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Abstract

Estimation of Value-at-Risk and expected shortfall using standard Monte
Carlo can result in high computational cost. We make a review of impor-
tance sampling, a common method to make estimations more efficient. A
“direct” approach to compute risk measures from simulations drawn from an
importance sampling density is described in detail. We explain how to select
an efficient importance sampling distribution for loss probability estimations
in the case of normally distributed risk factor changes. Some algorithms
for efficient risk measure computations are presented explicitly. By consid-
ering numerical examples, we analyze the effect of regularly updating the
importance sampling density during the simulation process.



1 Introduction

For a holder of a financial portfolio it is important to estimate the risk of
his position. To quantify risk, or uncertainty, we use so-called risk measures.
Let us assume the following situation to be able to clearly define the two
most frequently used risk measures, Value-at-Risk and expected shortfall.
We want to study the loss L = −(Vt − V0) of a given portfolio during a time
period of length t. V0 and Vt are supposed to be the initial portfolio value
and the portfolio value after time period t, respectively. Positive values of L
correspond to losses whereas negative values of L are considered to be gains.
Let FL be the distribution function of L. Let us now define Value-at-Risk.

Definition 1.0.1 Value-at-Risk (VaR) at level α ∈ (0, 1) of our portfolio is
defined by

VaRα = min{m : P (L ≤ m) ≥ 1− α},
that is, the smallest value m such that the probability of the portfolio loss
L = −(Vt − V0) being at most m is at least 1− α.

Remark 1.0.2 In general VaRα of a portfolio is referred to as the smallest
amount of money that, if added to the portfolio at time 0 and invested in
a risk-free asset, ensures that the probability of a strictly negative final net
worth at time t is not greater than α. In other words, VaRα corresponds in
general to the smallest value m such that the probability of the discounted
portfolio loss L = −(V1 · e−rt − V0) being at most m is at least 1− α, where
e−rt is the discount factor corresponding to the continuously compounded
risk-free interest rate r. In Definition 1.0.1 we consider a simplified version
of VaR, based on the portfolio loss instead of the discounted portfolio loss.
This allows us to keep things simpler and for small holding periods t there is
no big difference in the results.

Since min{m : P (L ≤ m) ≥ 1−α} = min{m : FL(m) ≥ 1−α} = F−1
L (1−α),

we can rewrite VaRα of our portfolio as

VaRα = F−1
L (1− α). (1)

That is, VaR can be interpreted as a quantile of the loss distribution. The
most common values for the parameter α are 1% and 5%, corresponding to
the 99% and the 95% quantile of the loss distribution function FL. VaR is
the most frequently used risk measure, but it has some drawbacks. Value-at-
Risk is not subadditive, that is, it does not reward diversification. A second
limitation is that there is no information about how big losses may be in case
the threshold VaRα is exceeded. Let us now define expected shortfall, which
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does not have these shortcomings. We consider the same portfolio as for the
definition of VaR.

Definition 1.0.3 Expected shortfall (ES) at level α ∈ (0, 1) is the average
Value-at-Risk for levels p ≤ α, that is

ESα =
1

α

α∫

0

VaRp dp.

By (1) follows that, for an investment period from 0 to t, expected shortfall
for a financial portfolio can be written as

ESα =
1

α

α∫

0

F−1
L (1− p)dp =

1

α

1∫

1−α

F−1
L (p)dp. (2)

Exact formulas for VaR and ES are not available in most models. That is why
usually Monte Carlo simulation is used to compute risk measure estimations.

Using standard Monte Carlo to estimate loss probabilities P (L > x) for
large loss thresholds x can be very inefficient. The same applies to extreme
quantiles. The Monte Carlo estimate for p = P (L > x) is given by

p̂ =
1

N

N∑

i=1

I{Li > x},

where L1, L2, . . . , LN are considered to be N portfolio loss simulations. For
large values of x, a lot of simulations are needed to get accurate estimations,
because I{Li > x} = 0 in most of the cases. Hence, standard Monte Carlo
may result in a lot of computational effort, especially for heavy tailed loss
distributions. Another way of showing how inefficient standard Monte Carlo
can be is to have a look at

std(p̂) =
1√
N

·
√
p(1− p)

(for p small)≈
√
p√
N
,

the standard deviation of the above estimator. To avoid too much variation
in the sample, std(p̂) ≈ p should be satisfied and hence N ≈ 1

p
. This can

result in a huge number of simulations and an inefficient estimator. We
would like to make sampling more efficient. This can be done by importance
sampling (IS), which is a variance reduction technique and hence reduces the
required number of simulations.

This thesis is organized as follows. In Section 2 we review the theory on
importance sampling and introduce the notion of exponential twisting. In
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Section 3 we describe a “direct” approach to estimate risk measures using
Monte Carlo simulation and importance sampling. In Section 4 we show how
to use first and second order Taylor approximations of L to make loss prob-
ability estimations more efficient through importance sampling. We restrict
ourselves to the light tailed case. In Section 5 some algorithms for efficient
VaR and ES estimations are introduced. Finally, in Section 6 we apply the
algorithms to specific portfolios and compare their performances.

2 Importance sampling

2.1 Principles of importance sampling

In [Glasserman 2003] the theoretical background of importance sampling has
been well presented. Here we recall the main points and try to further il-
lustrate them. Let X be an R

d-valued random variable with probability
density f . h is supposed to be a function from R

d to R. We want to estimate
α = E[h(X)] =

∫
h(x)f(x)dx. The standard Monte Carlo estimator is given

by

α̂ =
1

N

N∑

i=1

h(Xi), (3)

where X1, X2, . . . , XN are N independent simulations drawn from f . As al-
ready mentioned in the introduction, this estimator can be very inefficient.
Let us try to increase sampling efficiency by giving more weight to “impor-
tant” outcomes, using a change of measure. For instance, large losses are
considered to be “important” for estimating extreme loss probabilities. In-
stead of using f for simulating, we will now draw X1, X2, . . . , XN from g,
a new probability density on R

d, called importance sampling density. The
density g has to satisfy

f(x) > 0 ⇒ g(x) > 0 ∀x ∈ R
d.

Of course we cannot simply apply (3) to the new Xi to estimate α, since this
would lead to a biased estimator. Instead we use

α̂g =
1

N

N∑

i=1

h(Xi)
f(Xi)

g(Xi)
(4)

as the importance sampling estimator associated with g. For each Xi we use
f(Xi)/g(Xi), the likelihood ratio or Radon-Nikodym derivative, for compen-
sation. Since

Ẽ[α̂g] = Ẽ

[
h(Xi)

f(Xi)

g(Xi)

]
=

∫
h(X)

f(X)

g(X)
g(X)dx =

∫
h(X)f(X)dx = α,
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we can conclude that α̂g is an unbiased estimator of α. Ẽ[·] denotes expec-
tation when g has been used for sampling.

Remark 2.1.1 We will see later that, instead of using the same importance
sampling density for all the simulations, it may be reasonable to use gi to
draw Xi, for i = 1, 2, . . . , N . Let us therefore mention at this stage that

α̂g1,g2,...,gN =
1

N

N∑

i=1

h(Xi)
f(Xi)

gi(Xi)
(5)

is also an unbiased estimator for α. Using α̂g1,g2,...,gN as an estimator offers
the possibility to update the importance sampling density during the process
of simulating X1, X2, . . . , XN .

The goal of importance sampling is variance reduction of the estimator
α̂. Since

E[α̂] = Ẽ[α̂g] = α,

a comparison of variances with and without importance sampling can be
done by comparing second moments of α̂g and α̂. The second moment of α̂g
is given by

Ẽ
[
α̂2
g

]
= Ẽ

[(
h(X)

f(X)

g(X)

)2
]
= E

[
h(X)2

f(X)

g(X)

]

and will be compared to

E
[
α̂2
]
= E

[
h(X)2

]
.

Depending on how g has been chosen, the variance of α̂g may become much
larger or much smaller than the variance of α̂. That is, the success of im-
portance sampling directly depends on the choice of the density g. But how
should g be chosen?

If, as in this thesis, we want to estimate probabilities, h is an indica-
tor function and hence is nonnegative. That is, without any restriction we
can now consider the special case in which h ≥ 0 ∀x ∈ R

d. In this case
h(x)f(x) ≥ 0 ∀x ∈ R

d and we may therefore normalize h(x)f(x) to a prob-
ability density. Let g be this density. Then h(X)f(X)/g(X) is constant,
resulting in a perfect estimator α̂g with zero variance. This special case is of
course not applicable in practice, because for the normalization of the prod-
uct h(x)f(x) we need to divide it by α itself, which is generally unknown.
But at least we can use this information to get some guidance in choosing
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an effective g. The above special case tells us that we should always try to
sample in proportion of the product h · f .

It is worth noting that, although

Ẽ

[
f(Xi)

g(Xi)

]
= Ẽ

[
f(X)

g(X)

]
=

∫
f(X)dx = 1

regardless of the value of Xi, likelihood ratios can take huge values with small
but non-negligible probability. This in turn can lead to a large increase in
variance if g is not chosen carefully.

2.2 Exponential change of measure

Now we introduce so-called exponential changes of measure. These are
very convenient measure transformations that are often used for impor-
tance sampling. We roughly stick to the information that can be found
in [Glasserman 2003]. Let F be a cumulative distribution function on R.

Definition 2.2.1 The moment generating function of F is defined by

M(θ) =

∞∫

−∞

eθxdF (x).

Definition 2.2.2 The cumulant generating function of F is defined by

ψ(θ) = log

∞∫

−∞

eθxdF (x),

the logarithm of the moment generating function of F .

Set Θ = {θ : ψ(θ) < ∞} and suppose that Θ is nonempty. For each θ ∈ Θ,
let us define

Fθ(x) =

x∫

−∞

eθu−ψ(θ)dF (u).

Each Fθ is a probability distribution, and {Fθ, θ ∈ Θ} form an exponential
family of distributions. A transformation from F to Fθ is called exponential
change of measure, exponential tilting or exponential twisting. The density
of Fθ is given by

fθ(x) = eθx−ψ(θ)f(x),

where f is supposed to be the density of F .
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Let X have initial distribution function F = F0. If we apply an ex-
ponential change of measure such that X has the new distribution Fθ, the
corresponding likelihood ratio is given by

dF0(X)

dFθ(X)
= exp(−θX + ψ(θ)).

