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AbstractThe aim of this work is to use a new modelling technique for CO2 emission quotas (EUA),in order to calculate the price of structured products, in particular options on the CO2allowances. After a short discussion about the speci�cities of this market, we investigateseveral GARCH-�ltering processes for CO2 emission permits prices. We take interest, inparticular, in GARCH models with fractional powers in the autoregressive process of thevolatility (the APARCH), and in GARCH models with regime switching (RS-GARCH).Calibration of GARCH, conducted using the CO2 European Union Allowances (EUA) dailyprices from 2005 to 2009, is carried out maximizing likelihood as well as using Bayesianinference in models with too high complexity for relying upon numerical optimization.We use these modellings under the historical measure to derive a model for options pric-ing under the risk neutral measure. We compare both approaches, one following the workof Gerber and Siu (1994) using a stochastic discount factor exponential a�ne, the other oneusing the recent method developed by Chorro, Guégan and Ielpo (2009) and considering anempirical martingale correction techniqueInterestingly, we notice that the GARCH processes with fat-tailed distributions (such as Stu-dent or Normal Inverse Gaussian ones) �t better CO2 market data. Option prices calculationstill gives evidence to the fact that normal innovations are not satisfactory, but may conductto rather di�erent conclusions from the �tting study, showing the importance to distinguishhistoric and risk neutral probabilities.Keywords: Carbon, EUA, Generalized Hyperbolic Distribution , GARCHmodelling, MarkovSwitching processes, pricing, Incomplete markets, Empirical Martingale Correction.
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1 IntroductionHuman activities, in particular population growth and the development of industry over the last200 years, have caused an increase in the emission and atmospheric concentration of certaingases, called "greenhouse gases" (primarily carbon dioxide and methane). These gases intensifythe natural greenhouse e�ect that occurs on Earth, which in itself allows life to exist. The man-induced, enhanced greenhouse e�ect is leading to an increase in the average temperature of theplanet that, will potentially cause increasingly severe and perhaps even more extreme disrup-tions to the Earth's climate, and consequently human activity. As a result, several governments,�rms and individuals have taken steps to reduce their greenhouse gas (GHG) emissions eithervoluntarily, or, increasingly, because of current or expected regulatory constraints. According toKyoto protocol's provisions, the industrialized countries have to reduce the greenhouse gas emis-sions by 5 percent in the period 2008-2012, with respect to levels in 1990. Protocol dictates thetrading of emission allowances as one of the primary mechanisms through which greenhouse gasemission reduction should be achieved. Thus, the right to pollute is considered to be a tradableasset, with its price determined by market forces of supply and demand.We de�ne carbon transactions as contracts whereby one party pays another party in exchange fora given quantity of GHG emission permits that the buyer can use to meet its objectives vis-à-visclimate change mitigation.In the present paper, these contract prices constitute data time series we want to develop modelsfor : we consider a new class of models based on Generalized Hyperbolic innovation of di�erentGARCH processes and we apply the results of price calibration to simple �nancial products,such as European options. We are particularly interested to �nd the "best" distribution whichcharacterizes the data we consider.
• The �rst objective of this paper is to provide a "good" model for CO2 historic prices. Weconsider a new class of models based on Generalized Hyperbolic (GH) innovations and takespecial interest in Normal Inverse Gaussian (NIG), particular case in the GH class. Overthe time period 2005-2009, by looking at likelihood (and in a second time at momentsgenerated), we compare �tting modellings and observe signi�cant di�erences in accordancewith the models we consider, derived from three competitive classes.1. A probabilistic modelling class where the distribution directly �ts the log-return timeseries of daily prices, and where Generalized Hyperbolic distributions outperformBlack and Scholes models.2. A class of GARCH models with fractional powers in the regressive process of thevolatility (the APARCH models). Here, that is the NIG distribution which bringsabout the best �tting among the APARCH class.3. A class derived from GARCH models, with Markov Switching distributions, whereStudent distributions turn out to catch much information about the market prices.1



• Then, we want to understand the evolution of options built on the CO2 allowances. Wecompute option pricing using Monte-Carlo methods, we focus on year 2009 and calibratethe previous best models on that time period. We retain Generalized Error Distribution(GED), NIG and GH(λ=0.5) distributions that we compare to Gaussian models. Throughobservations of pricing errors between computed prices and market real prices, we see thatrisk neutralization turns out to be a challenging issue to pricing computations, and wesuggest two strategies for moving toward the risk neutral measure.1. An analytic transformation, through a Stochastic Discount Factor.2. An empirical method, the Martingalisation.The paper is organized as follows. We start from real data, and after some transformations dueto the impact of the VAT fraud, we justify the importance of GARCH �lters with adequate dis-tributions. We deduce the importance of �ltering data, and compare di�erent GARCH-processesthat we calibrate maximizing likelihood.We will be interested, in particular, in two classes of GARCH models for calibrating the CO2emission permits : GARCH models with fractional powers in the regressive process of the volatil-ity (the APARCH), and GARCH models with regime switching (RS-GARCH).We will notice that for the RS-GARCH process, the likelihood optimization is a priori infeasible,because of the path dependence of each regime at each time, that's what Cai, Hamilton andSusmel �rst pointed out [1994]. We suggest to use Bayesian inference for calibration of the mostcomplex models, based on GIBBS methods associated with a rejection test so as to �lter outsimulations which make the likelihood fall out.Finally, we will compute option pricing using Monte-Carlo methods, and through back-testingstrategies and error comparisons from market prices, we will conclude on the e�ciency of GARCH�lters. We will also look at likelihood and moments generated and see that moving toward therisk neutral measure will turn out to be a challenging issue to pricing computations.2 Data setsOur dataset is composed with the CO2 daily prices from April 2005 to December 2009, it is tosay around 1150 data. On Figure 1, EUA historic prices from 2005 to 2009 show a very highvariability in prices. From this point, we will centre our study on the daily log-return time series
Rt = log(St+1

