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Abstract

We investigate the properties of systematic investment vehicles consisting of equity-linked notes in a
model with stochastic volatility, random jumps and stochastic interest rate. We consider a setting where
the investment horizon is significantly longer than the tenor of the available structured retail products.
Long-term asset price trajectories are simulated and performance is evaluated in a quantitative fashion
as well as by means of a discretionary scenario analysis.

It is shown that structured products can enhance the risk-return spectrum when introduced in a classical
stock-bond mix and that portfolios consisting of multiple structured products reduce the level of timing
risk as compared to a so called Single roll. On a more qualitative note, we show that the portfolios of
structured products slightly reduce the time-variability of market risk as there is a smoothening on the
relative weighting between bonds and options, respectively. Finally, we find that products issued above
par, albeit associated with higher risks, show far more attrative return opportunities.
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Chapter 1

Introduction

Generally, structured products can be defined as combinations of elementary financial instruments. In
this thesis, we deal with perhaps the most widespread form of structured products within the retail
client segment, namely equity-linked notes with principal protection. Such notes typically consist of a
zero-coupon bond and a stock option with tenors ranging from two to five years. The special feature in
comparison to traditional bonds is that the payoff at maturity is contingent on the performance of the
underlying stock or equity index.

Since the first notes denominated in SEK were issued in the late 1980s the market for retail-targeted
structured products has gown tremendously. According to Euroclear Sweden, as of July 1, 2009 there
were outstanding index- and equity-linked notes demoninated in SEK of approximately SEK 167 billion
in nominal terms and the four largest issuers (Nordea, SEB, Svenska Handelsbanken and Swedbank)
together issued notes worth of SEK 16.8 billion during the first half of 2009.1

This growth serves as evidence of the popularity of structured products and these securities are an easy
means of implementing investment strategies based on risk-averse (more specifically, loss-averse) pref-
erences, where the safety of a bond is combined with the opportunities in the equities markets via an
option. Additionally, as structured products come in many different forms, with exposure to a variety of
asset classes in domestic as well as foreign markets, they generally offer a useful extension and provide
increased accessability to the capital markets.

Along with the abovementioned growth, the interest of how a structured product affects the portfolio
of a private investor has increased. Several studies (e.g. Goltz, Martellini and Simsek, 2005) have been
made investigating how the inclusion of structured products affects an investment portfolio under the
assumption that the investment horizon coincides with the tenor of the structured product. From a
practical perspective, such assumptions may be too simplistic as an investor’s investment horizon may
well differ from the tenor of the available structured products and the fact that investors generally have
access to a secondary market where long positions in structured products can be liquidated.2

In this thesis we investigate the properties of investing into systematic investment vehicles consisting of
equity-linked notes or, simply put, portfolios of structured products. More specifically, we construct a
class of self-financing, buy-and-hold portfolios involving structured products. We assume the existence
of a data-generating process and suggest a general equillibrium model in order to generate plausible
future price scenarios and price the according future prices of derivative securities under the risk-neutral
measure. The model is calibrated from the Swedish primitive and derivatives markets, respectively.

One of the main reasons for not conducting a historical study is that under the assumption of the ex-
istence of a data-generating process we would thus be evaluating a single realization of this process.
Further, on back of the relatively short history of the market for structured products we would, at most,

1Figures include notes with no principal protection, e.g. so called certificates.
2For exceptions, see e.g. Liu and Pan (2003) where no assumptions about the investor’s investment horizon are made,

although they still do not allow for diversification in tenor.
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have a total of two disjunct ten-year periods. These arguments together call for a simulation-based study.
Finally, we hope to shed some light on the problem of timing and extreme events and how these concepts
are related to portfolio optimization. The problems associated with timing are perhaps best described by
the following back-of-the-envelope example: a long position in the OMXS30 index excluding dividends
during 1991-2008 roughly increased by 341%, while a similar strategy with the exception of staying out
of the stock market (i.e. holding cash) during the worst two years (2002 and 2008) had given a total
return of 1135%.

The remainder of this thesis is structured as follows. In Chapter 2 we introduce the model framework
followed by a discussion on empirical findings on asset returns and derivatives pricing. Chapter 3 describes
the data and the model calibration while Chapter 4 deals with the implementation of our model, more
specifically the choice of discretization scheme and simulation of trajectories along with quantitative as
well as scenario-based analysis of the portfolios of structured products. We conclude in Chapter 5.
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Chapter 2

Modeling financial markets

Most, if not all, of today’s continuous-time modeling of financial markets builds on the seminal work of
Black and Scholes (1973), here referred to as the Black-Scholes-Merton. One of the major benefits of the
Black-Scholes-Merton model compared to more sophisticated expansions is the tractability of the asset
price data-generating process as well as the risk-neutral dynamics used for derivatives pricing. Today
it is however widely accepted that the assumptions underlying the Black-Scholes-Merton model are too
restrictive and it is a well-documented fact that asset returns exhibit both excess kurtosis and skewness
which violates its normality assumptions.

Popular attempts to explain these deviations from normality include the introduction of stochastic volatil-
ity and random jumps to the asset price process. Several studies investigating asset return characteristics
have shown that these models better fit historical data and empirical evidence suggest that models in-
corporating stochastic volatility and random jumps are indeed well suited to price vanilla options, see
e.g. Bakshi, Cao and Chen (1997). A class of model specifications that has received a lot of attention in
literature is the class of affine models. Affine models are continuous-time models characterized by drift
and variance functions that are linear in risk-factors and include various volatility specifications as well
as random jumps in prices and/or volatility. Furthermore, affine models permit closed form solutions on
vanilla option prices and in some cases analytical expressions for asset return moments (see e.g. Duffie,
Pan and Singleton, 2000). These properties prove helpful as they significantly reduce the complexity of
calibration.

2.1 Modeling with a smile in a Hansen-Lärfars framework

In this thesis we simulate long-term trajectories of a stock index, a volatility process and a short rate
in order to compute the future value of a portfolio of structured products and compare the long-term
performance of this portfolio to other investment alternatives. This approach implies a set of restrictions
on our choice of model. Firstly, we require a model that is tractable under the data-generating measure
(we will refrain from using the terms objective or real-world measure in order to stress that this is a model
framework) as well as under the risk-neutral measure. This is due to the fact that we need to simulate
and evaluate returns from an investor’s perspective as well as compute option and bond prices in order to
find the price processes of the portfolios of structured products. Secondly, we need the data-generating
process to capture long-term characteristics of observed market prices whilst the risk-neutral process
needs to make accurate out-of-sample predictions on bond and option prices in order for the model
to produce realistic price paths. Finally, implementation and calibration to observed data may not be
computationally demanding at an unreasonable level. In Sections 2.1.1 and 2.1.2 we define our model
of choice and in Section 2.2 we discuss how this model responds to the abovementioned restrictions. We
have chosen an affine model with the square-root process of stock index volatility introduced by Heston
(1993), random jumps and a Cox, Ingersoll and Ross (1985) model of the short rate.
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2.1.1 The data-generating process

We let the stock index return and interest rate to follow data-generating processes on the following form.

dSt/St =
(

µ0 + rt − d +
1
2
Vt

)
dt +

√
VtdWS

t + (Jt − 1) dqt (λ) − λµdt

dVt = κ(γ − Vt)dt + σV

√
VtdWV

t

drt = β(α − rt)dt + σr
√

rtdW r
t

dWS
t dWV

t = ρdt,

(2.1)

where St, Vt, rt, and d denote the stock index price (excluding dividend), the variance, the interest rate
and the dividend yield, respectively. Further, the jump component dqt (λ) is assumed to be a Poisson
process with constant intensity λ, independent of the jump size Jt, the driving Wiener-processes dWS

t ,
dWV

t , and dW r
t while dWS

t and dWV
t are assumed to be correlated with correlation ρdt, but uncorrelated

with dW r
t . As Pan (2002), we could model the dividend yield as a stochastic process, but as concluded

by Jiang (2002) (on the S&P 500 index) and as seen from the data in Section 3.1.1, relative to the
OMXS30 index returns, the daily changes in dividend yield is rather small in magnitude measured by
both the mean and standard error. Therefore, for simplicity, we assume a deterministic dividend yield.
Furthermore, the jump size is assumed to be log-normally distributed, i.e. ln (Jt) ∼ N

(
µJ , σ2

J

)
where

µJ = ln (1 + µ)− 1
2σ2

J . The last term −λµdt compensates the change in expected return induced by the
jump process. The drift term also consists of µ0 which describes equity risk premium, including jump
risk premium.

Our model of choice is essentially the same model used in Jiang (2002). However, we restrict the volatility
risk premium to Vt/2 whereas Jiang (2002) only assumes the volatility risk premium to be proportional
to Vt. Imposing this restriction simplifies the analytical moments of the equity index log returns and
improves the robustness of our calibration procedure. Other affine models with random jumps, stochastic
interest rate and stochastic volatility (hereafter the SVJDSI model) include e.g. Pan (2002), Bates (1996,
2000) and Bakshi, Cao and Chen (1997). This is indeed a model with a high degree of complexity and,
as Jiang (2002) points out, under certain parameter restrictions it would be equivalent to other popular
models. Specifically, with parameter restrictions β = 1, σr = 0 this is a model with stochastic volatility
and random jumps (the SVJD model), with β = κ = 1 σr = σV = 0 a model with random jumps (the
JD model), with β = 1, σr = λ = 0 a model with stochastic volatility (the SV model) and finally with
β = κ = 1, σr = σV = λ = 0 this is the Black-Scholes-Merton model (hereafter the BSM model). Popular
models that are not special cases of our model include models with random jumps in the variance process,
models with random jump intensity, multi-factor volatility models, non-affine models and models that
incorporate more sophisticated interest rate dynamics. We will further elaborate on why we refrain from
using such extensions in Section 2.2.

2.1.2 The risk-neutral process

As our model of choice is an extension of the BSM model with additional risk factors but without the in-
troduction of additional risky assets we are modeling a non-complete market and, hence, the risk-neutral
measure is not unique. We will below state the necessary assumptions for a risk-neutral process on a
similar form as Equation 2.1.