Note that the cumulant generating function ψ contains important infor-
mation about the distributions Fθ. For example, ψ′(θ) is the mean of Fθ and
ψ′′(θ) is the variance of Fθ.

Exponential twisting can be applied to every distribution for which a
cumulant generating function is defined. Let us for example consider the
normal distribution.

Example 2.2.3 The cumulant generating function of the standard normal
distribution is given by ψ(θ) = θ2/2 and since

eθx−ψ(θ) · φ(0,1) = φ(θ,1) ∀x ∈ R, ∀θ ∈ R,

applying an exponential change of measure to N (0, 1) corresponds to a
change of mean from 0 to θ. Here φ(0,1) and φ(θ,1) denote the densities of
the normal distributions N (0, 1) and N (θ, 1), respectively.

If the cumulant generating function of a distribution is not defined, we cannot
apply exponential twisting. This is the case for heavy tailed distributions, as
for example the t distribution.

To complete this section let us have a look at the following special setting,
particularly frequent for option pricing applications. Think of X as a discrete
path of underlying assets, built from k primitive elements. Consider S(ti),
i = 0, 1, . . . , k, to be such a path and suppose it is Markov. Let the path be
defined by a recursion of the form

S(ti+1) = G(S(ti), Xi+1),

driven by i.i.d. random vectors X1, X2, . . . , Xk, drawn from f . Applying a
change of measure that changes the common distribution of X1, X2, . . . , Xk

to g while preserving their independence leads to a likelihood ratio given by

k∏

i=1

f(Xi)

g(Xi)
.

In the case of an exponential change of measure the likelihood ratio is

k∏

i=1

dF0(Xi)

dFθ(Xi)
= exp

(
−θ

k∑

i=1

Xi + kψ(θ)

)
,
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where F0 is the initial and Fθ the new common distribution ofX1, X2, . . . , Xk.
For a general change of measure the likelihood ratio is a function of all
the X1, X2, . . . , Xk. The special feature of exponential twisting is that the
ratio reduces to a function of the sum

∑k
i=1Xi. This setting can again be

illustrated using the normal distribution.

Example 2.2.4 Suppose that we want to simulate Brownian motion on a
grid 0 = t0 < t1 < . . . < tk. Let us set

W (tl) =
l∑

i=1

√
ti − ti−1Xi, for l = 1, 2, . . . , k,

where X1, X2, . . . , Xk are i.i.d. random variables initially drawn from φ(0,1),
the univariate standard normal density. Let φ(θ,1) denote the density of
N (θ, 1). If we apply a change of measure such that X1, X2, . . . , Xk are i.i.d.,
now drawn from φ(θ,1), the corresponding likelihood ratio is

k∏

i=1

φ(0,1)(Xi)

φ(θ,1)(Xi)
= exp

(
−θ

k∑

i=1

Xi +
k

2
θ2

)
= exp

(
−θ

k∑

i=1

Xi + kψ(θ)

)
.

This change of measure adds mean θ
√
ti − ti−1 to the Brownian increment

over [ti−1, ti].

3 Estimating risk measures via Monte Carlo

3.1 Preliminary assumptions

In this section we will describe how to use Monte Carlo methods to estimate
loss quantiles or, more specifically, Value-at-Risk and expected shortfall of a
financial portfolio. We will treat both, the standard Monte Carlo and the
importance sampling case.

Let us make the following model assumptions, identical to those made in
[Glasserman et al. 1999]. As already mentioned in the introduction, we want
to study L = −(Vt−V0), the loss of a given portfolio during a time period of
length t. V0 and Vt are again considered to be the initial portfolio value and
the portfolio value at time t, respectively. We assume that the portfolio value
directly depends on m risk factors. Let S(0) = (S1(0), S2(0), . . . , Sm(0)) and
S(t) = (S1(t), S2(t), . . . , Sm(t)) denote the values of these factors at time 0
and t, respectively. S(0) is supposed to be known, whereas S(t) is unknown.
We define ∆S := [S(t) − S(0)]⊤ to be the change in risk factors during the
time interval [0, t]. The distribution of ∆S is the most important component
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of the model assumptions. Let f be the joint density of ∆S. Suppose that
the loss L can be computed by applying some deterministic function on ∆S.
Based on loss simulations, we want to get useful information about FL, the
unknown distribution function of L.

3.2 Standard Monte Carlo

3.2.1 Estimation of loss probabilities

Using f , we generate N simulations ∆S1,∆S2, . . . ,∆SN of changes in risk
factors and compute the respective losses L1, L2, . . . , LN . The simulated
losses are supposed to have common distribution function FL. As already
mentioned in the introduction, the Monte Carlo estimation of P (L > x) for
a fixed loss threshold x is then given by

P̂ (L > x) =
1

N

N∑

i=1

I{Li > x}. (6)

Accordingly, the empirical distribution function of L is

F̂L(x) =
1

N

N∑

i=1

I{Li ≤ x}.

F̂L can be used to estimate the loss distribution function FL, defined by
FL(x) := P (L ≤ x).

3.2.2 Estimation of quantiles

Since we are interested in VaR and ES, the estimation of loss probabilities
is not enough. We need to estimate quantiles of the loss distribution. The
empirical quantile function is the quantile function of F̂L and thus given by

F̂−1
L (p) = min{x ∈ R : F̂L(x) ≥ p},

for p ∈ (0, 1). But how to compute F̂−1
L (p)? A first method to estimate

quantiles of the loss distribution L is suggested by [Glasserman et al. 2002].
According to this method P (L > x0) is computed for an initial value x0.
Then, a search algorithm is used to choose an updated quantile estimate x1,
depending on the value of P (L > x0). This procedure is repeated until a
predefined level of accuracy has been reached, every probability estimation
being based on (6).
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Figure 1: Empirical loss distribution function and its inverse, in the standard
Monte Carlo case.

We will focus on a more direct approach, proposed by [Glynn 1996]. If
we order the sample L1, L2, . . . , LN such that L1,N ≥ L2,N ≥ . . . ≥ LN,N , we
can write

F̂−1
L (p) = min

{
x ∈ R :

N∑

i=1

I{Li,N ≤ x} ≥ Np

}

= Lj,N for some j ∈ {1, 2, . . . , N}.

Since for any j ∈ {1, 2, . . . , N}
N∑

i=1

I{Li,N ≤ Lj,N} =
N∑

i=j

I{Li,N ≤ Lj,N} = N − j + 1,

we have to find the largest j such that N − j + 1 ≥ Np. This condition is
satisfied by j = [N(1− p) + 1] and therefore, for p ∈ (0, 1),

F̂−1
L (p) = L[N(1−p)]+1,N .

F̂−1
L is a piece-wise constant function on (0, 1). More precisely,

F̂−1
L (p) =

{
Li,N if p ∈ (1− i/N, 1− (i− 1)/N ] for some i ∈ {2, 3, . . . , N}
L1,N if p ∈ (1− 1/N, 1).
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Figure 2: Graph of F̂−1
L and illustration for computation of V̂aRα and ÊSα,

in the standard Monte Carlo case. The grey area in this figure corresponds
to the integral needed to compute ÊSα.
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The empirical loss distribution function is illustrated in Figure 1. This figure
also roughly shows how F̂−1

L is determined. More details on F̂−1
L are shown

in Figure 2.

3.2.3 Estimation of Value-at-Risk

According to (1), VaR can be interpreted as a quantile of the loss distribution.
Hence we can estimate VaR of our portfolio by

V̂aRα = F̂−1
L (1− α) = L[Nα]+1,N , (7)

for α ∈ (0, 1). A graphical illustration of V̂aRα is given in Figure 2.

3.2.4 Estimation of expected shortfall

By (2), we may estimate expected shortfall of our portfolio by

ÊSα =
1

α

1∫

1−α

F̂−1
L (p)dp,

for α ∈ (0, 1). If we apply the information from Section 3.2.2 to this integral,
we can conclude that

ÊSα =
1

α




[Nα]∑

i=1

Li,N
N

+

(
α− [Nα]

N

)
L[Nα]+1,N


 . (8)

The best way to understand this last step is probably to have a look at
Figure 2, which illustrates the computation of ÊSα.

3.3 Monte Carlo and importance sampling

3.3.1 Estimation of loss probabilities

Let ∆S1,∆S2, . . . ,∆SN now be independent simulations drawn from the den-
sities g1, g2, . . . , gN , respectively. The corresponding losses are again called
L1, L2, . . . , LN . The new densities are chosen in such a way that more values
from the tail of FL are generated than under the initial density f . That is, we
put more “importance” on large losses. Note that, referring to Remark 2.1.1,
we use N importance sampling densities instead of only one. This offers
the possibility to update the importance sampling density while generating
simulations and may, in some cases, lead to an even more efficient estimator.
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More information on how to choose the gi in practice will follow in Section 4
and Section 5.

Let us now estimate P (L > x) = E[I{L > x}], for some fixed loss
threshold x. If we set h(∆S) = I{L > x}, estimating loss probabilities is
equivalent to estimating E[h(∆S)]. Plugging h(∆Si) = I{Li > x} into (5)
leads to

P̂ (L > x) =
1

N

N∑

i=1

I{Li > x} f(∆Si)

gi(∆Si)
=:

N∑

i=1

wi I{Li > x}. (9)

Importance sampling puts special emphasis on the tail of the loss distribution.
Therefore, instead of working with the empirical loss distribution function,
we will subsequently use the following empirical importance sampling tail
function

ĜL(x) := P̂ (L > x) =
N∑

i=1

wi I{Li > x}.

Note that in general
∑N

i=1wi 6= 1. That is, normalization, in the sense of

P̂ (L > x) = 1− P̂ (L ≤ x), is not satisfied here and accordingly,

ĜL(x) 6= 1−
N∑

i=1

wi I{Li ≤ x},

in general. We introduce the somewhat special name of empirical “impor-
tance sampling” tail function to distinguish ĜL from the usual empirical tail
function.