St
) based on the daily CO2 quotas prices St.2.1 Non Gaussian behaviourLet us compare how well adapted is a Gaussian distribution to the CO2 quotas exchange market.Therefore, we look at QQ plot and see how this distribution �ts the histogram of real data (Figure2). We add the �rst moments of the data distributions to highlight the market characteristics.2
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Time Series Plot:CO2 prices from 2005 to 2009

Figure 1: CO2 data from April 2005 to October 2009Variance Skewness KurtosisDATA 6.97 × 10−4 -1.28 16.91Table 1: Moments of the daily log-return time seriesThese plot and table give evidence to three main features of the CO2 market.
• Asymmetric distribution.
• Fat tails.
• High volatility.The non-Gaussian behaviour of the market leads us to turn to di�erent kinds of distributions inour modellings, such as Student, Generalized Error Distributions (GED) or Generalized Hyper-bolic distributions (GH), whose particular class of Normal Inverse Gaussian (NIG) seems reallywell-adapted to the market (we will introduce and present these distributions later).

3
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Figure 2: Geometric Brownian Motion (GBM) adapted on EUA. On the left yields histogramand the �tted GBM, on the right QQ plot2.2 Serial correlationWe can notice some cyclic correlations on the market, mainly every 1 day, 7 days, 12 days and15 days, as we can see on the Figure 3 representing the autocorrelation functions of the data.This phenomenon results from the VAT fraud which occurred on EUA market until 2009 andwhich might infer with our �tting modellings. We suggest one solution here to get rid of thesedisruptions.We �x this issue by linearly regressing the daily log-return Rt on Rt−1, the residual Yt on Yt−7,and the second residual Zt on Zt−12, constituting new time seriesAfter �ltering out the three main autocorrelation peaks (lags 1,7 and 12), the residual is chie�ycleared out, even if other peaks still exist, but we will not take heed of them.But Figure 4, representing the autocorrelation functions on the 960 most recent squared log-return data, still shows a high correlation in the prices, and a serial dependence.Hence, we decide to turn to GARCH �lters to adapt our distributions to the serial dependenceof our datasetSo both non-Gaussian behaviours and serial correlation of the market lead us to introduce4
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Figure 3: Autocorrelation functions of the daily log-return time series
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Figure 4: Autocorrelation of the squared daily log-return time seriesGARCH models with, among other distributions, Normal Inverse Gaussian innovations (NIG),with the constant idea that the better our �tting will be under the historic probability, the closerto the market the pricing will be under the risk neutral measure in a second part.
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3 Modelling on 2005 - 2009As explained above, we separate our modellings under three classes.3.1 Modelling with GH distributionsWe consider the log-return time series Rt following a Generalized Hyperbolic distribution, whosegeneral form of density is described here :
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(y+y−1)dy.We particularly focus on the NIG distribution, which corresponds to the speci�c case with λ = −1

2in the previous description. Thus:
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.Through changes of variables that we will not develop here, the NIG distribution is equivalentto the following form of density :fNIG(x;α;β;µ; δ) = δα · e(δγ+β(x−µ))
π ·

√
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K1(α

√

δ2 + (x− µ)2).What is important to notice is the form of the moments generated by this distribution, andparticularly moments of orders 1 to 4 : E(X) = µ+ δ
β
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α · √δγK(X) = 3 + 3(1 + 4(
β

α
)2)

1

δγ
.So as we can see, the NIG distribution is liable to imply behaviours characterized by fat-tailedand high asymmetry, matching non null skewness and important kurtosis (which depend on thedistribution parameters α, β and δ).The class parameter λ is treated externally and not estimated in the optimisation algorithm.6



We will display results for di�erent values of λ, and compare them to the classic GBM model.This class will be denoted "Pure GH models" in the Comparison section.Let's just see how adapted is the pure NIG distribution to our data. We compute like be-fore the QQplot and �tting for this modelling, viewable on Figure 5. The features of GH and
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Figure 5: NIG distribution adapted on EUA : on the left yields histogram and the �tted NIG,on the right QQ plotparticularly NIG distributions obviously match the data ones better than GBM does.3.2 Modelling with GARCH type models and several distributions for resid-ualsThe APARCH processes we will use to �lter out data derived from the classic GARCH class ofmodels :
Rt = σtεt

σ2t = ω + αε2t−1 + βσ2t−1where, εt can be a Gaussian, GH or GED distribution in our study.The APARCH models di�er in the power we add to both volatility and innovation in the autore-gressive process.We consider this power as a new parameter δ of the model, taking real values.
σδt = ω + α|εt−1|δ + βσδt−17



We can notice that in the APARCH equation, the special case with δ=2 matches the classicGARCH model. δ as λ is also manipulated externally, not estimated.So we estimate 3 GARCH parameters for each distribution, plus 1 parameter for the GED andtwo for the GH distributions. Indeed, we normalize the GH distribution, so as to get mean andvariance respectively equal to 0 and 1, which �xes µGH and δGH . Only the two �rst parameters
αGH and βGH remain.3.3 Modelling with Markov switching approachesWe now develop models constituted with a unique GARCH process, but whose innovation isswitching between two distributions ε1 and ε2. The switching probability is considered to beconstant, and constitutes a parameter of the model.We will consider that the regime at time t is independent of the one at time t− 1.So the probability at each time to be set in state 1 is p, and in state 2 is 1− p. We denote by stthe state variable, taking values in (1,2).

