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Abstract

This paper concerns the nonsmooth Newton method and its applications in solving obstacle prob-
lems. A detailed description of the nonsmooth Newton method and its corresponding convergence
theorem is presented. We show that Howard’s algorithm generates the same sequence as the nons-
mooth Newton method does in solving obstacle problems. We also consider a nonsmooth Newton
method based on the so-called Fischer-Burmeister (FB) function. The penalty approximations are
used to solve obstacle problems with the nonsmooth Newton method. Obstacle problems that arise
in financial mathematics background, such as pricing American options, pricing American warrants
and portfolio selcetion problems, are taken as examples to examine the algorithms and numerical
tests are performed.

1 Introduction

The general form of the obstacle problem is formulated as follows:

Find a x such that min(F(x),G(x)) = 0.

The difficulty of solving the obstacle problem is the nonsmoothness of the min function. A direct con-
sequence of the nonsmoothness is the absence of the Jacobian at the point x where F(x) = G(x), even if
the Jacobian exists, it is still questionable that the Jacobian gives a ”good” approximation in the Newton
iterations. To circumvent this difficulty, two methods are available. One method is to generalize the con-
cept of the Jacobian and to use the generalized Jacobian in the Newton iterations. The other method is to
find a zero x of a smooth function which is also a zero of the complementarity problem. The FB-based
nonsmooth Newton method, where FB means the Fischer-Burmeister function, is of this kind. Both
methods are proposed and well explained in Facchinei and Pang [11]. Pang and Qi [19] also summarizes
the algorithms and motivations of various nonsmooth equations.

It is very difficult to find explicit solutions to the obstacle problems. In contrast, several numerical meth-
ods are available. One natural technique is to use the dynamic programming method and its variations,
such as the Howard’s algorithm, since the problem can be treated as optimal stopping problems (Bell-
man [3], Bertsekas [4], Howard [15]). Bokanowski et al. [5] studied convergence results of Howard’s
algorithm for the solution of the obstacle problem minα∈A(Bαx− bα) = 0, where Bα is a matrix and bα is
a vector. A globally Q-superlinear convergence result is shown under the monotonicity assumption of Bα.
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Another method is to use the binomial model to simulate the stochastic process embedded in the formula-
tion of the problem and to find an optimal strategy based on the simulation result. Davis et al. [10] study
the problem of pricing European options with proportional transaction costs with the binomial model.
Dai and Yi [7] use the binomial model to study the portfolio selection problem with transaction costs.
Despite of its simplicity, it is of little interest theoretically. The disadvantages are that this method under-
mines the continuity property of the problem and as the number of time steps increases, the number of
nodes to calculate rises exponentially. Moreover, it becomes too complex to apply this method in higher
dimensions if two or more related stochastic processes are dealt with at the same time. So this method is
not considered in this paper.

Although the penalty approximation is still a nonsmooth equation, it might cure the singularity of the
generalized Jacobian in certain cases. Moreover, it is easy to apply this method when there are more than
two functions inside the min function. Zvan et al. [21] use the penalty method to value American op-
tions with stochastic volatility. Forsyth and Vetzal [12] provide a penalty method for valuing American
options. By adopting variant timesteps, quadratic convergence is achieved with respect to the number of
the grids. Dai et al. [8] propose two schemes which are modified from the scheme in Forsyth and Vet-
zal [12]. Both schemes achieve a second order convergence even when constant timesteps are adopted.
Dai and Zhong [6], Dai and Yi [7] use the penalty method to solve the portfolio selection problem with
transaction costs. The corresponding complementarity problem has three functions ( in one-dimensional
case) or five functions (in two-dimensional case) inside the min function.

In American-type financial contracts, the holder can exercise the contract any time before the mature
time. Consequently, finding an optimal stopping strategy is of importance to value the American-type
financial contract. Similarly, the portfolio selection problem, which is to maximize the portfolio value by
choosing the best proportion taken by stocks in the portfolio, is also important to find the optimal trading
strategy. Both the valuing American-type financial contracts and the portfolio selection problem can be
formulated as obstacle problems.

The rest of this paper is organized as follows. In Section 2, the derivation of the generalized Jacobian and
the description of the nonsmooth Newton method are presented. A series of associated propositions and
theorems are given as well. In Section 3, we focus on valuing American options with different numerical
methods. In Section 4, valuing the American warrant subject to issuer’s calling is studied. In Section 5,
we study a portfolio selection problem with transaction costs.

2 Nonsmooth Newton method1

Newton method for smooth functions is a very powerful technique to find a zero of the smooth function,
for which the convergence rate is quadratic. This is the reason why it is very attractive to develop an
algorithm for nonsmooth functions based on Newton method. Let G : Ω ⊂ Rn → Rn be a continuously
differentiable function. The key idea in the classical Newton method is to replace the function G by an
approximation depending on the current iterate, resulting in an approximation problem that can be solved
more easily. The solution of this approximation problem is then taken as a new iterate and the process is

1All the definitions, propositions and theorems in this section are cited from Facchinei and Pang [11]
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repeated. For the function G, a natural approximation is available, due to Taylor’s expansion. Suppose
that an iterate xk is given, the approximation problem is

G(xk) + JG(xk)(x − xk) = 0

and calculate xk+1 as the zero of this linear approximation. If G is a nonsmooth function, the Jacobian
might not exist or the above approximation might not be ”good”. We want to define the kind of the
”good” linear approximations, which satisfy the desirable features in the Newton iteration.

Definition 2.1. Let G be a locally Lipschitz function from an open subset Ω of Rn to Rm. We say that
G has a Newton approximation at a point x̄ ∈ Ω if there exists a neighborhood Ω′ ⊆ Ω and a function
∆ : (0,∞)→ [0,∞) with

lim
t↓0

∆(t) = 0, (2.1)

such that for every point x in Ω′ there is a familyA(x) of functions each mapping Rn to Rm and satisfying
the following two properties:

(a) A(x, 0) = 0 for every A(x, ·) ∈ A(x);

(b) for any x ∈ Ω′ different from x̄ and for any A(x, ·) ∈ A(x)

‖G(x) + A(x, x̄ − x) −G(x̄)‖
‖x − x̄‖

≤ ∆(‖x − x̄‖)). (2.2)

We callA a (Newton) approximation scheme for G at x̄. If the requirement (b) is strengthened to

(b’) there exists a positive constant L′ such that for each x ∈ Ω′ different from x̄ and for every A(x, ·) ∈
A(x),

‖G(x) + A(x, x̄ − x) −G(x̄)‖
‖x − x̄‖2

≤ L′, (2.3)

then we say that F has a strong Newton approximation at x̄ and thatA is a strong (Newton) approximation
scheme. Furthermore, if the following additional condition is met:

(c) (m = n and) A is a family of uniformly Lipschitz homeomorphisms on Ω′, by which we mean
that there exist positive constants LA and εA such that for each x in Ω′ and for each A(x, ·) ∈
A(x), there are two open sets Ux and Vx, both containing B(0, εA), such that A(x, ·) is a Lipschitz
homeomorphism mapping Ux onto Vx with LA being the Lipschitz modulus of the inverse of the
restricted map A(x, ·) |Ux ,

we say that the (strong) Newton approximation is nonsingular and that the (strong) approximation A is
nonsingular. If A contains only one element for every x in Ω′, we say that G admits a single-valued
(strong) Newton approximation at x̄ and the approximation schemeA is single valued. �

It is easy to see that Condition (b) and Condition (b’) are playing the same role as Taylor’s expansion does
for smooth functions. Now the primal question becomes to find a suitable approximation for nonsmooth
functions. We start from the complementarity problems we intend to solve.
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2.1 Complementarity problems

An obstacle problem is also called a complementarity problem. ”Complementarity” explains the rela-
tionship between two terms inside the min function. A basic form of a complementarity problem is that
min(F(x), x) = 0, where x ∈ K ⊂ Rn and F : K → Rn. We can replace x inside the min function by
any function G : K ⊂ Rn → Rn which is invertible locally, and then the problem min(F(x),G(x)) = 0
is equivalent to the problem min((G−1 ◦ F)(x), x) = 0. For the purpose of convenience, the basic form
of complementarity problems is used only in Section 2.1 and the complementarity problems in the next
sections will not be transformed into the basic form. In the following definition, an important class of
complementarity problems is given.

Definition 2.2. Given a mapping F : Rn
+ → Rn, the NCP(F) is to find a vector x ∈ Rn satisfying

0 ≤ x ⊥ F(x) ≥ 0. �

By expressing the orthogonality condition xT F(x) = 0 in terms of the componentwise products, we
obtain the following equivalent formulation of the NCP(F):

0 ≤ x, F(x) ≥ 0

xiFi(x) = 0,∀i = 1, . . . , n

This formulation provides an explanation for term ”complementarity”; namely, xi and Fi(x) are com-
plementary in the sense that if one of them is positive, then the other must be zero. If F is an affine
function, We call such NCP(F) an linear complementarity problem (LCP). Using the min function is not
the only way to define a complementarity problem. A class of functions, named C-functions can capture
the essence of all unconstrained equation formulations of complementarity problems. We define them
explicitly below.

Definition 2.3. A function ψ : R2 → R is called a C-function, where C stands for complementarity, if
for any pair (a, b) ∈ R2,

ψ(a, b) = 0⇔ [(a, b) ≥ 0 and ab = 0];

equivalently, ψ is a C-function if the set of its zeros are the two nonnegative semi-axes. �

In general, given any C-function ψ, we can immediately obtain an equivalent formulation of the NCP(F)
as a system of equations:

0 = Fψ(x) ≡


ψ(x1, F1(x))

...

ψ(xn, Fn(x))


Let ψ be the min function. Applying this equivalence, we obtain

x solves the NCP(F)⇔ Fmin ≡ min(x, F(x)) = 0,

where ”min” is the componentwise minimum vector function.

Another important C-function is denoted by ψFB and referred to as the Fischer-Burmeister C-function:

ψFB(a, b) ≡
√

a2 + b2 − a − b, (a, b) ∈ R2.
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This function is convex, differentiable everywhere except the origin (0, 0); moreover ψ2
FB(a, b) is a con-

tinuously differentiable function on the entire plane. Based on this property, we can develop an efficient
algorithm for the solution of the NCP(F), which will be presented in next section.

2.2 Monotonicity

Monotonicity plays a very important role in our following examples. It ensures a global convergence of
the sequence generated by the nonsmooth Newton method. Moreover, when we try to solve the LCP, the
monotonicity implies the global non-singularity of the Newton approximation. To begin with, we define
the monotonicity for an arbitrary function F.

Definition 2.4. A mapping F : K ⊆ Rn → Rn is said to be

(a) monotone on K if
(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ K;

(b) strictly monotone on K if
(F(x) − F(y))T (x − y) > 0, ∀x, y ∈ K.

�

If an affine map F(x) = Ax + b with K = Rn, where A is a n × n matrix, not necessarily symmetric, and
b is an n-vector, we have

(y − x)T AT (y − x) ≥ (>)0, if F is (strongly) monotone for all (x, y) ∈ Rn.

Consequently, we have the following results:

(a) F is strictly monotone if and only if A is positive definite;

(b) F is monotone if and only if A is positive semi-definite.

In most cases, the matrices in obstacle problems are not symmetric or positive definite. We defines a
broader class of matrices, M-matrices(see Appendix A). The matrix A has an porperty: for a vector x,

Ax ≥ 0 implies x ≥ 0.

If A is also invertible, we call A a monotone matrix. It is easily to show that the positive (semi-)definite
matrices are M-matrices. In the following sections, we can see that the sequence generated by Howard’s
algorithm is monotone if the matrix calculated in each iterate is monotone.

