pattern have 

to be calculated using the formula backwards: 

 

Since the minimization of  (10) is changing the development pattern estimates extremely little, we 

have decided not to implement minimization in every bootstrap loop to save the time of 

computations. The residuals were computed following the formula Trygg-Hansa’s actuaries use in the 

EMB Igloo Professional. Also, the prior ultimate claims were estimated in three ways: as Mack (2006), 

as the CL ultimate claims, and as the CL ultimate claims after the premiums’ indexation. Moreover, 

two approaches of bootstrapping will be implemented. The first one – the prior ultimates are 

estimated from the original data triangle and then used as a constant for each bootstrap loop. The 
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other approach, when the prior ultimates are estimated in each bootstrap loop separately from a 

pseudo-triangle data. 
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4. Data Analysis 

4.1 Product Presentation 

The data to be analyzed is personal accident insurance for children sold at Trygg-Hansa. One part of 

the data comprises the run-off product, i.e. not anymore on the market, and the other part is 

product which is being sold at the moment. Depicting shortly what the product gives to the customer 

is the following: 

 Illness and accident insurance that is valid 24 hours a day. 

 Insurance also covers invalidity, costs for hospital, and life. 

 Quick cover for certain diseases, ex. Cancer, etc. 

 Possibility to sign for different sizes of insurance amount. 

 Valid up to and including 25 years old age. Then it is transferred to a life, illness, accident 

insurance for an adult without additional health check. 

 Premium is adjusted according to the child’s age. 

 The new product covers both medical and economic disability. 

 The old product covers either economic or medical disability (which is the best for the 

customer). 

 Monthly compensation to parents and to the child after 18 years of age. 

 Compensation for parents care in the event of long-term sickness and injury until the child is 

30 year old (25 in the old product) or economic disability can be determined. 

 

In the above, medical disability covers compensation in reduced functional ability, and economic 

disability gives compensation for reduced work ability. 

The claims data presented in the thesis were multiplied by a factor to keep the confidentiality of the 

company. 
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4.2 Results 

Having the claims data summarized into a run-off triangle, the reserving analysis can be 

implemented. In the following two types of claims data will be analyzed, paid and incurred claims. 

Paid claims represent the money the insurance company has paid to its clients, and incurred claims 

represent the money which was estimated to be claimed from the company. Reserving both paid and 

incurred gives a deeper insight to an actuary about the future. Usually, the resulting ultimate claims 

are not the same for paid and incurred data. A subjective choice should be made on which to take as 

the concluding answer. Sometimes the two estimates can be combined and a weighted average 

would be taken. In Trygg-Hansa, as a rule, the incurred claims data is the main basis for the 

concluding results. 

The Results section is divided into three parts: the CL method, the BF method, and the comparison 

study. For each method theoretical and bootstrap calculations were implemented. First, the created 

procedures were checked with the standard data triangle from Taylor & Ashe (1983). After the 

procedures were confirmed to be correct the PA Children data was analyzed. 

The bootstrap procedures outlined in section 3 were implemented with . The data for 

bootstrapping was taken starting with the accident quarter 1991 Q1 in order to have a full triangle. 

As is indicated in Björkwall (2009), the estimated outstanding claims from the bootstrap world can be 

seen as the estimation error component; the true outstanding claims from the bootstrap world can 

be seen as the process error components; and finally, the predictive distribution of the reserve 

estimate is the reserve estimate plus the prediction error (Björkwall, 2009). As for the BF method, 

only the estimation error was obtained, which will be compared to the theoretical estimation error 

of the BF method, and also to the bootstrapped CL estimation error. In the presentation of results 

you will find 95 percentile columns. This is the 95th percentile of the predictive reserve distribution. 

Theoretical and bootstrap PA Children data results will be presented for both methods. 
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4.2.1 The Chain-Ladder Results 

4.2.1.1 Stochastic Assumptions 

As was explained in the section 3.1.2, first the assumptions for the data have to be checked. The 

linearity between incurred data in two adjacent development periods is clearly seen from the graphs 

in Appendix III.a. Notice that even when there are not many points of data (late development 

quarters), the points are distributed clearly on a line. The assumption of linearity (CL1) is strongly 

confirmed for the incurred data. The graphs for the paid cumulative claims data can be found in 

Appendix III.b. The paid data also confirms linearity assumption (CL1). 

Secondly, the assumption (CL3) about the variance of data has to be checked. The graphs with the 

residuals plotted against the cumulative data are presented in the Appendix III.c for the incurred 

claims data and in the Appendix III.d for the paid claims data. In order to accept the assumption, the 

graphs should not indicate any trends. For both, incurred and paid claims data, the residuals for the 

first development periods have a tendency to be more negative for the older accident quarters and 

positive for the more recent accident quarters. This tendency disappears after approximately 20 

development periods. For the latest development periods due to so little data one can assume that 

the residuals are randomly distributed. Since in the most of the development periods calculated 

residuals seem to have no trends, we assume that the (CL3) assumption is accepted.  

Finally, the independence assumption has to be verified. For that  the test derived in Mack (1994) 

was implemented. The resulting test statistics with corresponding 95% confidence interval bounds 

are presented in the Table 1 below. We see that both,  and  are inside their confidence 

intervals, therefore the test of accident periods’ independence gave a positive result. 

  

Table 1. The (CL2) assumption test. 

4.2.1.2 Theoretical Prediction Error 

Now that all the assumptions of stochastic model for the CL method are checked and correct, the 

actual model can be applied, and the prediction error of the result can be calculated. This was done 

for both, incurred and paid claims data. In the Tables 2 and 3 below you can see the CL result on the 

data for 16 recent accident quarters, as well as the total result. Also, in the Figure 11 the prediction 

error for accident quarters since 1986Q1 up to the end are presented graphically for both, incurred 

claims and paid claims data. Comparing the results on incurred and paid claims data a clear 

Z E(Z) Var(Z)
Lower 

bound

Upper 

bound

Incurred claims 1870 2203,1 441,6 1319,9 3086,3

Paid claims 1503 2198,5 441,58 1315,3 3081,6
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conclusion that the CL method gives much more exact results on paid data can be drawn, especially 

for the earlier accident quarters. Also, important to notice that the resulting ultimate claims from the 

CL on the paid data are higher than the ones on the incurred data, which, together with a smaller 

variability means, that it is more likely to get higher ultimate claims in the future than optimistic, 

lower ones. The prediction error is decreasing over the accident periods, but for the most recent 

accident quarters the error increases due to very little data observed. 

 

Table 2. The Chain-Ladder result on incurred claims data. 

 

Table 3. The Chain-Ladder result on paid claims data. 