Rt = σ2t εt,st

σ2t = ω + αε2t−1,st−1
+ βσ2t−1In this model, it is much harder to express the likelihood at time t, as we don't know in whichregime we are. One possibility, provided by Gray et al. (1996), is to express the global densityfunction as the mean of the density along each state. At each time t,

fglobal,t(x) = p.ft(x/st = 1) + (1− p)ft(x/st = 2)We estimate our models with GIBBS algorithm (see appendix A). Practically, we tested the modelwhere the innovations are switching between two NIG distributions, and two ending estimationsare liable to occur. The �rst one is characterized by a transition probability equal to 0 or 1, andthe other one by equal values of parameters of the two NIG distributions. That means that onlyone regime is detected by the algorithm.Obviously, the regime detected is the same as the simple GARCH-NIG(1,1) process.The conclusion here is that a two-steps regime switching GARCH doesn't provide so muchinformation for the modelling of our data, when we consider NIG innovations.Before applying it to our real data, we tested the model on an arti�cial GARCH model witha mixture of two di�erent NIG distributions that we simulated, and the calculation alwaysconverges to an intermediate single GARCH-NIG model.Indeed, this fact is quite explainable : the NIG distribution is a kind of generalized hyperbolicdistribution, also called normal mean-variance mixture, whose expression is of the type
X = α+ β.A+ σ.

√
A.Z8



with Z = N(0, 1)Consequently, X conditional on the matrix A has a normal distribution with mean α+ β.A andvariance σ2.A.The role of A is to model shocks which can change the volatility. It is to say that jumpsare already contained in the NIG distribution, and that's why the likelihood function as it isde�ned (mean of the density of both regimes along the transition probability) performs as well asthe likelihood of a single intermediate NIG distribution, characterizing alone pretty well jumpsin the model. This remark obviously applies to Generalized Hyperbolic distributions.The GED distribution is not suitable neither for regime switching, and turns out to bring aboutunstable �tting of data. So we only focus on Student and Gaussian innovations in this modelling,as viewable next section.3.4 Comparison of the modellingsWe present the table of results corresponding to the three main classes of models introduces pre-viously: The pure GH models are displayed for λ varying from -1.5 to 1.5, and compared to GBM.We show the estimation results for GARCH models with di�erent families of innovations and forAPARCH models with δ from 0.5 to 3, and λ from -1.5 to 1.5 (results can be visualised on the3D surface on Figure 6, and the best ones in Table 5)Finally, we consider GARCH with distributions switching respectively between two Student,and one Student and one Gaussian.Log-lik drift volatilityGBM 2041.31 -0.1811 0.4242[-0.6187 , 0.2565] [0.4059, 0.4447]Table 2: Estimation results of the GBM model with 95% con�dence intervalsThe �rst information we can extract from these results, is that the optimal λ in pure GH modelsand APARCH-GH models don't match. Whereas the former is between 0.5 and 1 in the pureGH case, plots show that in the APARCH-GH case, the optimal λ ranges from -0.5 to 0.5, evenif it globally depends on the choice of δ.Then, we can see that in APARCH-GH, for each value of λ we still have the best �tting forthe lowest values of δ. For higher δ, the estimation is better for λ closer to 0 than to -0.5, addingevidence to the fact that we can get better results than the NIG distribution provides.9