3.3.2 Estimation of “quantiles”

As in Section 3.2.2, let us again order the sample L1, L2, . . . , LN such that
L1,N ≥ L2,N ≥ . . . ≥ LN,N . The order of ∆S1,∆S2, . . . ,∆SN is changed
in such a way that Li,N is the loss corresponding to ∆Si,N . The density of

∆Si,N is supposed to be gi,N and finally wi,N = 1
N
· f(∆Si,N )

gi,N (∆Si,N )
. Now, ĜL(x)

can be reformulated as

ĜL(x) =
N∑

i=1

wi,N I{Li,N > x}.
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Figure 3: Empirical importance sampling tail function ĜL and its inverse.

Note that in this figure k = min
{
j :
∑j

i=1wi,N ≥ α
}
.
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Since ĜL is a decreasing positive function that goes to zero, its “inverse”, for
α ∈ (0, 1), can be written as

Ĝ−1
L (α) = min

{
x ∈ R :

N∑

i=1

wi,N I{Li,N > x} ≤ α

}

= Lj,N for some j ∈ {1, 2, . . . , N}.

For any j ∈ {1, 2, . . . , N}
N∑

i=1

wi,N I{Li,N > Lj,N} =

j−1∑

i=1

wi,N I{Li,N > Lj,N} =

j−1∑

i=1

wi,N .

That is, we have to find the largest j such that
∑j−1

i=1 wi,N ≤ α or, equiva-

lently, the smallest j such that
∑j

i=1wi,N ≥ α. Hence,

Ĝ−1
L (α) = Lk,N where k = min

{
j :

j∑

i=1

wi,N ≥ α

}
, α ∈ (0, 1). (10)

Ĝ−1
L is a piece-wise constant function:

Ĝ−1
L (α) =

{
Li,N if α ∈

[∑i−1
j=1wj,N ,

∑i
j=1wj,N

)
for some i ∈ {2, 3, . . . , N}

L1,N if α ∈ (0, w1,N ).

The so-called empirical importance sampling tail function ĜL is illustrated in
Figure 3. This figure also gives a rough illustration on how Ĝ−1

L is determined.

The graph of Ĝ−1
L is shown in Figure 4.

3.3.3 Estimation of Value-at-Risk

Using (10), VaR can now be estimated by

V̂aRα = Ĝ−1
L (α) = Lk,N where k = min

{
j :

j∑

i=1

wi,N ≥ α

}
, (11)

for α ∈ (0, 1). Figure 4 shows graphically how V̂aRα is determined.
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Figure 4: Graph of Ĝ−1
L and illustration of the computation of V̂aRα and

ÊSα, with importance sampling. The grey area in this figure corresponds to

the integral needed to compute ÊSα. Here k = min
{
j :
∑j

i=1wi,N ≥ α
}
,

as explained in Section 3.3.4.
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3.3.4 Estimation of expected shortfall

With the information on Ĝ−1
L from Section 3.3.2, we can now estimate ES at

level α ∈ (0, 1):

ÊSα =
1

α

α∫

0

Ĝ−1
L (t)dt

=
1

α

(
k−1∑

i=1

wi,N Li,N +

(
α−

k−1∑

i=1

wi,N

)
Lk,N

)
, (12)

where k = min
{
j :
∑j

i=1wi,N ≥ α
}
. Figure 4 gives a good illustration of

the integration needed for the computation of ÊSα.

4 Loss probability estimations by importance

sampling in the light tailed case

4.1 The delta and delta-gamma approximations

Let us stick to the assumptions made in Section 3.1 and assume that the
∆S has a light tailed distribution, more specifically, a multivariate normal
distribution with mean vector zero and covariance matrix Σ. That is, we
assume that ∆S ∼ N (0,Σ). Simulating ∆S can be reduced to simulating
multivariate standard normals Z ∼ N (0, I), by setting

∆S = CZ, with CC⊤ = Σ.

Suppose that we can get L from Z using

L = fL(Z), (13)

where fL is a deterministic function.
To be able to use importance sampling for loss probability estimations, an

importance sampling density has to be chosen. For the selection of an efficient
density, information about the loss distribution FL is required. Since FL is
unknown, a logical approach is to exploit knowledge of the distribution of an
approximation to the loss. In [Glasserman et al. 1999] the choice of efficient
importance sampling densities is based on first and second order Taylor ex-
pansions, also called delta and delta-gamma approximations. We will make a
review of this approach, based on information from [Glasserman et al. 1999]
and [Glasserman 2003]. Let us first describe both approximations in detail.
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The delta-gamma approximation to the loss L is given by

L = −∆V ≈ −
(
∂V

∂t
t+ δ⊤∆S +

1

2
∆S⊤Γ∆S

)
, (14)

where δi =
∂V

∂Si(t)
and Γij =

∂2V
∂Si(t)∂Sj(t)

. The partial derivatives are supposed

to be evaluated at S(0). In terms of Z the delta-gamma approximation can
be written as

L ≈ −∂V
∂t
t−
(
C⊤δ

)⊤
Z − 1

2
Z⊤
(
C⊤ΓC

)
Z. (15)

Working with the delta-gamma approximation is much easier if we choose C
to diagonalize 1

2
Z⊤
(
C⊤ΓC

)
Z. We will now show that this choice is possible.

Let C̃ be a square matrix such that C̃C̃⊤ = Σ. More specifically, set C̃ to be
the lower triangular matrix found by Cholesky factorization of the symmetric
covariance matrix Σ. Then, −1

2
C̃⊤ΓC̃ is symmetric and can be written as

−1

2
C̃⊤ΓC̃ = UΛU⊤,

where

Λ =




λ1
λ2

. . .

λm




is a diagonal matrix and U is an orthogonal matrix whose columns are eigen-
vectors of −1

2
C̃⊤ΓC̃. The corresponding eigenvalues are λ1, λ2, . . . , λm, the

diagonal elements of Λ. Let us now show that C := C̃U satisfies the required
conditions for diagonalizing the quadratic term in (15). The first condition,

CC⊤ = C̃UU⊤C̃⊤ (U orthogonal)
= Σ,

is verified and since

−1

2
C⊤ΓC = −1

2
U⊤
(
C̃⊤ΓC̃

)
U = U⊤

(
UΛU⊤

)
U

(U orthogonal)
= Λ,

the second is as well. If we set a = −∂V
∂t
t and b = −C⊤δ we can reformulate

(15) as

L ≈ Q := a+ b⊤Z + Z⊤ΛZ = a+
m∑

j=1

(
bjZj + λjZ

2
j

)
. (16)
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Since −1
2
C̃⊤ΓC̃ = −1

2
ΓC̃C̃⊤ = −1

2
ΓΣ, λ1, λ2, . . . , λm are considered to be

the eigenvalues of −1
2
ΓΣ.

Similarly to the delta-gamma approximation in (14), the delta approxi-
mation is given by

L = −∆V ≈ −
(
∂V

∂t
t+ δ⊤∆S

)
.

Using the notation introduced above, we get the following more convenient
representation

L ≈ Y := a+ b⊤Z = a+
m∑

j=1

bjZj (17)

for the first order Taylor expansion of the loss L. As a linear combination ofm
independent standard normal random variables,

∑m
j=1 bjZj is again normally

distributed. We can conclude that

P (Y ≥ x) = 1− Φ(a,
∑m

j=1 b
2
j )
(x), (18)

where Φ(0,
∑m

j=1 b
2
j )

is the cumulative distribution function of the normal dis-

tribution with mean a and variance
∑m

j=1 b
2
j .

Let us now come back to the delta-gamma approximation. For the dis-
tribution of Q there is no closed form, but we will now introduce a method
to compute it numerically. By assuming that λi 6= 0 for i = 1, 2, . . . ,m and
completing the square, we can write Q as

Q = a+
m∑

j=1

(
λj

(
Zj +

bj
2λj

)2

− b2j
4λj

)
. (19)

Let k ≤ m denote the number of distinct eigenvalues of −1
2
ΓΣ and consider

h1, h2, . . . , hk to be their respective algebraic multiplicities. We reorder the
eigenvalues λ1, λ2, . . . , λm such that for

λ1,1, λ1,2, . . . , λ1,h1 , λ2,1, λ2,2, . . . , λ2,h2 , . . . , λk,1, λk,2, . . . , λk,hk

the following two conditions are satisfied for each j ∈ {1, 2, . . . , k}:

• λj,i = λj,l ∀i ∈ {1, 2, . . . , hj}∀l ∈ {1, 2, . . . , hj}

• λj,i 6= λr,l ∀r ∈ {{1, 2, . . . , k} \ j} ∀i ∈ {1, 2, . . . , hj}∀l ∈ {1, 2, . . . , hr}.
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This denomination scheme, based on a double index, ensures that we can
still access to all of the m eigenvalues. Let us denominate the elements of b
and Z accordingly and apply the new notation to (19):

Q = a+
k∑

j=1

hj∑

i=1

(
λj,i

(
Zj,i +

bj,i
2λj,i

)2

− b2j,i
4λj,i

)
.

For each fixed j ∈ {1, 2, . . . , k},
hj∑

i=1

λj,i

(
Zj,i +

bj,i
2λj,i

)2

= λj,1

hj∑

i=1

(
Zj,i +

bj,i
2λj,i

)2

= λj,1 χ
2
hj ,d2j

,

where χ2
hj ,d2j

is a non-central χ2-distribution with hj degrees of freedom and

non-centrality parameter

d2j =

hj∑

i=1

(
bj,i
2λj,i

)2

.

This allows us to write

Q = a−
k∑

j=1

hj∑

i=1

b2j,i
4λj,i

+
k∑

j=1

λj,1 χ
2
hj ,d2j

.

Note that λ1,1, λ2,1, . . . , λk,1 are the k distinct eigenvalues of −1
2
ΓΣ. Now we

have reduced the distribution of Q to a linear combination of non-central χ2-
distributions. There is a procedure, suggested by [Imhof 1961], that allows
to numerically compute the distribution of

R :=
k∑

j=1

λj,1 χ
2
hj ,d2j

,

by inversion of the characteristic function. The characteristic function of R
is given by

φ(t) =
k∏

j=1

(1− 2iλj,1t)
− 1

2
hjexp

(
i

k∑

j=1

d2jλj,1t

1− 2iλj,1t

)
,

where i =
√
−1. According to [Gurland 1948] and [Gil-Palaez 1951], an

inversion formula of φ(t) is given by

P (R ≤ x) =
1

2
− 1

π

∞∫

0

t−1Im
(
e−itxφ(t)

)
dt,
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where Im(z) denotes the imaginary part of z. This can be written as

P (R ≤ x) =
1

2
− 1

π

∞∫

0

sin (τ(u))

uρ(u)
du, (20)

where

τ(u) =
1

2

k∑

j=1

(
hjtan

−1(λj,1u) + d2jλj,1u
(
1 + λ2j,1u

2
)−1
)
− 1

2
xu,

ρ(u) =
k∏

j=1

(
1 + λ2j,1u

2
) 1

4
hj exp

(
1
2

∑k
j=1(djλj,1u)

2

(
1 + λ2j,1u

2
)

)
.