Acc. Qrt Premiums Ultimate Case Reserve IBNR Reserve LR s.e. ( R )

Theoretical 

s.e. % ResQ s.e. %

2005 Q1 17 901 523 13 411 927 4 033 476 4 181 564 74,92% 1 871 732 44,76% 37,21%

2005 Q2 18 028 323 14 351 004 4 128 687 4 631 488 79,60% 2 012 477 43,45% 35,28%

2005 Q3 18 837 130 15 061 218 3 949 018 5 038 087 79,95% 2 122 975 42,14% 33,79%

2005 Q4 19 658 343 12 590 843 3 380 709 4 372 032 64,05% 1 784 862 40,82% 35,72%

2006 Q1 32 484 747 17 948 519 5 024 257 6 480 849 55,25% 2 556 357 39,44% 29,87%

2006 Q2 21 087 053 16 151 979 4 855 576 6 076 791 76,60% 2 315 395 38,10% 30,61%

2006 Q3 22 340 739 15 251 531 4 286 522 5 992 760 68,27% 2 198 846 36,69% 30,61%

2006 Q4 23 415 037 13 453 508 3 719 061 5 536 366 57,46% 1 961 322 35,43% 31,81%

2007 Q1 24 149 928 14 690 463 3 954 223 6 352 769 60,83% 2 167 457 34,12% 30,05%

2007 Q2 23 944 783 19 465 604 5 536 118 8 882 550 81,29% 2 893 966 32,58% 25,78%

2007 Q3 24 583 795 21 389 175 6 487 846 10 353 575 87,01% 3 215 206 31,05% 24,24%

2007 Q4 25 252 561 21 098 094 6 876 834 10 908 403 83,55% 3 214 545 29,47% 23,83%

2008 Q1 25 696 884 22 179 253 6 625 982 12 365 242 86,31% 3 472 161 28,08% 23,39%

2008 Q2 25 794 583 23 281 603 6 785 309 14 118 786 90,26% 3 958 340 28,04% 25,91%

2008 Q3 26 215 594 28 410 351 7 047 765 19 256 555 108,37% 5 327 942 27,67% 26,67%

2008 Q4 26 960 369 28 573 686 4 253 631 23 625 938 105,98% 8 013 009 33,92% 41,34%

Total 887 313 233 751 914 300 192 279 083 227 728 625 84,74% 26 248 977 11,53% 13,19%

Acc. Qrt Premiums Ultimate Case Reserve IBNR Reserve LR s.e. ( R )

Theoretical 

s.e. % ResQ s.e. %

2005 Q1 17 901 523 14 757 719 4 033 476 5 527 356 82,44% 1 770 739 18,52% 14,84%

2005 Q2 18 028 323 16 883 129 4 128 687 7 163 612 93,65% 2 056 032 18,21% 14,23%

2005 Q3 18 837 130 19 630 876 3 949 018 9 607 745 104,21% 2 414 529 17,81% 13,40%

2005 Q4 19 658 343 16 859 463 3 380 709 8 640 652 85,76% 2 102 898 17,49% 14,34%

2006 Q1 32 484 747 24 422 112 5 024 257 12 954 442 75,18% 3 073 880 17,10% 12,31%

2006 Q2 21 087 053 21 740 935 4 855 576 11 665 747 103,10% 2 769 424 16,76% 13,00%

2006 Q3 22 340 739 22 937 733 4 286 522 13 678 962 102,67% 2 971 431 16,54% 12,99%

2006 Q4 23 415 037 21 973 553 3 719 061 14 056 411 93,84% 2 898 601 16,31% 13,46%

2007 Q1 24 149 928 25 589 769 3 954 223 17 252 076 105,96% 3 411 587 16,09% 12,72%

2007 Q2 23 944 783 32 624 300 5 536 118 22 041 246 136,25% 4 399 123 15,95% 11,74%

2007 Q3 24 583 795 33 678 296 6 487 846 22 642 696 136,99% 4 794 837 16,46% 13,43%

2007 Q4 25 252 561 29 973 305 6 876 834 19 783 615 118,69% 4 506 927 16,90% 15,62%

2008 Q1 25 696 884 37 538 009 6 625 982 27 723 997 146,08% 7 277 345 21,19% 22,99%

2008 Q2 25 794 583 33 864 228 6 785 309 24 701 411 131,28% 7 340 621 23,31% 27,76%

2008 Q3 26 215 594 42 276 500 7 047 765 33 122 704 161,26% 9 996 409 24,88% 28,12%

2008 Q4 26 960 369 39 288 477 4 253 631 34 340 728 145,73% 11 335 538 29,37% 36,63%

Total 887 313 233 844 453 385 192 279 083 320 267 710 95,17% 31 381 917 6,12% 7,68%
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Figure 11. The comparison of the prediction error between paid and incurred data. 

One can also compare the resulting prediction error from this calculation with the results given in 

EMB ResQ Professional. The reserve estimates are identical since the same CL method was used, but 

the prediction error given in the ResQ program is little different than the one computed here. This is 

due to some extra smoothening that the ResQ program does, which is not included in Mack (1993), 

the underlying basis for this work. For the comparison the standard error (s.e.) calculated in the ResQ 

program on the incurred claims data for the 16 recent quarters is presented in the last column of the 

Table 2. The same for the paid claims data is presented in Table 3. The comparison graphically can be 

seen in Figure 12 for the incurred claims data and Figure 13 for the paid claims data. 

  

Figure 12. The comparison of the prediction error between the thesis calculation and the ResQ result, incurred 

claims. 
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Figure 13. The comparison of the prediction error between the thesis calculation and the ResQ result, paid 

claims. 

4.2.1.3 Bootstrapped Prediction Error 

In the Table 4 the CL incurred claims reserve estimate with the 95th percentile of its predictive 

distribution and the prediction error in numbers and in percents are presented. Also, the theoretical 

prediction error is shown next to the bootstrapped one for comparison. The table includes only the 

most recent accident quarters’ data. Whole time series of the bootstrapped prediction error together 

with the theoretical one is presented in the Figure 14. The same just for the paid claims data is given 

in the Table 5 and Figure 15. 

The bootstrapped prediction error is smaller almost all the time for both, incurred and paid claims 

data, when calculated for each accident quarter separately. If we compare the total reserve 

prediction error, for paid claims data the bootstrapped prediction error is smaller than the 

theoretical one, but for the incurred claims the bootstrapped error is the higher one. A possible 

explanation to this is that the bootstrapping technique allows for stronger covariance among the 

incurred claims reserve estimates, but not among the paid claims reserve estimates. 

The outstanding claims, estimated (a) and true (b), from the bootstrap world are given in the 

histograms in the Figure 16 for the incurred claims and in the Figure 17 for the paid claims. The 

histogram of the predictive distribution of the reserve estimate for both data is also presented (c). In 

the histograms one can see that the process error (b) is less spread out than the estimation error (a). 

The predictive reserve distribution (c) is as spread out as the estimation error (a). This holds for both, 

incurred claims and paid claims data. Also, from the histograms we can see that the prediction error 

of the paid claims reserve estimate is smaller than the one of the incurred claims reserve estimate. 
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Table 4. The bootstrapped prediction error and the 95
th

 percentile of the predictive reserve distribution for the 

incurred claims data. 