Log-likelihood α β µ δGH(λ = 0.5) 2186.45 37.53 0.000 0.0000 0.0008[33.77, 41.30] [-0.005, 0.005] [0.0000, 0.0000] [0.0008, 0.0008]GH(λ = 1) 2176.24 57.39 0.000 -0.0001 0.0008[51.18, 63.59] [-0.012, 0.012] [-0.0001, -0.0001] [0.0008, 0.0008]GH(λ = 0) 2175.90 29.60 0.000 0.0000 0.0090[26.92, 32.28] [-0.010, 0.010] [0.0000, 0.0000] [0.0090, 0.0091]GH(λ = −0.5) 2170.95 21.75 0.000 0.0000 0.0156[19.61, 23.89] [-0.032, 0.032] [0.0000, 0.0000] [0.0156, 0.0156]GH(λ = −1) 2166.78 12.91 0.000 0.0000 0.0215[11.37, 14.44] [-0.037, 0.037] [0.0000, 0.0000] [0.0215, 0.0215]GH(λ = −1.5) 2162.69 2.89 0.000 0.0000 0.0278[1.74, 4.04] [-0.166, 0.166] [0.0000, 0.0000] [0.0278, 0.0279]GH(λ = 1.5) 2159.20 71.97 0.000 -0.0001 0.0008[56.67, 87.26] [-0.038, 0.038] [-0.0001, -0.0001] [0.0008, 0.0008]Table 3: Estimation results of pure GH models model with 95% con�dence intervalsLog-lik ω α β αdistribution βdistributionGARCH-NIG 2234.27 0.0000 0.1387 0.8613 0.7319 0.0000[0.0000 , 0.0000] [0.1378, 0.1397] [0.8612, 0.8613] [0.7213, 0.7426] [0.0000 , 0.0000]GARCH-GED 2234.02 0.0000 0.1305 0.8499 1.1000 -[0.0000 , 0.0000] [0.1299, 0.1311] [0.8497, 0.8501] [1.0925, 1.1075] -GARCH-Student 2232.36 0.0000 0.1447 0.8553 3.4872 -[0.0000 , 0.0000] [0.1442, 0.1453] [0.8550, 0.8555] [3.3114,3.6629] -GARCH-Gaussian 2120.00 0.0000 0.1381 0.8306 - -[0.0000 , 0.0000] [0.1363, 0.1398] [0.8285, 0.8328] - -Table 4: Estimation results of GARCH models with 95% con�dence intervalsFor a better view of the model �tting, we plot in Figure 7 the evolution of the log-likelihood ofAPARCH with respect to δ, in the case of NIG innovations.Furthermore, the GED distribution seems to be the only one likely to challenge the NIGdistribution in GARCH processes.The Geometric Brownian Motion is outperformed by the whole GARCH processes, and especiallythe GARCH-Gaussian, showing the importance of the GARCH �ltering in data �tting.Finally, for Regime Switching GARCH models, results always converge to a "classic" process,switching with a very volatile Student one (whose parameter driving the distribution is veryclosed, but not equal, to its bounds).Of course, we get a high probability to stay in the non-volatile regime, (even higher than 0.93in the RS-Student mode). So, assuming that we have about 1000 data, it means that around 50will fall in the regime with high volatility for the �rst model (with more explosive Student).10
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Figure 6: Evolution of the Log-likelihood with δ and λ in the APARCH modelling with GHinnovations over time period 2005-2009
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Log-lik ω α β αGH βGHAPARCH (δ = 0.5, λ = −0.5) 2257.06 0.008 0.180 0.820 0.652 0.000[0.008, 0.008] [0.179, 0.181] [0.819, 0.821] [0.642, 0.662] [-0.002, 0.002]APARCH (δ = 0.5, λ = 0) 2255.70 0.007 0.159 0.813 0.629 0.000[0.007, 0.007] [0.158, 0.159] [0.812, 0.814] [0.621, 0.638] [-0.001, 0.001]APARCH (δ = 0.5, λ = −1) 2254.86 0.013 0.202 0.798 0.692 0.000[0.013, 0.013] [0.201, 0.203] [0.797, 0.799] [0.676, 0.708] [-0.001, 0.001]APARCH (δ = 0.5, λ = 0.5) 2254.37 0.007 0.134 0.787 0.491 0.000[0.007, 0.007] [0.133, 0.134] [0.785, 0.788] [0.474, 0.508] [-0.001, 0.001]APARCH (δ = 0.5, λ = 1) 2250.51 0.006 0.096 0.750 0.288 0.000[0.006, 0.006] [0.091, 0.101] [0.749, 0.752] [0.120, 0.457] [-0.000, 0.000]APARCH (δ = 0.5, λ = −1.5) 2250.06 0.018 0.216 0.784 0.741 0.000[0.018, 0.018] [0.214, 0.217] [0.783, 0.786] [0.717, 0.766] [-0.001, 0.001]APARCH (δ = 1, λ = 0) 2247.90 0.001 0.144 0.843 0.648 0.000[0.001, 0.001] [0.143, 0.145] [0.841, 0.844] [0.639, 0.657] [-0.001, 0.001]APARCH (δ = 1, λ = 0.5) 2246.82 0.000 0.098 0.818 0.509 0.000[0.000, 0.000] [0.097, 0.099] [0.816, 0.820] [0.486, 0.532] [-0.000, 0.000]APARCH (δ = 1, λ = −0.5) 2245.71 0.001 0.176 0.824 0.746 0.000[0.001, 0.001] [0.174, 0.178] [0.821, 0.827] [0.734, 0.758] [-0.002, 0.002]APARCH (δ = 1, λ = 1) 2242.77 0.000 0.057 0.782 0.352 0.000[0.000, 0.000] [0.057, 0.057] [0.780, 0.785] [0.345, 0.360] [-0.000, 0.000]APARCH (δ = 1.5, λ = 0) 2240.16 0.000 0.113 0.855 0.662 0.000[0.000, 0.000] [0.113, 0.113] [0.854, 0.857] [0.653, 0.670] [-0.000, 0.000]Table 5: Estimation results of APARCH models with 95% con�dence intervalsLog-lik ω1 α1 β1 ν1 ν2 FrequencyRS Student 2257.43 0.000 0.150 0.850 2.001 3.986 0.065[0.0,0.0] [0.150, 0.151] [0.849, 0.850] [2.001, 2.001] [3.587, 4.385] [0.064, 0.065]RS Stud/Norm 2238.03 0.000 0.158 0.840 2.138 - 0.406[0.0, 0.0] [0.156, 0.160] [0.840, 0.841] [2.118, 2.158] - [0.378, 0.435]Table 6: Estimation results for GARCH with innovations switching, with 95% con�dence inter-valsIn appendix B, we develop for the most important models, the main moments correspondingto these estimated parameters, that we compare to data moments.4 Calibration over the period 2009The aim of our study is to use the best modellings under the historic probability to price optionsand compare them to market prices. We have at our disposal a set of option prices issued in2009, and that is why we compute our calibration only over the year 2009.12



The previous study enables us to select in each class the modellings used to price options. Amongthe GH distributions, depending on the models, the cases λ=-0.5 (NIG) and λ=0.5 outperformthe others, and we will select them.Furthermore, if we look more accurately at the evolution of the likelihood in APARCH-NIGmodels with respect to δ over the only year 2009 (Figure 8), it is obviously for δ around 1.5 thatthe �tting is the most realistic. GED innovations are also legitimate for being chosen accordingto the previous study.
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Figure 8: δ in�uence in the log-likelihood, NIG innovations, over year 2009In addition, we will compare these models to two Gaussian ones : GBM and the GARCH-Gaussian process.Finally, Student distributions are unworkable because they present too fat tails that make theunderlying path take really high values in the simulation processes, and simulated options pricesbecome unrealistic. That is why we will not take Regime Switching GARCH into account in thenext pricing part.So we summarize the seven models selected for the next section :
• APARCH(δ=1.5 ; λ=0.5) and APARCH-NIG(δ=1.5)
• pure GH (λ=0.5) and pure NIG
• APARCH-GED(δ=1.5) 13



• GARCH-Gaussian
• GBM, equivalent to Black-Scholes5 PricingThe purpose of our study resides in the calculation of option prices, based on new modellings ofthe CO2 allowances, what has been carried out in the previous sections.We look at European options, calls as well as puts, whose pricing formula at initial time arerecalled for speci�c strike K and maturity T :