The inversion integral in (20) allows to numerically compute P (Q > x) or
even quantiles of Q. Additionally, using (18), we could easily estimate loss
probabilities and quantiles of FL, based on the delta approximation. But
these approximations are normally not accurate enough to provide precise
risk measure estimations. Nevertheless we can exploit information about Y
and Q to choose an efficient importance sampling density.

4.2 Importance sampling density based on the delta

approximation

According to [Bucklew 1990] the choice of an effective importance sampling
density for the estimation of P (L > x), for a large threshold x, can be based
on a large deviations analysis. More precisely, the probability of a rare event
is approximately equal to the probability of “the most likely path” to this rare
event. Let us assume that loss changes are linear in ∆S. That is, L ≈ Y in
(17) is supposed to be exact. We consider E =

{
z ∈ R

m : b⊤z > x− a
}
to be

the set of rare events that should be given more weight under the importance
sampling distribution than under the original multivariate standard normal
distribution. Let µ = (µ1, µ2, . . . , µm)

⊤ ∈ R
m be the point that maximizes

the probability of a rare event under the original distribution. The most
probable value of a random variable corresponds to the value that maximizes
its density function. In our case, µ is the solution of the optimization problem

max− 1
2

m∑
i=1

z2i such that
m∑
i=1

bizi ≥ x− a,

because the original distribution is a multivariate standard normal distribu-
tion. The solution to this optimization problem is

µ = (x− a)
b

b⊤b
. (21)
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Since an effective importance sampling density is supposed to make a rare
event more likely, it should in our situation put more weight on µ, being
the most likely path to E. According to [Chen et al. 1993] an exponentially
efficient importance sampling density is obtained by changing the mean of Z
from 0 to µ. A simulation scheme is considered to be exponentially efficient
if the number of simulations required to obtain a specified precision grows
less than exponentially fast. Instead of Z ∼ N (0, I), we will therefore use
Z ∼ N (µ, I) for estimating P (L > x). The corresponding likelihood ratio is
given by

f(Z)

g(Z)
= exp

(
1

2
µ⊤µ− µ⊤Z

)
, (22)

where f and g are the densities of N (0, I) and N (µ, I), respectively. The
per sample second moment of the resulting importance sampling estimator
is

Ẽ

[
I{L > x}

(
f(Z)

g(Z)

)2
]
= E

[
I{L > x}f(Z)

g(Z)

]
.

A sufficient condition for variance reduction is therefore given by

f(Z)

g(Z)
≤ 1 ∀Z ∈ E.

How can this condition be interpreted?

f(Z)

g(Z)
≤ 1 ⇔ 1

2
µ⊤µ− µ⊤Z ≤ 0

⇔ µ⊤µ− 2µ⊤Z + Z⊤Z ≤ Z⊤Z

⇔ ‖µ− Z‖ ≤ ‖Z‖ .

That is, if every point Z ∈ E is closer to µ than to the origin, variance is
reduced. Note that if f(Z)

g(Z)
≤ f ∀Z ∈ E, then the second moment of the

importance sampling estimator is reduced by at least a factor of f .

4.3 Importance sampling density based on the delta-

gamma approximation

Let us now apply what we learned in Section 2.2 and consider importance
sampling based on exponential changes of measure. Since we have no knowl-
edge about L itself, we will exponentially twist the delta-gamma approxima-
tion Q. Let us first determine the cumulant generating function of Q. By
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making use of (19), we can write the moment generating function of Q as

E [exp(θQ)] = exp(θa)
m∏

j=1

E

[
exp

(
θ

(
λj

(
Zj +

bj
2λj

)2

− b2j
4λj

))]

= exp (θa)
m∏

j=1

exp

(
−θ b

2
j

4λj

)
E

[
exp

(
θλj

(
Zj +

bj
2λj

)2
)]

.

Note that (Zj + bj/(2λj))
2 is a non-central χ2-distribution with one degree

of freedom and non-centrality parameter (bj/(2λj))
2. From equation (29.6)

of [Johnson et al. 1995],

E
[
exp

(
θ (Zj + c)2

)]
= (1− 2θ)−

1
2 exp

(
θc2

1− 2θ

)
,

for θ < 1/2, follows

E

[
exp

(
θλj

(
Zj +

bj
2λj

)2
)]

= (1− 2θλj)
− 1

2 exp


 θ

b2j
4λj

1− 2θλj


 ,

for θ such that θλj < 1/2. Hence, the cumulant generating function of Q is
given by

ψ(θ) = log (E [exp(θQ)])

= θa+
m∑

j=1


−θ b

2
j

4λj
− log (1− 2θλj)

2
+

θ
b2j
4λj

1− 2θλj




= θa+
1

2

m∑

j=1

(
θ2b2j

1− 2θλj
− log (1− 2θλj)

)
, (23)

for θ ∈ Θ = {θ : ψ(θ) <∞} = {θ : maxj θλj < 1/2}.
Now we can define a new probability measure Pθ, for θ ∈ Θ, through the

likelihood ratio
dP0

dPθ
= exp(−θQ+ ψ(θ)). (24)

The resulting importance sampling estimator for α = P (L > x) is

α̂θ =
1

N

N∑

i=1

I{Li > x} exp(−θQi + ψ(θ)), (25)
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where Li and Qi are being computed from the i-th simulation of Z, using
(13) and (16), respectively. Further details on the distribution of Z under
the new measure will follow below. Note that the new probability measure
Pθ, defined by (24), increases the probability of the events {L : Q > x}, if
θ > 0. This seems intuitively appealing, assuming that Q is an accurate loss
approximation. Moreover, if θ > 0 and L ≈ Q is exact, the second moment
of α̂θ is exponentially decreasing in x. Indeed,

Eθ

[(
I{L > x}e−θQ+ψ(θ)

)2]
= E

[
I{L > x}e−θQ+ψ(θ)

]
≤ e−θx+ψ(θ), (26)

which, for θ > 0, decreases exponentially in x.
In practice it is important to be able to sample from the importance sam-

pling distribution defined by (24). More precisely, to make use of the estima-
tor in (25) we need to generate N simulations of Z from its distribution un-
der the new measure. We will now show that, under Pθ, Z ∼ N (µ(θ),Σ(θ)),
where

µj(θ) =
θbj

1− 2λjθ
(27)

and Σ(θ) is a diagonal matrix with diagonal elements

σ2
j (θ) =

1

1− 2λjθ
, (28)

for all θ ∈ Θ = {θ : maxj θλj < 1/2}. The likelihood ratio corresponding to
the change of measure from N (0, I) to N (µ(θ),Σ(θ)) can easily be reduced
from

|Σ(θ)|− 1
2 exp

(
−1

2
(Z − µ(θ))⊤Σ(θ)−1(Z − µ(θ))

)

exp
(
−1

2
Z⊤Z

)

to exp(θQ − ψ(θ)), by plugging in (27) and (28) and further making use of
equations (16) and (23). Since this is exactly the likelihood ratio used to
define Pθ in (24), we can conclude that N (µ(θ),Σ(θ)) is the right choice for
the distribution of Z under the new measure. Furthermore, considering the
delta-gamma approximation in (16), a properly chosen importance sampling
distribution should give positive (negative) mean to those Zj for which bj > 0
(bj < 0) and increase the variance of Zj if λj > 0. For positive θ ∈ Θ, these
qualitative conditions are satisfied by (27) and (28). Note that in practice
the likelihood ratio exp(θQ − ψ(θ)) is very convenient, because instead of
depending on the whole random vector Z it only depends on the value of Q.

A very important component in (25) is an optimal, or at least an efficient,
twisting parameter θ. In (26) we introduced an upper bound for the second
moment of the importance sampling estimator, under the assumption that
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the loss is quadratic. For fixed x, let us choose θ = θx to minimize this upper
bound. Since ψ(θ) is the cumulant generating function of Q, it is convex.
Hence, −θx+ ψ(θ) is minimized if −x+ ψ′(θ) = 0. That is, θx is the root of
the nonlinear equation

ψ′(θx) = x, (29)

which may be computed numerically. According to what has been mentioned
in Section 2.2,

ψ′(θ) = Eθ[Q] ∀θ ∈ Θ.

Since ψ′(θx) = x, we can say that, under the importance sampling distribu-
tion Pθx , the expected value of Q equals x. This in turn makes high losses
very probable under Pθx .

Let us now present some asymptotic optimality results for importance
sampling estimators using exponential twisting, that have been stated and
proved in [Glasserman et al. 2000]. We first consider the situation where

λmax := max1≤j≤mλj > 0.

In this case Q can grow unboundedly and we will therefore analyze asymp-
totic behavior as x→ ∞. Let m2(x, θx) be the second moment of an estima-
tor using exponential twisting with twisting parameter θx. Here, an estimator
for P (L > x) is said to be asymptotically optimal if there is a constant c > 0
such that P (L > x) = exp(−cx + o(x)) and m2(x, θx) = exp(−2cx + o(x)).
This condition is equivalent to m2 decreasing at twice the exponential rate
of the loss probability. Since the square function is convex, Jensen’s in-
equality proves that this is the fastest possible rate for any unbiased estima-
tor. Optimal rates of decrease imply that m2(x, θx) ≈ P (L > x)2, whereas
for the standard loss estimator m2(x, 0) = E [I{L > x}] = P (L > x). If
λmax > 0 and L = Q, then, according to Theorem 1 and Theorem 2 of
[Glasserman et al. 2000],

lim
x→∞

log(P (L > x))

x
= − 1

2λmax

lim
x→∞

log(m2(x, θx))

x
= − 1

λmax

,

where the twisting parameter θx has been chosen according to (29). Hence,
P (L > x) = exp(−x/(2λmax) + o(x)) and m2(x, θx) = exp(−x/λmax + o(x)).
This in turn means that, under the above assumptions, exponential twisting
with twisting parameter θx defined by (29) is asymptotically optimal.