2.3 Generalized Jacobians

In this section, we intend to propose a generalized Jacobian for locally continuous functions which are
also directionally differentiable. We introduce a very important definition of differentiability.
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Definition 2.5. A function Φ : D ⊆ Rn → Rm defined on the open set D is said to be B(ouligand)-
differentiable at a vector x ∈ D if Φ is Lipschitz continuous in a neighborhood of x and directionally
differentiable at x. If Φ is B-differentiable at x, we call the directional derivative Φ′(x; d) the B-derivative
of Φ at x along d. The B-derivative Φ(x; ·) is strong if the error function

e(y) ≡ Φ(y) − Φ(x) − Φ′(x; y − x)

satisfies

lim
y1,y2,(y1,y2)→(x,x)

e(y1) − e(y2)
‖y1 − y2‖

= 0

In this case, we say that Φ is strongly B-differentiable at x. We say that Φ is B-differentiable near x if Φ

is B-differentiable at every point in a certain neighborhood of x. �

An important consequence of the B-differentiability is that the following statement on the limit of the
directional derivative holds for any x ∈ D:

lim
y,x,y→x

Φ(y) − Φ(x) − Φ′(x; y − x)
‖y − x‖

= 0.

It is easy to verify that the C-functions we mentioned, e.g. the min and FB functions, are all B-
differentiable. The next proposition is the chain rule for the B-differentiable functions. Furthermore,
under an appropriate restriction, the B-derivative of the composite map is strong.

Propositon 2.1. LetD andD′ be open sets in Rn and Rm respectively. Let Φ : D → Rm and Ψ : D′ →
Rp be B-differentiable at x ∈ D and Φ(x) ∈ D′ respectively. Suppose that Φ(D) ⊆ D′. The following
two statements hold.

(a) The composite map Γ ≡ Ψ ◦ Φ : D → Rp is B-differentiable at x; moreover,

Γ′(x; d) = Ψ′(Φ(x); Φ′(x; d)), ∀d ∈ Rn.

(b) If Ψ is strongly F(réchet)-differentiable at Φ(x) and Φ has a strong B-derivative at x, then Γ has a
strong B-derivative at x. �

Consider the problem min(F(x),H(x)) = 0, where two functions F and H are C1 functions which map
Rn into Rm. Let G(x) = min(F(x),H(x)). We can take G as a composition of 2m C1 function Gi obtained
by letting Gi

J ≡ FJ and Gi
J ≡ HJ̄ , where J and J̄ are any pair of complementary subsets of 1, . . . ,m. We

call the function G a PC1 function. The definition of the PC1 function is given below.

Definition 2.6. A continuous function F : D ⊆ Rn → Rm is said to be a PC1 function near the vector
x ∈ D if there exist an open neighborhoodN ⊆ D of x and a finite family of C1 functions defined onN ,
{G1,G2, . . . ,Gk}, for some positive integer k, such that G(y) is an element of {G1(y),G2(y), . . . ,Gk(y)} for
all y ∈ N . Each function Gi is called a C1 piece of G at x. Let P(y) denote the set of indices i ∈ {1, . . . , k}
such that G(y) = Gi(y). �

The PC1 function is of importance, because it provides a bridge between nonsmooth functions and
smooth functions. For every x ∈ N , there exists an index i ∈ {1, . . . , k} such that G(x) = Gi(x). This
is to say that if x is a zero of G, then x is also a zero of some piece Gi where i ∈ {1, . . . , k}. There
are only a finite number of candidates for the zero of a PC1 function G. This result will be vital to the
proof of the converge result of the algorithms. This next proposition gives that PC1 functions are locally
B-differentiable.
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Propositon 2.2. Let G be a PC1 map near x with C1 pieces {G1,G2, . . . ,Gk}. The following statements
are valid.

(a) G is B-differentiable at all points near x.

(b) G′(x; ·) is piecewise linear with linear pieces {JG1(x), JG2(x), . . . , JGk(x)}. �

We know that if a function G is continuously differentiable in a neighborhood of x, then G is a locally
Lipschitz homeomorphism at x if and only if the Jacobian matrix JG(x) is invertible. It turns out that
necessary and sufficient conditions for a PC1 function to be a Lipschitz homeomorphism near a point
x can be obtained in terms of an object that generalizes the Jacobian matrix of a smooth function. The
cornerstone of this object is Rademacher’s theorem, named after Hans Adolph Rademacher, which is
given below.

Theorem 2.3. Let F : D ⊆ Rm → Rn be a locally Lipschitz continuous function defined on the open set
D in Rn . LetD′ be the subset ofD consisting of points where F is Fréchet differentiable. The setD\D′

is negligible; thusD′ is dense inD; i.e.,D ⊆ clD′, where clD′ means the closure of the setD′. �

Rademacher’s theorem implies that every locally Lipschitz continuous function is F-differentiable almost
everywhere. Then a generalized Jacobian is introduced below.

Definition 2.7. Let G : U → Rn, where U is an open subset of Rn, be a given function that is locally
Lipschitz continuous in a neighborhood N ⊆ U of a vector x. Define the limiting Jacobian Jac(G, x)
to be the (nonempty) set of limit points of sequences {JG(xv)}, where each xv ∈ U is a F-differentiable
point of G and the sequence {xv} converges to x. Another term for Jac(G, x) is the B-subdifferential of G
at x, denoted ∂BG(x). �

Although the concept of the limiting Jacobian of G is well defined and employed successfully when G
is a PC1 function, there are a few facts that we can not deny: for an arbitrary nonsmooth function, it is
difficult to calculate and manipulate the limiting Jacobian; secondly, the Jacobian does not allow us to
obtain optimality conditions in a nonsmooth optimization problem; lastly, the limiting Jacobian can not
be based solely on to obtain mean-value theorems or other useful results. The following definition intend
to circumvent these difficulties.

Definition 2.8. Let G : D ⊆ Rn → Rm, withD open, be locally Lipschitz at a vector x̄ ∈ D. The Clarke
generalized Jacobian of G at x̄ is:

∂G(x̄) = convJac G(x̄)

where conv A means the convex hull of the set A. When m = 1, that is when G is a real-valued function
g : Rn → R, ∂g(x̄) is called the generalized gradient of g at x̄. Furthermore, in this case, consistently with
the notation of the gradient of a smooth function, the elements of ∂g(x̄) are viewed as column vectors. �

The generalized Jacobian can be viewed as a multifunction fromD into subsets of Rn×m:

∂G : x ∈ D 7→ ∂G(x) ⊂ Rn×m.

Below we report some basic properties of this multifunctions at a vector x when G is locally Lipschitz.

Propositon 2.4. Let a function G : D ⊆ Rn → Rm be given, with G locally Lipschitz on the open setD.
The following statements are valid for any x ∈ D:
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(a) ∂G(x) is nonempty, convex and compact;

(b) the mapping ∂G is upper semicontinuous at x; thus for every ε > 0 there is a δ > 0 such that, for all
y ∈ B(x, δ),

∂G(y) ⊆ ∂G(x) + B(0, ε).

Therefore ∂G is closed at x, that is, if {xk} → x, Hk ∈ ∂G(xk) and Hk → H, then H ∈ ∂G(x). �

We propose an proposition on the composition map next.

Propositon 2.5. Let f = g ◦ G, where G : Rn → Rm is locally Lipschitz continuous at x and where
g : Rm → Rn is locally Lipschitz at G(x). Then f is locally Lipschitz continuous at x and

∂ f (x) ⊆ conv{ξ = HT ζ : H ∈ ∂G(x), ζ ∈ ∂g(G(x))}.

If in addition either one of the following two conditions is satisfied, then equality holds and the conv is
superfluous.

(a) g is continuously differentiable at G(x);

(b) g is C-regular at G(x) and G is continuously differentiable at x. �

In the next propositions, an optimal condition on generalized gradient and the mean-value theorem is
reported.

Propositon 2.6. Suppose that g : Rn → R is Lipschitz continuous in a neighborhood of an (uncon-
strained) local minimum x of g. Then

0 ∈ ∂g(x) (2.4)

If g is convex, the condition (2.4) is necessary and sufficient for x to be a global (unconstrained) minimum
point of g. �

We call a vector x satisfying (2.4) a C-stationary point of g, where C stands for Clarke.

Propositon 2.7. Let a function g : Rn → R be locally Lipschitz on an open set containing the line
segment [x, y]. There exists a point z in (x, y) such that

g(y) = g(x) + ξT (y − x)

for some ξ belonging to ∂g(z). �

The above results is confined to real-valued functions. We present a result that abridge between the gen-
eralized Jacobian of a vector-valued function and the generalized gradients of its component functions.

Propositon 2.8. Let G : D ⊆ Rn → Rm be a locally Lipschitz continuous function on the open setD. If
x ∈ D, then

∂G(x) ⊆ (∂G1(x) × ∂G2(x) × · · · × ∂Gm(x))T .

We apply Proposition 2.8 to Proposition 2.7, and we get an integral version of the mean-value theorem
in the nonsmooth case.

Propositon 2.9. Let a function G : D ⊆ Rn → Rm, with D open, be B-differentiable at a point x in D.
For every vector d ∈ Rn, there exists H ∈ ∂G(x) such that G′(x; d) = Hd. �

We say that the generalized Jacobian ∂G(x) is nonsingular if all matrices in this Jacobian are nonsingular.

Propositon 2.10. Let G : D ⊆ Rn → Rn be locally Lipschitz at x ∈ D. If the generalized Jacobian
∂G(x) is nonsingular, then G is a locally Lipschitz homeomorphism at x.
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2.4 Semismooth functions

Although the generalized Jacobian allows us to extend the useful results for smooth functions to locally
continuous functions, it fails to define a Newton approximation scheme of an arbitrary locally Lipschitz
continuous function G; that is the limit condition

lim
x̄,x→x̄,H∈∂G(x)

G(x) + H(x̄ − x) −G(x̄)
‖x − x̄‖

= 0

does not generally hold for any locally Lipschitz continuous function G. We need locally Lipschitz con-
tinuous functions with the legitimate Newton approximation scheme defined by the (Clarke) generalized
Jacobians. They are called semismooth functions and the definition is below.

Definition 2.9. Let G : D ⊆ Rn → Rm, with D open, be a locally Lipschitz continuous function on D.
We say that G is semismooth at a point x̄ ∈ D if G is directionally differentiable near x̄ and there exists a
neighborhoodD′ ⊆ D of x̄ and a function ∆ : (0,∞)→ [0,∞) with

lim
t↓0

∆(t) = 0

such that for any x ∈ D′ different from x̄,

‖G′(x; x − x̄) −G′(x̄; x − x̄)‖
‖x − x̄‖

≤ ∆(‖x − x̄‖).

If the above requirement is strengthened to

lim sup
x̄,x→x̄

‖G′(x; x − x̄) −G′(x̄; x − x̄)‖
‖x − x̄‖2

< ∞,

we say that G is strongly semismooth at x̄. If G is (strongly) semismooth at each point of Ω, then we say
that G is (strongly) semismooth on Ω. �

By definition, G is semismooth at x̄ if and only if G is B-differentiable near x̄ and the following limit
holds:

lim sup
x̄,x→x̄

‖G′(x; x − x̄) −G′(x̄; x − x̄)‖
‖x − x̄‖

= 0

Thus, for all x close enough to x̄, a good approximation to the function G is provided by the directional
derivative G′(x̄; x− x̄). Moreover, the directional derivative G′(x̄; x− x̄) can be approximated with a good
degree of precision by using any element of the generalized Jacobian of G at x. Taking this assertion and
other results as basis, we can use the generalized Jacobians to build linear Newton approximations to G
at x̄. The theorem formally presents this statement.