Given the data-generating process stated in Equation 2.1 with deterministic jump intensity and under
the assumption that volatility risk premium for the stock index and interest rate processes, ΦV and Φr’
are stochastic and proportional to the corresponding variance processes, i.e. on the form ΦV = ξVt,
Φr = ζrt, Jiang (2002) uses the results of Bates (1988) and Cox, Ingersoll and Ross (1985) to show that
the corresponding risk-neutral process is described by Equation 2.2.1

1See Jiang (2002) for an explicit expression of the pricing kernel.
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dSt/St = (rt − d) dt +
√

VtdWS
t

∗ + (J∗
t − 1) dq∗t (λ∗) − λ∗µ∗dt

dVt = (κ (γ − Vt) + ΦV ) dt + σV

√
VtdWV

t
∗

drt = (β (α − rt) + Φr) dt + σr
√

rtdW r
t
∗

dWS
t

∗
dWV

t
∗

= ρdt.

(2.2)

Bates (1996) has shown that the above linear assumptions on risk premia is equivalent to assuming a
market log utility function of terminal wealth. We will however leave the discussion on utility theory
and implicitly motivate the choice of pricing kernel by discussing how the data-generating process fits
observed stock index returns and the pricing performance of the risk-neutral process.

2.2 Model properties – a tale of heavy tails
In this section we cover some important empirical and theoretical findings in previous studies that
elaborate on asset return properties, derivatives pricing and different model specification. In particular,
we use previous findings in the abovementioned areas to motivate our choice of model. Furthermore,
we utilize previous work on affine models to derive some pricing formulas as well as some statistical
properties of the SVJDSI model.

2.2.1 Equity index return properties
There are several aspects of asset return characteristics that are not captured by simpler models. Cont
(2001) presents an extensive overview of well-documented asset return properties, e.g. volatility clus-
tering, negative skewness, excess kurtosis and negative correlation with volatility. The negative correla-
tion with volatility is usually described as a leverage effect, that is a decrease in stock prices increases
debt/equity ratios and, hence, leverage and volatility is thereby increased. In our model, this leverage
effect would be captured by a negative value of the correlation coefficient ρ.

These properties are also studied by Chernov et al. (2003) who calibrate several model specifications,
including the most common affine models, to observed data and evaluate their ability to explain asset
return properties. In particular, it is concluded that a one-factor stochastic volatility model without
jumps is insufficient if one wants to capture both volatility clustering and tail behavior and, hence, the
model is rejected. Moreover, the authors conclude that modeling tail behavior by including random
jumps allow for the one-factor volatility to describe volatility persistence more accurately. This is due to
the fact that accurate modeling of tail behavior with only stochastic volatility requires a higher speed of
mean reversion which reduces volatility clustering. We have found little evidence of two-factor volatility,
with or without jumps, being superior to a one-factor volatility, random jump model. This, combined
with the additional amount of parameters and loss in degrees of freedom induced by a two-factor model,
implies that our model specification should be sufficient to describe the abovementioned asset properties.
Andersen, Benzoni and Lund (2002) reach similar results as do Chernov et al. (2003) and the auhors
reject models that exclude random jumps and/or stochastic volatility. Furthermore, they show that
state dependent jump intensity does not provide any additional explanatory power over constant jump
intensity. They do, however, discuss the possibility that this result could stem from estimation issues.
Regardless, we have not found sufficient proof of additional explanatory power in stochastic jump density
to motivate the additional computational complexity it would incur.

2.2.2 Pricing power in the interests of rates and options
It is well documented that the BSM model consistently misprice options rendering an implied volatility
smile or skew and a non-flat term structure of volatility. In particular, implied volatilities are generally
decreasing in strike price inferring that the BSM model underestimates the risk of large negative price
shocks. The studies of models that better fit observed market prices and price out-of-sample options
more accurately are numerous. Generally, it appears the convention is to re-calibrate models on a daily
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basis.2 This is of course internally inconsistent as parameters assumed to be constant in model specifi-
cations are continuously changing. As our study uses simulated price paths we can not use this method
of calibration but must trust the model calibration to be robust over time. The major drawback is that
we consequently require a high level of out-of-sample pricing power.

Similar to the conclusions drawn on the data-generating process in the Section 2.2.1 Bakshi, Cao and
Chen (1997) conclude that stochastic volatility or random jumps alone does not capture the risks priced
by index options markets. In particular, stochastic volatility fails to capture short-term kurtosis and
hence misprice short term options while pure jump diffusion models do not fit the prices of options with
longer tenors. For a good out-of-sample cross-sectional fit they recommend including both stochastic
volatility and random jumps.3 In contrast, stochastic interest rates does not reduce cross-sectional biases
but the authors recommend implementing the same in order to achieve a higher overall pricing precision.
Jiang (2002) does, however, argue that the improvement from stochastic interest rates is negligible. Re-
gardless, our main motivation for including stochastic interest rates is the need to simulate reasonably
realistic investment scenarios and the possibility to price bonds from a non-flat, time-varying yield curve.

Pan (2002) shows that including state-dependent jump intensity significantly improves the fit to observed
option prices. This result is however based on a comparison with models excluding jumps, i.e. these
results do not imply that stochastic jump density describes the options markets more accurately than
constant jump density. Further, Eraker (2004) concludes that including jumps in the variance process
has a significant positive impact on out-of-sample pricing performance. Although this is indeed a rea-
sonable extension we choose not to include jumps in volatility as it would incur additional complexity in
the calculation of asset return moments used for GMM estimation. In particluar, we need to know the
explicit distribution of the variance process in order to compute the unconditional characteristic function
of the stock index log returns.

The major weakness of our proposed model appears to be the interest rate dynamics. It has indeed been
shown that the Cox-Ingersoll-Ross model fails to capture some well-observed interest rate charachteris-
tics. Among others, Andersen, Benzoni and Lund (2004) conclude that stochastic volatility is crucial for
the interest rate model to fit observed U.S. short rates and that random jumps helps explaining outliers
in their data set.

As a concluding remark, it should be noted that studies where both stock price and interest rate dynamics
are modelled generally aim at pricing equity derivatives. Since the improvement in pricing ability from
more advanced interest rate models is negligible as compared to the improvements from more sophisti-
cated stock price dynamics this has resulted in a lack of research on models encompassing both stock
price dynamics and more sophisticated interest rate modeling. Consequently, we have not come across
any research on how to price equity options in such a setting. Additionally, as with the variance process,
we need to know the explicit distribution of the interest rate in order to compute the unconditional
properties of the stock index log returns. Hence, we choose not to extend the model with more advanced
interest rate dynamics.

2.2.3 Conditional and unconditional properties

To be able to use the calibration method described in Section 3.1 we need to derive the unconditional
moments of the stock index log returns and the conditional moments of the interest rate. We follow
the procedure of Jiang (2002) and solve the Kolmogorov backward equation for the conditional joint
characteristic function of ∆ ln St, rt and Vt, where ∆ ln St = lnSt − ln St−∆. Since the charachteristic
functions, and, hence, the analytical moments, presented by Jiang (2002) contain some errors, we have
chosen to include a full derivation in Appendix A.

2See e.g. Bates (1996) or Bakshi, Cao and Chen (1997)
3The term cross-sectional refers to a model being able to accurately price options varying across tenors as well as strike

prices.
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ψ (∆ ln St+∆, Vt+∆, rt+∆; φ1, φ2, φ3|Vt, rt) =
E [exp (iφ1∆ ln St+∆ + iφ2Vt+∆ + iφ3rt+∆) |Vt, rt] =
exp (C (φ1, φ2, φ3, ∆) + (iφ2 + D (φ1, φ2, ∆))Vt + (iφ3 + B (φ1, φ3, ∆)) rt)

exp
(
∆λ

(
eiφ1µJ−1/2φ2

1σ2
J − 1

))
,

(2.3)

where C (φ1, φ2, φ3, ∆), D (φ1, φ2, ∆) and B (φ1, φ3, ∆) are given in Appendix A.

Using Equation 2.3, that Vt follows a Gamma distribution with density function fVt (x) = θp

Γ(p)x
p−1e−θx,

where θ = 2κ
σ2

v
, p = 2κγ

σ2
v

and that rt follows a Gamma distribution with density function frt (x) =
θp

Γ(p)x
p−1e−θx, where θ = 2β

σ2
r
, p = 2βα

σ2
v

we can compute the unconditional charachteristic functions
defined in Equations 2.4 and 2.5.

ψ (∆ ln St+∆, rt+∆; φ1, φ3) =
E [exp (iφ1∆ ln St+∆ + iφ3rt+∆)] =

exp
(

C (φ1, 0, φ3, ∆) − 2κγ

σ2
V

ln
(

1 − σ2
V D (φ1, 0, ∆)

2κ

)
− 2βα

σ2
r

ln
(

1 − σ2
rB (φ1, φ3, ∆)

2β

))

exp
(
∆λ

(
eiφ1µJ−1/2φ2

1σ2
J − 1

))

(2.4)

ψ (∆ ln St+τ+∆, ln St+∆; ϕ1, ϕ2) = E [exp (iϕ1∆St+τ+∆ + iϕ2St+∆)] =
exp (C (ϕ1, 0, 0, ∆) + C (0,−iD (ϕ1, 0, ∆) ,−iB (ϕ1, 0, ∆) , t − ∆) + C (ϕ2,−iD∗,−iB∗, ∆))
(

1 − σ2
V (D∗ + D (ϕ2,−iD∗, ∆))

2κ

)2κγ/σ2
V

(
1 − σ2

r (B∗ + B (ϕ2,−iB∗, ∆))
2β

)2βα/σ2
r

exp
(
∆λ

(
eiϕ1µJ−1/2ϕ2

1σ2
J − 1

)
+ ∆λ

(
eiϕ2µJ−1/2ϕ2

2σ2
J − 1

))

(2.5)

Now, by differentiating Equations 2.3, 2.4 and 2.5 we can compute the necessary moments described in
Section 3.1.3. Refer to Appendix B for a Monte Carlo verification of the exact moments.