Figure 14. Incurred claims IBNR reserve prediction error. 

Acc. Qrt

IBNR Reserve 

(000's)

95 percentile 

(000's)

s.e. ( R ) 

(000's) s.e. %

2005 Q1 4 182 5 995 1 777 42,50%

2005 Q2 4 631 6 506 1 892 40,86%

2005 Q3 5 038 6 936 2 031 40,31%

2005 Q4 4 372 6 317 1 775 40,59%

2006 Q1 6 481 8 470 2 496 38,52%

2006 Q2 6 077 8 084 2 284 37,59%

2006 Q3 5 993 8 008 2 185 36,46%

2006 Q4 5 536 7 718 2 008 36,28%

2007 Q1 6 353 8 556 2 226 35,04%

2007 Q2 8 883 11 079 2 869 32,30%

2007 Q3 10 354 12 697 3 175 30,66%

2007 Q4 10 908 13 380 3 205 29,38%

2008 Q1 12 365 15 161 3 564 28,83%

2008 Q2 14 119 17 201 4 120 29,18%

2008 Q3 19 257 23 223 5 419 28,14%

2008 Q4 23 626 31 023 7 946 33,63%

Total 227 729 240 366 44 045 19,58%

Theoretical 

s.e. %

44,76%

43,45%

42,14%

40,82%

39,44%

38,10%

36,69%

35,43%

34,12%

32,58%

31,05%

29,47%

28,08%

28,04%

27,67%
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11,53%
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Table 5. The bootstrapped prediction error and the 95
th

 percentile of the predictive reserve distribution for the 

paid claims data. 

Figure 15. Paid claims IBNR reserve prediction error. 

Acc. Qrt

IBNR Reserve 

(000's)

95 percentile 

(000's)

s.e. ( R ) 

(000's) s.e. %

2005 Q1 5 527 11 556 1 316 13,77%

2005 Q2 7 164 13 461 1 460 12,93%

2005 Q3 9 608 15 953 1 638 12,08%

2005 Q4 8 641 14 292 1 550 12,89%

2006 Q1 12 954 20 875 1 984 11,04%

2006 Q2 11 666 19 355 1 984 12,01%

2006 Q3 13 679 21 095 2 178 12,12%

2006 Q4 14 056 21 101 2 356 13,25%

2007 Q1 17 252 25 134 2 818 13,29%

2007 Q2 22 041 32 458 3 523 12,77%

2007 Q3 22 643 34 571 3 932 13,50%

2007 Q4 19 784 32 389 4 293 16,10%

2008 Q1 27 724 40 635 4 695 13,67%

2008 Q2 24 701 37 832 5 033 15,98%

2008 Q3 33 123 48 067 6 724 16,74%

2008 Q4 34 341 47 319 7 942 20,58%

Total 320 268 363 611 30 121 5,93%

Theoretical 

s.e. %

18,52%

18,21%

17,81%

17,49%

17,10%

16,76%

16,54%

16,31%

16,09%

15,95%

16,46%

16,90%
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23,31%
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Figure 16. Density graphs of  (a),  (b), and  (c) for the incurred claims data. 
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Figure 17. Density graphs of  (a),  (b), and  (c) for the paid claims data. 
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4.2.2 The Bornhuetter-Ferguson Result 

4.2.2.1 Estimation of Prior Ultimate Claims 

Three ways of estimating the prior ultimate claims were chosen. The first way is a theoretical 

estimation according to the article by Mack (2006). The other two ways are estimations commonly 

used in practice. One of them is the CL method ultimate claims. The other one – the CL method 

ultimate claims with applied indexation of the premiums. The indexation brings the ultimate claims 

to a level which is more relative today. The two practical estimations are actually not following the 

main idea of the BF method, that the prior estimates are independent of the historical claims 

information. Nevertheless, these estimations were chosen because practically they are often used, 

and it is of interest what prediction error it has.  

The theoretical estimation of prior ultimate claims includes the following steps: 

1. Raw incremental loss ratio (ILR) at development quarter :  

2. Raw on-level premium factor for accident quarter  :  

3. Selected on-level premium factor for accident quarter  (same for incurred and paid): 

 

4. Adjusted average ILR at development quarter  :  

5. Selected average ILR at development quarter  : smoothed version of   

6. A priori ULR for accident quarter , with possibility to include tail ratio : 

 

7. A priori  estimate of ultimate losses for accident quarter  :  

The result for each step of the theoretical estimation for most recent accident quarters is presented 

in the Table 6 below. You also find graphical presentation of the ILR, adjusted and selected, as well as 

the on-level premium factors, since 1986 Q1 (see Figure 18 (a)-(c)). The rate for the premiums has 

extreme values for accident quarters 2003 Q1 – Q3, because of very low premium data available. For 

the second half of the development periods the ILR has rather strong oscillations, which is 

smoothened by fitting the first order polynomial to the original adjusted ILR. The sum of selected ILR 

is seen as the ultimate loss ratio, which is later multiplied by the on-level premium factor to obtain 

ultimate loss ratios for each accident period.  
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Table 6. Theoretical estimation of prior ultimate claims for the most recent accident quarters. 

Acc. Qrt

Premiums 

(000's)

Latest 

incurred 

(000's)

ILR (Incurred 

Claims)

Incurred 

rate

Latest paid 

(000's)

ILR (Paid 

Claims) Paid rate

Chosen 

rate

Premiums * 

rate

Adjusted 

ILR 

(Incurred 

Claims)

Selected 

ILR 

(Incurred 

Claims)

Prior 

Ultimate 

Incurred 

Claims (000's)

Adjusted 

ILR (Paid 

Claims)

Selected 

ILR (Paid 

Claims)

Prior 

Ultimate 

Paid Claims 

(000's)