Theorem 2.11. Let G : D ⊆ Rn → Rm, with D open, be B-differentiable near x̄ ∈ D. The following
three statements are equivalent:

(a) G is semismooth at x̄

(b) the following limit holds:

lim
x̄,x→x̄

G′(x; x − x̄) − H(x − x̄)
‖x − x̄‖

= 0; (2.5)
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(c) the following limit holds:

lim
x̄,x→x̄,H∈∂G(x)

G(x) + H(x̄ − x) −G(x̄)
‖x − x̄‖

= 0; (2.6)

If G is strongly semismooth at x̄, then

lim sup
x̄,x→x̄

G(x) −G(x̄) −G′(x̄; x − x̄)
‖x − x̄‖2

< ∞, (2.7)

lim sup
x̄,x→x̄,H∈∂G(x)

G(x) + H(x̄ − x) −G(x̄)
‖x − x̄‖2

< ∞. (2.8)

�

Consequently when m = n, by (2.5), we obtain thatA(x) ≡ ∂G(x) is a Newton approximation scheme of
G at x̄ if G is semismooth at x̄. Furthermore, if G is strongly semismooth at x̄, by (2.8), the approximation
scheme is strong. These results justify our interest in the class of semismooth functions.

As we know, the composition of smooth functions preserves the smoothness, which implies in particular
that the sum and difference of two smooth functions are also smooth. We extend this result to the
semismooth functions in the following proposition.

Propositon 2.12. Let a function F : ΩF ⊆ Rn → Rm, with ΩF open, a point x̄ belonging to ΩF , and a
function g : Ωg ⊆ Rm → R, with Ωg being a neighborhood of F(x̄), be given. If F and g are (strongly)
semismooth at x̄ and F(x̄) respectively, then the composite function g ◦ F is (strongly) semismooth at x̄.

As we mentioned, this theorem implies that the sum and difference of (strongly) semismooth functions
are (strongly) semismooth. It is easy to check that a vector-valued function is (strongly) semismooth if
and only if each of its component functions is (strongly) semismooth. Combining with Proposition 2.12,
we obtain that the composition of two vector semismooth functions is semismooth. In the next proposi-
tions, a broad class of functions is shown to be semismooth. The functions we deal with in the example
can all be viewed as a composition of these functions.We take real-valued functions as the beginning.

Propositon 2.13. Let f : Ω ⊆ Rn → R, with Ω open, and a point x̄ belonging to Ω be given.

(a) If f is continuously differentiable in a neighborhood of x̄, then f is semismooth at x̄.

(b) If f is continuously differentiable with a Lipschitz continuous gradient in a neighborhood of x̄, then
f is strongly semismooth at x̄.

(c) If f is convex on a neighborhood of x̄, then f is semismooth at x̄. �

This proposition implies that PC1 functions are semismooth. Moreover like PC1 functions, we say that
a continuous function G is piecewise semismooth near a vector x in the domain of G if G satisfies the
conditions in Definition 2.6 except the pieces {Gi : i = 1, . . . , k} are semismooth functions near x.

Propositon 2.14. Let G : Ω ⊆ Rn → Rm, with Ω open, be piecewise semismooth near the vector x̄ in Ω.
Then G is semismooth at x̄. �
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The class of piecewise semismooth functions seems to be broader than the class of semismooth functions.
Proposition 2.14 shows that the class of semismooth functions includes all the piecewise semismooth
functions, and of course, PC1 functions.

Proposition 2.13 also implies that every norm function, being convex, is semismooth. The next proposi-
tion shows that the norm functions of a particular class are strongly semismooth.

Propositon 2.15. The norm function ‖·‖p : Rn → R+ is strongly semismooth for every p ∈ [1,∞]. �

In fact, it is easy to see that for any µ ∈ (0, 4), the modified FB function:

ψFBµ(a, b) =

√
(a − b)2 + µab − a − b, (a, b) ∈ R2

is strongly semismooth. The function ψFBµ is a C-function and includes both the min function (when
µ → 0+) and the FB function (when µ = 2). Thus the min function and the FB function are strongly
semismooth.

2.5 Nonsmooth Newton Method

We first give a basic form of the nonsmooth Newton method. Let us suppose that the function G admits
a Newton approximation schemeA(x) at x where G(x) = 0. We start from x0 sufficiently close to x and
use the Newton iteration to find x.

Algorithm 1 Nonsmooth Newton Methoda

Data: x0 ∈ Rn and ε > 0.

Step 1: Set k = 0.

Step 2: If G(xk) = 0, stop.

Step 3: Select an element A(xk, ·) inA(x) and find a vector dk in B(0, ε) such that

G(xk) + A(xk, dk) = 0.

Step 4: Set xk+1 ≡ xk + dk and k ← k + 1; go to Step 2.

aFacchinei and Pang [11]

Basically the Newton method is an iterative algorithm. Several concepts of converge rates play an im-
portant role in the convergence analysis of iterative algorithms.

Definition 2.10. Let {xk} ⊂ Rn be a sequence of vectors tending to the limit x∞ , xk for all k. The
convergence rate is said to be (at least)

(a) Q-linear if

lim sup
k→∞

‖xk+1 − x∞‖
‖xk − x∞‖

< ∞

11



(b) Q-superlinear if

lim
k→∞

‖xk+1 − x∞‖
‖xk − x∞‖

= 0

(c) Q-quadratic if

lim sup
k→∞

‖xk+1 − x∞‖
‖xk − x∞‖2

< ∞

In each case, we say that {xk} converges to x∞ (at least) Q-linearly, Q-superlinearly, and Q-quadratically
respectively. �

The theorem below shows that the nonsmooth Newton method pertain the fast convergence rate of the
classical Newton method. Recall that εA is a positive constant in Definition 2.1.

Theorem 2.16. Let G : Ω ⊆ Rn → Rn, with Ω open, be a locally Lipschitz function in a neighborhood
of x∗ ∈ Ω satisfying G(x∗) = 0. Assume that G admits a nonsingular Newton approximation A at
x∗. For every ε ∈ (0, εA], there exists a neighborhood B(x∗, δ) of x∗ such that if x0 belongs to B(x∗, δ)
then Algorithm 1 generates a unique sequence {xk} that converges Q-superlinearly to x∗. If the Newton
approximationA is strong, the convergence rate is Q-quadratic.

This theorem is a local convergence result; that is, it is assumed that the initial iterate x0 is chosen from
a suitable neighborhood of a desired but unknown solution. If the sequence {xk} generated by Algorithm
1 is monotone and bounded, then this theorem is strengthened to be a global convergence result.

Now we modify Algorithm 1 for semismooth functions particularly.
Algorithm 2 Semismooth Newton Methoda

Data: x0 ∈ Rn.

Step 1: Set k = 0.

Step 2: If G(xk) = 0, stop.

Step 3: Select an element Hk ∈ ∂G(xk).Find a direction dk ∈ Rn such that

G(xk) + Hkdk = 0.

Step 4: Set xk+1 ≡ xk + dk and k ← k + 1; go to Step 2.

aFacchinei and Pang [11]

The condition that Hk is nonsingular is very vital to Algorithm 2, because Algorithm 2 generates a unique
sequence by solving a system of linear equations with a unique solution. The lemma below essentially
guarantee the nonsingularity of Hk if all generalized Jacobians of G at a zero x∗ are nonsingular and that
xk is sufficiently close to x∗.

Lemma 2.17. Let J : Ω ⊆ Rn → Rn×n, with Ω open, be a compact-valued, upper semicontinuous
set-valued mapping. Suppose that at a point x̄ ∈ Ω all the matrices in J(x̄) are nonsingular. There exist
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positive constants κ and δ such that

sup
x∈B(x̄,δ),H∈J(x)

max{‖H‖, ‖H−1‖} ≤ κ.

In particular, all the matrices H ∈ J(x) for x ∈ B(x̄, δ) are nonsingular.

Based on the above lemma, we state the convergence result of Algorithm 2.

Theorem 2.18. Let G : Ω ⊆ Rn → Rn, with Ω open, be semismooth at x∗ ∈ Ω satisfying G(x∗) =

0. If ∂G(x∗) is nonsingular, then there exists a δ > 0 such that, if x0 ∈ B(x∗, δ), the sequence {xk}

generated by Algorithm 2 is well defined and converges Q-superlinearly to x∗. Furthermore, if G is
strongly semismooth at x∗, then the convergence rate is Q-quadratic. �

As one can expect, the semismooth functions are not the only class of functions with linear Newton
approximation schemes. The definition is an attempt to capture when G has a Newton approximation
scheme defined by linear functions such that the nonsingularity of the scheme is the immediate conse-
quence of the nonsingularity of a set of distinguished matrices.

Definition 2.11. Let G : Ω ⊆ Rn → Rm, with Ω open, be locally Lipschitz on Ω. We say that G admits
a linear Newton approximation at a vector x̄ ∈ Ω if there exists a multifunction T : Ω → Rn×n such that
T (x) is a Newton approximation scheme of G at x̄ and T has nonempty compact images and is upper
semicontinuous at x̄. If T is a strong Newton approximation scheme, then we say the G admits a strong
linear Newton approximation scheme, then we say the G admits a strong linear Newton approximation
at x̄. We also say that T is a (strong) linear Newton approximation scheme of G. �

Based on the definition, we describe the basic Newton method and its convergence properties.
Algorithm 3 Linear Newton methoda

Data: Let x0 ∈ Rn.

Step 1: Set k = 0.

Step 2: If G(xk) = 0, stop.

Step 3: Select an element Hk ∈ T (xk). Find a direction dk ∈ Rn such that

G(xk) + Hkdk = 0.

Step 4: Set xk+1 ≡ xk + dk and k ← k + 1; go to Step 2.

aFacchinei and Pang [11]

The following theorem is the convergence result for Algorithm 3.

Theorem 2.19. Assume that G : Ω ⊆ Rn → Rn, with Ω open, is locally Lipschitz continuous on Ω

and has a linear Newton approximation scheme T at x∗ ∈ Ω, which satisfies G(x∗) = 0. Suppose
that all the matrices H belonging to T (x∗) are nonsingular. There exists a δ > 0 such that, if x0 ∈

B(x∗, δ), the sequence {xk} generated by Algorithm 3 is well defined and converges Q-superlinearly to
the solution x∗. Furthermore, if the linear approximation scheme T is strong, then the convergence rate
is Q-quadratic. �
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In the next theorem, a systematic way of generating linear Newton approximation of a composite map is
considered.

Theorem 2.20. Suppose that G : Rn → Rn is a locally Lipschitz continuous map given by the composi-
tion of two maps: G ≡ A ◦ B, where B : Rn → Rm and A : Rm → Rn are both locally Lipschitz. Suppose
that TA and TB are (strong) linear Newton approximation schemes of A and B at B(x̄) and x̄ respectively.
Then

T (x) ≡ {VW : V ∈ TA(B(x)),W ∈ TB(x)},

is a (strong) linear Newton approximation scheme of G at x̄. �

3 Valuing American options

As a classical problem in financial mathematics, several methods are developed to value American op-
tions. In this section, three numerical methods are applied to solve this problem and the corresponding
numerical results are also presented. Here, we use the formulation in Bokanowski et al. [5]. Let u(s, t)
be the value of the American put option where s ∈ [0, S max] is the price of the underlying stock and
t ∈ [0,T ] is the time before maturity, and when t = 0 the option matures. The value function u(s, t)
satisfies the following nonlinear partial differentiable equation:

min
(
∂tu −

1
2
σ2s2∂ssu − rs∂su + ru, u − ϕ(s)

)
= 0,

t ∈ (0,T ], s ∈ (0, S max)

u(t, S max) = 0, t ∈ [0,T ]

u(0, s) = ϕ(s), s ∈ (0, S max)

(3.1)

where ϕ(s) = max(K − s, 0) is the value when the option exercises, K > 0 is the strike price, σ > 0 is the
volatility of the underlying stock, r > 0 is the interest rate of the bank account. The upper bound S max
should be the infinity, but for numerical purpose, we consider S max positive, large enough but finite. This
assumption is suitable, and it is proved by the numerical results.