2.2.4 Risk-neutral properties
As Cox, Ingersoll and Ross (1985) show, given the risk-neutral representation in Equation 2.2, the price
of a zero-coupon bond B (t, τ) at time t with tenor τ is on the form as described in Equation 2.6.

B (t, τ) = a (t, τ) e−b(t,τ)rt , (2.6)

where a (t, τ) =
(

2Γe(β∗+Γ)τ\2

(β∗+Γ)(eΓτ−1)+2Γ

)2γr/σ2
r

, b (t, τ) = 2eΓτ−1
(β∗+Γ)(eΓτ−1)+2Γ , Γ =

√
β∗ + 2σ2

r , γr = βα, β∗ =
β − ζ. Furthermore, Jiang (2002) uses the Fourier inversion technique propoesed by Heston (1993) to
show that 2.2 implies european call option prices C (t, τ, St, K, rt, Vt) on the following form. Similar
formulais are also derived by e.g. Bates (1996), Scott (1997) and Bakshi, Cao, Chen (1997).

C (t, τ, St, K, rt, Vt) = StΠ1 (t, τ, St, K, rt, Vt) − KB (t, τ) Π2 (t, τ, St, K, rt, Vt) , (2.7)

where Πj (t, τ, St, K, rt, Vt) = 1
2 + 1

π

∫ ∞
0 Re

(
e−iφ ln Kfj(t,τ,St,K,rt,Vt,φ)

iφ

)
dφ while f1 and f2 are given in

Appendix C.
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Chapter 3

Model calibration

We estimate the data-generating and risk-neutral processes, specified in Equation 2.1 and 2.2, respec-
tively, using information from both observations of the underlying asset returns and the options market.
Following Jiang (2002) we employ a two-step estimation procedure where, in the first step, the under-
lying data-generating model is estimated from asset return observations. More specifically, we start
out by estimating the interest rate process parameters and these estimates are then utilized when esti-
mating the stock return process parameters, as has been done by e.g. Pan (2002). These parameters
are estimated using Generalized Method of Moments (GMM), described in detail below. In the second
step the preference-related parameters are estimated from options market data. As mentioned by Jiang
(2002), this implementation is relatively easy and it suits our needs as we employ the data-generation
and risk-neutral processes for simulation and derivatives pricing purposes, respectively.

3.1 The data-generating process
Estimation of non-linear latent variable models is by no means a trivial task as the stochastic volatility
is unobservable and, hence, the model can not be estimated using standard Maximum Likelihood Es-
timation (MLE). Various estimation methods for stochastic volatility models have been proposed over
the past two decades, yet most of these are simulation-based and very computationally intensive (Jiang,
2002). We exploit that the characteristic functions of the asset returns and joint asset returns can be
derived analytically and, thus, the exact moments of asset returns are available. That is, the calibration
procedure we employ is based on exact moments of the continuous-time process rather than stemming
from a discrete approximation.

3.1.1 Swedish market data
For the estimation of the data-generating process parameters we use daily Swedish market data of the
large cap price index OMXS30 from March 28, 1991 until March 31, 2009. As to the theoretical concept
of the short rate, we use the 3-month Swedish treasury bill (Sw. statsskuldväxel). This is a necessary
compromise between literally using the interest rate with the shortest tenor available (e.g. overnight
rates) and avoiding some of the associated microstructure effects (Jiang, 2002). Again, we use daily
market data from March 28, 1991 until March 31, 2009.

The continuous dividend yield is estimated using daily observation of the OMXS30 price and gross
index, respectively. In an attempt to reduce the dependence structure, the continuous dividend yield, d,
is estimated via the daily differences between the log returns of the gross and price indexes using data
from January 2, 2002 until October 31, 2008. Figure 3.1 shows charts of the daily quotes of OMXS30
price index and the SSVX 3M interest rates, whereas Figure 3.2 shows a comparison of the OMXS30
price and gross indexes, respectively, along with our estimate of the continuous dividend yield. Finally,
Table 3.1.1 shows summary data statistics of the historical Swedish market data used in the calibration
procedure described below.
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Figure 3.1: Upper: Historical data of the OMXS30 price index from March 28, 1991 until March 31,
2009. Middle: Historical data of the SSVX 3M yield during the same time period. Lower: Historical
daily changes as specified of the OMXS30 price index and the SSVX 3M yield.
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Static properties
N Mean St. dev. Skewness Kurtosis Min Max

100 × ∆ ln Sti 4510 0.027 1.541 0.164 6.924 -8.527 11.023
100 × ∆rti 4510 -0.003 0.295 6.210 455.174 -7.000 9.000

Dynamic properties
N ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) ρ(10) ρ(20)

100 × ∆ ln Sti 4510 0.017 -0.041 -0.036 0.013 -0.011 -0.022 -0.000
(100 × ∆ ln Sti)

2 4510 0.185 0.206 0.205 0.154 0.210 0.180 0.110
100 × ∆rti 4510 0.005 -0.339 -0.115 0.210 0.227 -0.120 -0.009

Table 3.1: Summary data statistics of the OMXS30 price index daily log returns and the SSVX 3M yield
changes from March 28, 1991 until March 31, 2009. Autocorrelation with lag l is denoted ρ(l) while
∆ ln Sti = ln Sti − ln Sti−1 and ∆rti = rti − rti−1 with i = 2, . . . , N .

3.1.2 Generalized Method of Moments
Generalized Method of Moments (GMM) is an econometric procedure for estimating the parameters of
a given model. Hansen (1982) developed GMM as an extension to the Classical Method of Moments
estimators, the latter dating back more than a century. The basic idea of GMM is to choose parameters
so as to match the moments of the model to those of the data as closely as possible. The moment con-
ditions are chosen under the implementer’s discretion based on the problem at hand, which itself serves
as a proof of the generality of the method. A weighting matrix determines the relative importance of
matching each moment. Most common estimation procedures can be couched in this framework, includ-
ing OLS, 2SLS and in some cases even MLE (Cliff, 2003).

The first key advantage of GMM over other estimation procedures is that the initial/underlying statistical
assumptions of stationarity and ergodicity are relatively weak when comparing to the more traditional
assumption that the data are independent and identically-distributed. Further, unlike MLE, GMM
does not put distributional assumptions on the data, although the GMM moment conditions are indeed
functionally parametric. Among the more obvious drawbacks is a loss of efficiency over methods such
as MLE. Thus, GMM offers a compromise between the efficiency of MLE and robustness to deviations
from e.g. normality (Arnold and Crack, 1999).

3.1.3 Implementation and estimation results
The first stage of GMM is to construct the so called population moments ft(θ) such that the expectation
of the moment vector is equal to zero, i.e. E[ft(θ)] = 0. For the interest rate process, we let

εr
t = rt − E[rt|rt−∆],

t = 2, 3, . . . , T.

be the de-meaned interest rate process. The expectations of εr
t are calculated exactly as in Section 2.2.3.

We use the the first two conditional moments with the lagged variable as instrumental variable. These
are the same moment conditions used by Chan, Karolyi, Longstaff and Sanders (1992), only that ours are
exact as they are derived from the continuous-time model. The moment conditions are formally stated
in Equation 3.1.

f r
t (θ) =

[
εr

t − E[εr
t ]

(εr
t )

2 − E[(εr
t )

2]

]
⊗

[
1

rt−∆

]
=





εr
t − E[εr

t ]
(εr

t − E[εr
t ]) rt−∆

(εr
t )

2 − E
[
(εr

t )
2
]

(
(εr

t )
2 − E

[
(εr

t )
2
])

rt−∆




(3.1)

t = 2, 3, . . . , T.
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Similarly to the interest rate process, we let

εS
t = ∆lnSt − E[∆lnSt],

be the de-meaned asset return process, where ∆ ln St = lnSt − ln St−∆. Again, the expectations of εS
t

are calculated exactly as in Section 2.2.3. There are obviously infinitely many moments that may be
included in the GMM estimation. When determining the number of moments used in the estimation
a fundamental trade-off applies, namely that the inclusion of additional moments improves estimation
performance for a given degree of precision in the estimation of the weighting matrix, but in finite samples
this must be balanced against the deterioration in the estimate of the weighting matrix as the number of
moments increases (Jiang, 2002). Very high order moments should be avoided due to their erratic finite
sample behavior caused by the presence of fat tails in the asset return distribution. Hence, we move our
attention to the lower order moments, which is consistent with Jiang (2002), Andersen and Sørensen
(1996) and Jacquier, Polson and Rossi (1994). The asset return moment conditions are described in
Equation 3.2.

fS
t (θ) =




(
εS

t

)k − E
[(

εS
t

)k
]

(
εS

t

)2(
εS

t−τ

)2 − E
[(

εS
t

)2(
εS

t−τ

)2
]



 (3.2)

k = 1, 2, 3, 4, 5;

τ = 1, 2, 3, 4, 5;

t = 7, 8, . . . , T.

Further, the jump component affects only the unconditional moments, thus the first group of moment
conditions in Equation 3.2 is important for the estimation of jump parameters. Since stochastic volatil-
ity and random jump both allow for skewness and excess kurtosis, it is imperative to include the fifth
moment for the estimation of jump parameters and, accordingly, we set k = 1, 2, 3, 4, 5. Secondly, the
autocorrelation of squared asset return is determined by the dynamics of the stochastic volatility process
and its correlation with asset returns. Thus, the second group of moment conditions in Equation 3.2
is important for the identification of the volatility risk premium and volatility dynamics. As to the
second group of moment conditions, we follow Jiang (2002) who proposes using different lags, namely
τ = 1, 2, 3, 4, 5 on back of empirical evidence suggesting that autocorrelation is varying over time.