2005 Q1 17 902 9 230 0,01270 0,93360 5 197 0,01370 0,98550 0,95920 17 171 0,01260 0,01260 15 142 0,01360 0,01360 17 011

2005 Q2 18 028 9 720 0,01140 0,99900 5 591 0,01400 1,10400 1,05020 18 933 0,01140 0,01140 16 697 0,01390 0,01390 18 757

2005 Q3 18 837 10 023 0,01130 1,00730 6 074 0,01360 1,20790 1,10310 20 779 0,01120 0,01120 18 324 0,01340 0,01340 20 586

2005 Q4 19 658 8 219 0,01140 0,80890 4 838 0,01470 0,97130 0,88640 17 425 0,01140 0,01140 15 366 0,01460 0,01460 17 263

2006 Q1 32 485 11 468 0,01080 0,69840 6 443 0,01860 0,83090 0,76180 24 747 0,01090 0,01090 21 823 0,01880 0,01880 24 517

2006 Q2 21 087 10 075 0,00830 0,96600 5 220 0,02060 1,12460 1,04230 21 979 0,00840 0,00840 19 383 0,02070 0,02070 21 775

2006 Q3 22 341 9 259 0,00900 0,85230 4 972 0,02260 1,11540 0,97500 21 782 0,00910 0,00910 19 209 0,02270 0,02270 21 580

2006 Q4 23 415 7 917 0,01240 0,70850 4 198 0,01740 1,01330 0,84730 19 840 0,01260 0,01260 17 496 0,01760 0,01760 19 656

2007 Q1 24 150 8 338 0,01240 0,74280 4 383 0,01480 1,13790 0,91930 22 201 0,01250 0,01250 19 579 0,01500 0,01500 21 996

2007 Q2 23 945 10 583 0,01930 0,97690 5 047 0,01770 1,45680 1,19290 28 564 0,01940 0,01940 25 190 0,01780 0,01780 28 299

2007 Q3 24 584 11 036 0,01930 1,03630 4 548 0,02230 1,45710 1,22880 30 209 0,01930 0,01930 26 640 0,02230 0,02230 29 928

2007 Q4 25 253 10 190 0,03490 0,97510 3 313 0,02350 1,25400 1,10580 27 924 0,03480 0,03480 24 625 0,02340 0,02340 27 664

2008 Q1 25 697 9 814 0,04290 1,00790 3 188 0,01380 1,52910 1,24150 31 903 0,04240 0,04240 28 133 0,01360 0,01360 31 606

2008 Q2 25 795 9 163 0,06240 1,05720 2 378 0,01920 1,36880 1,20290 31 028 0,06140 0,06140 27 364 0,01890 0,01890 30 741

2008 Q3 26 216 9 154 0,12660 1,27640 2 106 0,03090 1,66980 1,45990 38 272 0,12270 0,12270 33 751 0,03000 0,03000 37 917

2008 Q4 26 960 4 948 0,14700 1,24850 694 0,01720 1,49600 1,36670 36 847 0,14110 0,14110 32 493 0,01650 0,01650 36 504

Total 887 313 524 186 331 907 924 116 0,8339 0,8340 814 945 0,9709 0,9705 915 539
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(a) 

 
(b)    (c) 

 

Figure 18. (a) – the on-level premium factors; (b) – the ILR from the paid claims data; (c) – the ILR from the incurred claims data.In all three graphs x-axis measures time in 

accident quarters (since 1986Q1). 
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Figure 19. The comparison of the three estimates of the prior ultimate claims for the incurred claims data (left graph) and the paid claims data (right graph). 

In both graphs x-axis measures time in accident quarters (since 1986Q1).
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The two practical estimations are based on the CL resulting ultimate claims. The first one just takes 

the resulting ultimate claims as prior estimate of ultimate loss. The second way assumes that the 

most representative quarters of the data are 2001 Q1 to 2002 Q4 due to most stable resulting 

ultimate claims. We take average ultimate loss of these quarters (see Table 7) and index it according 

to the on-level premium factors calculated above. The resulting prior ultimate loss ratios for the most 

recent accident quarters are given in the Table 8.  

The three estimation results together are presented in the Figure 19 as time series of accident 

quarters. All three estimations provide with similar prior estimates; still, some important points must 

be noticed. For the paid claims theoretical estimation is the highest one until the accident period 

2006 Q1, when the simple CL estimates becomes the highest. The indexed CL estimate for the paid 

claims is either approximately equal to the simple CL estimate, or the lowest one. For the incurred 

claims we see that until 2002 Q1 accident period all three estimations are almost equal. In the later 

accident periods the theoretical estimation gives the highest estimate, while the two CL estimates 

are very similar until year 2005, when the indexed CL prior ultimate claims become clearly higher 

than the simple CL.  

 

Table 7. The average ULR from the accident quarters 2001 Q1 – 2002 Q4. 

 

Table 8. The two practical estimations’ resulting prior ultimate loss ratios. 

Average 

Incurred LR 

2001 Q1 - 

2002 Q4 81,00%

Average 

Paid LR 2001 

Q1 - 2002 Q4 76,97%

Acc. Qrt

Prior 

Ultimate LR 

(incurred 

claims)

Prior 

Ultimate LR 

(paid 

claims)

Prior 

Ultimate LR 

(incurred 

claims)

Prior 

Ultimate LR 

(paid 

claims)

2005 Q1 77,70% 73,83% 74,92% 82,44%

2005 Q2 85,07% 80,83% 79,60% 93,65%

2005 Q3 89,35% 84,91% 79,95% 104,21%

2005 Q4 71,80% 68,23% 64,05% 85,76%

2006 Q1 61,71% 58,64% 55,25% 75,18%

2006 Q2 84,43% 80,23% 76,60% 103,10%

2006 Q3 78,98% 75,05% 68,27% 102,67%

2006 Q4 68,63% 65,22% 57,46% 93,84%

2007 Q1 74,46% 70,76% 60,83% 105,96%

2007 Q2 96,63% 91,82% 81,29% 136,25%

2007 Q3 99,53% 94,58% 87,01% 136,99%

2007 Q4 89,57% 85,11% 83,55% 118,69%

2008 Q1 100,56% 95,56% 86,31% 146,08%

2008 Q2 97,44% 92,59% 90,26% 131,28%

2008 Q3 118,25% 112,37% 108,37% 161,26%

2008 Q4 110,70% 105,20% 105,98% 145,73%

CL indexed CL simple
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4.2.2.2 Estimation of other BF parameters 

Having the prior ultimate claims estimated, the estimates for the other two unknown parameters,  

and the , will also be calculated. The resulting estimations are presented graphically in the Figures 

20 and 21, correspondingly for incurred and paid claims data. According to the procedure, explained 

earlier in the thesis, the following steps have been made:   

- The raw estimates of :s were calculated (upper left graph) 

- The linear regression on  was fitted (upper right graph) 

- The proportionality constants  were calculated for , and  were 

extrapolated (lower left graph) 

- The minimization of the function  (10) was implemented and the final values of  obtained 

(upper left graph) 

- The development pattern  was calculated and the remaining percentage to 

develop per accident quarter obtained (lower right graph) 
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Figure 20. The estimation of other BF parameters from the incurred claims data. In all the graphs x-axis measures time in accident quarter (since 

1986Q1). 
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Figure 21. The estimation of other BF parameters from the paid claims data. In all the graphs x-axis measures time in accident quarters (since 

1986Q1). 
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4.2.2.3 Theoretical Prediction Error 

Having all the parameters estimated we can now present the BF reserve. Three different reserve 

estimates will be presented corresponding to the three ways of estimating the prior ultimate claims. 

In the Tables 9-10 below the most recent accident quarters’ results are given, and graphically time 

series of the reserve estimates are presented since 1986 Q1 (see Figures 22-23). In the following 

Reserve I will be the estimate of the BF IBNR reserve when the prior ultimate claims are according to 

Mack (2006); Reserve II – when the prior ultimate claims are the simple CL ultimate claims; Reserve III 

– the indexed CL ultimate claims. 