3.1 The discretization scheme2

We insert Nt grids into the interval [0,T ] and Ns grids into the interval [0, S max]. Let ∆t = T
Nt

and
∆S =

S max
Ns

. Let S j = j∆S and tn = n∆t. Denote Un
j ≡ u(S j, tn). We use the implicit Euler method to

discretize (3.1); that is, when Nt ≥ n ≥ 1 and Ns − 1 ≥ j ≥ 1,

∂tu(·, tn) ∼
Un − Un−1

∆t

∂ssu(s j, ·) ∼
U j+1 − 2U j + U j−1

∆S 2

∂su(s j, ·) ∼
U j+1 − U j

∆S

(3.2)

2Bokanowski et al. [5]
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When n = 0, Un
j = ϕ(S j). When j = Ns, U j = 0. When j = 0, the equation (3.1) degenerates and its

discretized approximation is

min
(Un

j − Un−1
j

∆t
− rUn

j ,U
n
j − ϕ(S 0)

)
= 0.

Remark 3.1. In Section 3.3, a modified discretization scheme is used. To improve the order of conver-

gence and the stability, the Crank-Nicolson method is applied. Moreover, ∂su(s j, ·) ∼
U j+1 − U j−1

∆S
. �

Since the vector Un is known, we can simply view (3.2) as min(A1x − b1, A2x − b2) = 0, where the two
(Ns + 1) × (Ns + 1) matrices A1 and A2 has the following property:

Ak
ii ≤ δ +

∑
i, j

|Ak
i j| and Ak

i j < 0, k ∈ {1, 2}, 1 ≤ i, j ≤ Ns + 1,

where δ > 0 is a constant. Thus they are strictly diagonal dominant M-matrices. The strictly diagonal
dominant M-matrix A is invertible and satisfies that Ax ≥ 0 implies x ≥ 0 (see Horn and Johnson [13; 14]
and Appendix A). Moreover, if a square matrix is composed of the rows of strictly diagonal dominant
M-matrices, this square matrix is also a strictly diagonal dominant M-matrix.(see Appendix A)

3.2 Howard’s algorithm

Howard’s algorithm was proposed in Howard [15]. Bokanowski et al. [5] use Howard’s algorithm to solve
the problem of valuing American put option. We describe Howard’s algorithm for the NCP min(A1x −
b1, A2x − b2) = 0 where A1 and A2 are m × m matrices.

Algorithm 4 Howard’s algorithm for NCPa

Data: x0 is given and k = 0;

Step 1: Find a matrix Bk and a vector ck. For each integer i ∈ {1, . . . ,m}, if A1
i·x

k − b1
i < A2

i·x
k − b2

i , let
Bk

i· = A1
i· and bk

i = b1
i ; otherwise, let Bk

i· = A2
i· and bk

i = b2
i ;

Step 2: Find xk+1 solution of Bkx = bk;

Step 3: if xk = xk+1, stop. Otherwise, k ← k + 1, and go to Step 1.

aFacchinei and Pang [11]

There is an interconnection between semismooth Newton method and Howard’s algorithm. It is easy to
see that G(x) ≡ min(A1x − b1, A2x − b2) is a PC1 function and Bk is also one element of the generalized
Jacobian of G(xk) at xk. Moreover, if the iteration does not stop at xk, xk+1s generated by two algorithms
are the same. Thus we can obtain the convergence results directly from the convergence results of
semismooth Newton method. The proposition below shows that under the monotonicity assumption on
the matrices A1 and A2, a global convergence result is obtained.

Propositon 3.1. Assume that for any if for any i ∈ {1, . . . ,m}, the i-th row of a matrix A equals to the i-th
row of the matrix A1 or the i-th row of the matrix A2, then A are monotone; that is, Ax ≥ 0 implies x ≥ 0.
Then there exists a unique x∗ solution of the NCP min(A1x − b1, A2x − b2) = 0. Moreover, the sequence
{xk} given by Howard’s algorithm satisfies
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(a) xk ≤ xk+1 for all k ≥ 1;

(b) {xk} converges to x∗ pointwisely;

(c) there exists a finite number k such that xk = x∗.

This proof is given in Appendix B.

Remark 3.2. The finite termination property of Howard’s algorithm is a consequence of the fact that
F and G are affine functions and the function G(x) ≡ min(F(x),G(x)) is regular at the limit point x∗.
Due to the finite termination, it is meaningless to check the convergence rate of Howard’s algorithm. As
we know, in the finite dimensional case, the Q-superlinear (Q-quadratic) convergence is achieved if the
function G in Algorithm 2 is (strongly) semismooth. But in the infinite dimensional case, this result does
not hold. It is because if a sequence of vectors converges componentwisely, we can not immediately
have the result that this sequence converges. More assumptions are necessary. Suppose that x is in the
infinite dimensional vector space RN∗ . If several assumptions are satisfied, we can show that Howard’s
algorithm is globally superlinearly convergent. Moreover, if one more assumption is satisfied, Howard’s
algorithm is finite terminated. (see Appendix C)

3.3 Penalty method

We introduce one scheme in Dai et al. [8], which is modified from the scheme Forsyth and Vetzal [12].
The penalty approximation of (3.1) is written as:

∂tu = −
1
2
σ2s2∂ssu − rs∂su + ru + ρmin(u − ϕ(s), 0), (3.3)

where ρ is the penalty parameter and ρmin(u − ϕ(s), 0) is the penalty term. As we mentioned in Remark
3.1, the discretization scheme for (3.3) excluding the penalty term is a little different from (3.2), and to
approximate the penalty term at Un

j , we use the following discretization scheme:

ξ
(Un−1

j + Un
j

2
− ϕ(S j)

)
where

ξ =

ρ, if
Un−1

j +Un
j

2 − ϕ(S j) < 0;
0, otherwise.

This penalty approximation can be viewed as a PC1 function, if we take the outside terms into the
min function. Thus we can perform the semismooth Newton method (Algorithm 2). In Dai et al. [8],
Forsyth and Vetzal [12] it is shown that the iteration has a finite termination property; when an iterate is
sufficiently close to x∗, the iteration converges in one step.

3.4 Nonsmooth Newton method based on FB function

With the monotonicity assumption, both Howard’s algorithm and the penalty method have the finite ter-
mination property. In contrast, the nonsmooth Newton method based on FB functional does not have
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such a property, but when the monotonicity assumption omitted, the nonsmooth Newton method based
on FB functional is still a Q-quadratic global method.

We consider the NCP min(F(x),H(x)) = 0, where F and H are continuously differentiable functions.
The nonsmooth Newton method based on FB function is basically a line search method, proposed in
Facchinei and Pang [11]. Some concepts are necessary. Let

FFB(x) =


ψFB(F1(x),G1(x))

...

ψFB(Fm(x),Gm(x))


where ψFB is a FB C-function, defined as

ψFB(a, b) ≡
√

a2 + b2 − a − b, (a, b) ∈ R2.

The associate merit function is the square Euclidean norm of FFB, that is,

θFB(x) =
1
2

FFB(x)T FFB(x).

The differentiability results of the FB function FFB and its according merit function θFB is listed in the
following proposition.

Propositon 3.2. Let F,G : D ⊆ Rn → Rm be continuous differentiable functions on the open setD. The
following statements hold.

(a) The generalized Jacobian of FFB(x) satisfies

∂FFB(x) ⊆ Da(x)JF(x) +Db(x)JG(x),

where Da(x) and Db(x)JG(x) are the sets of n × n diagonal matrices diag(a1(x), . . . , an(x)) and
diag(b1(x), . . . , bn(x)) respectively, with

(ai(x), bi(x))

 ≡
(Fi(x),Gi(x))√
Fi(x)2+Gi(x)2

− (1, 1), if (Fi(x),Gi(x)) , 0;

∈ clB(0, 1) − (1, 1) , if (Fi(x),Gi(x)) = 0.

where clA means the closure of the set A.

(b) FFB(x) is semismooth onD.

(c) θFB(x) is continuously differentiable on D and its gradient ∇θFB(x) is equal to HT FFB(x) for every
H in ∂FFB(x).

(d) If the Jacobian JF(x) is locally Lipschitz onD, then FFB(x) is strongly semismooth onD. �

Let T (x) be a linear approximation of the C-function FFB at x.
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Algorithm 5 FB line search algorithma

Data: x0 ∈ Rm, ρ > 0, p > 1 and γ ∈ (0, 1)

Step 1: Set k = 0.

Step 2: If θFB(xk) = 0, stop.

Step 3: Select an element Hk in T (xk) and find a solution dk of the system

FFB(xk) + Hkd = 0; (3.4)

if (3.4) is not solvable or if the condition ∇θFB(xk)T dk ≤ −ρ‖dk‖p is not satisfied, set dk =

−∇θFB(xk)

Step 4: Find the smallest nonnegative integer ik such that, with i = ik,

θFB(xk + 2−idk) ≤ θFB(xk) + γ2−i∇θFB(xk)T dk. (3.5)

Set dk ← 2−idk.

Step 5: Set xk+1 ≡ xk + dk and k ← k + 1; go to Step 2.

aFacchinei and Pang [11]

To ease computation and for other practical reasons, we describe a simple procedure to compute a matrix
H in Jac FFB(x), which is a good choice for the linear Newton approximation T in Algorithm 5.
Procedure to calculate an element H in Jac FFB(x)a

Step 1: Set β ≡ {i : xi = 0 = Fi(x)}.

Step 2: Choose z ∈ Rn such that zi , 0 for all i belonging to β.

Step 3: For each i < β set the i-th column of HT equal to( Gi(x)√
Gi(x)2 + Fi(x)2

− 1
)
∇Gi(x) +

( Fi(x)√
Gi(x)2 + Fi(x)2

− 1
)
∇Fi(x).

Step 4: For each i ∈ β set the i-th column of HT equal to(
∇Gi(x)T z√

(∇Gi(x)T z)2 + (∇Fi(x)T z)2
− 1

)
∇Gi(x) +

(
∇Fi(x)T z

(∇Gi(x)T z)2 + (∇Fi(x)T z)2 − 1
)
∇Fi(x).

aFacchinei and Pang [11]

Such H is proved to be an element in Jac FFB(x) in Facchinei and Pang [11]. We summarize the conver-
gence results of Algorithm 5 in the following theorem3.

3Facchinei and Pang [11]
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Theorem 3.3. Let F,G : Rn → Rn be continuously differentiable and let T be linear Newton approxi-
mation scheme of FFB(x). Let {xk} be an infinite sequence generated by Algorithm 4.

(a) Every accumulation point of {xk} is a stationary point of the merit function θFB(x).

(b) If x∗ is an accumulation point of {xk} such that x∗ is regular, then x∗ is a solution of min(F(x),G(x)) =

0.

(c) If {xk} has an isolated limit point, then the whole sequence {xk} converges to that point.