The GMM sample moments, that is the natural sample counterpart of the population moments, are then
defined as

gT (θ) =
1
T

T∑

t=1

ft(θ), (3.3)

where T is the number of available observations or sample size.1 Further, the GMM objective function
is defined as

JT = g′T WT gT , (3.4)

where WT is a positive-definite weighting matrix. We can see that GMM is a minimum distance estimator,
i.e. we set the weighted sum of squared sample moments as close to zero as possible. The weighting
matrix instructs on how much attention to pay to each moment. Hence, parameter estimates θ̂ are found
by solving

θ̂ = arg min
θ∈Θ

JT . (3.5)

Additionally, GMM offers an overall test of the model by testing whether the "extra" sample moments
are sufficiently close to zero relative to their distribution. Under the null hypothesis that the model is
true, the minimized value of JT (θ) in 3.4 is χ2-distributed with degrees of freedom equal to the number
of orthogonality conditions net of the number of parameters to be estimated. This χ2-statistic provides a

1As a result of Hansen’s (1982) seminal work, notations as in e.g. Equation 3.3 where T denotes sample size have
become convention, although a perhaps more appropriate notation here would include ti, where i = 1, . . . , N and N is the
sample size.
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goodness-of-fit test for the model, where a high statistic suggests that the model is misspecified. Formally
put, the test statistic is asymptotically χ2-distributed as follows

T × JT (θ̂) = T × g′T (θ̂)WT gT (θ̂) d−→χ2
m−p, (3.6)

where m is the number of moment conditions and p is the number of parameters.

Moments are chosen in such a fashion that the estimation is over-identified, i.e. there are more moment
conditions than there are parameters to be estimated. To obtain asymptotically efficient estimates we set
WT = Ŝ−1, where Ŝ is an estimate of the spectral density matrix of population moment functions. This
choice of the weighting matrix (sometimes referred to as efficient GMM) secures the smallest asymptotic
covariance matrix of the vector of estimated parameters, θ̂ (Hansen, 1982). This spectral density or
long-run covariance matrix is defined

S =
∞∑

j=−∞
E[ft(θ)ft−j(θ)′]. (3.7)

The spectral density matrix allows for serial correlation and heteroskedasticity in the observations of
the moments function. We utilize the perhaps most popular, consistent estimate of the spectral density
matrix, namely the one proposed by Newey and West (1987). The Newey-West estimator is defined as

Ŝ = Ŝ0 +
k∑

j=1

(
1 − j

k + 1

) (
Ŝj + Ŝ′

j

)
, (3.8)

where

Ŝj =
1
T

T∑

t=j+1

ft(θ)ft−j(θ)′,

and k is the number of lags. Note that when the number of lags are set to 0 the spectral density matrix
collapses to an ordinary sample covariance matrix, a procedure relied upon under the assumption that
each row in the population moments vector can be considered to consist of i.i.d. variables.

In the case of an over-identified estimation, GMM is a two-stage estimator. First, we minimize Equation
3.4 using the identity matrix as weighting matrix, i.e. WT = I. This means that we consider all moments
equally important. We then insert the estimated parameter vector θ̂ into Equation 3.8 and inverse to
get WT . Second, we minimize Equation 3.4 again, only this time using the weighting matrix, WT , from
the previous step. We re-estimate the model parameters using increasing lag lengths until the lag length
has negligible effect on the prevailing value of the objective function, JT . Arnold and Crack (1999)
propose m ≈

√
T as a rule of thumb, whereas several other (e.g. Cliff, 2003) propose a smaller lag length

(m ≈ 3
√

T ). We use a lag length of m = 20 in our estimation.

The resulting parameters for the interest rate and asset return processes are presented in Table 3.2 and
Table 3.3, respectively. Firstly, we conclude that the BSMSI provides very little explanatory power,
whereas the introduction of stochastic volatility proves to be a great improvement. Secondly, while it
seems that the jump diffusion component provides no additional explanatory power to the data-generating
process we justify its existence on back of the fact that removing the corresponding jump risk premium
severly deteriorates the risk-neutral pricing power. However, when introducing both stochastic volatility
and jump diffusion we see that both the speed of mean reversion in volatility as well as the jump intensity
are reduced, hence supporting a volatility clustering effect.
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SI
α 0.0316
β 0.430
σr 0.0688
T × JT 1.4
p-value 24.12%
d.f. 1

Table 3.2: Prevailing parameter estimates of the interest rate process.

BSMSI SVSI JDSI SVJDSI
µ0 0.0968 0.0715 0.0798 0.0704√

γ 0.207 0.232 0.190 0.226
κ - 2.85 - 1.02
σV - 0.517 - 0.340
ρ - -0.118 - -0.235
µJ - - -0.00381 -0.00763
λ - - 5.47 2.71
σJ - - 0.0377 0.0405
T × JT 24.6 4.5 22.2 3.0
p-value 0.19% 47.49% 0.05% 22.38%
d.f. 8 5 5 2

Table 3.3: Prevailing parameter estimates of the stock index process.
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3.2 The risk-neutral process
In order to estimate the preference-related parameters β∗, κ∗, µ∗, and λ∗ we employ an OLS-type calibra-
tion procedure, where model-implied options and bond prices are matched to observed market prices. As
mentioned in Section 2.1 we do not utilize daily recalibration and hence need our parameter estimates to
be robust over time. Considering this we use a seven month data window, i.e. the period from April 30,
2009 until October 30, 2009. Note that this period does not overlap the dataset used in the calibration
of the data-generating process. Since the calibration procedure involves optimization over prices that
must be retrieved by means of numerical integration the process is indeed time-consuming and we settle
for a low data frequency. The dataset consists of two liquid options and three government bonds per
month, all quoted at the last trading day of the month.

The estimation results could likely be improved further if we could control the time synchronization
between stock index value and option prices. To adress this problem we use liquid options and the
average of the bid and offer quotes, rather than the closing price. Moreover, Jiang (2002) concludes that
for options on the S&P 500 index, parameter estimates tend to vary over moneyness. Hence, we use
liquid "near-the-money" options since the price of these options will have the greatest impact on the
performance of the structured products in our study.2

We use a minimum squared error loss function for both the bond and the option calibration. This loss
function appears to be the most commonly used, although it allows for expensive options to have a
greater impact on the calibration results. Westermark (2009) does, however, conclude that the choice
of loss function has limited impact on out-of-sample pricing and, hence, other loss functions would are
likely to work as well. The results are found in Table 3.4.

Bond calibration
β∗ 0.216

MSE SEK 0.32
MPE 0.48%
Option calibration
κ∗ 11.1
µ∗ -0.0435
λ∗ 4.83

MSE SEK 2.3
MPE 1.5 %

Table 3.4: Prevailing estimates of the risk-neutral parameters. MSE denotes mean squared pricing error
and MPE denotes absolute mean percentage pricing error

As discussed in Section 2.2 and as can be seen in Figure 3.3 the model bond prices lack some distinct
features observed in the market. In particular, the model fails to capture the convex yield curve observed
e.g. in October 2009. This problem should stem from the model specification rather than from the
parameter estimates and we still find the model an improvement over constant interest rates which
would generate flat, state-independent, yield curves.

2In particular, see Section 4.2.1 for a discussion on e.g. participation rate and how it relates to moneyness.
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Figure 3.3: Plots of model and market prices (or yields) of the Swedish 6-month treasury bill and the
Swedish 2- and 5-year government bonds, respectively.
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Figure 3.4: Plots of model and market prices of options on the OMXS30 price index expressed as implied
volatilites.
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Chapter 4

Simulation study

Having defined the model framework and the accompanying calibration procedure we now turn the
attention to simulating long-term trajectories. In order to simulate these trajectories from the continuous-
time model we define our discretization scheme of choice. Since we simulate long-term trajectories, i.e.
the evaluation window exceeds the tenor of all available instruments, we need to introduce a set of
investment strategies. Along with a reinvesting stock index strategy we define a bond strategy and a
total of seven investment strategies involving structured products. The empirical study is then divided
into two sections, where the first is a quantitative analysis of the terminal performance of the investment
universe, whereas the latter is a scenario-based evaluation. These scenarios are chosen under the authours’
discretion with the intent to capture some important features of these systematic investment vehicles.

4.1 Monte Carlo implementation
The simulation of the square-root processes describing the interest rate and the variance are well studied
in the academic literature. It is a well-known fact that an Euler-Maruyama scheme generates negative
values of the square-root processes with positive probability even when the Feller conditions are satisfied,
i.e. when 2κθ > σ2

V and 2βα > σ2
r .1 Hence, we follow the methodolgy of Goltz, Martellini and Simsek

(2005) and apply a Milstein scheme that produces a smaller discretization error. Formally put, we use
the discrete approximations S̃t , Ṽt and r̃t as described in Equation 4.1.

S̃t+∆ = S̃t + S̃t

(
r̃t − d +

1
2
Ṽt + µ0

)
∆ + S̃t

√
ṼtZ

S
t+∆

√
∆ + S̃t (Jt+∆ − 1)Qt+∆ + S̃t

1
2
Ṽt∆

(
ZS

t+∆
2 − 1

)

Ṽt+∆ = Ṽt + κ
(
γ − Ṽt

)
∆ + σV

√
ṼtZ

V
t+∆

√
∆ +

1
4
σ2

V Ṽt∆
(
ZV

t+∆
2 − 1

)

r̃t+∆ = r̃t + β (α − r̃t)∆ + σr

√
r̃tZ

r
t+∆

√
∆ +

1
4
σ2

r r̃t∆
(
Zr

t+∆
2 − 1

)
,

(4.1)

where ZS
t , ZV

t , Zr
t , Qt and Jt are i.i.d. processes, Qt ! Po (∆λ), ln (Jt) ∼ N

(
µJ , σ2

J

)
and ZS

t , ZV
t , Zr

t are
N(0, 1) variables with Corr

(
ZS

t , ZV
t

)
= ρ. Furthermore, r0 and V0 are simulated from the unconditional

distributions of rt and Vt, i.e. the Gamma distribution, in an attempt to remove the bias of always
starting in the same state.