C(K,T ) = e−r.T .max(ST −K, 0)for a call option
P (K,T ) = e−r.T .max(K − ST , 0)for a put option,where r is the risk-free annual rate, and St the spot price at time t.This spot price is calculated using Monte-Carlo methods, through which we simulate the dailylog-returns from the di�erent selected models. We compute 10000 path samples for each pricecalculation.After the �tting study under the historic probability, the stake of this paper is now to priceoptions under the martingale measure. We will present two ways for neutralizing risk in optionpricing. The �rst one is the Stochastic Discount Factor (SDF), based on a speci�c form inspiredfrom the Randon-Nikodyn form.The second one is the Empirical Martingale Correction (EMC) and consists in risk neutralconstraints on expectation of simulated paths of prices, for avoiding arbitrage opportunities.Both methods have been presented by Chorro, Guegan and Ielpo (2009). Then, we will applythe EMC methods to compare its e�ciency to real market data.5.1 The Stochastic Discount FactorLet's recall that the Pricing Kernel PK is de�ned from the ratio of the risk neutral distributionto the historical one. If we denote Q the martingale measure and P the historic one :

PK =
dQ

dPFrom this expression, we de�ne the quantity e−rPK as the Stochastic Discount Factor SDF)that we denote Mt,t+1 between times t and t+1. We start from an hypothesis on the form of theSDF:
Mt,t+1 = eθt+1Rt+1+ζt+114



at each time t. By de�nition of dQ, we have
EP (erMt,t+1|Ft) = 1

EP (eRt+1Mt,t+1) = 1So we get:
log(

EP (e(1+θt+1)Rt+1 |Ft)
EP (eθt+1Rt+1|Ft)

) = rIn our modellings, we have an expression of Rt under the form √
htεt, with εt, for example, a

NIG(α, β, µ, δ) distribution. In that case we know explicitly the moment-generating function
E(ezεt) = eµz+δ(

√
α2−β2−

√
α2−(β+z)2)Hence the previous expression implies at each time t:

√

α2 − (β +
√

ht+1θt+1)2 −
√

α2 − (β +
√

ht+1(θt+1 + 1))2 =
r − µ

√

ht+1

δChorro, Guegan and Ielpo (2009) proved that if there is a solution to this problem, the distri-bution of εt under the risk neutral measure becomes at time t NIG(α, β +
√
htθt, δ, µ). Thetransformation will occur on the second parameter of the distribution β, bringing about changesin the mean, variance, skewness and kurtosis. So the condition β+√

htθt < α must be respected,involving that
β +

√

ht+1θt+1

α
< 1Thus, the previous equation in θt+1 can be simpli�ed as

α(1− β +
√

ht+1θt+1

2α2
)− α(1− β +

√

ht+1(θt+1 + 1)

2α2
) =

r − µ
√

ht+1

δwhich is equivalent to
θt+1 = (

2α

δ
(r − µ

√

ht+1)− 2β
√

ht+1)
1

2ht+1
− 1

2So the SDF correction we consider consists in a change into the second parameter of distribution(here it is a NIG, but the result is generalizable to GH distributions) to move toward the riskneutral distribution, but this change is speci�c to the hypothesis on the form of the StochasticDiscount Factor we did at the beginning. Furthermore, as the CO2 market is incomplete, severaldi�erent SDF might drive to di�erent changes toward the martingale measure, and this factbrings about comprehensible di�culties in the choice of the SDF. That's why we prefer lookingto another way to neutralize risk, based on empirical correction.
15



5.2 The Empirical Martingale CorrectionThe Empirical Martingale Correction, also presented by Chorro, Guegan and Ielpo (2009), is acorrection in sampled prices so as to assure that the relation E(St) = S0e
−rt is still valuable.Practically, if we compute simulations for the price of the underlying at time T, we will get asample of N simulations ST,i. The EMC resides in the fact to replace the ith path ST,i by

S′
T,i =

ST,i
1
N

∑N
k=1 ST,k

S0e
−rT

So the average of the sample (ST,i) is equal to the expected value S0e−rT , and so the sam-ple respects the risk neutral conditional expectation. This sample constraint is equivalent to ashift in the historic distribution in order to move under the martingale measure.5.3 ResultsWe have at our disposal 925 options issued in 2009, with di�erent starting dates, strikes andmaturities (December 2009, 2010, 2011 and 2012). They are calls as well as puts.We applied the modellings (calibrated over 2009) to calculate the error between computed andreal prices over the whole 925 market options, for di�erent modellings.We consider two statistics for comparing models. The Absolute Pricing Error (APE) as wellas the Relative Pricing Error (RPE).
APE =

925
∑

j=1

| Ccomputed(Tj ,Kj)− Cmarket |
925

RPE =
1

925

925
∑

j=1

| Ccomputed(Tj ,Kj)− Cmarket |
CmarketPractically, the SDF method might be unstable and bring about drift corrections which wouldmake prices paths diverge.Nevertheless, we computed statistics for several models under the historic distribution and withan EMC method. We compared them to the ones obtained with Black and Scholes (BS). Weseparated call and put results in Table 19.The results are ranked from the best model according to the absolute error to the worse one.Contrary to the �tting results, the pricing with GH models performs better than the onewith APARCH processes.Furthermore, the Black-Scholes model clearly challenges the other models.16