  

   

2005 Q1 5 851 5 182 5 374

2005 Q2 6 689 5 750 6 144

2005 Q3 7 577 6 228 6 960

2005 Q4 6 550 5 367 6 017

2006 Q1 9 584 7 882 8 804

2006 Q2 8 752 7 293 8 038

2006 Q3 8 856 7 031 8 134

2006 Q4 8 247 6 341 7 574

2007 Q1 9 507 7 133 8 732

2007 Q2 12 590 9 729 11 564

2007 Q3 13 901 11 161 12 768

2007 Q4 13 389 11 471 12 298

2008 Q1 16 406 12 934 15 068

2008 Q2 17 272 14 696 15 864

2008 Q3 23 652 19 910 21 725

2008 Q4 27 293 24 001 25 071

Total 292 424 255 001 268 597

Acc. Qrt
Reserve I 

(000's)

Reserve II 

(000's)

Reserve III 

(000's)

0

5 000

10 000

15 000

20 000

25 000

30 000

Reserve I (000's)

Reserve II (000's)

Reserve III (000's)

2005 Q1 7 950 6 362 5 276

2005 Q2 9 342 7 996 6 336

2005 Q3 11 123 10 423 7 760

2005 Q4 9 492 9 191 6 621

2006 Q1 13 619 13 547 9 460

2006 Q2 12 114 12 087 8 328

2006 Q3 12 981 14 068 9 130

2006 Q4 12 461 14 369 8 852

2007 Q1 14 543 17 565 10 415

2007 Q2 18 691 22 394 13 286

2007 Q3 19 673 22 951 13 836

2007 Q4 17 928 19 998 12 394

2008 Q1 22 459 27 918 15 970

2008 Q2 21 928 24 844 15 521

2008 Q3 29 090 33 245 21 029

2008 Q4 31 641 34 379 23 634

Total 391 914 369 190 261 589

Acc. Qrt
Reserve I 

(000's)

Reserve II 

(000's)

Reserve III 

(000's)

-5 000
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5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

Reserve I (000's)

Reserve II (000's)

Reserve III (000's)

Table 9, Figure 22. The BF reserve estimate based on the Incurred 

Claims data 

Table 10, Figure 23. The BF reserve estimate based on the Paid 

Claims data 
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Finally, the prediction error for the reserve estimates of the BF reserve was calculated. In the 

formulae presented earlier in Theorem 2 and Corollary 2 one can estimate everything except 

 because the prior ultimate claims are correlated. The solution was borrowed from Mack 

(2008) where the author computes coefficient of variation  

 

and then adds a subjectively estimated variability of on-level premium factor and premiums itself. 

For our data the following coefficients of variation were obtained: 

 

 

 

To be able to compare the prediction error of the reserve estimate from paid claims and incurred 

claims data, as well as among the three types of estimation, it was decided to calculate the 

prediction error with  and . This means, that, for example, for the 

reserve estimate of type I from the incurred claims data, 2,83% of variability is added subjectively 

with , and 6,23% of variability is added subjectively with . It 

appears that the difference in  creates minor variability in the resulting prediction errors, 

the higher the assumed , the higher the prediction error, of course.  

Correspondingly how the reserve estimates were denoted above, we denote Prediction Error I, 

Prediction Error II and Prediction Error III, representing the type of prior ultimate claims estimation. 

The Figures 24 and 25 below confirms that the difference between  and 

 is only minor. The difference among the three types of prediction errors is more significant. For 

the paid claims Prediction Error I and III are almost equal, Prediction Error II being the highest. As for 

the incurred claims Prediction Error II is also the highest one, but Prediction Error III is higher than the 

Prediction Error I. The full time series of all prediction errors since accident quarter 1986 Q1 can be 

found in the Figure 26 for the incurred claims data, and the Figure 27 for the paid claims data. The 

most recent accident quarters’ results are presented in the Tables 11 for the incurred claims data and 

12 for the paid claims data. 
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Figure 24. The prediction error of the BF reserve estimate from incurred claims data (I – the uppest 

graph, II – the middle graph, III – the lowest graph). 
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Figure 25. The prediction error of the BF reserve estimate from paid claims data (I – the uppest graph, 

II – the middle graph, III – the lowest graph). 
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 Figure 26. Prediction Error I, II and III for the incurred claims data. 

  

 Figure 27. The prediction Error I, II and III for the paid claims data. 
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Table 11. The prediction Error for the Incurred Claims data. 

Table 12. The prediction Error for the Paid Claims data. 

 

2005 Q1 24,12% 33,52% 27,54% 25,26% 34,19% 28,67%

2005 Q2 22,62% 31,58% 25,81% 23,84% 32,29% 27,00%

2005 Q3 21,60% 30,35% 24,63% 22,87% 31,10% 25,87%

2005 Q4 22,97% 32,31% 26,20% 24,17% 33,02% 27,37%

2006 Q1 19,77% 27,10% 22,50% 21,15% 27,94% 23,84%

2006 Q2 20,77% 28,11% 23,65% 22,09% 28,93% 24,92%

2006 Q3 20,83% 28,64% 23,71% 22,14% 29,45% 24,98%

2006 Q4 21,59% 30,03% 24,59% 22,86% 30,81% 25,80%

2007 Q1 20,51% 28,49% 23,34% 21,85% 29,32% 24,61%

2007 Q2 18,30% 24,65% 20,78% 19,79% 25,60% 22,20%

2007 Q3 17,62% 23,05% 19,99% 19,16% 24,08% 21,45%

2007 Q4 18,34% 23,01% 20,83% 19,82% 24,06% 22,22%

2008 Q1 17,10% 21,80% 19,40% 18,68% 22,92% 20,87%

2008 Q2 17,02% 20,64% 19,38% 18,61% 21,85% 20,85%

2008 Q3 14,94% 18,14% 16,99% 16,72% 19,54% 18,63%

2008 Q4 13,63% 16,23% 15,47% 15,56% 17,84% 17,22%

Total 6,25% 7,41% 7,11% 7,03% 7,91% 7,80%

Prediction 

Error I (%)

Prediction 

Error II (%)

Prediction 

Error III (%)

s.e.(U) = 6,6% s.e.(U) = 10%

Acc. Qrt
Prediction 

Error I (%)

Prediction 

Error II (%)

Prediction 

Error III (%)