In reality, the discrete approximation S̃t involves a rather crude approximation of an Itô integral which
reduces the number of simulations that needs to be performed per trajectory, but increases the numerical
error. For the true multi-dimensional Milstein scheme see e.g. Kahl and Jäckel (2006). In our model,
the numerical error appears to be extremely small compared to the stochastic error. This can be seen in
Appendix B, where we use Monte Carlo simulations to verify the moment conditions derived in Section
2.2. As every trajectory requires the computation of a large number of option prices, the simulation
progress is indeed very time-consuming. We hence settle for a total of 5000 trajectories.

1See e.g. Andersen (2007)
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Figure 4.1: Upper: Histograms of ∆ ln St, ∆ ln
√

Vt and ∆rt, respectively, from a randomly chosen
trajectory over the 10-year evaluation window. Lower: Plot of the trailing 500-day correlation of ∆ ln St

and ∆ ln
√

Vt of the same trajectory.

4.2 The investment universe
We restrict our investment universe to comprise

• an equity index investment vehicle,

• a bond strategy, and

• a class of portfolios of structured products.

The equity index investment vehicle is simply a reinvesting equivalent of the dividend-paying price in-
dex, often referred to as a gross index. To better explain the bond strategy and the class of portfolios of
structured products we must introduce the concept of a roll.

A roll is a strategy dealing with securities that have a finite time to maturity or tenor, i.e. securities
that eventually will mature, which in our model framework applies to the zero-coupon bonds (ZCBs)
and the stock options. The roll is simply a strategy in which the investor purchases, say, a ZCB at time
t = 0 with a tenor of 3 years. At time t = 3, i.e. when this ZCB matures, the proceeds are invested
in a new, identical security. This procedure can be repeated infinitely many times. There are at least
two important features to be mentioned about a roll strategy, namely that the investor has created a
buy-and-hold-type of strategy that can be considered to have an infinite tenor and that the terminal
payoff from such a strategy is unknown at time t = 0, as long as the investment horizon exceeds the
tenor of the underlying security. In the case of the roll of ZCBs, the terminal payoff of a (n × τ)-year
investment will be

100n+1

Bτ
0 · Bτ

τ · . . . · Bτ
(n−2)τ · Bτ

(n−1)τ

,

where Bτ
t denotes the price of a ZCB with tenor τ , issued at time t, whereas the 100 in the numerator

refers to an initial investment of SEK 100.

4.2.1 Structured products
We now turn the attention to the class of structured products or equity-linked notes. The structured
products we deal with are constructed so as to give the investor a known degree of capital guarantee
while giving upside exposure to the equity market. This is done by combining the safety of a ZCB with
the opportunities and risks associated with a leveraged instrument, namely a plain vanilla at-the-money
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call option.2 Central in the discussion of such structured products are the concepts of participation rate
and whether the product is issued at or above par. The participation rate can be interpreted as the
share of nominal amount that is spent on options. A structured product of nominal amount SEK 100,
issued at par, will have participation rate

PR = (100 − B0) /C0,

where PR is the participation rate while B0 and C0 are the prices of a ZCB and a plain vanilla, at-
the-money option, respectively, at the time of issue (here t = 0).3 Further, we introduce a margin and
issue the structured product above par, that is we allow for the investor to invest SEK (1 + π)100 in
the product while maintaining a capital guarantee equal to the nominal amount, here SEK 100. The
prevailing participation rate is

PR = ((1 + π)100 − B0) /C0,

where π > 0 is the share of nominal amount above par. The larger the share spent on options, the
lower the prevailing capital guarantee (as share of nominal amount). Thus, structured products issued
above par would typically attract the more risk-prone investor. This terminology means that, while the
nominal amount is guaranteed to be repaid at maturity, the invested capital is not. Rather, the prevailing
capital guarantee, as share of invested capital, is reduced to 1/(1 + π). Figure 4.2 illustrates how the
participation rate varies in π, rt and Vt. Exposure-wise this means that the payoff at maturity (that is,
at time t = T ) of these structured productcs with a nominal amount of SEK 100 can be formulated as

100 + 100 × PR × max
(

ST − S0

S0
, 0

)
,

where St is the price of the underlying asset at time t and PR as specified above.

!0!" !0!# !0!$ !0!% !0&
!0"

!0#

!0$

!0%

&

&0"

&0#

&0$

&0%

6V?4
!
C

4
!

6
V

-

-

"W!

"W!0&!

!0& !0" !0, !0# !0' !0$ !05
!0"

!0#

!0$

!0%

&

&0"

&0#

&0$

&0%

6V?1
!

&."
C

1
!

&."

6
V

-

-

"W!

"W!0&!

Figure 4.2: Prevailing participation rates for two distinct products specifications, namely 3-year struc-
tured products issued at and above par, i.e. with π = 0 and π = 0.10, respectively. Left: Participation
rate as a function of the short rate with volatility equal to its long-term mean, i.e.

√
V0 = 0.226. Right:

Participation rate as a function of the volatility level with the short rate equal to its long-term mean,
i.e. r0 = 0.0316.

2Most option constracts embedded in structured retail products are of more exotic art, e.g. containing Asian tails
and/or Quanto features. This may render in cheaper as well as more expensive options and, consequently, higher as well as
lower participation rates, although the main objective in the equity space is usually to eliminate unwanted risk exposures
and increase the degree of participation.

3Note that the terminology at-the-money refers to the exercise price at the time of issue, i.e. that K = S0.
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4.2.2 Constructing the portfolios of structured products
The rolling procedure applies to structured products in the exact same fashion as for bonds. A roll of
a structured product is thus an equity-linked buy-and-hold-type investment with a capital guarantee.
This capital guarantee is, as we have seen, declining in π. Although the capital guarantee allows for a
roll to lock in gains during the evaluation window, the roll only inherits the capital guarantee when the
investment horizon is a multiple of the tenor of the structured products.

Further, in this study we assume a yearly issue frequency of these structured products of 10 issues per
year. That is, every 25th business day, four different types of structured products are issued, varying in
τ = [3, 4] and π = [0, 0.10]. Consequently, at any given point in time there is a total of 140 strucutred
products on the market and, hence, 140 unique rolls.4 In order for all unique rolls to be available for
investment from time t = 0 we need to construct a pre-evaluation window, i.e. we need to evaluate the
price paths of these rolls during a time period preceding the investment horizon. The pre-evaluation
window length in years is τ − f−1, where τ is the tenor of the structured products and f denotes the
issue frequency, in number of issues per year.

From these 140 rolls one could construct a structured products portfolio consisting of all 140 rolls or any
subset thereof. However, to keep the investment universe comprehensible we define seven subsets and
a specific weighting scheme and consider the resulting seven portfolios as the only tradeable strategies
consisting of structured products. The portfolio constituents are displayed in Table 4.1 while the chosen
weighting scheme is defined in Section 4.2.3.

Tenor At/above par No of rolls Pre-eval. window
τ = 3 τ = 4 π = 0 π = 0.10

Single roll X - X - 1 0 years
Portfolio 1 X - X - 30 2.9 years
Portfolio 2 X - - X 30 2.9 years
Portfolio 3 X - X X 60 2.9 years
Portfolio 4 X X X - 70 3.9 years
Portfolio 5 X X - X 70 3.9 years
Portfolio 6 X X X X 140 3.9 years

Table 4.1: Specification of portfolio constituents in Single roll and Portfolios 1 through 6.

4The rationale behind the total number of unique rolls is that for a portfolio containing structured products with a
3-year tenor only, then τ × f = 3 × 10 = 30 rolls are needed to reach an euquillibrium state. Using the same analogy
we conclude that 40 rolls are needed for a portfolio of 4-year structured products to reach an equillibrium state. Since
there are two distinct product types, that is a structure products can be issued at (π = 0) or above (π = 0.10) par and,
consequently we need 2 × (30 + 40) = 140 unique rolls.
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4.2.3 Portfolio weighting scheme
Given the portfolio constituents in Table 4.1 we define a weighting scheme to explicitly determine the
portfolio compositions. In order to understand the chosen weighting scheme, one should be aware that
for a given trajectory the start time t0 of the evaluation window will impact the future performance of
any roll. This stems from the fact that the structured products constituting the roll are sold at t = t0,
t0 + τ , t0 + 2τ , ..., and, hence, the state variables Vt0+kτ and rt0+kτ determine the participation rates
while, since the options are sold at-the-money, St0+kτ determines the strike prices. In Section 4.3 any
bias stemming from this dependence is handled by letting the starting values V0 and r0 be random vari-
ables themselves, but in a discretionary setting such as in Section 4.4 this is an important feature of the
investment alternatives.

Weighting of the rolls in the abovementioned portfolios may be done either through a capital-weighted
or an absolute scheme. A capital-weighted scheme would imply that in-the-money products are under-
weighted compared to out-of-the money products. Thus, such weighting scheme distorts the inherent
properties of the structured products as bonds would be assigned higher weights than would the average
structured product. Furthermore, the average tenor of the portfolios would be lower than should one use
an absolute scheme.

Instead, we suggest using an absolute weighting scheme. A naïve absolute weighting of any Portfolio 1
through 6 consisting of n rolls would be to invest equal amounts in each roll, i.e. the weight αi

t assigned
to each roll i would be defined as

αi
t =

V P
t∑n

j=1 V j
t

,

where V P
t is the portfolio value and V i

t is the value of roll i. Note that, according to this scheme, the
weights αi

t are constant in time and hence require no rebalancing. This scheme would however be highly
path dependent as the previous performance of each roll would determine the weight assigned to each
product. Hence, we suggest an equal capital protection scheme which assigns equal absolute weights to
the products rather than the rolls, i.e. the weights are defined as

αi
t =

V P
t

∑n
j=1 nbondsj

t

nbondsi
t

∑n
j=1 V j

t

,

where nbondsi is the number of bonds held in roll i at time t. Since the number of bonds held in each
roll only changes when a product matures this scheme requires rebalancing ten times per year.
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4.3 The quantitative approach
Performance analysis in finance generally revolves around deducing a relationship between the risks and
returns associated with a specific financial product or instrument. Several popular ways of measuring
financial performance are based on the mean and variance/standard deviation of historical returns (e.g.
Markowitz’ mean-variance frontiers and the Sharpe ratio).