APE RPEcalls puts all options calls puts all optionsGHpure (λ = 0.5) 0.3435 0.2281 0.2858 0.3216 0.2317 0.2766GHpure (λ = −0.5) 0.3449 0.2311 0.2881 0.3187 0.236 0.2773GARCH-Gaussian 0.3454 0.2326 0.2890 0.5104 0.3801 0.4453GARCH-GED 0.3438 0.2381 0.2909 0.5101 0.3725 0.4413APARCH (δ = 1.5, λ = −0.5) 0.353 0.2326 0.2928 0.5558 0.3833 0.4696BS 0.3446 0.2896 0.3171 0.3238 0.2525 0.2882APARCH (δ = 1.5, λ = 0.5) 0.6902 0.7147 0.7024 0.6153 0.5423 0.5788Table 7: Pricing statistics under EMC correctionFinally, it is very clear and distinct, according to the relative errors (RPE), that APARCHmodels evolve in a really di�erent way from the "pure" modellings. That implies that APARCHdon't perform on the same kind of options as the other models. That point of view promptedus to separate the dataset of options along di�erent moyeness and maturities, and to comparemore accurately which model is the most e�cient on each set of options.5.4 In-the-money vs out-of-the-moneyWe compare the e�ciency of the models by distinguishing pricing results between long maturities(more than one year) and short maturities (less than one year) on one side, and options in themoney (itm) and out of the money(otm) on the other side (options are considered to be out ofthe money when the underlying starts at more than two euros from the strike). We compare onFigure 9 the absolute pricing errors for the di�erent models, excepting the APARCH (δ = 1.5,
λ = 0.5), whose behaviour is too far from the other ones.

Figure 9: Comparison of pricing e�ciency along di�erent moyeness and maturities17



Figure 9 points out the strengths and weaknesses of each model :
• Black-Scholes model works the best for long-maturity options in the money, where thefat-tailed property of the market is not so relevant for making NIG distributions be moree�cient.
• At the contrary, the APARCH models with GH innovations catch pretty well the extremebehaviours of the market which predominate for short-maturity options out of the money.
• Finally, the �exible feature of the pure GH models make these ones be really satisfying for"intermediate" options (short maturity in the money and long maturity out of the money).6 ConclusionUnderstanding the emission allowances market goes beyond the classic stochastic apprehensionof �nancial assets like commodities, and enters in a more subjective area of behavioural �nance.The main topic of this paper is to propose a modelling that could �t best the historic time series,using the likelihood function as a discriminating factor to rank models' relevance. The CO2allowance prices show pronounced non-Gaussian behaviour with fat tails and negative skewness.The GARCH models with Generalized Hyperbolic distributions outperform the classic Gaussianmodels in terms of quantity of information. GH distributions capture far more information thanthe classic Black-Scholes model because of their ability to be customized, to di�erent skews andtails forms simultaneously. Other rather �exible distributions such as Student or GED ones arestill competitive according to the likelihood. But we could observe that the �tting seems todepend on both the model chosen and the distribution selected.We applied the results of the model calibration on European options pricing.Even if the Regime Switching GARCH �t pretty well the market, they are unusable for thepricing of European options, too volatile for giving good results. At the contrary, it seems thatover recent data (year 2009), an optimal APARCH model exists for δ around 1.5, result thatcon�rm likelihood study, back-testing (see appendix C and D), and pricing errors.In our case, the carbon market is far from being Gaussian, (see details in section 2), but thepricing results show that Black-Scholes is still very competitive. Indeed, as the CO2 market israther new, the former Black-Scholes model is still very used by its actors for options pricing sothat it represents a reality in the prices (and besides, smile e�ects are rather low on the CO2market). That proves that the historic probability di�ers from the risk neutral one. The best�tting under historic probability may not be the best one looking to comparison with the mar-ket, and the incompleteness of the former brings about di�culties to move toward a martingalemeasure. It is the reason why we used an empirical correction to neutralize risk.18



Then, looking at pricing results, we could identify the particular performing of GARCH modelswith NIG distributions for options out of the money and with short maturities, where the explo-sive and fat-tailed features of these models are well-adapted. Globally, once again, the pricingperforming is likely to be much dependent on both the model and the distribution chosen.Eventually, I could observe that the CO2 market, in spite of its 5 years of existence, is re-ally new and not liquid enough for basing our modelling judgement on the only pricing errors.More liquidity would allow us to calibrate dynamically complex models, and not over the wholeyear 2009 as we did in this study, and that may be possible in the next years, as the tradingvolume keeps increasing each day.Furthermore, more than a comparison to real market option prices, the pricing from the mod-ellings presented in this paper would be really interesting to see if options on the market areovervalued or undervalued, and if hedging strategies based on market options prices would makeus earn or lose money.Finally, there is a real challenge about building a coherent risk neutral measure, and as long asthe illiquidity issue will exist, this question will really be at stake. And I am still convinced thatthe better our �tting is under the historic measure, the closer to the market it should be afterperfectly moving toward the risk neutral measure.
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A The GIBBS methodWe want to estimate the parameters of a RS-GARCH, with for example NIG innovations.
Rt = σ2t εt,st

σ2t = ω + αε2t−1,st−1
+ βσ2t−1where ε1,t and ε2,t have NIG(αNIG1, βNIG1) and NIG(αNIG2, βNIG2) distributions. So we have8 parameters in that case (counting the state probability), too many for relying upon numericaloptimisationWe start with random values for each parameter (from their existence interval), and run it-erations as following:At the iteration i, we express the posterior density of each parameter conditionally on the valuesof the others. We simulate from this conditional density, one value of the parameter considered.For example, from the conditional density of ω, we simulate a value ωi. If this value makes thelog-likelihood function increase, we keep it as the value of ω. Otherwise, we keep the previousvalue.Then we repeat these operations over the remaining parameters. So we get Markov chains, rep-resenting draws of each parameter, conditional on the remaining ones.If we cannot directly simulate under the density of the parameters (and that's our case here), weevaluate the cumulative function of the density kernel over a grid of points from the de�nitioninterval of each parameter.We can numerically inverse this cumulative function and by simulating a uniform distribution,we extract a simulation of our complex initial distribution.At the iteration i, if we have a grid of points a1, ..., an in the interval of de�nition of ω, we get asample (φj)j=1..n of the cumulative function :