(d) Suppose x∗ is a limit point of {xk} and a solution of min(F(x),G(x)) = 0. Assume that T (x) ⊆
∂FFB(x) for every x in a neighborhood of x∗ and that all the matrices belonging to T (x∗) are
nonsingular. The whole sequence {xk} converges to x∗; furthermore, if p > 2 and γ < 1

2 in
Algorithm 4, the following statements hold:

(i) Eventually dk is always the solution of (3.4);

(ii) Eventually a unit step size is accepted so that xk+1 = xk + dk;

(iii) The convergence rate is Q-superlinear; furthermore, if the Jacobian JF(x) is Lipschitz con-
tinuous in a neighborhood of x∗, the convergence rate is Q-quadratic. �

3.5 Numerical results

We primarily concern the numerical properties of different methods. To easily compare the results, we
only consider the number of iterations required to obtain the value of U1. The reason is that due to
the existence of the time derivative, as t increases, the error in calculating U t is accumulating which
undermines the accuracy of the analysis. We use the numbers of iterations to compare the performance
of algorithms, since solving linear systems is the main calculation task for algorithms and the numbers
show how much work algorithms are required. We mainly examine two properties: (a) the global con-
vergence and (b) the convergence rate. To examine the global convergence property of algorithms, we
use different initial values and observe whether the solutions of different algorithms are the same. We
also concern the numbers of iterations the algorithms take to stop. We check the effect of increasing the
numbers of spatial grids on the numbers of iterations to stop to study the convergence speed.

We start from the analysis of Howard’s algorithm. For different initial values, the results of U1 generated
with different initial values are the same. In Table 1, the numbers of iterations is relatively small, compar-
ing with the number of grids. If the initial value x0 is smaller than the value U1, fewer iterations requires.
This is because of the monotonicity property. With x0 small enough, the x1 generated by Howard’s al-
gorithm is much closer to the limit point. This result also appears in the next section. As the number of
grids doubles, the number of iterations almost doubles in Table 2. Since the increase of the spatial grids
results in a heavier burden of calculation required in each iteration, the proportional increase in numbers
of iterations means that Howard’s algorithm costs more time and requires much more calculations. This
explains why much longer time is taken when the number of grids is more than 500 in practice.

From Table 3 and Table 4, we can tell that both the initial values and numbers of spatial grids do not affect
the algorithm. A fast converge rate is always achieved. The drawback of the penalty method is that the
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solution is only an approximation. If the error brought by the discretization scheme is much larger than
the error brought by the penalty approximation, it is an acceptable solution. As the penalty parameter
ρ is large enough, the distance between the solutions of the penalty method and Howard’s algorithm is
small. Thus, the penalty approximation provides a good solution in this problem.

For the problem of valuing American put options, when the initial value is far away from the solution,
the convergence rage of the FB nonsmooth Newton method is too slow (see Table 6). As the number of
spatial grids increases, the number of iterations does not increase rapidly, but the number of iterations
is very large when the number of spatial grids is 50 (see Table 6). This shows that the FB nonsmooth
Newton method requires a good initial value close to the expected solution and a larger number of grids
to ensure a fast convergence rate. We also examine the convergence rate when the initial value is U0 and
the number of spatial grids is 100. Obviously the Q-superlinear convergence is ascertained from Figure
1, but the Q-quadratic convergence is not clear from Figure 2.

4 Valuing American warrant subject to issuer’s calling

We use the formulation of the problem of valuing American warrant subject to issuer’s calling in Dai
et al. [8]. Let V(S , t) be the price function of the American warrant, where S is the stock price. Let φ(S )
be payoff upon exercise and ψ(S ) be the rebate received by the holder upon calling. Assume the arrival of
calling by issuer to be governed by a Poisson process with intensity ρ1{V>ψ}, where ρ is a constant. The
indicator function 1{V>ψ} is included since the issuer calls only when V > ψ. In our callable American
warrant, we have the exercise payoff φ(S ) = S − K and rebate ψ(S ) = R. Under the risk neutral measure
Q, the dynamics of the stock price are assumed to be governed by

dS
S

= (r − q) dt + σ dZ,

where q is the constant dividend yield of the stock. The governing equation for V(S , t) in the continuation
region where the warrant remains alive is:

rV dt =

[
∂V
∂t

+
σ2

2
S 2 ∂

2V
∂S 2 + (r − q)S

∂V
∂S

]
dt + ρ dt max(V − ψ, 0).

In the stopping region where it is optimal for the holder to exercise the warrant, we have

V(S , t) = φ(S ).

We write τ ≡ T − t, where τ is the time to expiry and let Lw be the differential operator defined as

Lw ≡
σ2

2
S 2 ∂2

∂S 2 + (r − q)S
∂

∂S
− r.

The complementarity formulation for V(S , t) is given by

min
(
∂V
∂τ
− LwV + ρmax(V − ψ, 0), V − φ

)
= 0,

subject to the termination condition V(S , 0) = max(φ(S ), 0). We use the finite element method (3.2) to
discretize this problem. Then we can view this problem as a double obstacle problem min(max(A1x −
b1, A2x − b2), A3x − b3) = 0, where A1,A2 and A3 are all strictly row diagonal dominant M-matrices.

20



4.1 Howard’s algorithm for double-obstacle problems4

Similar as Algorithm 4, we present Howard’s algorithm for double-obstacle problem min(max(A1x −
b1, A2x − b2), A3x − b3) = 0.

Algorithm 6 Howard’s algorithm for double-obstacle problemsa

Data: x0 ∈ Rn

Step 1: Set k = 0.

Step 2: Find a matrix Bk and a vector ck satisfying for all i = 1, . . . , n,

• if A1
i·x

k − b1
i ≥ A2

i·x
k − b2

i and A1
i·x

k − b1
i ≤ A3

i·x
k − b3

i , let Bk
i· = A1

i· and ck
i = b1

i ;

• if A2
i·x

k − b2
i > A1

i·x
k − b1

i and A2
i·x

k − b2
i ≤ A3

i·x
k − b3

i , let Bk
i· = A2

i· and ck
i = b2

i ;

• otherwise, let Bk
i· = A3

i· and ck
i = b3

i .

Step 3: Let xk+1 be the solution of the equation Bkx = ck.

Step 4: If xk+1 = xk, stop; otherwise, k ← k + 1.

aBokanowski et al. [5]

As we explain in Section 3.2, the double-obstacle problem can also be viewed as a PC1 function with 3n

pieces. Similarly we have the following proposition.

Propositon 4.1. Assume that for any if i ∈ {1, . . . , n}, the i-th row of a matrix A equals to the i-th row
of one of the matrices A1, A2 and A3, then A is monotone; that is, Ax ≥ 0 implies x ≥ 0. Then there
exists a unique x∗ solution of the double-obstacle problem min(max(A1x − b1, A2x − b2), A3x − b3) = 0.
Moreover, the sequence {xk} given by Howard’s algorithm satisfies

(a) xk ≤ xk+1 for all k ≥ 1;

(b) {xk} converges to x∗ pointwisely;

(c) there exists a finite number k such that xk = x∗. �

We put the proof in Appendix D.

4.2 The min-FB line search method

Pang and Gabriel [18] proposed a damped Newton algorithm for the problem min(F(x),G(x)) = 0,
named NE/SQP, applied to the NCP. This algorithm involves solving a sequence of convex quadratic
programming problems of the least-square type. Theoretically, there are two drawbacks for NE/SQP
comparing with the nonsmooth Newton method based on FB function introduced below: (a) a quadratic
programming problem has to be solve at each iteration comparing with FB-based algorithm only need to
solve a linear programming problem; (b) the solution of this algorithm is not automatically the stationary

4Bokanowski et al. [5]
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point, without the regularity conditions, while the stationary result is a natural consequence of the con-
tinuously differentiability of the merit function for the FB-based algorithm.

We consider the NCP Fmin(x) ≡ min(F(x),G(x)) = 0. Suppose that Fmin admits a linear Newton ap-
proximation at the zero x∗ of the function Fmin. We denote this linear Newton approximation as Tmin We
describe th algorithm below.

Algorithm 7 min-FB line search algorithma

Data: x0 ∈ Rn, ε > 0, ρ > 0, p > 1 and γ ∈ (0, 1).

Step 1: Set k = 0.

Step 2: If θFB(xk) = 0, stop.

Step 3: Select an element Hk in Tmin(xk) and find a solution of the system

Fmin(xk) + Hkd = 0. (4.1)

If (4.1) is solvable and the solution dk satisfies ‖FFB(xk + dk)‖ ≤ γ‖FFB(xk)‖. Set τ = 1 and to
Step 5. Otherwise, if this system is not solvable or if the condition ∇θFB(xk)T dk ≤ −ρ‖dk‖p is
not satisfied, set dk = −∇θFB(xk).

Step 4: Find the smallest nonnegative integer ik such that with i = ik, θFB(xk + 2−idk) ≤ θFB(xk) −
γ2−i∇θFB(xk)T dk and set τ = 2−ik .

Step 5: Set xk+1 ≡ xk + τdk and k ← k + 1; go to Step 2.

aFacchinei and Pang [11]

In Algorithm 6, FFB and θFB is the same to what we define in Algorithm 4. To use Algorithm 6,
we need to transform the double-obstacle problem into a NCP. Here we can replace the max function
max(F(x),H(x)) with the FB-type function ϕ(F(x),H(x)) ≡

√
F2(x) + H2(x)+F(x)+H(x). ϕ(F(x),H(x))

pertains the sign of the max function max(F(x),H(x)) (see Appendix E). For the case when F,G are con-
tinuously differentiable, Algorithm 6 has several good convergence results, which inherits from the FB
line search algorithm. We do not repeat these results.

The double-obstacle problem min(max(F(x),H(x)),G(x)) = 0 becomes min(ϕ(F(x),H(x)),G(x)) = 0.
As we know, ϕ is not continuously differentiable at the origin. Thus the corresponding merit function
θFB is not differentiable everywhere.(see Appendix F) Consequently, Algorithm 7 does not have the
properties (a),(b),(c) and (d)(i)(ii) in Theorem 3.3. Fortunately, ϕ admits a strong Newton approximation
generated similarly by the procedure below Algorithm 5 with F and G replaced by −F and −H and θFB is
also a strong semismooth function. Due to Theorem 2.20, θFB(ϕ(F(x),H(x)),G(x)) admits a strong linear
Newton approximation. Thus, by Theorem 2.19, a local convergence result ((d)(iii) in Theorem 3.3) of
Algorithm 7 is assured. Moreover, if there exists a number k such that for any s > k, G(xs) ≥ k holds,
by the conclusion in Appendix F, we have that θFB is continuously differentiable, and thus (d)(i)(ii) in
Theorem 3.3 holds. (a),(b) and (c) in Theorem 3.3 need more condition to hold in this case.
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4.3 Numerical results

We perform the same numerical examination as in Section 3.5. For Howard’s algorithm, we have the
similar results. The number of iterations increases almost proportionally with the increase in the number
of spatial grids. With the small initial value, the number of iterations before stop are required.

The min-FB line search method has similar results to the FB line search method. It seems more stable
than the FB line search method with different initial values. All iterations with different initial values
take a reasonable small number of steps before stop. We also run the examination on the convergence
rate. From Figure 3 and Figure 4, it seems that two limits

lim
k→∞

‖xk+1 − x∞‖
‖xk+1 − x∞‖

= 0 and lim sup
k→∞

‖xk+1 − x∞‖
‖xk+1 − x∞‖2

< ∞

hold.

5 Portfolio selection problem with transaction costs

Merton initiated the study of continuous-time portfolio selection problems in Merton [16; 17]. He show
that the optimal strategy of a constant relative risk aversion (CRRA) investor is to keep a constant fraction
of total wealth in each asset and to consume at a constant rate when there is no transaction cost. Such a
strategy leads to incessant tradings, which seems impracticable in a real market with transaction costs.
A series of papers follow and study the portfolio selection problem with transaction costs, which can be
viewed as a stochastic control problem and the value function is consider as a solution of a generalized
complementarity problem with gradient constraints. Most theoretical studies of the problem focus on a
market consisting of one single risky asset and a bank account. Several numerical methods are used to
study the market with one or even two risky assets and one bank account. Davis and Norman [9] propose
a theoretical analysis for an infinite horizon investment and consumption decision with transaction costs.
Shreve and Soner [20] show that viscosity solutions of optimal trading strategies in the infinite horizon
case exist. Davis et al. [10] suggest using the binomial model to study the problem of pricing European
options with transaction costs. Using the binomial method, Dai and Yi [7] verify their analysis on the
buying and selling boundary in the optimal investment problem of a CRRA who faces the proportional
transaction costs and finite time horizon. Akian et al. [1; 2] propose an algorithm by combining the
Howard algorithm with the multigrid method to overcome the volatility brought by gradient constraints
in the finite horizontal case. Dai and Zhong [6] use penalty method and several times of changing
variables to enhance the performance of the nonsmooth Newton method.