Now we consider the case where

λmax < 0.
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That is, we assume that all the eigenvalues of −1
2
ΓΣ are negative. From (19)

follows that in this case Q is bounded by the constant d := a −∑m
j=1

b2j
4λj

.

Let xǫ = d− ǫ, then

P (L > xǫ) ≈ P (Q > xǫ) → 0 as ǫ→ 0.

So, in this case we study asymptotic behavior as ǫ → 0 or, equivalently,
as xǫ → d. If L = Q and λmax < 0, then, according to Theorem 3 of
[Glasserman et al. 2000], there exist constants k1 > 0 and k2 > 0 such that

k1 ≤ lim inf
ǫ→0

P (L > xǫ)

ǫm/2
≤ lim sup

ǫ→0

P (L > xǫ)

ǫm/2
≤ k2. (30)

Furthermore, for θǫ > 0 solving ψ′(θǫ) = d− ǫ, there exists a constant k3 > 0
such that

lim sup
ǫ→0

m2(xǫ, θǫ)

ǫm
≤ k3. (31)

That is, the estimated probability is of order ǫm/2 and the second moment is of
order ǫm, which is the best possible exponent. This implies an even stronger
form of asymptotic optimality than before. Let the relative error (RE) of
an estimation be the ratio of the standard deviation and the mean of the
estimate. In the case where the loss probability p := P (L > x) is being
estimated by p̂, RE can be written as

RE =

√
Var(p̂)

p
.

The bounds in (30) and (31) imply the so-called bounded relative error prop-
erty, that is, RE remains bounded as ǫ→ 0.

5 From loss probabilities to quantiles

In Section 4 we introduced two different methods of choosing an efficient im-
portance sampling distribution when estimating loss probabilities P (L > x).
For the estimation of VaR and ES we need to approximate extreme quantiles
of the loss distribution. That is, we are looking for x such that P (L > x) = p,
for fixed small p. The selection of an importance sampling density for es-
timating P (L > x) has been based on the threshold value x. For quantile
estimation this is not possible, because the exact threshold is a priori un-
known. But according to [Glynn 1996], the variance reduction of an impor-
tance sampling estimator for P (L > x) carries over to quantile estimation,
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Algo1Y(α, xstart, N)
x := xstart
µ := (x− a) b

b⊤b
, by (21)

A := N × 2 matrix consisting of all zeros
for i = 1 : N

generate Z ∼ N (µ, I)
L := fL(Z), loss as in (13)
r := exp

(
1
2
µ⊤µ− µ⊤Z

)
, likelihood ratio as in (22)

A(i, :) := (L, r)
end
sort rows of A in descending order with respect to the first column

k := min
{
j ∈ {1, 2, . . . , N} : 1

N

∑j
l=1A(l, 2) ≥ α

}

V̂aRα := A(k, 1), by (11)

ÊSα := 1
α

(
1
N

∑k−1
l=1 A(l, 1)A(l, 2) +

(
α− 1

N

∑k−1
l=1 A(l, 2)

)
A(k, 1)

)
, by (12)

Figure 5: Algorithm for the estimation of VaRα and ESα using delta IS, based
on a sample of N simulations. The algorithm does not update the importance
sampling density throughout the simulation process. xstart is supposed to be
a rough guess for VaRα.

if x is in a neighborhood of the quantile of interest. And by Theorem 5 of
[Glasserman et al. 2000], exponentially twisting the delta-gamma approxi-
mation stays, under certain conditions, asymptotically optimal for quantile
estimations. More precisely, if λmax > 0 and L = Q, then exponential twist-
ing using the twisting parameter defined by (29) is also asymptotically op-
timal for the estimation of P (L > yx), where yx → ∞ in such a way that
lim supx→∞

x
yx
<∞.

For quantile estimation using importance sampling, we could therefore
simply choose an importance sampling density designed to efficiently esti-
mate P (L > y), where y is a rough estimate of the quantile of interest. But
if the first guess y is a bad quantile estimation, it may be useful to update
the density during the process of simulation. Instead of generating all the
simulations using the same density g, we could start with a density g1 and
choose a new one as soon as there is more information on the loss distribu-
tion available. This may result in up to N importance sampling densities
g1, g2, . . . , gN .

We will now introduce various algorithms for the estimation of VaRα and
ESα that combine the “direct” Monte Carlo approach from Section 3.3 with
the importance sampling methods from Section 4. The desired level α for
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Algo1Q(α, xstart, N)
x := xstart
compute θx, satisfying (29)
for j = 1 : m

µj(θx) :=
θxbj

1−2λjθx
, by (27)

σ2
j (θx) :=

1
1−2λjθx

, by (28)

end
µ(θx) := (µ1(θx), . . . , µm(θx))
Σ(θx) := diag (σ2

1(θx), . . . , σ
2
m(θx))

A := N × 2 matrix consisting of all zeros
for i = 1 : N

generate Z ∼ N (µ(θx),Σ(θx))
L := fL(Z), loss as in (13)
Q := a+ b⊤Z + Z⊤ΛZ, delta-gamma approximation as in (16)
r := exp(−θxQ+ ψ(θx)), likelihood ratio as in (24)
A(i, :) := (L, r)

end
sort the rows of A in descending order with respect to the first column

k := min
{
j ∈ {1, 2, . . . , N} : 1

N

∑j
l=1A(l, 2) ≥ α

}

V̂aRα := A(k, 1), by (11)

ÊSα := 1
α

(
1
N

∑k−1
l=1 A(l, 1)A(l, 2) +

(
α− 1

N

∑k−1
l=1 A(l, 2)

)
A(k, 1)

)
, by (12)

Figure 6: Algorithm for the estimation of VaRα and ESα using delta-gamma
IS, based on a sample of N simulations. The algorithm does not update
the importance sampling density throughout the simulation process. xstart is
supposed to be a rough guess for VaRα.
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VaR and ES and a rough guess for VaRα, called xstart, are input values of
the estimation algorithms. That is, they have to be set in advance. Every
algorithm makes use of (11) and (12) to estimate VaRα and ESα, respectively.
The names of the algorithms contain a digit (1,2 or 3), characterizing the
underlying updating scheme for the importance sampling density, and a letter
(Y or Q), depending on the type of importance sampling that is applied (IS
based on Y or IS based on Q). N denotes the total number of simulations
that is used for the final VaRα and ESα estimations.

The first two algorithms, Algo1Y and Algo1Q, are presented in Figure 5
and Figure 6, respectively. Besides α and xstart both algorithms have N as a
third input value. In Algo1Y and Algo1Q the importance sampling density
is not being updated during simulation. That is, one single importance sam-
pling density, designed for an efficient estimation of P (L > xstart), is used for
all the simulations. Whereas Algo1Y uses importance sampling based on Y
(delta IS), Algo1Q uses exponential twisting of Q (delta-gamma IS).

Two more algorithms for estimating VaRα and ESα are presented in Fig-
ure 7 and Figure 8: Algo2Y and Algo2Q. Now the importance sampling
density is updated on a regular basis during the simulation processs. Algo2Y
and Algo2Q make use of two simple help algorithms, ProbY and ProbQ,
that are described in Figure 9. Based on n simulations ProbY(x, n) and
ProbQ(x, n) estimate P (L > x) using delta IS and delta-gamma IS, respec-
tively. In Algo2Y and Algo2Q the density for sampling is updated after every
n simulations. This corresponds to updating the mean µ in ProbY and the
parameter θx in ProbQ. The choice of the new importance sampling den-
sity is always based on the foregoing n simulations. More precisely, using
a bisection method, we constantly compute new VaRα estimates, based on
n simulations each. A new estimate allows the selection of a new impor-
tance sampling density. Note that in Algo2Y and Algo2Q the total number
of simulations N cannot be set in advance, because the bisection procedure
terminates as soon as a certain accuracy level has been reached. However,
as an input value, n can be altered explicitly, allowing an indirect control of
N .

A method to update the importance sampling density after every single
simulation is described in Algo3Y and Algo3Q, presented in Figure 10 and
Figure 11, respectively. In Algo2Y and Algo2Q, the density updates were
based on loss probability estimations. Now we use (11) to get a new VaR
estimate after every simulation. Each new estimate in turn is used to select
the importance sampling density for the next simulation. This method has
two potential advantages over the approach of Algo2Y and Algo2Q. It allows
more frequent density updates and the choice of every new density is based on
all the foregoing simulations, resulting in more accuracy. Note that Algo3Y
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Algo2Y(α, xstart, n)
A := empty matrix with 2 columns
during algorithm, save each pair (L, r) from ProbY as a new row in A
x := xstart
if ProbY(x, n) > α

lower:= x
while ProbY(x, n) > α

x := 2x
end
upper:= x

else
upper:= x
while ProbY(x, n) ≤ α

x := x
2

end
lower:= x

end
x := upper+lower

2

while upper− lower > 1% of x
if ProbY(x, n) > α

lower := upper+lower
2

else
upper := upper+lower

2

end
x := upper+lower

2

end
N := number of rows in A = total number of simulations
sort rows of A in descending order with respect to the first column

k := min
{
j ∈ {1, 2, . . . , N} : 1

N

∑j
l=1A(l, 2) ≥ α

}

V̂aRα := A(k, 1), by (11)

ÊSα := 1
α

(
1
N

∑k−1
l=1 A(l, 1)A(l, 2) +

(
α− 1

N

∑k−1
l=1 A(l, 2)

)
A(k, 1)

)
, by (12)

Figure 7: Algorithm for the estimation of VaRα and ESα using delta IS. The
importance sampling density is updated after every n simulations using a
bisection method. xstart is supposed to be a rough guess for VaRα. Algo2Y
makes use of the help algorithm ProbY from Figure 9.
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Algo2Q(α, xstart, n)
A := empty matrix with 2 columns
during algorithm, save each pair (L, r) from ProbQ as a new row in A
x := xstart
if probQ(x, n) > α

lower:= x
while ProbQ(x, n) > α

x := 2x
end
upper:= x

else
upper:= x
while ProbQ(x, n) ≤ α

x := x
2

end
lower:= x

end
x := upper+lower

2

while upper− lower > 1% of x
if ProbQ(x, n) > α

lower := upper+lower
2

else
upper := upper+lower

2

end
x := upper+lower

2

end
N := number of rows in A = total number of simulations
sort rows of A in descending order with respect to the first column

k := min
{
j ∈ {1, 2, . . . , N} : 1

N

∑j
l=1A(l, 2) ≥ α

}

V̂aRα := A(k, 1), by (11)