φj ≈
∫ aj

a1

κ(ω|αi−1, βi−1, αNIG1,i−1, βNIG1,i−1, αNIG2,i−1, βNIG2,i−1, pi−1)dω1And we get an estimation of ωi by a simulation of the uniform distribution between a1 and an.
u = U([a1, an])

ωi = φ−1
n (u)
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B Comparison of momentsIn order to add evidences to the analysis of models, we compute the comparison of momentsof order 3 and 4, it's to say skewness and kurtosis. From the parameters estimated, we canrebuild random time series from which we extract these moments, with Monte-Carlo methods,from 100000 samples of time series.The results are in Table 11. We used the kurtosis as a criterion in order to select APARCHmodels for which we display moments. We do not display APARCH models whose kurtosis isfurther than 2 from data kurtosis. The study of kurtosis might provide much more informationSkewness KurtosisDATA -1.28 16.91Table 8: Skewness and Kurtosis of real DATAthan skewness and actually, in each model, skewness is really weak, and logically null in somecases (Normal and GED distributions). Indeed, in the estimation of GARCH models with NIGdistributions, we usually hit upon parameters βNIG equal to 0, involving null skewness. So thisimplies that the fat-tailed feature of data is much more important that the asymmetric charac-teristic in the modelling, and the �tting of skewness doesn't matter so much, in comparison withthe kurtosis.Then, we can compare models. In pure GH models, kurtosis decreases as λ increases, givinga kurtosis closed to the data one for λ = −1.With the add of GARCH �lters, results change, and seem once again to be better for lower δ.What is not shown on these tables is that for δ higher than 2, estimation of parameters showsless stability, and kurtosis is liable to take more extreme values, around 30.Eventually, we deduce from Table 11 that Normal distributions have too small tails, whereasat the contrary Student distributions provide tails really too fat for our data. That's why theRS-GARCH composed with both is not so bad, and generates intermediate kurtosis.Furthermore, the far values of GARCH-Student kurtosis may involve a divergence of results inpricing based on models with these distributions, what we indeed observed.The GED distribution seems to be the most satisfying distribution among the non-NIG onesaccording to these moments.
21



Skewness KurtosisAPARCH(δ = 0.5, λ = −1) -0.02 15.46APARCH(δ = 0.5, λ = −0.5) 0.00 17,84APARCH(δ = 0.5, λ = 0.5) -0.04 17.05APARCH(δ = 0.5, λ = 1) 0.03 16.11APARCH(δ = 1, λ = 1) -0.07 17.41APARCH(δ = 1.5, λ = 1) 0.02 17.40APARCH(δ = 2, λ = −0.5) -0.01 17.97APARCH(δ = 2, λ = 0) 0.00 18.42APARCH(δ = 2, λ = 1) -0.02 17.44APARCH(δ = 2.5, λ = −1.5) 0.01 15.16APARCH(δ = 2.5, λ = −1) 0.06 16.78APARCH(δ = 2.5, λ = 0) -0.06 18.63APARCH(δ = 3, λ = 0) 0.06 18.26APARCH(δ = 3, λ = 1.5) -0.01 16.82Table 9: Skewness and Kurtosis of best APARCH models
Skewness KurtosisGH( λ = −1.5) -0.15 22.94GH( λ = −1) -0.02 14.28GH( λ = −0.5) -0.01 11.62GH(λ = 0) -0.00 9.75GH(λ = 0.5) 0.02 8.48GH(λ = 1) 0.01 5.87GH(λ = 1.5) 0.01 4.9Table 10: Skewness and Kurtosis of pure GH models

Skewness KurtosisGARCH - Normal 0.00 4.29GARCH - GED 0.00 12.27GARCH - Student -0.15 100.42RS (GARCH switching) - Normal 0.00 6.31RS (GARCH switching) - Student/Normal 0.00 14,34RS (innovations switching - Student) 0.00 95.61RS (innovations switching - Student/Normal) -0.11 90.04Table 11: Skewness and Kurtosis of models with non-NIG distributions22



C Back-testing options pricing under historical probabilityWe present back-testing strategies for comparing pricing under the historic probability.We will take interest in hedging strategies, so as to see which models �t the best the dynamicsof the underlying constituted by the daily CO2 allowance's price.We consider a strategy through which we sell a European call option C, with certain strike andmaturity, and cover our position with the buying of underlying S.To avoid all ambiguities, we now denote by ∆ the Greek, corresponding to the di�erential ofour portfolio's value with respect to the underlying price, di�erent from δ the parameter corre-sponding to the power of the autoregressive process in the APARCH model.So, in order to make this portfolio delta neutral, we buy ∆ underlying for each option we sell.Our portfolio can then be written at each time as :
Vt = −Ct +∆t.StThe initial value of the CO2 allowance at the beginning of 2008 is 23.46, and we consider theoption expiring at the end of December 2008, and being at the money the 1st of January 2008.We hedge the strategy every 3-days, starting in January 2008 until the end of December 2008(around 85 hedging days). At each hedging time, we need to simulate the new option price, aswell as ∆. For that hedging strategy, we compute the parameters estimations over 2008.The purpose is to look at the Pro�t and Loss (PL), between two hedging times in a row, soas to compare the cumulative PL at the expiration date.Knowing that at the maturity, the option will end out of the money, we also look at the sym-metric portfolio, consisting of a short position in a European put option P, and the buying of ∆underlying (but ∆ is negative in the case of a put).
Vt = −Pt +∆t.StSo in these cases, the PL between time t and t+1 are respectively:

PLt,t+1 = −(Ct+1 − Ct) + ∆t(St+1 − St)

PLt,t+1 = −(Pt+1 − Pt) + ∆t(St+1 − St)C.1 Back-testing callsWe represent on the �gures 10 and 11 the simulated ∆ and cumulative PL over the whole year2008, for a Black-Scholes model (green), a Switching regime between two Black-Scholes models23