When dealing with non-Gaussian return distributions several questions can be raised regarding how to
quantify risks. Return distributions can show non-Gaussian properties by exhibiting skewness, excess
kurtosis or both. In the case of asymmetric return distribution it is imperative to separate the notions
of risk and opportunity, as they are interchangeable only in a symmetric setting. For instance, a large
positive skew with extreme return shocks in the positive tail would typically show a large standard devi-
ation, although such a deviation from normality should by no means be punished by being accompanied
with a high level of risk. Merely, this asymmetry represents a high level of opportunity (not unlike a
lottery ticket), as long as the investor prefers more money to less. Another example would be option
contracts as they show convex relation to the underlying asset rendering in skewed return distributions
even in a Gaussian framework such as the BSM model. Hence, we prefer quantile-based measures to
those incorporating an enire distribution function.

Regardging excess kurtosis or so called fat tails, the rationale is that a fat-tailed distribution would more
frequently exhibit extreme outcomes as well as outcomes centered around the mean than would a Gaus-
sian distribution with the same mean and variance. Consequently, a parametric approach to measuring
tail risk would fail in such a setting. On back of these arguments, along with our simulated data showing
both skewness and excess kurtosis, we rely on a non-parametric, quantile-based risk measures.

Before stipulating our risk measures of choice we need a formal definition of how to deal with the terminal
returns. In an attempt to reduce the extreme behavior of the total returns we choose to evaluate the
geometric means of the 5000 terminal, ten-year returns. That is, given a total return R0,10, the geometric
mean, or Compounded Annual Growth Rate (CAGR), is defined as

CAGR0,10 = (1 + R0,10)1/10 − 1.

In order to specify the risk measures we let L = −CAGR0,10, where L is to be interpreted as the
geometric average annual loss. Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are then
defined

VaRα(L) := inf{l ∈ R : P(L > l) ≤ 1 − α},
and

CVaRα(L) := E[L | L ≥ VaRα(L)].

We note that the higher the reading of VaR or CVaR, the higher the level of risk associated with the
instrument. Being a simulation study we go about the calculation of these risk measures in a purely
empirical way.5 Figure 4.3 shows how CVaR varies in the threshold parameter α for three of the nine
different investment strategies.

4.3.1 Introducing the Single roll to a classical stock-bond mix
We start out by studying the simplest strategy involving structured products, namely the Single roll. A
brief inspection of Table 4.2 reveals that the bond strategy offers a safe haven as it shows low variance
and negative readings of both VaR and CVaR. The stock strategy allows for substantially higher returns
than do bonds, yet is associated with higher levels of risk judging by all available measures. Finally, as
one would expect, the Single roll offers a compromise between the two. Further, judging by the scatter
plots shown in Figure 4.4 we find no significant correlation pattern between neither bonds and stocks
nor bonds and Single roll. Consequently, this leaves us to conclude that the main driver for Single roll
returns is stock performance, as the two show a clear convex return relationship.

5The empirical VaR on threshold level α = 0.01 is defined as the 50th largest loss, while CVaR, accordingly, is the
arithmetic average of the 50 largest losses.
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As a sanity run-through of the terminal returns we conclude that stocks outperformed bonds four times
as often as the other way around. Specifically, the former occured approximately 81% of the times, and
when doing so, Single roll was the second best strategy 86% of the times. Similarly, among the 19% of
the simulated trajectories where bonds oputperformed stocks we see that Single roll was the second best
strategy 57% of the times. Further, among the times where bonds outperform stocks we notice a slight
skew towards Single roll outperformning both assets more often than underperforming both of them. Un-
conditionally, that is regardless of stocks outperforming bonds or the other way around, we note a fairly
symmetric distribution with Single roll being the best alternative 9%, second best 81% and the worst 10%.

To quantitatively deduce and illustrate whether or not to include these instruments in our portfolio we
draw efficient frontiers. That is, we find portfolio weights so as to maximize the expected return for
a given level of expected risk, measured as variance and CVaR, respectively.6 Geometric means of the
simulated returns are used as proxies for future expectations of the one-period model. From Figure 4.5
we see that although a small portion is attributed to the Single roll there is no significant improvement in
the reachable mean-variance optimal portfolios. On the contrary, when risks are measured as Conditional
Value-at-Risk we note improvements on both ends of the risk-return spectrum as the Single roll crowds
out stocks in the lower risk-return region, whereas in the upper risk-return region bonds are crowded out
by the Single roll. This crowding out is showed in Figure 4.6.

6Or, equivalently, weights are chosen so as to minimize the expected risk for a given expected return.
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Figure 4.3: Conditional Value-at-Risk (CVaR) varying in the threshold parameter α for the bond, stock
and Single roll strategies.
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Figure 4.4: Histograms and scatter plots of the stock, bond and Single roll strategies. Returns on CAGR
basis.
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Figure 4.5: Efficient frontiers based on simulated data. Returns on CAGR basis and risk measured as
standard deviation.
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Figure 4.6: Efficient frontiers based on simulated data. Returns on CAGR basis and risk measured as
Conditional Value-at-Risk.
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4.3.2 Introducing path dependence via a portfolio of multiple rolls
Having pointed out some of the advantages and drawbacks of structured products examplified by the
Sinlge roll we now look at how this Single roll compares to the remaining strategies in the class of sys-
tematic investment vehicles involving structured products. As explained in Section 4.2.2, the Single roll
can be viewed as a subset of Portfolio 1. Consequently, we focus on the differences between the two.

We know that as the Single roll contains one roll only there is no need for a pre-evaluation window.
Hence, we say that Single roll is state dependent in the sense that the prevailing participation rate of the
first structured product (issued at time t = 0) is dependent upon the state variables V0 and r0. Moreover,
Portfolio 1 is said to be path dependent as not only the state variables but also the price paths of the
underlying securities within the pre-evaluation window impact the composition of the portfolio at time
t = 0. As a first comparison, we study the static measures as shown in Table 4.2 to find that not a whole
lot can be said about the difference between the two strategies.

In a further attempt to disentangle the effects of state dependence from those of path dependence we
study the difference in performance between Portfolio 1 and the Single roll, i.e. how much Portfolio 1
outperforms Single roll over the ten year long evaluation window, on CAGR basis. This difference is
shown in Figure 4.7. We find no significant correlation between this difference and stock performance,
neither that prior to the evaluation window nor that of the actual evaluation window. The fact that we
cannot find any distinct relation between the performance of the underlying leads us to think that the
difference can be derived to what we refer to as intra-evaluation window performance. In other words,
the difference stems from where the local highs and lows are within the evaluation window. We call this
timing risk and the matter is discussed further in Section 4.4. However, we choose to present the two
most extreme outcomes of this difference in Figure 4.8.
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Figure 4.7: Left: Scatter plot of Single roll returns vs Portfolio 1 returns. Right: Histogram of the
difference between the two.
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Figure 4.8: Plots of the evolution of the price index for the two scenarios producing the largest differences
between Single roll and Portfolio 1. The dashed lines indicate where the structured products in the Single
roll matures and new ones are issued. Upper: Total returns of 153% and 353% for Portfolio 1 and Single
roll, respectively. Lower: Total returns of 107% and 12% for Portfolio 1 and Single roll, respectively.
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4.3.3 Diversifying in tenor and capital guarantee via Portfolios 2-6
Now that we have derived the effects of introducing multiple rolls we look at how we can alter the per-
formance palette by diversifying in tenor and issuing structured products above par. Figure 4.9 shows
the relationship between mean return and CVaR, where we conclude from the clustering of portfolios
that diversification in tenor seems to have little effect. In other words, Portfolios 4 through 6 provide
little extra information on a risk-return basis.

On a total return basis we see that, although there is no capital guarantee, CVaR is still very low for
strategies involving only structured products issued at par. Specifically, we find total return CVaRs of
2.5% and 0.6% for the Single roll and Portfolio 1, respectively. When introducing structured products
issued above par we find higher risk levels and, by the same token, they offer more attractive returns.
As an example, we note that as compared to stocks with a mean total return of 268% and corresponding
CVaR reading of 69.4% the mixed portfolio Portfolio 3 shows a mean total return of 168% and CVaR of
14.6%. Frequency-wise, we conclude that roughly 3 out of 4 times Portfolio 2 is superior to Portfolio 1,
i.e. the extra money spent on options is worthwhile 75% of the time. The scatter plots in Figure 4.10
reiterate this as the main difference between Portfolios 1 and 2 is the slope of the positive tail rather
than the worst case scenarios being less extreme for the former portfolio.
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Figure 4.9: Plot of the prevailing risk-return relations of the nine investment strategies, as measured by
simulated data. Expected return and and the corresponding CVaR0.99 on CAGR basis.

Mean St. dev. Skewness Kurtosis Min Max VaR0.99 CVaR0.99

Bonds 4.1% 0.7% 0.67 3.70 2.1% 7.3% -2.8% -2.6%
Stocks 11.2% 8.2% 0.06 3.45 -20.9% 52.1% 8.1% 11.6%
Single roll 7.7% 4.5% 0.84 4.21 -0.8% 37.1% -0.0% 0.3%
Portfolio 1 7.7% 4.4% 0.90 4.48 -1.2% 38.5% -0.5% 0.1%
Portfolio 2 9.6% 6.9% 0.75 3.88 -5.0% 52.0% 2.1% 3.1%
Portfolio 3 8.8% 5.8% 0.85 4.21 -3.1% 47.1% 0.9% 1.6%
Portfolio 4 7.9% 4.7% 0.89 4.39 -1.6% 40.5% -0.2% 0.4%
Portfolio 5 9.4% 6.9% 0.76 3.85 -5.0% 51.6% 2.3% 3.1%
Portfolio 6 8.8% 6.0% 0.84 4.13 -3.3% 47.3% 1.1% 1.7%

Table 4.2: Summary statistics of the 5000 simulated trajectories. Returns and associated measures on
CAGR basis.
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Figure 4.10: Scatter plots of Portfolios 1, 2 and 3 against a gross equity investment. The line indicates
a strictly linear relationship.