ÊSα := 1
α

(
1
N

∑k−1
l=1 A(l, 1)A(l, 2) +

(
α− 1

N

∑k−1
l=1 A(l, 2)

)
A(k, 1)

)
, by (12)

Figure 8: Algorithm for the estimation of VaRα and ESα using delta-gamma
IS. The importance sampling density is updated after every n simulations
using a bisection method. xstart is supposed to be a rough guess for VaRα.
Algo2Q makes use of the help algorithm ProbQ from Figure 9.
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ProbY(x, n)
µ := (x− a) b

b⊤b
, by (21)

p := 0
for i = 1 : n

generate Z ∼ N (µ, I)
L := fL(Z), by (13)
r := exp

(
1
2
µ⊤µ− µ⊤Z

)
, by (22)

if L > x
p := p+ r

n
, by (9)

end
end
return p

ProbQ(x, n)
compute θx, satisfying (29)
for j = 1 : m

µj(θx) :=
θxbj

1−2λjθx
, by (27)

σ2
j (θx) :=

1
1−2λjθx

, by (28)

end
µ(θx) := (µ1(θx), . . . , µm(θx))
Σ(θx) := diag (σ2

1(θx), . . . , σ
2
m(θx))

p := 0
for i = 1 : n

generate Z ∼ N (µ(θx),Σ(θx))
L := fL(Z), by (13)
Q := a+ b⊤Z + Z⊤ΛZ, by (16)
r := exp(−θxQ+ ψ(θx)), by (24)
if L > x

p := p+ r
n
, by (9)

end
end
return p

Figure 9: ProbY and ProbQ estimate P (L > x) using delta IS and delta-
gamma IS, respectively. Both estimators are based on n simulations. ProbY
and ProbQ are help algorithms for Algo2Y and Algo2Q, respectively.
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Algo3Y(α, xstart, N)
x := xstart
A := N × 2 matrix consisting of all zeros
for i = 1 : N

µ := (x− a) b
b⊤b

, by (21)
generate Z ∼ N (µ, I)
L := fL(Z), loss as in (13)
r := exp

(
1
2
µ⊤µ− µ⊤Z

)
, likelihood ratio as in (22)

h := min {j ∈ {1, 2, . . . , i} : L ≥ A(j, 1) or j = i}
if h = i

A(h, :) := (L, r)
else

A(h+ 1 : i, :) := A(h : i− 1, :)
A(h, :) := (L, r)

end
if 1

i

∑i
l=1A(l, 2) < α

k := i
else

k := min
{
j ∈ {1, 2, . . . , i} : 1

i

∑j
l=1A(l, 2) ≥ α

}

end
x := A(k, 1) is new VaRα estimate, by (11)

end
V̂aRα := x

ÊSα := 1
α

(
1
N

∑k−1
l=1 A(l, 1)A(l, 2) +

(
α− 1

N

∑k−1
l=1 A(l, 2)

)
A(k, 1)

)
, by (12)

Figure 10: Algorithm for the estimation of VaRα and ESα using delta IS,
based on a sample of N simulations. The importance sampling density is
updated after every simulation, using (11). xstart is supposed to be a rough
guess for VaRα.
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Algo3Q(α, xstart, N)
x := xstart
A := N × 2 matrix consisting of all zeros
for i = 1 : N

compute θx, satisfying (29)
for j = 1 : m

µj(θx) :=
θxbj

1−2λjθx
, by (27)

σ2
j (θx) :=

1
1−2λjθx

, by (28)

end
µ(θx) := (µ1(θx), . . . , µm(θx))
Σ(θx) := diag (σ2

1(θx), . . . , σ
2
m(θx))

generate Z ∼ N (µ(θx),Σ(θx))
L := fL(Z), loss as in (13)
Q := a+ b⊤Z + Z⊤ΛZ, delta-gamma approximation as in (16)
r := exp(−θxQ+ ψ(θx)), likelihood ratio as in (24)
h := min {j ∈ {1, 2, . . . , i} : L ≥ A(j, 1) or j = i}
if h = i

A(h, :) := (L, r)
else

A(h+ 1 : i, :) := A(h : i− 1, :)
A(h, :) := (L, r)

end
if 1

i

∑i
l=1A(l, 2) < α

k := i
else

k := min
{
j ∈ {1, 2, . . . , i} : 1

i

∑j
l=1A(l, 2) ≥ α

}

end
x := A(k, 1) is new VaRα estimate, by (11)

end
V̂aRα := x

ÊSα := 1
α

(
1
N

∑k−1
l=1 A(l, 1)A(l, 2) +

(
α− 1

N

∑k−1
l=1 A(l, 2)

)
A(k, 1)

)
, by (12)

Figure 11: Algorithm for the estimation of VaRα and ESα using delta-gamma
IS, based on a sample of N simulations. The importance sampling density is
updated after every simulation, using (11). xstart is supposed to be a rough
guess for VaRα.
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uses delta importance sampling and Algo3Q is based on delta-gamma impor-
tance sampling. Both algorithms have N as a third input value, that is, the
total number of simulations can be chosen in advance.

6 Numerical illustrations

In this section we will apply the algorithms from Section 5 to specific port-
folios. Let us stick to the assumptions made in Section 3.1 and Section 4.1.
Here we assume that there are m = 10 underlying assets, all having an initial
value of 100 and an annual volatility of σ = 0.30. All the assets are supposed
to be pairwise uncorrelated. Further, we assume 250 trading days in a year
and use a continuously compounded risk-free interest rate of 5%. We study
losses over a time period of ten days, that is, t = 0.04 years. These assump-
tions let us conclude that ∆S ∼ N (0,Σ), where Σ is a diagonal matrix with
diagonal elements

Σjj =
(
100σ

√
t
)2

= 36,

for j = 1, 2, . . . , 10.
We consider the following two portfolios that have also been used in

[Glasserman et al. 1999] to illustrate importance sampling. Portfolio 1 con-
sists of short positions of ten at-the-money calls on each underlying asset.
Every option has an expiry of 0.5 years. In Portfolio 2 the position consists
of ten short at-the-money calls and five short at-the-money puts on each
asset. The options are again supposed to have a maturity of 0.5 years. For
valuating the portfolios at time 0 and time t we use the Black-Scholes for-
mula. The computation of ∂V

∂t
, ∂V
∂Si(t)

and ∂2V
∂Si(t)∂Sj(t)

, the portfolio sensitivities

used in the Taylor expansions of L, is also based on the values provided by
Black-Scholes.

Remark 6.0.1 The Black-Scholes model assumes that Sj(t)/Sj(0) is log-
normally distributed for j = 1, 2, . . . ,m. Thus, there seems to be an inconsis-
tency between the valuation model and the model used for path simulation.
But for small t

Sj(t)

Sj(0)
= (1 + ∆Sj/Sj(0)) ≈ exp(∆Sj/Sj(0)),

which is lognormally distributed if ∆Sj, the j-th component of ∆S, is nor-
mally distributed. Hence the inconsistency between the two models may be
neglected here. Note that in practice it is not unusual to assume that ∆S is
normally distributed, that is, pricing models are often much more detailed
than the models used to describe market risk.
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Figure 12: Comparison of actual losses of Portfolio 1 and Portfolio 2 to delta
and delta-gamma approximations for 1000 simulations of ∆S.

Portfolio 1 has a strong linear component, because it only consists of call
options that are quite far from expiration. This is confirmed by Figure 12,
where actual losses of Portfolio 1 and Portfolio 2 are compared to first and
second order Taylor approximations for 1000 simulations of ∆S. We can
indeed see that for Portfolio 1 the delta approximation fits better than for
Portfolio 2. The delta-gamma approximation of Portfolio 2 seems to be
very accurate. Hence Figure 12 suggests to use delta IS for Portfolio 1 and
delta-gamma IS for Portfolio 2. That is, we will compare the performances
of Algo1Y, Algo2Y and Algo3Y using Portfolio 1 and Algo1Q, Algo2Q and
Algo3Q will be applied to Portfolio 2. The two portfolios that are used here
are quite simple and do of course not ensure an exhaustive comparison, but
they should be sufficient to roughly illustrate how the presented algorithms
perform in practice.

A first step in estimating risk measures is to make a rough guess for VaRα
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Portfolio 1 α = 0.01% α = 0.1% α = 1% α = 5%
VaRtrue

α 442.16 361.09 262.63 178.36
VaRδ

α 372.47 302.25 216.94 140.83
Portfolio 2 α = 0.01% α = 0.1% α = 1% α = 5%
VaRtrue

α 322.91 259.49 185.06 123.24
VaRδ-Γ

α 338.44 270.10 192.27 127.63

Table 1: Comparison of (1 − α)-quantiles of the delta and delta-gamma
approximations (VaRδ

α and VaRδ-Γ
α ) with “true” values for VaRα, that is,

standard Monte Carlo estimates based on a sample of 2 · 106 simulations.

that can be used as xstart in the algorithms from Section 5. According to Fig-
ure 12, it would make sense to use the delta and delta-gamma approxima-
tions to make a first quantile estimation. Using (18), we can easily compute
quantiles of the delta approximation Y . The function optimize() from the
statistics software R 2.10.0 allows to numerically compute a solution of

P (R ≤ x)− p = 0,

for p ∈ (0, 1) and P (R ≤ x) given by (20). This in turn provides us
with quantiles of Q. Table 1 compares so-called “true” values of VaRα to
(1− α)-quantiles of the delta and delta-gamma approximations (VaRδ

α and
VaRδ-Γ

α ), for some commonly used values of α. Each VaRtrue
α has been com-

puted by standard Monte Carlo (using (7)) based on a huge sample of 2 · 106
simulations. The quantile estimates provided by Y and Q may not be accu-
rate enough to serve as risk measures, but as mentioned above, they can at
least be used as start values in our algorithms.