(yellow), an APARCH-NIG process( δ = 1.5) (cyan), GARCH models with GED innovations(black) and Normal innovations (red), and �nally for a pure NIG model (blue). Each calibrationhas been done over the whole year 2008.
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Figure 10: ∆ simulated over 2008 for call options
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Figure 11: Cumulative PL over 2008 for a call option hedging24



We can clearly notice from these �gures, that there is a small gap between the 2 Black-Scholesmodels (simple and switching) on one side, and the GARCH models plus the pure NIG modelon the other side. So once more we can distinct that Black-Scholes models behave in anotherway as other models.
∆ are really closed among these di�erent models, even if once againg we can distinct Black-Scholes from the other models.Results are also summarized in Table 12.Model Cumulative PLAPARCH-NIG (1.5) 0.5709Pure NIG 0.5276GARCH-GED 0.5273GARCH-NORMAL 0.5253Switching Black-Scholes 0.2029Black-Scholes 0.0943Table 12: Final PL for the call strategy over 2008C.2 Back-testing putsAs we did for the call options, we compute the ∆ time series and the cumulative PL, viewable onFigure 12 and Figure 13 with the same colour code as before. The results are also summarizedin Table 13. Apparently the Black-Scholes models, which seemed to constitute the worse onesModel Cumulative PLSwitching Black-Scholes -1.0060Black-Scholes -1.0657APARCH-NIG (1.5) -1.1949GARCH-NORMAL -1.1953GARCH-GED -1.2024Pure NIG -1.2103Table 13: Final PL for the put strategy over 2008in a call option hedging strategies, are more e�cient concerning a strategy with put options.The most logical idea to have a �nal opinion about models e�ciency is to consider a portfolioconsisting of selling both a call and a put option. That is a straddle.

25



0 20 40 60 80 100
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
deltas

Figure 12: ∆ simulated over 2008 for put options
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Figure 13: Cumulative PL over 2008 for a put option hedgingC.3 Back-testing straddlesThe delta neutral portfolio, composed with straddle and underlying, becomes at a time t :
Vt = −Ct − Pt + (∆t,call +∆t,put).St26



So the corresponding PL are :
PLt,t+1 = −(Ct+1 + Pt+1 − Ct − Pt) + (∆t,call +∆t,put).(St+1 − St)We obtain from Monte-Carlo simulations the simulated ∆ and cumulative PL of the straddlestrategy :We add in Table 14 the results for the GARCH-NIG model
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Figure 14: ∆ simulated over 2008 for a straddle strategyWe can notice that the di�erences between models mainly come from di�erences of pricing, moreModel Cumulative PLAPARCH-NIG (1.5) -0.6239GARCH-NORMAL -0.6700GARCH-GED -0.6751Pure NIG -0.6827GARCH-NIG -0.6849Switching Black-Scholes -0.8030Black-Scholes -0.9714Table 14: Final PL for the straddle strategy over 2008than from the contribution of hedging. 27
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Figure 15: Cumulative PL over 2008 for a straddle hedgingNevertheless, the use of GARCH �ltering processes brings a real change in this covering strategy,as we can see on the previous ∆ plots, which di�er from GARCH models to non-GARCH models.The GARCH e�ciency doesn't really depend on the distribution we choose for the innovations.The �nal PL is almost the same for Normal and GED distributions, and slightly higher than theone provided by the pure NIG and the GARCH-NIG models.Finally, the best APARCH model in the back-testing is the one whose parameter δ is set around1.5. For too low values of δ, the option prices diverge (lower than 0.3, they become totallyirrelevant). For more results about the optimal δ, see appendix D.
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Figure 16: Final PL for the straddle strategy with APARCH processes over 2008D Optimal APARCH process in back-testingWe now try to set more accurately the optimal value of δ in the back-testing results.We repeat the previous back-testing process with a straddle strategy, for several values of δ from0.3 to 3, and summarize the results in Table 15 and Figure 16. We focus on values of δ around1.5.The back-testing over 2008 is optimal for δ equal to 1.5. To check if this optimal value is globalModel Cumulative PLAPARCH-NIG (1.5) -0.6223APARCH-NIG (2.5) -0.6418APARCH-NIG (3) -0.6479APARCH-NIG (2) -0.6736APARCH-NIG (1.7) -0.7191APARCH-NIG (1.6) -0.7441APARCH-NIG (1.4) -0.7627APARCH-NIG (1.3) -0.7659APARCH-NIG (1) -0.7806APARCH-NIG (0.5) -0.8393APARCH-NIG (0.3) -0.9162Table 15: Final PL for the straddle strategy with APARCH processes over 2008or speci�c to 2008, we back-test over 2009, from January to November, and compute the samecomparison along the di�erent APARCH processes.Our results are in Table 16 and Figure 17. 29



Model Cumulative PLAPARCH-NIG (0.5) -0.5298APARCH-NIG (0.3) -0.5384APARCH-NIG (1) -0.5788APARCH-NIG (1.3) -0.5794APARCH-NIG (1.4) -0.6134APARCH-NIG (1.6) -0.6136APARCH-NIG (1.5) -0.6231APARCH-NIG (1.7) -0.7157GARCH-NIG -0.8156APARCH-NIG (2.5) -0.8429APARCH-NIG (3) -1.0329Table 16: Final PL for the straddle strategy with APARCH processes over 2009

Figure 17: Final PL for the straddle strategy with APARCH processes over 2009It's interesting to see that the back-testing e�ciency becomes globally a decreasing function of
δ over the year 2009. Nevertheless, decreasing from high values, the optimality starts when δborders 1.6. Lower than 1.6, the back-testing remains more or less constant, excepting for verylow values of δ. As these extremely low values of δ match a highly ine�cient back-testing over2008, we will not take them into account, and we can conclude that the optimal parameter δ ofthe APARCH model with NIG innovations is between 1.5 and 1.6.
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