5.1 Portfolio selection problem with transaction costs

Suppose that the market consists of one risky asset and one bank account. Their prices, denoted by S (t)
and B(t) respectively, evolve according to the following equations:

dS = αS dt + σS dW,

dB = rB dt.
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where r > 0 is the constant interest rate, α > r and σ > 0 are constant expected rate of return and
volatility of the risky asset respectively. The process {W(t) : t > 0} is the standard Brownian motions on
a filtered probability space (S ,F , {Ft}t≥0, P) with W0 = 0 almost surely. We assume that the filtration
{Ft}t≥0 is right-continuous and each Ft contains all F -nulls of F∞.

Assume that an investor hold a portfolio X(t) =
(
X0(t), X1(t)

)
where X0 and X1 are respectively the dollar

values in bank and in the risky asset at time t. In the presence of proportional transaction costs, the
equations of their values are

dX0 = rX0 dt − (1 + λ) dL + (1 − µ) dM,

dX1 = αX1 dt + σX1 dW + dL − dM.

Here, L(t) and M(t) are right-continuous, nonnegative and nondecreasing {Ft}t≥0-adapted processes with
L(0) = M(0) = 0, representing cumulative dollar values for the purpose of buying and selling the risky
asset respectively. The constant λ ∈ [0,∞) and µ ∈ [0, 1) account for proportional transaction costs
incurred on purchase and sale of the risky asset, respectively. We assume that λ + µ > 0.

Due to the existance of transaction costs, the investor’s net wealth in monetary terms is X0 + (1− µ)X+
1 −

(1 + λ)X−1 . With the requirement that the net wealth at any time always be positive, the solvency region
is

{x = (x0, x1) ∈ R2 : x0 + (1 − µ)x+
1 − (1 + λ)x−1 > 0}. (5.1)

An investment strategy (L,M) is admissible for a positive x from s ∈ [0,T ] if X(t) governed by (5.3) with
X(s) = x is in the solvency region. We denote byA(x) the set of all admissible investment strategies for
x from time s. We consider CRRA investors whose utility function takes the following form:

u(V) =

Vγ

γ , γ , 0, γ < 1;

log V, γ = 0.

Define the value function by

V(x, t) = sup
(L,M)∈A(x)

EX(t)=x
t [e−βT u(VT )].

where β > 0 is the discount rate. The value function satisfies the following HJB equation

max
(
∂V
∂t

+ AV,LV,MV
)

= 0, t ∈ [0,T )

with the terminal condition V(x,T ) = u(x0 + (1 − µ)x+
1 − (1 + λ)x−1 ), where

AV =
1
2
σ2x2

1
∂2V
∂x2

1

+ αx1
∂V
∂x1

+ rx0
∂V
∂x0
− βV,

LV = −(1 + λ)
∂V
∂x0

+
∂V
∂x1

,

MV = (1 − µ)
∂V
∂x0
−
∂V
∂x1

.
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Let
y =

x1

x0 + x1
and ϕ(y, t) = V(1 − y, y, t).

Due to the homotheticity of the utility function, we obtain that for γ , 0 and γ < 1, max
(
∂ϕ
∂t + A1ϕ,L1ϕ,M1ϕ

)
= 0,

ϕ(y,T ) =
(1−µy+−λy−)γ

γ , y ∈ Ω, t ∈ [0,T ),
(5.2)

where Ω = {y ∈ R : 1 − µy+ − λy− > 0},

A1ϕ = a
∂2ϕ

∂y2 + b
∂ϕ

∂y
− θγϕ,

L1ϕ = (1 + λy)
∂ϕ

∂y
− λγϕ,

M1ϕ = (−1 + µy)
∂ϕ

∂y
− µγϕ,

with

a =
1
2
σ2y2(1 − y)2,

b = y(1 − y)(α − r + (γ − 1)σ2y),

θ =
β

γ
−

(
r + y

(
α − r −

1 − γ
2

σ2y
))
.

For this above formulation, we have the following penalty approximation:

∂ϕ

∂t
+ A1ϕ + K

[
max(L1ϕ, 0) + max(M1ϕ, 0)

]
= 0 (5.3)

We can make the further transformation of variables. Let w(y, t) =
log(γϕ)

γ when γ < 1 and δ , 0, and

when γ = 0, let w(y, t) =
ϕ(y,t)
g(t) where g(t) = e−β(T−t). Moreover, let v = wy. Thus, we obtain for γ < 1,min

(
max

(
− vt − T v, v − λ

1+λy

)
, v +

µ
1−µy

)
= 0,

v(y,T ) = −
µ

1−µy in y ∈ [0, 1
µ ), t ∈ [0,T ).

(5.4)

where

T v =
1
2
σ2y2(1 − y)2vyy + (α − r + (γ − 1)σ2y + (1 − 2y)σ2)y(1 − y)vy

+ ((α − r)(1 − 2y) + (γ − 1)σ2y(2 − 3y))v + (α − r + (γ − 1)σ2y)

+ γσ2y(1 − y)v((1 − 2y)v + y(1 − y)vy).
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6 Numerical Methods

We present the methods targeting (5.3) and (5.4). Although (5.3) is formed by the max function, we can
easily use the relationship between the max function and the min function:

max(a, b) = −min(−a,−b), (a, b) ∈ R2,

to transform the max function into the min function. Moreover, to discretize (5.3), we only need to
modify the approximation of the derivative ∂W

∂y in (3.1) by

b
∂W
∂y

v

b
Wn

j+1−Wn
j

∆y , if b > 0

b
Wn

j−Wn
j−1

∆y , if b < 0

For other derivatives, we will use the same approximation as in (3.1). Then, we can use the nonsmooth
Newton method to calculate the solution.
For (5.4), we consider the case when γ = 0. Then the nonlinear term is eliminated. We use Howard’s
algorithm to solve (5.4).
Both methods converge in less than 10 iterations, but the solutions do not prove the conclusion on the
non-trade region in Dai and Yi [7].

Comment 6.1. There is another formulation of the portfolio selection problem with transaction costs,
provided in Akian et al. [1]. One main differences of the formulation in Akian et al. [1] comparing with
the formulation in Dai and Zhong [6] are that the variable y is nonnegative and scaled, that is, 0 ≤ y ≤ 1.
The other difference is that the boundary conditions on the bounds of y are different. In Dai and Zhong
[6] it is assumed that L1W = 0 at the lower bound of y and M1W = 0 at the upper bound of y. In Akian
et al. [1], it is assumed that max(A1W,M1W) = 0 at y = 1 and no specific condition is set at y = 0. Due
to numerical consideration, similarly, we set max(A1W,L1W) = 0 at y = 0.

We also use other methods to solve the portfolio selection problem. We can use the FB-type function
(see Appendix E) to transform the problem min(F(x),G(x),H(x)) = 0 into a nonlinear complementarity
problem. It takes a long time to run the algorithm and the results do not satisfy the conclusion on the
non-trade region in Dai and Yi [7]. Moreover, the results differs significantly when the number of grids
changes. Thus this problem is very sensitive to the error brought by the approximation scheme. To
achieve higher accuracy, better techniques in solving linear systems are required. In Akian et al. [1], the
multigrid method is introduced in solving linear systems. �

7 Conclusion

In this paper, we introduce the basic nonsmooth Newton method with several necessary concepts and
convergence theorems. Then we specify the basic nonsmooth Newton method for different complemen-
tarity problems and then explore the interconnection between different numerical methods. We see that
the concept of the linear Newton approximation scheme and the linear Newton method (Algorithm 3)
play a vital role in solving complementarity problems. If the object function G admits a (strong) linear
Newton approximation at its zero x∗, the linear Newton method generates a sequence locally converging
to x∗ Q-linearly (Q-quadratically). Moreover, there is a broad class of locally Lipschitz function, named
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semismooth functions, which take their generalized Jacobian as their linear Newton approximation nat-
urally. The class of semismooth functions is so broad that it includes all the functions, i.e, the min and
max functions and the FB-type functions. So all the algorithms in this paper are based on or equivalent
to the linear Newton method.
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A Introduction to the M-matrices5

Let Mn be the set of complex n × n matrices and Mn(R) be the set of real n × n matrices. The following
definiton gives an important class of M-matries.

Definition A.1. Let A = [ai j] ∈ Mn. The matrix A is said to be diagonally dominant if

|aii| ≥

n∑
j=1, j,i

|ai j|, for all i = 1, . . . , n

It is said to be strictly diagonally dominant if

|aii| >

n∑
j=1, j,i

|ai j|, for all i = 1, . . . , n

For the strictly diagonally dominant matrices, we have the following theorem.

Theorem A.1. Let A = [ai j] ∈ Mn be strictly diagonally dominant. Then

(a) A is invertible;

(b) If all main diagonal entries of A are positive, then all the eigenvalues of A have positive real part.

(c) If A is Hermitian and all main diagonal entries of A are positive, then all the eigenvalues of A are
real and positive.

5This is a summary of important definitions and theories in Horn and Johnson [13; 14]
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This theorem is a consequence of the Gergorin disc theorem. Moreover, the part (a) is known as the
Levy-Desplanques theorem.

To introduce the M-matrices, we start from considering the general notion of inertia for matrices in Mn

Definition A.2. If A ∈ Mn, define:

i+(A) ≡ the number of eigenvalues of A, counting multiplicities, with positive real part;

i−(A) ≡ the number of eigenvalues of A, counting multiplicities, with negative real part;

i0(A) ≡ the number of eigenvalues of A, counting multiplicities, with zero real part.

Then, i+(A) + i−(A) + i0(A) = n and the row vector

i(A) ≡ [i+(A), i−(A), i0(A)]

is called the inertia of A.

With the notion of the inertia, we give the definition of the positive stable matrix.

Definition A.3. A matrix A ∈ Mn is said to be positive stable if i(A) = [n, 0, 0], that is, if i+(A) = n.

Next we consider a class of real matrices.

Definition A.4. The set Zn ⊂ Mn(R) is defined by

Zn = {A = [ai j] ∈ Mn(R) : ai j ≤ 0 if i , j, i, j = 1, . . . , n}.

The set of M-matrices is the intersection of two sets defined above. We present the definition of the
M-matrix below.

Definition A.5. A matrix A is called an M-matrix if A ∈ Zn and A is positive stable.

The next theorem lists some equivalent formulations of the M-matrix.

Theorem A.2. If A ∈ Zn, the following statement are equivalen:

1. A is positive stable, that is, A is an M-matrix.

2. A = αI − P, P ≥ 0, α > ρ(P), where ρ(P) is the spectral radius.

3. Every real eigenvalue of A is positive.

4. A + rI is nonsingular for all t ≥ 0.

5. A + D is nonsingular for every nonnegative diagonal matrix D.

6. All principal minors of A are positive.

7. The sum of all k-by-k principal minors of A is positive for k = 1, . . . , n.
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8. The leading principal minors of A are positive.