Let us now apply Algo1Y, Algo2Y and Algo3Y to Portfolio 1 and analyze
their performances. Recall that these three algorithms use delta IS. Algo1Y
selects one importance sampling density and sticks to it. Algo2Y updates
the density after every n simulations and in Algo3Y the update takes place
after each simulation. First we will study the sensitivities of the algorithms
to xstart. Table 2 presents the results for α = 5%. The data corresponding
to α = 1% are represented in Table 3. The first column indicates the start
values that have been used. Among the values for xstart are very accurate
VaRα estimates, but the behavior of the algorithms is also analyzed for “bad”
start values. Note that VaRtrue

α and VaRδ
α are taken from Table 1. For each

value of xstart, every algorithm has been run 100 times, each run being based
on a sample of size N . For every algorithm mean and standard deviation of
the resulting 100 VaRα and ESα estimates have been reported. In the tables
the standard deviation is placed below the corresponding mean, between
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xstart N
Algo1Y Algo2Y Algo3Y

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

25% · VaRtrue
α 532

177.61 228.54 177.31 229.10 177.99 229.44
(5.52) (5.76) (4.23) (2.57) (3.81) (2.62)

50% · VaRtrue
α 488

178.54 229.94 178.24 230.31 178.28 229.65
(4.42) (3.39) (4.48) (2.38) (3.94) (2.66)

75% · VaRtrue
α 480

178.09 229.51 177.37 228.82 177.47 229.39
(4.28) (2.81) (4.33) (2.69) (3.81) (2.58)

VaRδ
α 478

177.62 229.34 177.67 229.86 177.61 229.29
(3.87) (2.57) (3.97) (2.61) (3.53) (2.44)

VaRtrue
α 474

177.70 229.86 177.42 229.52 178.37 229.46
(4.00) (2.35) (4.45) (2.85) (4.06) (2.20)

125% · VaRtrue
α 480

177.82 229.43 177.52 229.63 177.15 229.07
(4.16) (2.00) (3.66) (2.56) (3.66) (2.38)

150% · VaRtrue
α 480

177.36 229.18 177.59 229.29 178.31 229.42
(5.31) (2.70) (3.77) (2.45) (4.64) (2.56)

175% · VaRtrue
α 480

177.03 228.80 177.39 229.43 177.34 228.89
(7.18) (3.83) (4.69) (2.40) (4.79) (2.54)

Table 2: Portfolio 1, α = 5%. Sensitivities to xstart of Algo1Y, Algo2Y and
Algo3Y. Means and standard deviations (between brackets) of 100 algorithm
runs are reported. We assume that VaRtrue

α = 178.36, EStrue
α = 230.08 and

VaRδ
α = 140.83. Standard Monte Carlo results for N = 500 and 100 runs:

V̂aRα = 176.91 (12.31), ÊSα = 228.77 (13.38).
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xstart N
Algo1Y Algo2Y Algo3Y

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

25% · VaRtrue
α 528

261.18 303.92 261.66 304.43 261.63 304.65
(7.42) (6.91) (5.06) (3.43) (3.53) (2.52)

50% · VaRtrue
α 480

262.47 305.22 262.53 304.76 261.87 304.65
(4.52) (3.90) (4.61) (2.71) (3.89) (2.17)

75% · VaRtrue
α 480

261.42 304.47 262.48 305.12 261.45 304.81
(4.14) (2.71) (4.59) (2.64) (3.84) (2.45)

VaRδ
α 480

262.22 304.95 261.49 304.69 261.63 305.06
(3.89) (2.32) (4.29) (2.56) (4.20) (2.39)

VaRtrue
α 469

261.97 304.78 261.65 304.95 261.68 304.86
(4.14) (2.21) (4.88) (2.80) (3.77) (2.36)

125% · VaRtrue
α 480

261.94 304.99 262.01 305.19 261.83 304.86
(5.36) (2.47) (3.53) (2.42) (4.22) (2.48)

150% · VaRtrue
α 480

260.90 304.48 261.18 304.61 261.29 304.95
(6.36) (3.92) (4.33) (2.39) (3.86) (2.43)

175% · VaRtrue
α 480

259.57 303.56 261.00 305.10 261.45 304.70
(14.13) (6.66) (4.87) (2.97) (4.22) (2.74)

Table 3: Portfolio 1, α = 1%. Sensitivities to xstart of Algo1Y, Algo2Y and
Algo3Y. Means and standard deviations (between brackets) of 100 algorithm
runs are reported. We assume that VaRtrue

α = 262.63, EStrue
α = 305.67 and

VaRδ
α = 216.94. Standard Monte Carlo results for N = 500 and 100 runs:

V̂aRα = 257.07 (19.00), ÊSα = 298.75 (27.08).
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xstart N
Algo1Q Algo2Q Algo3Q

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

25% · VaRtrue
α 528

123.88 161.53 123.61 161.47 123.18 161.41
(4.48) (5.15) (2.98) (2.58) (2.83) (2.07)

50% · VaRtrue
α 495

123.13 160.91 123.26 161.58 123.42 161.07
(4.26) (3.84) (2.84) (2.26) (2.86) (2.10)

75% · VaRtrue
α 480

123.56 161.78 122.98 161.42 122.93 161.30
(3.22) (2.53) (2.98) (2.01) (2.97) (2.17)

VaRtrue
α 472

123.17 161.09 123.14 161.23 123.99 161.45
(2.72) (2.05) (2.94) (2.24) (2.74) (1.82)

VaRδ-Γ
α 476

123.61 161.58 123.72 161.57 123.31 161.55
(3.22) (2.01) (2.97) (2.34) (3.03) (2.28)

125% · VaRtrue
α 480

123.27 161.33 122.97 161.08 122.83 161.20
(3.02) (2.15) (3.30) (2.26) (3.06) (2.20)

150% · VaRtrue
α 480

123.30 161.45 123.17 161.16 123.67 161.48
(2.84) (1.78) (3.00) (2.26) (3.28) (2.01)

200% · VaRtrue
α 494

123.45 161.37 123.04 161.35 123.56 161.19
(3.71) (1.84) (3.25) (2.26) (3.34) (2.04)

250% · VaRtrue
α 520

123.11 161.15 123.58 161.54 123.11 161.19
(4.63) (2.67) (2.99) (2.20) (3.18) (2.21)

300% · VaRtrue
α 520

122.53 161.24 123.68 161.56 123.16 161.07
(7.70) (3.43) (3.43) (2.26) (3.11) (2.09)

Table 4: Portfolio 2, α = 5%. Sensitivities to xstart of Algo1Q, Algo2Q and
Algo3Q. Means and standard deviations (between brackets) of 100 algorithm
runs are reported. We assume that VaRtrue

α = 123.24, EStrue
α = 161.22 and

VaRδ-Γ
α = 127.63. Standard Monte Carlo results for N = 500 and 100 runs:

V̂aRα = 123.63 (8.37), ÊSα = 162.05 (9.88).
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xstart N
Algo1Q Algo2Q Algo3Q

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

25% · VaRtrue
α 525

185.77 218.77 185.45 218.09 185.54 218.20
(7.00) (7.55) (3.67) (2.83) (2.81) (2.28)

50% · VaRtrue
α 487

185.42 217.76 185.34 218.06 185.82 217.79
(4.03) (3.96) (2.96) (2.33) (3.18) (2.25)

75% · VaRtrue
α 480

185.96 218.50 185.06 217.82 185.48 218.19
(3.19) (2.39) (2.79) (2.09) (2.63) (2.17)

VaRtrue
α 470

185.40 217.83 185.67 218.55 185.10 218.04
(2.58) (2.05) (3.02) (2.16) (2.66) (1.90)

VaRδ-Γ
α 477

185.20 218.17 185.36 218.11 185.21 217.42
(2.96) (1.87) (2.64) (1.93) (3.01) (2.06)

125% · VaRtrue
α 480

184.82 217.86 185.37 217.91 185.36 218.90
(2.29) (2.13) (3.28) (2.48) (3.08) (2.08)

150% · VaRtrue
α 480

184.67 217.77 184.80 217.81 184.93 218.09
(3.00) (1.72) (3.18) (1.88) (2.40) (1.88)

200% · VaRtrue
α 490

185.05 217.80 185.59 218.23 185.23 218.17
(4.83) (2.34) (2.77) (1.98) (3.26) (2.14)

250% · VaRtrue
α 520

184.54 217.48 185.13 217.90 185.28 218.26
(7.34) (3.94) (2.97) (2.16) (3.00) (2.07)

Table 5: Portfolio 2, α = 1%. Sensitivities to xstart of Algo1Q, Algo2Q and
Algo3Q. Means and standard deviations (between brackets) of 100 algorithm
runs are reported. We assume that VaRtrue

α = 185.06, EStrue
α = 217.65 and

VaRδ-Γ
α = 192.27. Standard Monte Carlo results for N = 500 and 100 runs:

V̂aRα = 182.19 (14.46), ÊSα = 215.50 (19.97).
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brackets. Remember that for Algo2Y it is not possible to set N in advance,
because it depends on xstart and n. Here, we set n = 40 for Algo2Y, resulting
in a sample size of about 500. The number N indicated in the tables is the
average number of simulations used by Algo2Y in 100 runs. Every run of
Algo1Y and Algo3Y is based on exactly N simulations. EStrue

α , corresponding
to a standard Monte Carlo estimation based on a sample of size 2 · 106, is
indicated in the captions of Table 2 and Table 3. Note that all the estimations
have been made using MATLAB R2009a.

Table 4 and Table 5 represent the sensitivities of Algo1Q, Algo2Q and
Algo3Q to xstart for α = 5% and α = 1%, respectively. Since these algorithms
are based on delta-gamma IS, they have been applied to Portfolio 2. Again,
the values of VaRtrue

α and VaRδ-Γ
α are taken from Table 1 and EStrue

α , indicated
in the caption of each table, is a standard Monte Carlo estimation based on
2 · 106 simulations. As before, the reported results are means and standard
deviations of 100 algorithm runs. In Algo2Q, n has been set to 40, that is, for
each run of Algo2Q the importance sampling density is updated after every
40 simulations.