2005 Q1 8,76% 11,30% 9,56% 11,54% 13,30% 12,04%

2005 Q2 8,55% 10,72% 9,28% 11,38% 12,83% 11,83%

2005 Q3 8,37% 10,14% 9,03% 11,25% 12,38% 11,64%

2005 Q4 8,64% 10,57% 9,41% 11,45% 12,75% 11,95%

2006 Q1 8,09% 9,43% 8,65% 11,04% 11,85% 11,37%

2006 Q2 8,21% 9,66% 8,84% 11,13% 12,06% 11,52%

2006 Q3 8,17% 9,43% 8,80% 11,10% 11,91% 11,50%

2006 Q4 8,24% 9,44% 8,91% 11,15% 11,94% 11,59%

2007 Q1 8,05% 9,03% 8,65% 11,01% 11,64% 11,40%

2007 Q2 7,75% 8,52% 8,23% 10,79% 11,26% 11,09%

2007 Q3 7,71% 8,48% 8,18% 10,76% 11,25% 11,06%

2007 Q4 7,75% 8,63% 8,25% 10,79% 11,38% 11,12%

2008 Q1 7,59% 8,21% 8,03% 10,68% 11,09% 10,97%

2008 Q2 7,63% 8,37% 8,10% 10,71% 11,21% 11,03%

2008 Q3 7,43% 8,01% 7,81% 10,56% 10,96% 10,82%

2008 Q4 7,42% 8,04% 7,81% 10,56% 11,00% 10,83%

Total 2,67% 2,95% 2,77% 3,87% 4,15% 3,94%

Prediction 

Error I (%)

Prediction 

Error II (%)

Prediction 

Error III (%)

s.e.(U) = 6,6% s.e.(U) = 10%

Acc. Qrt
Prediction 

Error I (%)

Prediction 

Error II (%)

Prediction 

Error III (%)
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4.2.2.4 Bootstrapped Estimation Error 

The estimation error of the BF reserve was bootstrapped according to the procedure described in the 

section 3.2.4. Taking one prior ultimate claims estimation method at a time, two bootstrapping 

approaches explained earlier were implemented. The two bootstrap approaches were then 

compared to the theoretical estimation error. In the Figure 28 (a)-(c) the estimation error for the 

incurred claims data is presented; and in the Figure 29 (a)-(c) the same for the paid claims data is 

shown. 

It is easy to notice that the theoretical estimation error lies in-between the two bootstrap 

approaches, the second approach providing with the highest error, and the first approach, when the 

prior ultimate claims are kept as a constant, gives the lowest error. 

For the incurred claims data the estimation method of the prior ultimate claims does not play a 

significant role for the size of the estimation error. What is more interesting, the second bootstrap 

approach has exactly the opposite trend of the estimation error in comparison to the theoretical one. 

For the paid claims data, the choice of the estimation method affects the second bootstrapping 

approach, giving lowest estimation error with the method I, and highest with the method II. Here, the 

theoretical estimation error is almost a constant throughout all the accident quarters. The two 

bootstrap approaches have peak of the estimation error during the older accident quarters, then the 

error decreases during the middle accident periods. For the most recent accident quarters the first 

bootstrapping approach error continues to decrease, while the second bootstrapping approach error 

increases.  

The second bootstrap approach provides us with extremely high reserve estimate. Graphically this 

can be seen in the figures in Appendix IV. The phenomenon appears due to too volatile prior ultimate 

claims estimates created in each bootstrap loop. Therefore, we decide not to believe in the result of 

the second bootstrap approach. 
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(a)     (b) 

 
(c) 

Figure 28. The estimation error of the BF reserve, when the prior ultimate claims as in Mack (2006) (a), as CL ultimates (b), as CL indexed ultimates (c); incurred claims data. 
In all the graphs x-axis measures time in accident quarters (since 1991Q1). 
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(a)     (b) 

 
(c) 

Figure 29. The estimation error of the BF reserve, when the prior ultimate claims as in Mack (2006) (a), as CL ultimates (b), as CL indexed ultimates (c); paid claims data. In all 
the graphs x-axis measures time in accident quarters (since 1991Q1). 
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4.2.3 Chain-Ladder vs Bornhuetter-Ferguson 

4.2.3.1 Theoretical Prediction Error 

The two reserving methods being available and very widely used, actuaries are interested which of 

the two gives smaller prediction error. As a prejudice, at least for the most recent quarters one 

would expect to get a smaller prediction error with the BF method. But what happens during all 

other accident periods and with the total reserve prediction error? In the Figures 30-32 the graphical 

comparison of the CL Prediction Error with all three types of the BF prediction error is presented. In 

the Table 13 you find the total reserve estimates’ prediction errors for all the methods used above.  

We clearly see that the CL method has a higher prediction error for the total reserve estimate, as 

well as for almost all the accident quarters’ estimates, does not matter which BF estimation we 

choose. Even when the BF method is using simple CL ultimate claims as its prior estimates, the 

prediction error is significantly smaller than the CL prediction error. The best result, giving the 

smallest prediction error, was obtained with the theoretical estimation of prior ultimate claims (BF I), 

which could have been expected, since the prior estimates do not depend on the latest diagonal of 

the data. Moreover, the CL prediction error increases for the most recent accident quarters due to 

the lack of data, meanwhile the BF prediction error keeps stable in these particular accident quarters. 

A natural question arises: why would anybody use the CL method, if the BF method provides with 

more exact results in any case? One possible reason could be the prior belief not always depicting 

the best level of ultimate claims. If the belief fits well with what has been happening in the business 

recently, it does not necessarily mean that the same can be applied for the historical data. Here the 

CL method, which is based on the historical data, comes to help us. For older accident periods, where 

we have rather much data observed, it might be much better to use the CL method with a higher 

prediction error, than the BF method, based on a non-representative belief. 

 

Table 13. The prediction errors of the total reserve for all the methods considered.

CL BF I BF II BF III

11,53% 7,03% 7,91% 7,80%

6,12% 3,87% 4,15% 3,94%

Total Reserve Prediction Error 

(incurred claims)

Total Reserve Prediction Error 

(paid claims)
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Figure 30. The comparison of the Prediction Error I with the CL Prediction Error for both, paid and incurred claims data. 
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Figure 31. The comparison of the Prediction Error II with the CL Prediction Error for both, paid and incurred claims data. 
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Figure 32. The comparison of the Prediction Error III with the CL Prediction Error for both, paid and incurred claims data.
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4.2.3.2 Bootstrapped Estimation Error 

When it comes to bootstrapping, only the estimation error of the two methods can be compared. In 

the following the histograms of the bootstrap total reserve estimates will be discussed. In the Figures 

16-17 (a) the CL method estimation error histograms were presented for the incurred claims and the 

paid claims data. Below, in the Figures 33 and 34 the BF method estimation error histograms are 

shown. The Estimation Error I represents the prior ultimate estimation I, the Estimation Error II – the 

prior ultimate estimation II, and the Estimation Error III – the estimation III.  

First, the size of the mean of the bootstrap reserve estimate must be noticed. For the incurred claims 

the Bootstrap Reserve Estimate I and the Bootstrap Reserve Estimate II are approximately the same 

size as the CL Bootstrap Reserve Estimate (see Figure 16 (a)). For the paid claims data, the Bootstrap 

Reserve Estimate I is almost exactly equal to the CL one (see Figure 17 (a)), and the Bootstrap 

Reserve Estimate II is little higher than the CL Bootstrap Reserve Estimate. The Bootstrap Reserve 

Estimate III is much lower than the CL Bootstrap Reserve Estimate for both, incurred and paid claims. 