9. A = LU, when L is lower triangular and U is upper triangular and all the diagonal entries of each
are positive.

10. For each nonzero x ∈ Rn, there is an index 1 ≤ i ≤ n such that xi(Ax)i > 0.

11. For each nonzero x ∈ Rn, there is a positive diagonal matrix D such that xT ADx > 0.

12. There is a positive vector x ∈ Rn with Ax > 0.

13. The diagonal entries of A are positive and AD is strictly row diagonally dominant for some positive
diagonal matrix D.

14. The diagonal entries of A are positive and D−1AD is strictly row diagonally dominant for some
positive diagonal matrix D.

15. The diagonal entries of A are positive and there exist positive diagonal matrices D, E such that
DAE is both strictly diagonally dominant.

16. There is a positive diagonal matrix D such that DA + AT D is positive definite.

17. A is nonsingular and A−1 ≥ 0.

18. Ax ≥ 0 implies x ≥ 0.

B Proof of Proposition 3.1

We notice that when k ≥ 1, Bkxk − ck ≤ 0 = Bkxk+1 − ck. Thus, Bk(xk+1 − xk) ≥ 0. This implies that
xk+1 ≥ xk. Part (a) is proved.

To prove (b), let G(x) ≡ min(A1x − b1, A2x − b2). As we mentioned in Section 2, we can view G(x) as
a PC1 function with pieces {G1, . . . ,G2n

}. When k ≥ 1, there exists a number i ∈ {1, . . . , 2n} such that
Gi(xk) = 0. Since each equation Gi = 0 has a unique solution, combining the monotonicity of {xk}, {xk}

is bounded and thus {xk} is convergent. That is, there exists x∗ such that {xk} converges to x∗ pointwisely.

The value set {x ∈ Rm : ∃k ≥ 0, x = xk} is finite and {xk} is monotone. Thus {xk} is finite. Suppose that
Howard’s algorithm (Algorithm 3) stops at xK and G(xK) , 0. Let us consider the function

H(x) =


(A1

1·x − b1
1) × (A2

1·x − b2
1)

...

(A1
m·x − b1

m) × (A2
m·x − b2

m)

 .
H is obviously continuous and for k ≥ 1, we have H(xk) = 0. Thus, H(xK) = 0. Then G(xK) ≤
0. By Howard’s algorithm (Algorithm 3), we can generate xK+1 ≥ xK . Moreover, xK+1 , xK . This
is a contradiction to the assumption that Howard’s algorithm (Algorithm 3) stops at xK . Due to this
contradiction, we have G(xK) = 0. Part(c) is proved. �
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C The convergence result of Howard’s algorithm

As we metioned before, in the finite dimensional case, the finite termination property is ascertained. In
this appendix, we study the convergence rate of Howard’s algorithm in the infinite dimensional case.
Bokanowski et al. [5] establish the superlinear convergence of Howard’s algorithm. We first introduce
the notations and assumptions in Bokanowski et al. [5]. Then, some necessary assumptions are added
and then the quadratic convergence is gained. Let X denote the infinite dimensional vector space RN∗ .
We define the set of matricesM asM ≡ RN∗×N∗ . The notation of the index set I ≡ N∗. We fix two real
numbers p, q ∈ [1,∞] such that 1

p + 1
q = 1, and the following norms are used:

• For x ∈ X, ‖x‖p ≡
(∑

i∈I|xi|
p
) 1

p if p < ∞ and ‖x‖∞ ≡ supi∈I|xi|.

• For A ∈ M, we denote

‖A‖q,∞ ≡ max
i∈I

(∑
j∈I
|Ai j|

q
) 1

q
(if q < ∞).

We also denote
`p ≡ {x ∈ X : ‖x‖p < ∞}

and
Mq,∞ ≡ {A ∈ M : ‖A‖q,∞ < ∞}.

We consider the problem to find x ∈ X such that

G(x) ≡ min(A1x − b1, A2x − b2) = 0,

where A1, A2 ∈ Mq,∞ and b1, b2 ∈ `
∞. G(x) can also be considered as a composition of smooth functions

Hx − b, where H is a composition of rows of A1 and A2 and b is a composition of rows of b1 and b2. We
define the set of matrices H as H ≡ {H ∈ Mq,∞ : Hi· = A1

i· or A2
i·, i ∈ I} and B as B ≡ {b ∈ `∞ : bi =

b1
i or b2

i , i ∈ I}. Two assumptions on H ∈ H and b ∈ B is given in Bokanowski et al. [5]:

(A1) For any H ∈ H , H is monotone, that is, for any x ∈ X, Ax ≥ 0 implies x ≥ 0. There exists C ≥ 0
such that for any H ∈ H and y ∈ `∞, there exists x ∈ `p such that Hx = y and ‖x‖p ≤ C‖y‖∞

(A2) εH
J ≡ supH∈H maxi≥1

(∑
| j−i|≥J |Hi j|

q
) 1

q J→+∞
−−−−−→ 0, if q < ∞;

or εH
J ≡ supH∈H maxi≥1,| j−i|≥J |Hi j|

J→+∞
−−−−−→ 0, if q = ∞.

With these assumptions, Bokanowski et al. [5] show that the sequence {xk} generated by Howard’s algo-
rithm is monotone and converges to a unique x∗ in `p which satisfies G(x∗) = 0. Moreover, x∗ is a regular
point of the function G, that is, JG(x∗) satisfies the following condition: for any i ∈ I,

JGi·(x∗) =


A1

i·, if A1
i·x
∗ − b1

i < A2
i·x
∗ − b2

i ;
A1

i· or A2
i·, if A1

i·x
∗ − b1

i = A2
i·x
∗ − b2

i ;
A2

i·, if A2
i·x
∗ − b1

i < A1
i·x
∗ − b2

i .

(C.1)
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We notice such JG(x∗) is not unique, and thus we define the setH∗ by

H∗ ≡ {H ∈ RN∗×N∗ : H satisfies the condition (C.1)}.

For the sequence {xk}, we define that dk ≡ xk+1 − xk and ek ≡ xk − x∗. Then, dk ≡ ek+1 − ek. Let Hk be
the matrix we obtain at xk in Howard’s algorithm. The following lemma is an alterative experession of
Lemma 3.2 in Bokanowski et al. [5] and a different proof is given.

Lemma C.1. For any i ∈ I, the limit

lim
k→∞

inf
H∗∈H∗

‖Hk
i· − Hi·‖q = 0

holds.

Proof. For any i ∈ I, if A1
i·x
∗ − b1

i = A2
i·x
∗ − b2

i , the limit holds trivially. Thus, we only consider the case
when A1

i·x
∗ − b1

i , A2
i·x
∗ − b2

i . Without loss of generality, we assume that A1
i·x
∗ − b1

i < A2
i·x
∗ − b2

i . Due
to the continuity of A1

i·x − b1
i and A2

i·x − b2
i , we can find a positive number δ such that any point x in the

neighborhood of x∗, defined by B(x∗, δ) ≡ {x ∈ RN∗ : ‖x − x∗‖p < δ}, satisfies that A1
i·x − b1

i < A2
i·x − b2

i .
Thus as k → ∞, xk+1 falls into the neighborhood B(x∗, δ) and Hk = A1

i·. �

The above lemma is sufficient to show that the sequence {xk} is superlinearly convergent in the finite
dimensional case. In the infinite dimesional case, the componentwise convergence of a sequence of
vectors is not sufficient to show the convergence of the sequence of vector. So an convergent assumption
on the matrix sequence {Hk} is necessary. We give the assumption below.

(A3) Assume that (A1) and (A2) hold. For the sequence {Hk}, the limit

lim
k→∞

inf
H∈H∗

‖Hk − H‖q,∞ = 0

holds.

The following proposition presents the superlinear convergence result of Howard’s algorithm.

Propositon C.2. Assume that (A1),(A2) and (A3) hold. The sequence {xk} generated by Howard’s al-
gorithm is superlinearly convergent in the infinite dimensional case if Howard’s algorithm is not finite
terminated.

Proof. For any H ∈ H∗, due to the definition of G, we have the following inequality:

G(x∗) + Hkek ≤ G(xk) ≤ G(x∗) + Hek.

Thus we have
0 ≤ G(xk) −G(x∗) − Hkek ≤ (H − Hk)ek

Then due to the definition of ‖·‖∞ and Hölder’s inequality, we obtain

0 ≤ ‖G(xk) −G(x∗) − Hkek‖∞ ≤ ‖(H − Hk)ek‖∞ ≤ ‖H − Hk‖q,∞‖ek‖p.
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Since H is arbitrary, we have

0 ≤ ‖G(xk) −G(x∗) − Hkek‖∞ ≤ inf
H∈H∗

‖H − Hk‖q,∞‖ek‖p.

With the notations of ek and dk, we have

G(x∗) = [G(xk) + Hkdk] − [G(xk) −G(x∗) − Hkek] − Hkek+1. (C.2)

Taking G(x∗) = 0 into (C.2), we have

Hkek+1 = [G(xk) + Hkdk] − [G(xk) −G(x∗) − Hkek]. (C.3)

By (A1), we have

‖ek+1‖p ≤ C
(
‖G(xk)+Hkdk‖∞+‖G(xk)−G(x∗)−Hkek‖∞

)
≤ C

(
‖G(xk)+Hkdk‖∞+ inf

H∈H∗
‖H−Hk‖q,∞‖ek‖p

)
.

(C.4)
Since the sequence {xk} is monotone and Howard’s algorithm is not finite terminated, we have ‖ek‖ , 0.
We divide both sides of (C.4) by ‖ek‖. Then we have

‖ek+1‖p

‖ek‖p
≤ C

(‖G(xk) + Hkdk‖∞

‖ek‖p
+ inf

H∈H∗
‖H − Hk‖q,∞

)
. (C.5)

Due to the description of Howard’s algorithm, we have ‖G(xk) + Hkdk‖∞ = 0 for all k ≥ 1. Combining
with (A3), we have

lim
k→∞

‖ek+1‖p

‖ek‖p
= 0

So we show that the sequence {xk} is superlinear convergent. �

If the following assumption on the matrices A1 and A2 is satisfied, we can prove that Howard’s algorithm
is finite terminated.

(A4) There exists a positive real number δ0 such that for any i ∈ I, if A1
i· , A2

i·, we have ‖A1
i· − A2

i·‖q > δ0.

Propositon C.3. Assume (A1), (A2), (A3) and (A4) hold. There exists a number K such that for any
k > K, xk = x∗.

Proof. We notice that due to the description of Howard’s algorithm, we have ‖G(xk) + Hkdk‖∞ = 0
for all k ≥ 1. Moreover, by (A3), we have there exists a number K such that for any number k ≥ K,
infH∈H∗‖H −Hk‖q,∞ < δ0. For any two matrices H1,H2 ∈ H , we have if H1 , H2, ‖H1 −H2‖q,∞ > δ0 by
(A4). Thus we have there exists a number K such that for any number k > K, infH∈H∗‖H − Hk‖q,∞ = 0.
Then by (C.4), we obtain that ‖ek+1‖ = 0 for all k > K. So xk = x∗ for all k > K. �
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D Proof of Proposition 4.1

To prove this proposition, the key is to prove that {xk} is monotone, that is, xk+1 ≥ xk for all k ≥ 1. We
are going to find a monotone matrix A such that A(xk+1 − xk) ≥ 0.

Suppose i ∈ {1, . . . , n} and k ≥ 1. If A3
i·x

k+1 − b3
i = 0, we have A3

i·x
k+1 − b3

i ≥ A3
i·x

k − b3
i . We choose

Ai· = A3
i·. If max(A1

i·x
k+1 − b1

i , A
1
i·x

k+1 − b2
i ) = 0 < A3

i·x
k+1 − b3

i , then according to the definition of Bk

in each iterate, we have max(A1
i·x

k − b1
i , A

1
i·x

k − b2
i ) ≤ 0. Suppose max(A1

i·x
k − b1

i , A
1
i·x

k − b2
i ) < 0. If

A1
i·x

k+1 − b1
i = 0, we choose Ai· = A1

i·. Otherwise, we choose Ai· = A2
i·.