31



4.4 Scenario analysis – the discretionary approach
The quantitative analysis in Section 4.3, albeit informative, does not cover a few issues that are best
illustrated by looking in depth at single trajectories. The main concern with a purely quantitative ap-
proach is that it fails to disentangle market risk, which we define as the risk of chocks to market factors,
from timing risk, which we define as the risk induced by uncertainty of the market state at the time of
investment. Accordingly, we have chosen three trajectories of interest, namely the trajectories displayed
in Figures 4.11, 4.13 and 4.15.

The first scenario in this analysis exhibits a distinct bubble formation which illustrates some of the issues
with market timing. In this environment there is plenty of opportunities for an active portfolio manager
to out- or under perform the market while a passive investment in stocks would generate a mere 29%
ten year reutnr including dividends.

Similarly, scenario 2 displays some rather extreme market highs and lows which, naturally, is beneficial
for the portfolio of structured products. In this scenario, the single roll outperforms the weighted port-
folios since the stock index returns the first three years as well as the three years following t = 6 are very
favorable. Again, the starting time of the Single roll has a significant impact on the terminal return.

Scenario 3 describes a market where a large drawdown during the fourth year in stock index level is not
recovered during the following six year period. During this scenario the Single roll strategy does not even
perform at par with a pure bond roll and the stock index displays a negative (including dividends) 10
year return. Even though there are some local highs, including a very strong year 6, these are not enough
for Portfolio 1 to perform at par with bonds. Portfolio 6 performs even worse due to the increased weight
assigned to options.

4.4.1 The time-variability of market risk
Since the relative weighting of bonds and options in structured products are time-varying, so is the
instantaneous market risk of a portfolio or single roll. In this study we introduce a quantile-based risk
measure, inspired by VaR, to represent market risk. The percentile measure is the relative loss given
an instantaneous and simultaneous relative decrease in stock index price, increase in interest rate and
decrease in the variance process corresponding to the 0.1% most extreme days. Formally put, we define
the risk measure as follows described in Equation 4.2.

riskt = 1 − V P (St (1 + S∗) , Vt (1 + V ∗) , rt (1 + r∗) , t)
V P (St, Vt, rt, t)

, (4.2)

where,

P

(
St+∆

St
≤ 1 + S∗

)
= 0.001

P

(
Vt+∆

Vt
≤ 1 + V ∗

)
= 0.001

P

(
rt+∆

rt
≥ 1 + r∗

)
= 0.001,

and our estimates using the simulated daily returns are S∗ = −0.064, V ∗ = −0.82 and r∗ = 0.098. As
expected, the average level of market risk, in all three scenarios, is very similar between Portfolio 1 and
the Single roll while the market risk is slightly more volatile for the single roll, see Figures 4.12, 4.14 and
4.16. Furthermore, the market risk in either strategy is highly dependent on the stock index performance.
This is not very surprising as the relative weights assigned to options as well the Delta of the options are
increasing in stock returns and hence, this is an inherent property of a principal protected note. Still,
this property should be taken into consideration when investing. Firstly, a structured product at the
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time of issue could be considered a low-risk investment, a property that is quickly eliminated by a strong
performance of the underlying. Secondly, as the stock market falls heavily, the value of option contracts
embedded in the structured products deteriorates and hence there is little room for a recovery of the
product. This can be seen in particular in Figure 4.16 where the risk of the Single roll is very close
to zero during the sixth and the eighth years and does not react significantly to the variablity of the
stock market during those years. It is interesting that this market risk variability is partially hedged by
investing in a weighted portfolio, in particular the risk does not approach zero for the portfolios. Should
an investor wish to reduce the volatility of market risk further, a dynamic hedging strategy involving
stocks and/or bonds is probably required. Finally, Portfolio 6 does not differ noticeably in risk volatility
from Portfolio 1 while the average level is higher as a result of the increased portfolio weights assigned
to options.

4.4.2 Market timing and path dependence
Timing risk, which is particularly interesting due to the properties of structured products, is an important
issue from an investor perspective that can also be considered a state dependent and hence time-varying
risk. In particular, as shown in Section 4.2.3 the future performance of the Single roll is highly dependent
on the chosen time of investment. The quantitative approach does account for this type of risk as the
starting states are themselves random variables. However, the large number of trajectories makes it hard,
if not impossible, to disentangle timing risk from market risk, and the very nature of this risk factor
makes it very hard to quantify numerically.

Studying Figure 4.12, the advantages of structured products in Scenario 1 are clear. The weighted
portfolios of structured products locks in the gains during the market rise of the first four years of the
period and distinctly outperforms both stocks and bonds. The base strategy of a Single roll has similar
characteristics but does not eliminate the timing risk to the same extent. In particular, the Single roll
strategy with products maturing at t = 3, 6, 9 years does not benefit from the stock market highs during
the fifth and sixth years. Clearly, starting the roll at different points in time generates different returns
while the weighted portfolio, which is standardized ten times per year, is not as dependent on starting
point.

In Scenario 2, we see an inverted pattern. The market highs at t = 3, 9 provides an impressive return
of the Single roll. If we study the market risk as illustrated by the quantile risk measure we find that
the level of market risk does not differ significantly between the Single roll and Portfolio 1, in fact the
average risk only differs by 0.02%. Still, there is obviously a significant difference of the return profiles
of these strategies and how their performance relate to the trajectories of underlying market factors.

The static properties of a Single roll allow the future portfolio weights, and hence performance, to be
determined partially by the time of investment. Although this timing risk is not fully displayed in the
quantitative section, we have in these scenarios shown that market timing presents a real risk that can
be exploited by well informed investors or hedged via a weighted portfolio.
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Chapter 5

Conclusions

This thesis uses a Monte Carlo approach to examine the properties of systematic investment vehicles con-
sisting of structured products in a setting where the investment horizon exceeds the evaluation window.
In such a setting it is not possible to fully benefit from the the capital guarantee and, hence, the products
exhibit a slightly different risk profile. Although the capital guarantee is removed, the structured prod-
ucts returns still exhibit a distinct convexity relative to the underlying equity index. Further, among the
trajectories where bonds outperform stocks we notice a slight skew towards Single roll outperforming
both assets.

We employ a stochastic volatility, random jump model incorporating stochastic interest rates that proves
to provide superior explanatory power over the Black-Scholes-Merton model in terms of historical model
fit. A Milstein discretization scheme is implemented to simulate plausible future price scenarios and for
the according trajectories, price elementary and derivative instruments, capturing both volatility skew
with a varying term structure and a non-flat time-varying yield curve.

As simulated asset returns exhibit skewness as well as excess kurtosis we opt for a quantile-based risk
measure and conclude that the introduction of structured products significantly improves the risk-return
space available to investors. However, in a mean-variance setting structured products provide no im-
provement as the benefit of a positive skew is not considered. We take this as evidence of the inappropri-
ateness of variance as a measure of risk rather than evidence against the existence of structured products.

Further, we show that holding multiple products helps in reducing what we refer to as timing risk. This
finding is of particular interest as the timing risk may be a key reason for an investor to choose struc-
tured products in the first place. Timing risk is said to stem from intra-evaluation window performance,
i.e. the risk (or opportunity) of products maturing and thereby reinvesting where the underlying asset,
the equity index, exhibits a local extreme. On a more qualitative note, we see that the portfolios of
structured products, i.e. multiple rolling investments, slightly reduce the time-variability of market risk
as there is a smoothening effect on the relative weighting between bonds and options, respectively. When
we diversify in tenor and capital guarantee we see that even though the portfolios involving structured
products issued above par or with longer time to maturity increase leverage they show attractive risk
measures as the feature of multiple rolls, in almost any market climate, lock in gains from one or more
local highs rendering in a cumulative non-zero option payoff over a ten-year period. Studying simulated
returns we find that a portfolio consisting of above-par products outperforms a portfolio of products
issued at par three out of four times.

Fees are always present for any investor and they come in many forms and could well provide an interesting
topic for further studies. Moreover, if a portfolio or indexed product like those described in this thesis
where to be sold there would be no apparent reason to restrict the products to options on the same
underlying, hence a future study could benefit from including multiple underlying securities, be it to
represent different asset classes, regions etc. In particular if the underlying of the portfolio constituents
are not perfectly correlated the risk profile of the portfolio would most likely prove to be less volatile
which would provide a more transparent investment alternative.
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Appendix A

Derivation of charachteristic functions

Assume a Data Generating Process that follows the stochastic differential equation (SDE) 2.1. The
logarithm of S is then described by the following SDE

dln St = (rt − d + λµ + µ0) dt +
√

VtdWS
t + lnJtdqt (λ)

We introduce the stochastic process Xt described by Xt = lnSt−
∫ t
0 ln Js dqs. Note that Xt is independent

of
∫ t
0 ln Js dqs and is described by the following SDE.

dXt = (rt − d + λµ + µ0) dt +
√

VtdWS
t

Let
fT (x, v, r, t) = E [exp (iφ1XT + iφ2VT + iφ3rT ) |Xt = x, Vt = v, rt = r]

Further, we follow Duffie, Pan and Singleton (2002) and use the following ansatz

fT (x, v, r, t) = exp (C (φ1, φ2, φ3, ∆) + (iφ2 + D (φ1, φ2, ∆)) v + (iφ3B (φ1, φ3, ∆)) r + iφ1x)

where ∆ = T − t.
Now, applying the Itô formula to fT (Xt, Vt, rt, t), using the martingale property of conditional ex-
pectations and the terminal condition fT (x, v, r, T ) = exp (iφ1x + iφ2v + iφ3r) we have the following
differential equations