How to interpret the data reported in Tables 2, 3, 4 and 5? Let us first
compare the standard deviations of the importance sampling estimates to
those of the corresponding standard Monte Carlo estimations. The results
of standard Monte Carlo, for N = 500, are reported in the captions of the
tables. We can see that, independently of algorithm and start value, im-
portance sampling leads to dramatic variance reduction and hence computa-
tional speed-up, especially for small values of α. More precisely, for α = 1%,
making use of IS to estimate VaR reduces the standard deviation by a factor
of about 5, if a suitable start value is chosen. For the estimation of ES, the
corresponding standard deviation ratios are approximately equal to 10. As-
suming roughly equal computing times per sample with and without IS, we
can conclude that an importance sampling estimator produces as precise an
estimate for VaRα (ESα) as standard Monte Carlo in 1/52 (1/102) as much
computing time. Let us now analyze the performances of the different im-
portance sampling algorithms. If VaRδ

α or VaRδ-Γ
α are chosen as start values,

all the algorithms provide quite accurate estimations. That is, in this case
updating the importance sampling density seems to be unnecessary. The re-
sults of Section 5, stating that delta-gamma IS is not sensitive to the choice
of a good first guess, are confirmed by our results. Algo1Q makes good esti-
mations for a quite broad range of start values. However, delta IS seems to
be more sensitive to the choice of xstart. Even for small deviations of xstart
from VaRtrue

α , the results of Algo1Y get slightly worse. The standard devia-
tions of the estimations made by Algo2Y, Algo3Y, Algo2Q and Algo3Q are
almost the same for all the start values. This is not the case for Algo1Y
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n N
Algo2Y Algo3Y sd ratios

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

10 132
259.08 303.35 261.31 304.81
(8.12) (6.31) (7.75) (4.69) (1.05) (1.35)

25 335
261.50 304.53 261.93 304.82
(5.50) (4.01) (4.72) (2.71) (1.17) (1.48)

50 660
261.12 304.56 261.63 305.24
(3.76) (2.83) (3.60) (2.19) (1.04) (1.29)

75 990
261.35 304.75 262.30 305.01
(4.68) (2.88) (2.65) (1.53) (1.77) (1.88)

100 1304
261.84 305.00 261.53 304.73
(3.39) (2.18) (2.30) (1.46) (1.47) (1.49)

150 1960
261.62 304.77 262.20 305.12
(2.84) (1.79) (2.03) (1.26) (1.40) (1.42)

Table 6: Portfolio 1, α = 1%. Sensitivity of Algo2Y to update frequency.
Varying n for fixed start value xstart = 25% · VaRtrue

α . Means and standard
deviations (between brackets) of 100 algorithm runs are reported. The last
two columns contain the standard deviation ratios of the VaRα and ESα
estimates, respectively. VaRtrue

α = 262.63 and EStrue
α = 305.67.

and Algo1Q, where standard deviations increase considerably if xstart is get-
ting worse. Note that ES estimations are much more sensitive to small start
values than to big ones. For the estimation of VaR, the change of standard
deviation is of the same magnitude for both, over- and underestimated val-
ues of xstart. This is not surprising, because for the estimation of expected
shortfall much more simulations in the tail of the distribution are needed.
Furthermore we can see that for α = 1% Algo1Y and Algo1Q are much more
sensitive to high values of xstart than for α = 5%. All this shows that, if
there is no mean to get a good first guess of VaRα, regular updates of the
importance sampling density during the simulation process can be useful.
But which is the most efficient updating scheme? If we compare Algo2Y to
Algo3Y and Algo2Q to Algo3Q, we cannot see big differences in the standard
deviations. But all in all, Algo3Y and Algo3Q seem to provide slightly more
accurate results than Algo2Y and Algo2Q, respectively.

To find out whether there is a possibility to make Algo2Y and Algo2Q
more accurate we will vary n for fixed start values and compare the results
to those of Algo3Y and Algo3Q. This will allow to see if it is more effi-
cient to choose n rather small or rather large. Especially for “bad” start
values it seems intuitively appealing to select a small n, allowing to get a
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n N
Algo2Y Algo3Y sd ratios

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

10 121
260.82 303.86 257.93 301.07
(9.41) (5.40) (12.16) (8.98) (0.77) (0.60)

25 300
261.22 304.68 260.81 304.07
(6.33) (3.26) (5.01) (3.14) (1.26) (1.04)

50 600
262.30 305.06 262.10 305.06
(5.10) (2.69) (4.26) (3.14) (1.20) (0.86)

75 900
262.55 305.30 262.28 305.09
(3.99) (2.19) (5.38) (4.60) (0.74) (0.48)

100 1200
261.80 304.85 262.33 305.20
(2.99) (1.91) (2.79) (1.87) (1.07) (1.02)

150 1800
261.20 304.82 261.86 305.03
(2.61) (1.61) (1.89) (1.21) (1.38) (1.33)

Table 7: Portfolio 1, α = 1%. Sensitivity of Algo2Y to update frequency.
Varying n for fixed start value xstart = 175% · VaRtrue

α . Means and standard
deviations (between brackets) of 100 algorithm runs are reported. The last
two columns contain the standard deviation ratios of the VaRα and ESα
estimates, respectively. VaRtrue

α = 262.63 and EStrue
α = 305.67.

n N
Algo2Q Algo3Q sd ratios

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

10 133
183.99 216.23 183.78 216.56
(7.72) (5.84) (6.48) (4.79) (1.19) (1.22)

25 330
185.19 218.09 185.04 217.70
(4.92) (4.62) (3.69) (2.82) (1.33) (1.64)

50 660
185.13 218.14 185.73 218.00
(3.10) (2.48) (2.68) (2.09) (1.16) (1.19)

75 990
185.34 217.99 185.02 217.75
(2.48) (1.96) (2.21) (1.55) (1.12) (1.26)

100 1310
185.59 218.06 185.26 217.83
(2.09) (1.57) (1.97) (1.06) (1.06) (1.48)

150 1950
184.90 217.78 185.38 217.97
(1.65) (1.51) (1.60) (0.94) (1.03) (1.61)

Table 8: Portfolio 2, α = 1%. Sensitivity of Algo2Q to update frequency.
Varying n for fixed start value xstart = 25% · VaRtrue

α . Means and standard
deviations (between brackets) of 100 algorithm runs are reported. The last
two columns contain the standard deviation ratios of the VaRα and ESα
estimates, respectively. VaRtrue

α = 185.06 and EStrue
α = 217.65.
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n N
Algo2Q Algo3Q sd ratios

V̂aRα ÊSα V̂aRα ÊSα V̂aRα ÊSα

10 120
185.46 217.52 185.14 217.47
(6.11) (4.82) (6.43) (4.18) (0.95) (1.15)

25 300
185.20 218.07 185.71 217.79
(3.75) (2.76) (3.93) (2.97) (0.95) (0.93)

50 600
184.96 217.91 185.70 218.15
(2.81) (1.94) (2.86) (1.85) (0.98) (1.05)

75 900
185.45 218.00 185.21 217.88
(2.36) (1.44) (2.01) (1.49) (1.17) (0.97)

100 1200
185.00 217.76 185.30 217.84
(1.83) (1.23) (2.02) (1.30) (0.91) (0.95)

150 1800
185.52 218.10 185.34 217.92
(1.50) (1.10) (1.43) (0.94) (1.05) (1.17)

Table 9: Portfolio 2, α = 1%. Sensitivity of Algo2Q to update frequency.
Varying n for fixed start value xstart = 150% · VaRtrue

α . Means and standard
deviations (between brackets) of 100 algorithm runs are reported. The last
two columns contain the standard deviation ratios of the VaRα and ESα
estimates, respectively. VaRtrue

α = 185.06 and EStrue
α = 217.65.

more efficient density soon. But choosing a large value for n provides more
accurate intermediate estimations and thus more suitable densities. Let us
consider the case where α = 1%. Table 6 compares Algo2Y and Algo3Y
for varying n and xstart = 25% · VaRtrue

α . The results in Table 7 correspond
to xstart = 175% · VaRtrue

α . As before, mean and standard deviation of 100
algorithm runs are reported in the tables. Additionally, to ensure a suitable
comparison of Algo2Y and Algo3Y, the last two columns of Table 6 and Ta-
ble 7 contain the standard deviation ratios of the VaR and ES estimates,
respectively. Small ratios correspond to accurate Algo2Y estimations. Ta-
ble 3 shows that, for n = 40, Algo3Y outperforms Algo2Y for both start
values that have been chosen here. Indeed, the standard deviations of the
Algo2Y results are considerably higher than those of the Algo3Y estima-
tions. Table 8 and Table 9 present comparisons of Algo2Q and Algo3Q for
two different start values, xstart = 25% · VaRtrue

α and xstart = 150% · VaRtrue
α .

Again, for n = 40, Algo2Q has provided rather poor results for both start
values, as can be seen in Table 5. Let us now try to interpret the results in
Tables 6, 7, 8 and 9. According to the VaR estimates in Table 8, accurate
intermediate estimations seem to be more important than a frequent update
of the importance sampling density, because the results of Algo2Q get more
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accurate for n getting larger. But Table 6 and Table 7 suggest to choose
n rather small or intermediate. Table 9 does not clearly privilege neither
large nor small values of n. Thus, our results show that the performances
of Algo2Y and Algo2Q, compared to those of Algo3Y and Algo3Q, depend
on n, but it is not clear whether it is more suitable to choose large or small
values for n.

To conclude this section let us recall that using importance sampling to
estimate Value-at-Risk and expected shortfall can reduce variance consider-
ably. In our specific case of delta and delta-gamma importance sampling,
variance reduction carries over from loss probability estimation to quantile
estimation. Additionally it is numerically confirmed that, if there is no easy
way to get a good first guess for the quantile of interest, updating the im-
portance sampling density during simulation increases sampling efficiency.
However, the numerical examples did not allow to clearly determine the best
updating scheme. On the one hand, for most start values updating after
each simulation using (11) might provide slightly more accurate results than
using a bisection method based on probability estimations. On the other
hand, selecting N new densities may need a lot of computational effort. For
delta IS the differences in computing times between standard Monte Carlo,
Algo1Y, Algo2Y and Algo3Y are insignificant. But for delta-gamma IS the
computation of N twisting parameters is indeed quite time consuming. Note
that a run of Algo3Q takes in average 1.7 times longer than a run of Algo2Q.
The most efficient updating scheme is therefore probably a compromise be-
tween the two methods presented in this thesis. That is, one could try to
alter Algo3Y and Algo3Q in such a way that the IS density is not updated
after every single simulation.
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