As for the estimation error itself, or the spread of the histograms, the BF estimation error generally is 

smaller than the CL estimation error. For the incurred claims data the difference between the 

smallest and the largest bootstrap estimates is approximately , and does not 

depend on the choice of the prior ultimate estimation method. For the paid claims data the choice of 

the prior ultimate estimation method does not play a significant role either. The Estimation Error I is 

the highest one, but the difference  is approximately the same for all three types of 

estimation error. For comparison the difference between the smallest and the largest bootstrap 

estimates of the CL method was approximately  for both, incurred and paid claims data. 

Notice, that the estimation error of the BF Bootstrap Reserve Estimate is clearly higher for the paid 

claims data, which was not seen for the CL method. What is more, the theoretical prediction error for 

both methods was smaller for the paid claims data. The best guess here could be that the process 

error of the BF method is much higher for the incurred claims data. Still, no real conclusion can be 

made without further investigation. 
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Figure 33. The BF bootstrapped estimation error corresponding to the three prior ultimate claims estimation types; incurred claims data. 
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Figure 34. The BF bootstrapped estimation error corresponding to the three prior ultimate claims estimation types; paid claims data. 
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5. Conclusions 

After the numerical study has been performed the following statements are the most important: 

1. The prediction error for the paid claims data is smaller than for the incurred claims data. 

2. The CL method prediction error is significantly higher than the BF method prediction error. 

3. The CL bootstrapped estimation error is much higher than the BF bootstrapped estimation 

error, does not matter which way of prior ultimate estimation is chosen. 

4. The CL bootstrapped prediction error is mostly lower than the theoretical CL prediction error 

for separate accident periods. The bootstrap technique allows for higher covariance between 

incurred data than theoretical calculation. 

5. The CL method estimation error is higher than the process error. 

6. The CL prediction error decreases in time, and suddenly increases for the most recent 

accident periods due to the lack of data. 

7. The BF prediction error decreases in time. 

8. The Mack (2006) prior ultimate claims calculation gave the lowest theoretical prediction 

error. On the other hand, the prior ultimate estimation methods did not have a significant 

impact on the bootstrapped estimation error. 

9. The BF bootstrapped estimation error is much higher than the theoretical one, when the 

prior ultimate claims are estimated in each bootstrap loop from pseudo-data. In this way the 

reserve estimate is too high, therefore, the method is not seen as a good one. 

10. The BF bootstrapped estimation error is much lower than the theoretical one, when the prior 

ultimate claims are kept as a constant throughout the bootstrapping loops. 

The above is true for the Personal Accident Children insurance data at Trygg-Hansa.  

The lower prediction error for the paid claims data or for the BF method does not simultaneously 

mean that the method is better to use. The actuary has to judge subjectively the reliability of the 

data and prior beliefs of the ultimate claims. Taking all the surrounding knowledge and the prediction 

error into account the decision must be made. 

The most significant impact into the actuarial mathematics is the attempt to bootstrap the BF 

method estimation error. The process error, and therefore the prediction error, of the BF method 

were not analyzed in the bootstrap procedure. This could be the case for further investigation. 
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7. Appendix 

7.1 Appendix I. The CL Prediction Error (Mack, 1993) 

Lemma 1. Under (CL1) and (CL2) the estimators , are unbiased and uncorrelated. 

Proof. Denote . Then 

 

Also, 

 

which gives 

 

The latter means that the estimator is unbiased. We can also write 

 

which shows that the estimators are uncorrelated. 

Q.E.D. 

Theorem 1. Under the assumptions (CL1), (CL2), and (CL3) the mean square error  can be 

estimated by  

  (1*) 

where ,  are the estimated values of the future  and 

. 

Proof. The following abbreviations will be used 

 

 

As shown in the text (see Formula (4)),  
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  (2*) 

The two summands will be estimated separately.  

For the first term of (2*) repeated application of the CL assumptions (CL1) and (CL3), also noticing 

that , yields to 

 

  (3*) 

For the second term we have 

 (4*) 

because  and  

 

Now, (3*) and (4*) have to be estimated. In the (3*) one can simply replace the unknown parameters 

 and  by their estimators  and  and obtain 
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 The same cannot be done for the (4*), since this kind of replacement would just give 0. Therefore, a 

different approach must be used. It can be written 

 

with  and therefore  

 

Now we replace  with  and , with , where 

. This means that we approximate  and  by 

averaging over as little data as possible such that as many values  as possible from the observed 

data are kept fixed. Since , it follows that  for . Since 

 

it follows that  
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From above,   , and we replace it with  and because all terms of this sum 

are positive we now can replace all unknown parameters  and  by their unbiased estimators  

and . Altogether, we estimate  by 

 

Putting the two estimated summands together leads to the estimator (1*) stated in the theorem: 

 

Q.E.D. 

Corollary. With the assumptions and notations of Theorem 1 the mean squared error of the overall 

reserve estimate  can be estimated by 

 (5*) 
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Proof. It can be written by definition 

 

The independence of accident quarters (CL2) gives the following 

 

And  from above.  Also, 

 

with . 

Remember from Theorem 1 formulae (2*) and (4*) that . 

Then it can be written: 

 

Let us use the same procedure as for  in the proof to Theorem 1 here again for . Assume  

and . Then we write 
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Notice that the first multiplication does not give 0 on average since . 

But the second multiplication is equal to 0 on average because multiplying terms are always 

different.  

 

 

Therefore, 

 

And , as computed earlier (see proof of Theorem 1).  

Finally, we can estimate  by  

 

Inserting the latter expression into  formula the stated expression (5*) is obtained: 

 

Q.E.D. 
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7.2 Appendix II. The BF Prediction Error (Mack, 2008) 

Theorem 2. Under the assumptions (BF1), (BF2), and (BF3) the mean square error  can be 

estimated by  

  (1**) 

Proof. Notice, the mean square error of prediction of the BF reserve estimate is the sum of the 

squared estimation error  and of the squared process error . The two terms will be 

estimated separately. 

First, the process error: 

 

This will be estimated by 

.  (2**) 

Now, we will turn to the second, more difficult term – the estimation error . First, the 

following general formula will be used: 

 

In our case it becomes: 

 (3**) 

In the latter formula the estimators for  and  have already been derived, but estimates for 

 and  are still not found. Therefore, the next step will be to find the best 

estimates for the precision of  and .  

Mack (2008) suggests that like  itself,  would be best if obtained from repricing of the 

business. But one should be careful here. The usual standard deviation formula 
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, with  

can be used only if the initial estimates  can be assumed to be uncorrelated. The market cycle of 

premium adequacy should be removed where possible, otherwise we would overestimate . 

To remove the market cycle the on-level premiums  should be used. In the case when positive 

correlation exists between the ’s the term  should be replaced by  for a constant 

correlation coefficient , or by  for a decreasing correlation coefficient , 

or by a precise formula , with . After the estimation, one should 

examine the plausibility of the estimates. One way to examine it is to assume normal distribution and 

see if the interval  will contain the true  with 95% 

probability.  