Suppose max(A1
i·x

k − b1
i , A

1
i·x

k − b2
i ) = 0. If max(A1

i·x
k+1 − b1

i , A
1
i·x

k+1 − b2
i ) = 0, then we divide it into two

cases:

(a) if 0 = A1
i·x

k−b1
i ≥ A2

i·x
k−b2

i (A1
i·x

k−b1
i < A2

i·x
k−b2

i = 0) and 0 = A1
i·x

k+1−b1
i ≥ A2

i·x
k+1−b2

i (A1
i·x

k+1−

b1
i < A2

i·x
k+1 − b2

i = 0), we simply choose Ai· = A1
i·(Ai· = A2

i·).

(b) if 0 = A1
i·x

k−b1
i ≥ A2

i·x
k−b2

i (A1
i·x

k−b1
i < A2

i·x
k−b2

i = 0) and 0 = A1
i·x

k+1−b1
i ≤ A2

i·x
k+1−b2

i (A1
i·x

k+1−

b1
i > A2

i·x
k+1 − b2

i = 0), we simply choose Ai· = A2
i·(Ai· = A1

i·).

The matrix A we construct is monotone since A1, A2 and A2 are strongly row diagonal dominant M-
matrices. Moreover, A(xk+1− xk) ≥ 0. Thus, we prove that xk+1 ≥ xk for all k ≥ 1. As the proof in B, part
(b) and (c) is a consequence of the monotonicity and the fact that min(max(A1

i·x
k−b1

i , A
1
i·x

k−b2
i ), A3

i·x
k−b3

i )
is a PC1 function with 3n pieces. �

E Two FB-type functions

Propositon E.1. Let (a, b) ∈ R2. Two FB-type functions are defined as follows:

F(a, b) = a + b −
√

a2 + b2; (E.1)

F(a, b) = a + b +
√

a2 + b2; (E.2)

F and G are equivalent to the min and max functions in the sense that

min(a, b) ≥ 0⇔ F(a, b) ≥ 0; min(a, b) < 0⇔ F(a, b) < 0; (E.3)

max(a, b) ≥ 0⇔ G(a, b) ≥ 0; max(a, b) < 0⇔ G(a, b) < 0; (E.4)

Proof. We only need to show that (C.3) holds, since max(a, b) = −min(−a,−b) and G(a, b) = −F(−a,−b).

Suppose min(a, b) > 0. Then a > 0 and b > 0. Since (a + b)2 − (a2 + b2) = (a + b −
√

a2 + b2)(a + b +√
a2 + b2) = 2ab > 0 and (a + b +

√
a2 + b2) > 0, we have F(a, b) = a + b −

√
a2 + b2 > 0.

Suppose min(a, b) < 0. Then at least one of a and b is negative. Pick a < 0. If b < 0, it is trivial that
F(a, b) < 0. If b ≥ 0, then b <

√
a2 + b2. We obtain F(a, b) = a + (b −

√
a2 + b2) < 0.
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Suppose min(a, b) = 0. If a = 0, then b ≥ 0. F(a, b) = b−
√

b2 = 0. It is similar for the case when b = 0.

Suppose F(a, b) > 0. a + b >
√

a2 + b2 ≥ 0. Then ab > 0.Thus a > 0 and b > 0. So min(a, b) > 0.

Suppose F(a, b) = 0. ab = 0. If a = 0, then b =
√

b2 ≥ 0. It is similar for the case when b = 0. So
min(a, b) = 0.

Suppose F(a, b) < 0. There must exist a or b is negative. If not, F(a, b) ≥ 0 according to the previous
analysis. This is a contradiction. So we have min(a, b) < 0. �

F Differentiability of the merit function θ

The key problem is to show that the merit function θ : R3 → R is continuously differentiable. Define θ
by

θ(a, b, c) =

(√
ϕ2(a, b) + c2 − c − ϕ(a, b)

)2

where ϕ(a, b) =
√

a2 + b2 + a + b. It easy to see that ϕ(−a,−b) is a FB function. Thus, as we explain
befog, ϕ2 is continuously differential everywhere and ∇ϕ2(0, 0) = (0, 0). It is trivial that θ is continuously
differentiable everywhere except the line a = b = 0. Obviously,

θ(a, b, c) = 2ϕ2(a, b) + 2c2 + 2ϕ(a, b)c − 2(c + ϕ(a, b))
√
ϕ2(a, b) + c2.

Thus since ϕ(a, b)2 + c2 is continuously differentiable, we only need to show that ψ(a, b, c) ≡ ϕ(a, b)c −
(c + ϕ(a, b))

√
ϕ2(a, b) + c2 is continuously differentiable.

Now we consider the origin (a, b, c) = (0, 0, 0). Let the direction d = (h cos β sinα, h sin β sinα, h cosα),
where h > 0, β ∈ [0, 2π) and α ∈ [0, π). Thus,

ψ(d) − ψ(0, 0, 0)
h

=
ψ(d)

h

=
h2 sinα cosα(1 + sin β + cos β)

h

−
h2(sinα + sinα sin β + sinα cos θ + cosα)

√
(sinα + sinα sin β + sinα cos β)2 + cos2 α

h
= h sinα cosα(1 + sin β + cos β)

− h(sinα + sinα sin β + sinα cos β + cosα)
√

(sinα + sinα sin β + sinα cos β)2 + cos2 α.

As h→ 0, we have ψ(d)−ψ(0,0,0)
h → 0. Now we are going to prove the differentiability of θ when a = b = 0

and c , 0. Let the direction d = (da, db, dc). Since

|ψ(da, db, c + dc) − ψ(0, 0, c)| ≤ |ψ(da, db, c + dc) − ψ(da, db, c)| + |ψ(da, db, c) − ψ(0, 0, c)|

and
lim
‖d‖→0

|ψ(da, db, c + dc) − ψ(da, db, c)|
‖d‖

= 0,
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we only need to consider the limit of

ψ(da, db, c) − ψ(0, 0, c)√
d2

a + d2
b

Assume the direction is d = (h sin β, h cos β, 0), where h > 0 and β ∈ [0, 2π). We notice that

ψ(ϕ, c) = ϕc − (c + ϕ)
√
ϕ2 + c2

= −c
√
ϕ2 + c2 + ϕ

(
c −

√
ϕ2 + c2

)

If c > 0, we have −c
√
ϕ2 + c2 is differentiable due to the differentiability of ϕ2 and

ϕ(c −
√
ϕ2 + c2) =

ϕ3

c +
√
ϕ2 + c2

is differentiable since
ϕ′(a, b)

c +
√
ϕ2(a, b) + c2

is bounded when (a, b) → (0, 0) and ϕ2 is differentiable. So θ is continuously differentiable everywhere
except the half line {(a, b, c) ∈ R3 : a = b = 0, c < 0}.
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Initial values U0 −101101×1 501101×1 1001101×1 2001101×1

Number of iterations 11 3 12 12 12

Table 1: Numbers of iterations comparing with initial values using Howard’s algorithm. The parameter
values used in calculation are: K = 100;σ = 1, r = 0.1,T = 1, S max = 400,Ns = 100,Nt = 20.

Numbers of spatial grids(Ns) 50 100 200 300 400
Number of iterations 6 11 21 32 42

Table 2: Numbers of iterations comparing with Numbers of spatial grids using Howard’s algorithm. The
parameter values used in calculation are: K = 100;σ = 1, r = 0.1,T = 1, S max = 400,Nt = 20 and the
initial value U0.

Initial values U0 −101101×1 501101×1 1001101×1 10001101×1

Number of iterations 3 3 3 3 2

Table 3: Numbers of iterations comparing with initial values using the penalty method. The parameter
values used in calculation are: K = 100;σ = 1, r = 0.1,T = 1, S max = 400,Ns = 100,Nt = 20, ρ =

10000000.
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Numbers of spatial grids(Ns) 50 100 200 300 400
Number of iterations 3 3 3 3 3

Table 4: Numbers of iterations comparing with Numbers of spatial grids using the penalty method. The
parameter values used in calculation are: K = 100;σ = 1, r = 0.1,T = 1, S max = 400,Nt = 20, ρ =

10000000 and the initial value U0.

Initial values U0 0101×1 101101×1 1001101×1 −101101×1

Number of iterations 14 11 8 > 2000 > 2000

Table 5: Numbers of iterations comparing with initial values using the FB line search algorithm. The
parameter values used in calculation are: K = 100;σ = 1, r = 0.1,T = 1, S max = 400,Ns = 100,Nt =

20, ρ = 10000000.

Numbers of spatial grids(Ns) 50 100 200 300 400
Number of iterations 32361 14 24 34 44

Table 6: Numbers of iterations comparing with Numbers of spatial grids using the FB line search algo-
rithm. The parameter values used in calculation are: K = 100;σ = 1, r = 0.1,T = 1, S max = 400,Nt =

20 and the initial value U0.

Initial values U0 −1001101×1 0101×1 1001101×1 10001101×1

Number of iterations 14 6 6 16 16

Table 7: Numbers of iterations comparing with initial values using Howard’s method. The parameter
values used in calculation are: K = 100, r = 0.02, q = 0.04, σ = 0.3,T = 2,R = 30, S max = 200,Nt =

20,Ns = 100, ρ = 10000.

Numbers of spatial grids(Ns) 50 100 200 300 400
Number of iterations 7 14 26 39 51

Table 8: Numbers of iterations comparing with Numbers of spatial grids using Howard’s algorithm. The
parameter values used in calculation are: K = 100, r = 0.02, q = 0.04, σ = 0.3,T = 2,R = 30, S max =

200,Nt = 20, ρ = 10000 and the initial value U0.

Initial values U0 −101101×1 0101×1 501101×1 1001101×1 2001101×1

Number of iterations 12 13 12 44 14 14

Table 9: Numbers of iterations comparing with initial values using min-FB line search algorithm. The
parameter values used in calculation are: K = 100, r = 0.02, q = 0.04, σ = 0.3,T = 2,R = 30, S max =

200,Nt = 20,Ns = 100, ρ = 10000.

Numbers of spatial grids(Ns) 50 100 200
Number of iterations 7 12 21

Table 10: Numbers of iterations comparing with Numbers of spatial grids using min-FB line search
algorithm. The parameter values used in calculation are: K = 100, r = 0.02, q = 0.04, σ = 0.3,T =

2,R = 30, S max = 200,Nt = 20, ρ = 10000 and the initial value U0.
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Figure 1: Plot of the values ‖x
k+1−x∞‖
‖xk−x∞‖ The parameters used in the calculation are: K = 100;σ = 1, r =

0.1,T = 1, S max = 400,Ns = 200,Nt = 20.
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Figure 2: Plot of the values ‖x
k+1−x∞‖
‖xk−x∞‖2n The parameters used in the calculation are: K = 100;σ = 1, r =

0.1,T = 1, S max = 400,Ns = 200,Nt = 20.
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Figure 3: Plot of the values ‖x
k+1−x∞‖
‖xk−x∞‖ The parameters used in the calculation are: K = 100, r = 0.02, q =

0.04, σ = 0.3,T = 2,R = 30, S max = 200,Nt = 20,Ns = 200, ρ = 10000
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Figure 4: Plot of the values ‖x
k+1−x∞‖
‖xk−x∞‖2 The parameters used in the calculation are: K = 100, r = 0.02, q =

0.04, σ = 0.3,T = 2,R = 30, S max = 200,Nt = 20,Ns = 200, ρ = 10000
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