∂C

∂∆
= iφ1 (µ0 − λµ − d) + (iφ2 + D)κγ + (iφ3 + B)βα

∂D

∂∆
= −1

2
σ2

V φ2
2 − φ1φ2σV ρ − κiφ2 −

1
2
φ2

1 +
(
σ2

V iφ2 + iφ1σV ρ − κ
)
D +

1
2
σ2

V D2

∂B

∂∆
= iφ1 −

1
2
σ2

rφ2
3 − iφ3β +

(
σ2

r iφ3 − β
)
B +

1
2
σ2

rB2

which are solved by the following functions

C (φ1, φ2, φ3, ∆) = iφ1∆ (µ0 − λµ − d) + iφ2∆κγ +
κγ

σ2
V

(
κ − iφ1ρσV − iφ2σ

2
V − h (φ1)

)
∆

− 2
κγ

σ2
V

ln
(

1 − g (φ1, φ2) e−h(φ1)∆

1 − g (φ1, φ2)

)
+ iφ3∆βα +

βα

σ2
r

(
β − iφ3σ

2
r − k (φ1)

)
∆

− 2
βα

σ2
r

ln
(

1 − l (φ1, φ3) e−k(φ1)∆

1 − l (φ1, φ3)

)

D (φ1, φ2, ∆) =
(
κ − iφ1ρσV − iφ2σ2

V − h (φ1)
) (

1 − e−h(φ1)∆
)

σ2
V

(
1 − g (φ1, φ2) e−h(φ1)∆

)

B (φ1, φ3, ∆) =
(
β − iφ3σ2

r − k (φ1)
) (

1 − e−k(φ1)
)

σ2
r

(
1 − l (φ1, φ3) e−k(φ1)

)

45



where

h (φ1) =
√

(κ − iφ1ρσV )2 + σ2
V φ2

1

g (φ1, φ2) =
κ − iφ1ρσV − iφ2σ2

V − h (φ1)
κ − iφ1ρσV − iφ2σ2

V + h (φ1)

k (φ1) =
√

β2 − 2iφ1σ2
r

l (φ1, φ3) =
β − iφ3σ2

r − k (φ1)
β − iφ3σ2

r + k (φ1)

Furthermore,

E [exp (iφ1Xt+∆ + iφ2Vt+∆ + iφ3rt+∆) exp (−iφ1Xt) |Xt, Vt, rt] =
exp (C (φ1, φ2, φ3, ∆) + (iφ2 + D (φ1, φ2, ∆))Vt + (iφ3B (φ1, φ3, ∆)) rt)

is obiously independent of Xt.

It is easy to show, using the law of iterated expectations, that

E

[
exp

(
iφ1

(∫ t+∆

0
ln Js dqs −

∫ t

0
ln Js dqs

))]
= exp

(
∆λ

(
eiφ1µJ−1/2φ2

1σ2
J − 1

))

Hence,

ψ (∆ ln St+∆, Vt+∆, rt+∆; φ1, φ2, φ3|Vt, rt) =
E [exp (iφ1∆ ln St+∆ + iφ2Vt+∆ + iφ3rt+∆) |Vt, rt] =
exp (C (φ1, φ2, φ3, ∆) + (iφ2 + D (φ1, φ2, ∆))Vt + (iφ3 + B (φ1, φ3, ∆)) rt)

exp
(
∆λ

(
eiφ1µJ−1/2φ2

1σ2
J − 1

))

Now, using that Vt follows a Gamma distribution with density function fVt (x) = θp

Γ(p)x
p−1e−θx, where

θ = 2κ
σ2

v
, p = 2κγ

σ2
v

and that rt follows a Gamma distribution with density function frt (x) = θp

Γ(p)x
p−1e−θx,

where θ = 2β
σ2

r
, p = 2βα

σ2
v

we have,

ψ (∆ ln St+∆, rt+∆; φ1, φ3) =
E [exp (iφ1∆ ln St+∆ + iφ3rt+∆)] =
E [ψ (∆ ln St+∆, Vt+∆, rt+∆; φ1, 0, φ3|Vt, rt)] =

exp
(

C (φ1, 0, φ3, ∆) − 2κγ

σ2
V

ln
(

1 − σ2
V D (φ1, 0, ∆)

2κ

)
− 2βα

σ2
r

ln
(

1 − σ2
r (iφ3 + B (φ1, φ3, ∆))

2β

))

exp
(
∆λ

(
eiφ1µJ−1/2φ2

1σ2
J − 1

))
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Finally for some τ ≥ ∆,

ψ (∆ ln St+τ+∆, ln St+∆; ϕ1, ϕ2) = E [exp (iϕ1∆ ln St+τ+∆ + iϕ2∆ ln St+∆)] =
E [E [exp (iϕ1∆ ln St+τ+∆ + iϕ2∆ ln St+∆) |Vt+τ , rt+τ ]] =
E [exp (iϕ2∆ ln St+∆) E [exp (C (ϕ1, 0, 0, ∆) + D (ϕ1, 0, ∆)Vt+τ + B (ϕ1, 0, ∆) rt+τ ) |Vt+∆, rt+∆]]

exp
(
∆λ

(
eiϕ1µJ−1/2ϕ2

1σ2
J − 1

))
=

exp (C (ϕ1, 0, 0, ∆) + C (0,−iD (ϕ1, 0, ∆) ,−iB (ϕ1, 0, ∆) , τ − ∆)) E [exp (iϕ2∆ ln St+∆ + D∗Vt+∆ + B∗rt+∆)]

exp
(
∆λ

(
eiϕ1µJ−1/2ϕ2

1σ2
J − 1

))
=

exp (C (ϕ1, 0, 0, ∆) + C (0,−iD (ϕ1, 0, ∆) ,−iB (ϕ1, 0, ∆) , τ − ∆) + C (ϕ2,−iD∗,−iB∗, ∆))
(

1 − σ2
V (D∗ + D (ϕ2,−iD∗, ∆))

2κ

)2κγ/σ2
V

(
1 − σ2

r (B∗ + B (ϕ2,−iB∗, ∆))
2β

)2βα/σ2
r

exp
(
∆λ

(
eiϕ1µJ−1/2ϕ2

1σ2
J − 1

)
+ ∆λ

(
eiϕ2µJ−1/2ϕ2

2σ2
J − 1

))

where,

D∗ = D (ϕ1, 0, ∆) + D (0,−iD (ϕ1, 0, ∆) , τ − ∆)
B∗ = B (ϕ1, 0, ∆) + B (0,−iB (ϕ1, 0, ∆) , τ − ∆)
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Appendix B

Monte Carlo verification of analytical
moments

In order to verify the analytical moment conditions as well as to ensure there are no errors in the imple-
mentation of the moments or the simulation scheme we simulate 100000 returns using 300 increments per
return. Figure B.1 shows that although there is convergence, we require a large amount of simulations.
After altering the number of increments as well as the number of simulations we reach the conclusion
that the stochastic error in our simulation model is fairly large and that the discretization error is very
small in comparison.
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Figure B.1: Relative deviation of Monte Carlo approximation from exact moments.
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Appendix C

Option pricing formula

We use the results of Jiang (2002) who derive the following option pricing formula given the risk-neutral
dynamics described by Equation 2.2. We will not include the complete derivation, please refer to Jiang
(2002) for further details. C (t, τ, St, K, rt, Vt) denotes the price of a european call option at time t with
time to maturity τ and strike price K.

C (t, τ, St, K, rt, Vt) = StΠ1 (t, τ, St, K, rt, Vt) − KB (t, τ)Π2 (t, τ, St, K, rt, Vt)

where

Πj (t, τ, St, K, rt, Vt) =
1
2

+
1
π

∫ ∞

0
Re

(
e−iφ ln Kfj (t, τ, St, K, rt, Vt, φ)

iφ

)
dφ

f1 (t, τ, St, K, rt, Vt, φ) = exp

(
− γr

σ2
r

(
2 ln

(
1 −

(
1 − e−ξrτ

)
(ξr − β∗)

2ξr

)
(ξr − β∗) τ

))

exp

(
− γv

σ2
v

(
2 ln

(
1 −

(
1 − e−ξvτ

)
(ξv − κv + (1 + iφ) ρσv)

2ξv

)))

exp

(
− γv

σ2
v

(ξv − κ∗ + (1 + iφ) ρσv) τ + iφ ln St +
2iφ

(
1 − e−ξrτ

)

2ξr − (1 − e−ξrτ ) (ξr − β∗)
rt

)

exp
(
λ∗τ (1 + µ∗)

(
(1 + µ∗)iφ eiφ(1+iφ)σ2

J /2 − 1
)
− iφ (λ∗µ∗ + d) τ

)

exp

(
iφ (iφ − 1)

(
1 − e−ξvτ

)

2ξv − (1 − e−ξvτ ) (ξv − κv + (1 + iφ) ρσv)
Vt

)

f2 (t, τ, St, K, rt, Vt, φ) exp

(
− γr

σ2
r

(
2 ln

(
1 −

(
1 − e−ξ∗

rτ
)
(ξ∗r − β∗)

2ξ∗r

)
(ξ∗r − β∗) τ

))

exp

(
− γv

σ2
v

(
2 ln

(
1 −

(
1 − e−ξ∗

vτ
)
(ξ∗v − κv + iφρσv)
2ξ∗v

)))

exp

(
− γv

σ2
v

(ξ∗v − κ∗ + iφρσv) τ + iφ ln St − ln B + (t, τ)
2 (iφ − 1)

(
1 − e−ξ∗

rτ
)

2ξ∗r − (1 − e−ξ∗
rτ ) (ξ∗r − β∗)

rt

)

exp
(
λ∗τ (1 + µ∗)

(
(1 + µ∗)iφ eiφ(1+iφ)σ2

J /2 − 1
)
− iφ (λ∗µ∗ + d) τ

)

exp

(
iφ (iφ + 1)

(
1 − e−ξ∗

vτ
)

2ξ∗v − (1 − e−ξ∗
vτ ) (ξ∗v − κv + iφρσv)

Vt

)

where ξr =
√

β∗2 − 2σ2
r iφ, ξv =

√
(κ∗ − (1 + iφ) ρσv)2 − iφ (1 + iφ) σ2

v, ξ∗r =
√

β∗2 − 2σ2
r (iφ − 1) and

ξ∗v =
√

(κ∗ − iφρσv)2 − iφ (iφ − 1)σ2
v .
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