In order to estimate the precision of , we first write out what it is: 

 

It does not contradict to replace  with , but the 

latter sum increases with each term, which is not the case since . 

The solution will be to take  for small  and  

for large . More precisely, 

 

Due to the previous estimation procedure of the parameters, we can proceed as follows: 

 

This allows us to estimate  by 

 

Notice, that the value of  must come from outside. Otherwise, this way of estimating will not 

lead to reliable estimates. If no outside value is available, a plausible choice is to assume a normal 

distribution with 95% probability within the interval , and coefficient of variation being 

50%. Then . Then  
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Here again the plausibility of the estimate should be checked, for example, in the same way as it was 

done for .  

Now, putting both process (2**) and estimation error (3**) together the mean square error of 

prediction (1**) is obtained  

 

Q.E.D. 

 

Corollary. With the assumptions and notations of Theorem 2 the mean squared error of the overall 

reserve estimate  can be estimated by 

 (4**) 

Proof. The mean square error of prediction of the overall reserve estimate has again two terms, the 

process error and the estimation error. Since, according to (BF1), all the increments are independent, 

the process error is 

 

The estimation error involves more complicated calculations because  are positively 

correlated via the common parameter estimates . 

 

The general formula to compute covariances for independent sets  and  will be used 

 

Then we have 
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The term  is of lower order and can be omitted. Therefore 

we are left with 

 

with the correlation coefficients 

 

 

These correlation coefficients are what we have left to compute. One can estimate them from the 

data, but if this way is not possible the  can be obtained as in the explained procedure earlier and  

 

The latter approach will be used later in this work analyzing the personal accident claims. Now, the 

final result can be stated – the prediction error for the total BF reserve estimate (4**): 

 

with 
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7.3 Appendix III. (CL1) and (CL3) check 

7.3.1 Appendix III.a – Incurred cumulative claims linearity (CL1) check 

 

Figure 1*. Incurred claims at the 1
st

 development quarter against the ones at the 2
nd

 development quarter. 

 

Figure 2*. Incurred claims at the 2
nd

 development quarter against the ones at the 3
rd

 development quarter. 

 

Figure 3*. Incurred claims at the 3
rd

 development quarter against the ones at the 4
th

 development quarter. 
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Figure 4*. Incurred claims at the 20
th

 development quarter against the ones at the 21
st

 development quarter. 

 

Figure 5*. Incurred claims at the 30
th

 development quarter against the ones at the 31
st

 development quarter. 

 

Figure 6*. Incurred claims at the 55
th

 development quarter against the ones at the 56
th

 development quarter. 
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Figure 7*. Incurred claims at the 89
th

 development quarter against the ones at the 90
th

 development quarter. 

 

Figure 8*. Incurred claims at the 102
nd

 development quarter against the ones at the 103
rd

 development quarter. 

 

Figure 9*. Incurred claims at the 112
th

 development quarter against the ones at the 113
th

 development quarter. 
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7.3.2 Appendix III.b – Paid cumulative claims linearity (CL1) check 

 

Figure 10*. Paid claims at the 1
st

 development quarter against the ones at the 2
nd

 development quarter. 

 

Figure 11*. Paid claims at the 2
nd

 development quarter against the ones at the 3
rd

 development quarter. 

 

Figure 12*. Paid claims at the 3
rd

 development quarter against the ones at the 4
th

 development quarter. 
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Figure 13*. Paid claims at the 20
th

 development quarter against the ones at the 21
st

 development quarter. 

 

Figure 14*. Paid claims at the 30
th

 development quarter against the ones at the 31
st

 development quarter. 

 

Figure 15*. Paid claims at the 55
th

 development quarter against the ones at the 56
th

 development quarter. 
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Figure 16*. Paid claims at the 89
th

 development quarter against the ones at the 90
th

 development quarter. 

 

Figure 17*. Paid claims at the 102
nd

 development quarter against the ones at the 103
rd

 development quarter. 

 

Figure 18*. Paid claims at the 112
th

 development quarter against the ones at the 113
th

 development quarter. 
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7.3.3 Appendix III.c – Incurred claims data variance assumption (CL3) 

 

Figure 1**. Incurred claims at the 1
st

 development quarter against the corresponding weighted residuals. 

 

Figure 2**. Incurred claims at the 2
nd

 development quarter against the corresponding weighted residuals. 

 

Figure 3**. Incurred claims at the 3
rd

 development quarter against the corresponding weighted residuals. 
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Figure 4**. Incurred claims at the 5
th

 development quarter against the corresponding weighted residuals. 

 

Figure 5**. Incurred claims at the 10
th

 development quarter against the corresponding weighted residuals. 

 

Figure 5**. Incurred claims at the 25
th

 development quarter against the corresponding weighted residuals. 
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Figure 7**. Incurred claims at the 37
th

 development quarter against the corresponding weighted residuals. 

 

Figure 8**. Incurred claims at the 63
rd

 development quarter against the corresponding weighted residuals. 

 

Figure 9**. Incurred claims at the 77
th

 development quarter against the corresponding weighted residuals. 
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Figure 10**. Incurred claims at the 94
th

 development quarter against the corresponding weighted residuals. 

 

Figure 11**. Incurred claims at the 102
nd

 development quarter against the corresponding weighted residuals. 

 

Figure 12**. Incurred claims at the 111
th

 development quarter against the corresponding weighted residuals. 
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7.3.4 Appendix III.d – Paid claims data variance assumption (CL3) 

 

Figure 13**. Paid claims at the 1
st

 development quarter against the corresponding weighted residuals. 

 

Figure 14**. Paid claims at the 2
nd

 development quarter against the corresponding weighted residuals. 

 

Figure 15**. Paid claims at the 3
rd

 development quarter against the corresponding weighted residuals. 
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Figure 16**. Paid claims at the 5
th

 development quarter against the corresponding weighted residuals. 

 

Figure 17**. Paid claims at the 10
th

 development quarter against the corresponding weighted residuals. 

 

Figure 18**. Paid claims at the 25
th

 development quarter against the corresponding weighted residuals. 
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Figure 19**. Paid claims at the 37
th

 development quarter against the corresponding weighted residuals. 

 

Figure 20**. Paid claims at the 63
rd

 development quarter against the corresponding weighted residuals. 

 

Figure 21**. Paid claims at the 77
th

 development quarter against the corresponding weighted residuals. 
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Figure 22**. Paid claims at the 94
th

 development quarter against the corresponding weighted residuals. 

 

Figure 23**. Paid claims at the 102
nd

 development quarter against the corresponding weighted residuals. 

 

Figure 24**. Paid claims at the 111
th

 development quarter against the corresponding weighted residuals. 
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7.4 Appendix IV. The Estimation Error of the BF method 

In the figures below 1st stands for the first bootstrapping approach, and 2nd – for the second 

bootstrapping approach. 
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